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Abstract

Controlling and understanding the internal representations of large language models
(LLMs) remain central challenges. We combine conceptor theory with activation
steering to develop a principled framework for provably optimal affine steering
of LLM activations. Conceptors compress sets of activation vectors and act as
soft projection matrices, enabling precise and interpretable control over internal
states. Our framework derives optimal steering functions from first principles and
consistently outperforms additive steering across in-context learning tasks and
alignment-relevant behavior. We further demonstrate how Boolean operations over
conceptors allow for compositional steering toward multiple objectives, yielding
better performance than traditional vector combination methods. Together, these
results establish conceptor-based steering as a powerful tool for both controlling
LLM behavior and gaining insight into their internal mechanisms. We will release
our code and data as part of a flexible open-source library for activation steering.

1 Introduction

Large Language Models (LLMs) have rapidly advanced Al capabilities (Xu & Poo,2023)), but their
potential for misinformation (Pan et al., 2023), reinforcing biases (Gallegos et al.,[2024), and harmful
behaviors (Shevlane et al., [2023) necessitates methods to understand their internals and control their
outputs. While approaches like Reinforcement Learning from Human Feedback (RLHF) (Ouyang
et al., 2024), supervised fine-tuning (Devlin et al.,2019), and prompt engineering (Liu et al., 2023)
aim to control LLMs, they are often computationally expensive, struggle with generalization (Bottou
et al., 2018 |Amodei et al.,[2016), or yield inconsistent results (Chen et al., [ 2023).

Activation steering (AS) has emerged as a promising alternative, in which one modifies the model’s
activations at inference without needing costly parameter updates. Early work into AS demonstrated
the potential of modifying internal activations in LLMs at inference. |Subramani et al. (2022)
introduced “steering vectors" added to hidden states to guide generation, though their sample-specific
optimization limited scalability. [Turner et al.| (2023) proposed a contrastive approach in which
steering vectors are computed from the activation differences of contrastive prompt pairs, effectively
controlling sentiment, topics, and styles. This more efficient method was then further refined by
(Rimsky et al.;2024b) where larger datasets of contrastive pairs were used to generate more precise
steering vectors. These foundational methods, while pioneering, primarily relied on simple vector
arithmetic and laid the groundwork for numerous applications, from exposing vulnerabilities (Wang
& Shu, 2024} |(Ghandeharioun et al., [2024)) to mitigating biases and unwanted behaviors (Price et al.,
2024;|Lu & Rimsky, 2024)). Despite prior success, most activation addition work has been primarily
empirical without strong justification behind the usage of these techniques. More theoretically
grounded approaches are now emerging. [Todd et al.|(2024)) introduced “function vectors" as specific
input-output mappings in activation space, crucial for in-context learning. [Park et al. (2024) explored
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Figure 1: Illustration of the geometric difference between additive and conceptor steering. Top row:
The hidden layer activations are obtained over a set of antonym in-context learning prompts (red
points). The steering vector (blue dot) or conceptor (blue area) are calculated from these example
activations. Bottom row: New activations (green points, zero-shot context) are then translated
(additive steering) and/or projected (conceptor steering) by the steering functions (blue arrow) to
yield the steered activations (yellow).

the Linear Representation Hypothesis, positing that meaningful information is encoded in linear
subspaces, providing a theoretical basis for AS.|Singh et al.|(2024) derived optimal affine steering
functions, showing that under “guardedness" constraints, simple additive steering can be optimal,
thus justifying existing methods. A more detailed review of related work is given in Appendix

Our work introduces a more general and theoretically grounded framework for activation steering.
We derive optimal linear and affine steering functions from first principles in Section 2, connecting
our results to conceptor theory (Jaeger, 2014b), to move beyond the limitations of arithmetically
combined activation vectors. Our approach employs (soft) projections via steering matrices and
optional bias vector translations, further enhanced by a Boolean algebra for principled composition
of these steering functions. Our theory is not restricted to binary concepts, and does not require an
explicit concept encoding function, as in the work by |Singh et al.|(2024). We demonstrate that our
mechanisms achieve superior performance on function vector tasks (Todd et al.| 2024)) (Section @)
and their Boolean combinations (Section [3.3). Crucially, we also establish improved efficacy over
additive vector baselines in complex Al safety-related tasks (Rimsky et al.|2024a) (Section [3.4).

2 A Theoretical Framework for Activation Steering

2.1 Preliminaries

Let X be an alphabet, i.e., a finite and non-empty set. A language model p is a distribution over >*,
the set of all strings over the alphabet X. Let ¢ be a concept-encoding function ¢ : ¥* — C, which
maps any given string s to its corresponding concept ¢ = ¢(s). Let C be the set of concepts that may
be active in the current text sequence s € ¥*. These concepts may correspond to functions (Todd
et al.,[2024)), binary concepts (Singh et al.,|[2024), or other behaviors exhibited by language models.

Given a language model m, we define the following conditional distribution:
me(s) =m(s| C =c) x m(s)1{p(s) = ¢}, (1)

which expresses the probability of sampling a string s with concept ¢ present. Let enc : ©* — R
be a language encoder, a deterministic function from the set of strings to real-valued vectors. This
need not be a specialized module — we use it to denote the hidden activations of an LLM. With a fixed
encoder function, we define the following random variable:

H(s) = enc(s) : ¥* — RP, )
which is distributed according to:
PH=h|C=c¢)=PH '(h)[C=c)= Y m(s)1{h = enc(s)} 3)
sex*

We assume that H is of finite first and second moment, and denote the concept-conditional mean of
H with respect to ¢ as p., the concept-conditional second moment as ¥, and the concept-conditional
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covariance matrix as >.:
He = E[Hc]a i]c = ]E[HCHCTL Y. = E[HCHI] - ,UC,UZ 4)

We are interested in intervention functions f : RP? — RP that map representation-valued random
variables to other representation-valued random variables (Singh et al.,|2024). We are specifically
interested in steering functions f., which are intervention functions that steer a given representation
towards some concept ¢ € C.

Definition 1 (¢-assisted steering function). We define a steering function f. to be ¢-assisted, and
call it f2, if it is of the form:

et = {5 v 7o v

where f.: RP — RP is a steering function and ¢ : ©* — C is a concept encoding function.

Singh et al. (2024) investigate such ¢-assisted steering functions. In the present paper, we instead
consider unassisted steering functions which do not explicitly make use of a concept encoding
function ¢ when steering the model, following prior work on activation steering (Turner et al., 2023;
Li et al.,2023; |Subramani et al.,|2022). This approach is more computationally efficient since the
concept encoding function can be expensive to obtain and evaluate—-for instance, [Singh et al. (2024)
train a small MLP for this task. Additionally, unassisted steering functions maintain their linear
structure throughout the entire input space, rather than becoming piecewise linear with nonlinear
decision boundaries (as determined by the concept encoding function). This linearity is particularly
valuable for the interpretability of these models, as it allows for clearer analysis of how the steering
mechanism affects model behavior.

2.2 Additive steering functions

Additive steering functions have been the dominant approach to steering model behavior (Turner
et al.| 2023; Rimsky et al.| [2024b; |van der Weij et al., [2024).

Definition 2 (additive steering function). We define a function f. to be an additive steering function
if it is of the form:
fe(H(s)) = b + H(s) (©)

where b. € RP is the steering vector that corresponds to concept c.

Typically, this additive steering vector is chosen to be b, = ji. (see Eq. 4) (Turner et al.,[2023). In
contrastive activation addition, the steering vector is chosen to be b, = p. — . Where c is the target
concept and ¢’ is a contrastive concept that is opposite to c. |Singh et al. (2024) have shown that, when
“guardedness” is required (see Appendix [B), the optimal affine steering method for binary concepts
simplifies to contrastive additive steering. We relax this requirement in our theory.

2.3 Linear steering functions

Let’s now consider the class of linear steering functions in which conceptors are found. Linear
steering functions map the activations of the model onto their steered counterpart through a linear
transformation. This approach is fundamentally different from additive steering, as the change in
activation is not restricted to a single direction. Instead, linear transformations can modify activations
along multiple directions simultaneously, allowing for more nuanced and context-sensitive steering.
A geometric intuition for this distinction is illustrated in Figure[I]

Definition 3 (linear steering function). We define a function f. to be a linear steering function if it is

of the form:
f(H(s)) = CH(s) @)
where C € RP*D is the steering matrix that corresponds to concept c.

As such, a linear steering function contains D? parameters and can therefore represent more complex
steering functions than an additive steering function, which contains only D parameters.

We now wish to define a linear steering function that is “optimal” for steering a representation towards
a concept ¢, in the sense that it should minimize the change to the representation for representations
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that already exhibit the concept ¢ while still effectively steering all the other representations toward
the concept c. We formalize this in the following definition.

Definition 4 (optimal linear steering function). We define the optimal linear steering function to be
the function f.(H(s)) = CH(s) where C solves the following optimization problem:

C(a) = argminE, [HHC - C’HC||§] + a*2||C||% )
c

where || - || g is the Frobenius norm, and « is a regularization parameter, referred to as "aperture".

This optimization problem has been studied by Jaeger|(2014b) and has a unique, closed-form solution.
The aperture parameter « balances the trade-off between accurately representing concept-positive
activation patterns and maintaining a generalized representation. When « is large, the eigenvalues
w; approach 1 and C approaches the identity matrix, causing the conceptor to allow for more signal
components to pass through the conceptor. When « is small, the eigenvalues y; approach 0, causing
the conceptor to allow for less variability and approaching the zero mapping.

Proposition 1. Let 3. be the concept-conditional second moment of the random variable H(s) and
a € (0,00). Then, the conceptor C(X., &) is uniquely defined and can be directly computed as:

C(Se,a) = 5, (z + a_QI) o 9)

The matrix C (f)c, ) is positive semi-definite with eigenvalues in the range [0, 1).
Proof. See Appendix[A.1|andJaeger (2014D).

The unique, closed-form solution is known as the conceptor C'(«) — a positive semi-definite matrix
with eigenvalues between zero and one. We refer to the application of the conceptor as a “soft
projection” of the representation towards the concept c. Where the context is apparent, we drop
the function notation and denote the conceptor matrix simply by C. The conceptor matrix C'
captures the principal directions and variances of a set of neural activation vectors. This structure
can be visualized as a high-dimensional ellipsoid that describes the overall shape and spread of the
activations’ “underlying pattern” or state space region, see Figure [f]

2.3.1 Combining Linear Steering Functions with Boolean Operations

We can combine multiple steering matrices using Boolean operations on conceptors, as defined by
Jaeger|(2014b). These operations allow us to merge conceptors computed on different data samples to
construct more complex steering targets. We begin by defining the OR operation on two conceptors,
which is computed by summing the covariance matrices on which they are based. This operation can
be understood as merging the data from which each conceptor was derived. The resulting conceptor
is then computed based on the sum of these covariance matrices.

Definition 5 (OR Operation on Conceptors). Let Cy and Co be two conceptors computed from co-
variance matrices ., and ¥.,, respectively. The OR operation, C1 V Ca, combines these conceptors
by adding their covariance matrices and is given by:

CiVCs= (S, + ;) (Zey + B, +a721) 7" (10)

Using Equation|9} this can be rewritten as:
-1
Ci1vCy = (I-‘r(01(1—01)_1+02(I—02)_1) 1) (11

Next, we define the NOT operation. This operation inverts the covariance matrix, producing a
conceptor that captures data that co-varies inversely to the original conceptor.

Definition 6 (NOT Operation on Conceptors). Let C be a conceptor derived from covariance matrix
Ye. The NOT operation on a conceptor, denoted by —~C, is computed by inverting the covariance
matrix. The NOT operation is defined as:

-C =2 a2t (12)
Using Equation[9} this can be rewritten as:

-C=1-C (13)



148
149

151
152
153
154
155
156
157

159
160
161

162
163

164
165

166
167

168
169

170

171
172
173

174

175

176

177
178

179
180
181
182
183
184

From these operations, we can use de Morgan’s law to define the AND operation which captures the
intersection between two conceptors. The formal definition is given in Appendix [C.T.

These Boolean operations can be used to combine multiple conceptor steering matrices into composite
steering functions. Similar operations have been proposed for additive steering methods. [Todd et al.
(2024) propose a task arithmetic on function vectors and demonstrate it on a some toy tasks, while
Subramani et al. (2022)) use a vector arithmetic on steering vectors. The negation of additive steering
vectors has been used widely in contrastive steering as introduced by [Rimsky et al.| (2024b). We note
that the AND and OR operations on conceptor steering matrices do not clearly correspond to the
addition operation on steering vectors. In Section [3.3] we compare combinations of steering vectors
against combinations of conceptor-based steering matrices.

2.4 Affine steering functions

We now turn to the class of affine steering functions, in order to generalize the results on conceptors
(Jaeger, |2014b), additive steering functions (Turner et al.| 2023)), and affine steering functions (Singh
et al.,[2024)) into a more general framework of affine activation steering.

Definition 7 (affine steering function). We define a function f. to be an affine steering function if it is
of the form:

fe(H(s)) = CH(s) + b (14)
where C € RP*P s the steering matrix, and b € RP is the steering vector, both of which corre-
sponding to concept c.

We define the optimal affine steering function in an analogous way to how we defined the optimal
linear steering function, as the solution to an optimization problem.

Definition 8 (optimal affine steering function). We define the optimal affine steering function to be
the function f.(H(s)) = CH(s) + b which solves the following optimization problem:

1 2 -2 2
ceptin, B [IHe — (CH+b)[3] + a2 Cl% (15)

In the following proposition, we derive the unique solution for the optimal affine steering function.

Proposition 2. Ler X, be the concept-conditional covariance matrix of H(s), u. its concept-
conditional mean, and o € (0,00). Then, the optimal affine steering function f., as defined
above, can be directly computed as:

C(Ze,a) = Te(Ze 4+ 2a721) 7! (16)
b(Xe, @) = pre — C(Be, ) e (17)
Let C = C(X., ) and b := b(X,, «), then the final steering function is of the form:
feH(s)) =Cx+b=Cx+ pe— Cp, (18)
=C(z — pe) + pe (19)

Proof. See Appendix

2.5 Residual Steering Functions

In standard conceptor steering, the mapping f.(z) = C z attenuates or preserves each principal
component of = by a factor u; € [0, 1]. When we instead apply the conceptor residually, i.e.,:

felz)=Cx4+2x=(C+1)x (20)

the effective steering matrix becomes C' + I and all “steering modes” are shifted to singular values
o; + 1 € [1,2]. We argue that this shift has two benefits in LLMs. Firstly, as argued by [Elhage
et al.[(2021), transformers propagate information via additive updatex — 4+ A(x) and by adding
the steered representation, we conform exactly to that inductive bias—injecting the concept signal
as an additive perturbation rather than a standalone linear gating. Secondly, original conceptors
can only scale down directions (o; < 1), potentially erasing subtle features. In contrast, (I + C')

IThis is the case for recurrent and hybrid models, including the ones used in this paper.
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preserves every component (smallest gain > 1) and gently amplifies concept-relevant modes (largest
gain < 2), strengthening signals without discarding baseline information/| Taken together, residual
conceptor application both respects the architectural biases of LLLMs and leverages mild, controlled
amplification of concept-specific subspaces—Ilikely explaining the empirical improvements observed
when steering via C' + [ rather than C' alone.

3 Experiments

We demonstrate the effectiveness of our steering methods on a set of tasks across several models.

3.1 Implementing Conceptor Steering

Given a finite sample H, € RP*™ of n representations with concept ¢ € C from H,, we approximate
the concept-conditional mean W1th fe = H 1,, and the concept-conditional second moment with

f) =1 ~H.H, .. From fi., and EC, we compute linear (Eq. Iél) affine (Eq. |1 l) and compositional (Eq.
@ conceptor steering functions.

Steering location The input of an LLM is a sequence of tokens ¢; (where ¢ is the token index) which
are transformed into embeddings ¥ € R using a learned embedding matrix £ € RP*V where V

is the vocabulary size. At each layer 1 < l < L, the input vector sequence :rf*1 is transformed by

the token m1x1ng operation T as x() ' = l‘t 4 T(a:t 1) and a subsequent channel mixing operation

Casal = xt Yye¢ ( ) The transformation of a full layer is thus given by

wp =y () g () 1)
The channel mixing operation ( is typically implemented as a multi-layer perceptron (MLP) or a
mixture-of-expert (MoE), and the token mixing operation 7 is typically implemented as a multi-head

attention (MHA) operation or a recurrent neural network (RNN). Both operations typically contain

a pre- or post-normalization operation. Following Elhage et al. (2021), we refer to x¢ and xé as

samples from the residual stream. Unless otherwise specified, we steer the actlvatlons of the resrdual
stream before the token mixing operation, i.e., we intervene on the variable ¢ for 0 < ¢ < L.

Hyperparameters We already introduced « as a hyperparameter for conceptor-based steering.
Following prior work, we introduce 3 as a hyperparameter for the steering strength. For additive
steering, this is applied by using an effective bias vector b = fb... For conceptor-based steering,
this is applied by using an effective conceptor Cf = BC For all experiments, we find optimal
hyperparameters for each steering method at every layer, see Appendix [D.

3.2 Function Steering

We compare conceptor-based and additive steering mechanisms on their ability to steer a given model
toward correctly executing a set of in-context-learning tasks (“functions’). We test both methods on
GPT-J with 6B parameters and GPT-NeoX with 20B parameters. For each function, the experiment
was repeated five times with random seeds, and all reported results were averaged across these runs.
The examples of the input-output functions come from the dataset by [Todd et al.|(2024). We use
the following subset of five functions: antonyms (e.g. good—bad), present-past (e.g. go—went),
English-French (e.g. hello—bonjour), singular-plural (e.g. mouse—mice), country-capital (e.g.
Netherlands— Amsterdam), and capitalize (e.g. word— Word). To ensure comparability of our results,
we follow the work by Todd et al.|(2024) as closely as possible. For more details, see Appendix

The results in Figure [2[ show that conceptor-based steering outperforms the additive steering baseline
(Todd et al.,2024) for every task on both tested models. Results show the best-performing model
across a range of hyperparameters. Conceptor steering is strictly more performant than additive
steering across all tasks for most layers. Results for the complete hyperparameter sweep are presented
in Appendix [D.5] In line with previous findings (Todd et al., 2024} Jorgensen et al.,[2023a), steering
is most effective across layers 9-16 for GPT-J and layers 10-30 for GPT-NeoX.

2As in activation addition, the norm of the vectors is normalized by the succeeding layernorm.
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Figure 2: Comparison of the accuracy on all six function tasks for conceptor-based steering against
additive steering across all layers for GPT-J and GPT-NeoX. For explanation, see main text.

100%

54 Asillustrated in Figure [T} additive and conceptor steering correspond to
75%%67.1% Pg | different interventions onto the model activations. To compare conceptor
II II steering to another linear steering function that would have equivalent
20% 38.7% expressivity, we also train full rank LoRA adapters at the same position
II [ ] II as the steering interventions. For each task, we select the best layer
=% II II II for conceptor steering and train until convergence. The performance
0.0%
L&

averaged across all tasks is shown in Figure 3] Despite the adapters using
at least 10x more compute than the conceptor, they do not outperform
& their competitor. For more details, see Appendix [D.2]

0%

) We also present results for affine conceptors in Table [T, as derived in
Figure 3: Performance gection [2.4. We compare affine conceptors against linear conceptors, and
of custom LORA adapters 4]0 relate these results against a similar operation on additive steering
compared against steer- cajled “mean-centering” (Jorgensen et al.,[2023b). Mean-centering im-
ing functions. proves the performance of additive steering by as much as 2x on the

country-capital task. Analogously, affine conceptors improved steering
accuracy on some of the tasks, but the relative improvement was limited to no more than 5% in
accuracy. For more details, see Appendix [D.3]

Table 1: A comparison of affine conceptors, linear conceptors, activation vectors and mean-centered
(MC) activation vectors on the GPT-J (6B) model, across simple function vector tasks. Results show
the best performance across all hyperparameters and across all layers.

antonyms capitalize country-capital english-french present-past

Addition 20.54% 93.16% 32.04% 18.88% 69.66%
Addition (MC) 31.20% 95.00% 63.90% 34.32% 83.32%
Linear conceptor  52.14% 96.68 % 81.62% 59.02% 91.56%
Affine conceptor  52.82% 96.26% 85.32% 61.32% 91.88%

3.3 Steering Composite Functions

To further investigate whether the boolean operators of conceptors can be leveraged for steering
composite functions, we created three novel compound input-output functions: English-French &
atonyms (e.g. good—mauvais), English-French & capitalize (e.g. good—Bon), singular-plural &
capitalize (e.g. mouse—Mice). This additinal dataset was generated using GPT-40 and will be made
available for the camera-ready paper, for additional details on the experiment see Appendix [D.4]

To establish a baseline, we show performance of the conceptor C'*2 and the steering vector h%’z
computed directly from the example activations of the compound function. We then combine
the conceptors computed on the individual functions _C’1 and C? using the AND operation as
C' A C?, and we combine the steering vectors h} and h? using their arithmetic mean 3(h} + h?).
Figure [ shows the performance of all methods across all layers of the GPT-J model. In line with
results from Section [3.2] the conceptor baseline outperformed the additive baseline on all tasks.

7
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3.4 Steering Complex Behaviors

To further evaluate our steering frameworks, we investigate their performance on a complex, safety-
relevant behavioral task: the “Coordinate with other Als" task from [Perez et al. (2022). In this task,
the model decides whether to coordinate with another Al, potentially diverging from human interests.
For this specific evaluation, positive examples are instances where the model’s activations correspond
to outputs agreeing to coordinate, while negative examples represent refusals.

The steering mechanisms were computed as follows: The standard Conceptor was derived using
activations solely from these positive examples, following the formulation in Proposition|[I. The
Contrastive Conceptor leveraged the Boolean algebra for conceptors detailed earlier (Section [2)), for
instance by combining a conceptor representing positive examples with the negation of a conceptor
representing negative examples. The additive steering baseline, Contrastive Vector, was calculated
as the mean difference between activations from the positive and negative example sets following

previous work (Rimsky et al.} [2024b).

We selected two distinct model architectures for this evaluation. The Qwen 2.5-1.5B Instruct
model (Qwen et al.,[2025), a transformer-based LLM, was chosen for its wide adoption and strong
performance. The Mamba 2.8B model (2024), a recurrent state space model (SSM), was
included to investigate the steering performance on LLMs that are not based on the transformer
architecture.

Qwen 2.5-1.5B Instruct (Baseline: 0.20) Mamba 2.8B (Baseline: 0.56) Qwen 2.5-1.5B Instruct (Layer 15)

0.8
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(b) Open-ended generation perfor-
(a) Multiple-choice performance: Improvement over unsteered model mance: Increase in exhibition of the
accuracy for complex behavioral steering on Qwen 2.5-1.5B Instruct target behavior with respect to the un-
(left) and Mamba 2.8B (right). Results show the performance of stan- steered model. Results show the score
dard Conceptor, Contrastive Conceptor, and Contrastive vector (addi- (evaluated by GPT-4.1-mini) achieved
tive steering) methods. by the different steering methods.

Figure 5: Performance of the employed steering methods on the "Coordinate with other Als"
behavioral task. The scores were obtained on a test set separate from the validation set used to
obtain the steering hyperparameters. (a) Multiple choice improvement over baseline (b) Open-ended
generation improvement over baseline.

Figure [5asuggests that conceptor-based methods can outperform the contrastive vector method in
controlling complex behavior on the multiple-choice “Coordinate with other Als" task. More results
and details for closed-ended datasets, including the one shown here, can be found in@ Furthermore,
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although we anticipate that this enhanced control will coincide with enhanced qualitative display of
the target behavior as measured by an LLM judge, open-ended steering proves more challenging and
underperforms vector steering for the specific layer chosen (Figure [5b). We attribute the discrepancy
between the MCQ and open-ended results to the more sensitive search space for open-ended steering,
which we’ll explore more exhaustively in the camera-ready version of the paper, as our current
hyperparameter search was coarse and limited to a <50% subset of the model’s layers. Should
conceptor-steered open generation match the performance of A/B question answering, our conceptor-
based framework would advance the Pareto frontier of activation steering, offering more focused and
potent behavioral modulation while preserving core model competencies. More relevant results and
details can be found in and for more details on the analysis of conceptors, see section[E

The anticipated efficacy of these methods is informed by recent work. Braun et al. (2025)) highlight
that the reliability of steering vectors is strongly conditional on the geometric separability of the
target concept’s positive and negative examples in activation space. This implies that if a concept is
not clearly distinguishable, steering attempts may be ineffective or unpredictable. This aligns with the
theoretical underpinnings of conceptors, which, by capturing richer geometric information, may offer
more robust steering, particularly for concepts not perfectly represented by simple linear directions.

4 Conclusion

The integration of conceptor theory with AS provides a new lens for understanding and manipulating
LLMs. By deriving optimal steering functions from first principles, we establish a rigorous theoretical
foundation for conceptor steering. Where additive steering applies a uniform translation on all neural
activations, conceptors enable linear transformation over activations while maintaining a reasonable
computational cost compared to its LoORA counterpart. In addition, the design of conceptors enables
them to capture the covariance structure of neural activations, allowing them to encode richer hidden
state representations, beyond average activation patterns. Notably, conceptor-steering, is inherently
adaptive without requiring an additional mechanism as the one proposed by Wang et al. (2024).
This adaptivity occurs naturally because activations already residing within the conceptor’s region
experience minimal change, whereas activations outside this region undergo more substantial shifts.
Additionally, the compositional nature of conceptor operations, implemented through Boolean algebra,
offers a powerful mechanism for multi-task steering. By combining conceptors using operations
like AND and OR, we are able to create composite steering objectives that outperform traditional
methods of combining steering vectors. This demonstrates the versatility of our approach, allowing
for more sophisticated control of LLMs, especially in multi-task scenarios where steering objectives
may conflict or overlap.

While our theoretical and empirical results establish conceptor-based steering as a powerful and
versatile AS technique, the scope of our claims is confined to the model families (transformers
and recurrent SSMs) and tasks evaluated; extension to larger architectures, long-range dialogue, or
multilingual settings may reveal additional challenges. While introducing additional complexity
(requiring covariance matrix computation and more hyperparameter tuning) compared to simpler
additive methods, conceptor steering’s trade-offs are justified by gains in precision, especially
where additive steering is insufficient. As highlighted by [Krasheninnikov & Krueger (2024), it is
important to consider that more highly parameterized steering methods—such as conceptors with
D? parameters—may require more data to perform optimally compared to simpler additive vector
approaches with only D parameters. Importantly, conceptor steering does not by itself guarantee
fairness: latent biases present in training corpora can persist or even be accentuated within projected
subspaces, so rigorous fairness audits across demographic and linguistic groups are essential. From
a safety and ethics standpoint, the ability to suppress or amplify behaviours via conceptors offers
both promise (e.g., reducing toxic or misleading outputs) and risk (e.g., covertly enabling adversarial
manipulation). Thorough evaluation under adversarial conditions, alongside quantitative safety
benchmarks, will be critical to assess dual-use implications before real-world deployment.

Our work unites conceptor theory and AS, offering a robust framework for both controlling and
understanding LLMs. By deriving a provably optimal affine steering mechanism and introducing
composable Boolean operations, we provide a method that not only surpasses traditional steering
approaches but also lays the groundwork for more advanced activation engineering techniques. While
challenges remain, the combination of theoretical rigor and empirical success positions conceptor-
based steering as a powerful tool for the future of LLM control and interpretability.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper’s claims in the introduction accurately reflect the contributions,
namely: introducing a general framework for activation steering, proposing conceptor-
based steering for LLMs, showing its superior performance on function vector tasks, and
demonstrating how Boolean operations on conceptors can combine functions, and good
performance on other alignment-relevant benchmarks.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: a detailed discussion of the limitations is provided in the discussion section of
the paper with our assumptions, scope of the claims, computational efficiency, and fairness.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides theoretical results with clear assumptions and complete
proofs. For instance, the optimal linear and affine steering functions are formally defined
with their optimization objectives, and Proposition 1 for the conceptor matrix and Proposition
2 for the optimal affine steering function are stated with reference to proofs (in the appendix).

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides details of the experimental setup, including model specifi-
cations (GPT-J 6B, GPT-NeoX 20B, Mamba 2.8B, Qwen 3B), datasets used, hyperparameter
search procedures, and specific implementation details for the steering methods. The authors
reference previous works they follow and mention that additional details are in the appendix.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: all code and data will be made available on GitHub for the camera-ready
version of the paper. A core contribution of the paper is a flexible and minimalistic Python
package for steering LLMs, which will be made available for the camera-ready submission.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies the models used (GPT-J 6B, GPT-NeoX 20B, GPT-2
Small), the tasks tested, and mentions that optimal hyperparameters were found for each
steering method at every layer with details of the grid search in the appendix. The paper
also describes the implementation of conceptor-based steering in Equations 8-9. Moreover,
the code (including all scripts for the experiments) will be made available on GitHub for the
camera-ready submission.
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Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper states that each experiment was repeated /N times with different
random seeds (where N is specified in the appendix, typically NV = 3 or N = 5), and the
reported results are averaged across these runs. Experiments in Section[3.4 were not repeated
multiple times but proper error bars will be included in extended runs in the camera-ready
version of the paper.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper includes information about the computational resources used for
running experiments with different models, including hardware specifications, memory
requirements, and approximate execution times.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research focuses on improving methods for controlling language model
behavior, which aligns with the NeurIPS Code of Ethics’ emphasis on reliable and con-
trollable Al systems. The paper works with pre-trained open-source models and publicly
available datasets, with no apparent ethical concerns.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: our paper includes a discussion of broader impacts and how steering methods
could help with reducing harmful behavior in LLMs, while also potentially being misused to
manipulate model outputs in harmful ways. However, the proposed steering mechanism is
open and transparent, allowing for auditability and oversight, and we believe that this trans-
parency fosters collaborative oversight, making covert misuse more difficult and enabling
the community to detect and correct issues early.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any data or models. It proposes a method for
steering existing models, working with publicly available models and datasets.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: the original owners of all assets are properly credited and the license are
properly respected.

New assets
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15.

16.

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No assets are introduced in the paper. All artefacts are pre-existing or generated
using pre-trained models and easy to reproduce (see reproducibility section).

Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
All experiments are conducted with language models and pre-existing or programmatically
generated datasets.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects, so IRB approval
was not required.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use API calls to LLMs to generate datasets for the composite functions task,
which is fully described in the paper. We further used an LLM as a judge for open-ended
steering experiments, which are fully described in the paper’s appendix.
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