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ABSTRACT

In Bayesian approach to probabilistic modeling of data we select a model for prob-
abilities of data that depends on a continuous vector of parameters. For a given
data set Bayesian theorem gives a probability distribution of the model parame-
ters. Then the inference of outcomes and probabilities of new data could be found
by averaging over the parameter distribution of the model, which is an intractable
problem. In this paper we propose to use Variational Bayes (VB) to estimate
Gaussian posterior of model parameters for a given Gaussian prior and Bayesian
updates in a form that resembles SGD rules. It is shown that with incremental
updates of posteriors for a selected sequence of data points and a given number
of iterations the variational approximations are defined by a trajectory in space
of Gaussian parameters, which depends on a starting point defined by priors of
the parameter distribution, which are true hyper-parameters. The same priors are
providing a weight decay or L2 regularization for the training. Then a selection
of L2 regularization parameters and a number of iterations is completely defining
a learning rule for VB SGD optimization, unlike other methods with momentum
(Duchi et al., 2011; Kingma & Ba, 2014; Zeiler, 2012) that need selecting learn-
ing, regularization rates, etc., separately. We consider application of VB SGD
for important practical case of fast training neural networks with very large data.
While the speedup is achieved by partitioning data and training in parallel the
resulting set of solutions obtained with VB SGD forms a Gaussian mixture. By
applying VB SGD optimization to the Gaussian mixture we can merge multiple
neural networks of same dimensions into a new single neural network that has
almost the same performance as an original Gaussian mixture.

1 BAYESIAN METHOD

In Bayesian approach to probabilistic modeling of data we select a family of models for probabilities
of data that generally depends on a continuous vector of parameters (MacKay, 1995; Bishop, 1995).

Let P1(y|~x, ~w) be a conditional probability of label y given input vector ~x that depends on a vector
of continuous parameters ~w.

Then for an observed data given as pairs {~xt, yt}, t = 1 . . . T, the Bayesian theorem defines a
probability distribution of model parameters:

Prob(~w) ∝ P0(~w)

T∏
t=1

P1(yt|~xt, ~w). (1)

Here, P0(~w) is a prior probability distribution of model parameters ~w.

With Bayesian method the inference of outcomes, probabilities of new data and other values of
interest could be found by computing averages with the parameter distribution of the model. For
example, the probability of a label y given a new never observed input ~x is obtained by the following
expression:
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Prob(y|~x) =
∫
d~wP1(y|~x, ~w)

(
P0(~w)

T∏
t=1

P1(yt|~xt, ~w)

)
/

∫
d~w

(
P0(~w)

T∏
t=1

P1(yt|~xt, ~w)

)

However, computing Bayesian integrals over parameters ~w with the parameter distribution above
is a difficult problem. A standard approach is to find a single point ~w0 in w−parameter space
- a maximum of the parameter distribution. With this maximum likelihood method a parameter
distribution is simplified to become a delta-function

Prob(~w) = δ(~w − ~w0), ~w0 = argmax
~w

(
P0(~w)

T∏
t=1

P1(yt|~xt, ~w

)
.

Variational Bayes method allows to obtain an approximation of the probability distribution over
parameters in a form that could make possible computing of the integrals (Bishop, 2006).

With VB we can find distributions that are less trivial than a delta-function and still manageable to
compute the averages of interests.

In this paper we propose to use Variational Bayes to estimate Gaussian posterior of parameters for a
given Gaussian prior and Bayesian updates with a given model of data.

To do that we will use the following trick and Jensen’s inequality for average of exponential to
transform the Bayesian integral with some probability P (~w) to a better form:

∫
d~wP (~w) =

∫
d~wQ(~w|φ) P (~w)

Q(~w|φ)
≥ exp

(∫
d~wQ(~w|φ) ln P (~w)

Q(~w|φ)

)
. (2)

Here, a new probability distribution Q(~w|φ) is a variational approximation for probability distri-
bution P (~w). The distribution Q(~w|φ) depends on a set of parameters φ. By maximizing the
integral on right side of the equation above over parameters φ we can find the distribution Q(~w|φ)
that is a best approximation for P (~w). The right side of eq.2 contains a negative of a well-known
Kullback-Leibler (KL) divergence for distributionsQ and P . So the bestQ is the one that minimizes
KL-divergence in eq.2.

2 VARIATIONAL BAYES SGD

We will consider a distribution Q(~w) that is a product of Gaussian distributions for all components
of vector ~w:

Q(~w|~µ, ~σ) =
∏
i

e
− (wi−µi)

2

2σ2
i√

2πσ2
i

to approximate the distribution Prob(~w) in eq.1.

A direct computing of integral in KL-divergence with Gaussian distribution Q(w) and Prob(w) is
still a difficult problem. This problem could be solved with the following iterative approach.

The distribution Prob(~w) in eq.1 consists of a product of prior distribution for ~w and probabilities
of observed data points up to some normalization constant. We can consider an effect of observed
data as a Bayesian update of the prior distribution P0(~w) to the posterior distribution Q(~w). To
make this update accurate we can do it incrementally in N iterations by using a fraction of a data
point contribution at the time.

Let’s use a Gaussian prior P0(~w). Then it is equal to Q0(~w) = Q(~w| ~µ0, ~σ0) for some parameters
( ~µ0, ~σ0).

Because for large enough N the contribution of data in eq.1 can be represented as a product of
factors where each factor is close to 1
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Prob(~w) ∝ Q0(~w)

[
T∏
t=1

P1(yt|~xt, ~w)
1
N

]N

we can replace Q0(~w)P1(yt|~xt, ~w)1/N with Q1(~w), where Q1(~w) minimizes KL-divergence

Q1,t(~w) = Q(~w)|~µ1,t, ~σ1,t), (~µ1,t, ~σ1,t) = argmax
~µ,~σ

∫
d~wQ(~w|~µ, ~σ) ln Q0(~w)[P1(yt|~xt, ~w)]

1
N

Q(~w|~µ, ~σ)
(3)

Q1(~w) is a Bayesian update of priorQ0(~w) from a 1/N -fraction of a data point t. By repeating these
Bayesian updates for each data point and iteration n we will find a sequence of approximations

Qn(~w)→ Qn+1(~w), Qn+1(~w) = Q(~w|~µn+1, ~σn+1),

(~µn+1, ~σn+1) = argmax
~µ,~σ

∫
d~wQ(~w|~µ, ~σ) ln Qn(~w)[P1(yt|~xt, ~w)]

1
N

Q(~w|~µ, ~σ)

with a final QN (~w) approximating Prob(~w) in eq.1.

We will compute the integral above in the limit of small variances σ2
i by expanding P1(~w) around

~µ and keeping only leading terms, then

∫
d~wQ(~w|~µ, ~σ) lnP1(~w) ≈ lnP1(~µ) +

∑
i

1

2
σ2
i

∂2

∂w2
i

lnP1(~w)|~w=~µ.

Now, by maximizing over ~µ and ~σ we can obtain the VB SGD update rules for a single data point:

µn+1,i = µn,i +
σ2
n,i

N

∂

∂wi
lnP1(yt|~xt, ~w)|~w=~µn ,

1

σ2
n+1,i

=
1

σ2
n,i

− 1

N

∂2

∂w2
i

lnP1(yt|~xt, ~w)|~w=~µn

(4)

The term with second derivative in the equation 4 after iterating over a whole data set can be consid-
ered as an average over empirical distribution q(x, y):

∑
x,y q(x, y)δ

2 lnP1(y|x,w). That average
satisfies the following identity: < δ2 lnP >=< δ2P/P > − < (δ lnP )2 >. If a model probability
P is close enough to an empirical probability we can neglect a term with second derivative of P and
keep only term with a square of first derivative of the log of probability.

Then finally, we have the VB SGD update rule for σ with the first order gradient:

1

σ2
n+1,i

=
1

σ2
n,i

+
1

N

(
∂

∂wi
lnP1(yt|~xt, ~w)

)2

|~w=~µn (5)

3 MERGING MULTIPLE MODELS

When training multiple models of same dimensions on different partitions of data the VB SGD
gives us a Gaussian distribution for each model and a distribution of the whole ensemble is a mix of
Gaussian distributions. We apply VB SGD to find a single Gaussian distribution that approximates
the mix: Gmix(~w) = 1/T

∑
tGt(~w).

The update rule is the same as in eq.4, only instead of P1 we use ratio Gmix(~w)/Q(~w|~µn, ~σn).
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