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Abstract

Controlling and understanding the internal representations of large language models1

(LLMs) remain central challenges. We combine conceptor theory with activation2

steering to develop a principled framework for provably optimal affine steering3

of LLM activations. Conceptors compress sets of activation vectors and act as4

soft projection matrices, enabling precise and interpretable control over internal5

states. Our framework derives optimal steering functions from first principles and6

consistently outperforms additive steering across in-context learning tasks and7

alignment-relevant behavior. We further demonstrate how Boolean operations over8

conceptors allow for compositional steering toward multiple objectives, yielding9

better performance than traditional vector combination methods. Together, these10

results establish conceptor-based steering as a powerful tool for both controlling11

LLM behavior and gaining insight into their internal mechanisms. We will release12

our code and data as part of a flexible open-source library for activation steering.13

1 Introduction14

Large Language Models (LLMs) have rapidly advanced AI capabilities (Xu & Poo, 2023), but their15

potential for misinformation (Pan et al., 2023), reinforcing biases (Gallegos et al., 2024), and harmful16

behaviors (Shevlane et al., 2023) necessitates methods to understand their internals and control their17

outputs. While approaches like Reinforcement Learning from Human Feedback (RLHF) (Ouyang18

et al., 2024), supervised fine-tuning (Devlin et al., 2019), and prompt engineering (Liu et al., 2023)19

aim to control LLMs, they are often computationally expensive, struggle with generalization (Bottou20

et al., 2018; Amodei et al., 2016), or yield inconsistent results (Chen et al., 2023).21

Activation steering (AS) has emerged as a promising alternative, in which one modifies the model’s22

activations at inference without needing costly parameter updates. Early work into AS demonstrated23

the potential of modifying internal activations in LLMs at inference. Subramani et al. (2022)24

introduced “steering vectors" added to hidden states to guide generation, though their sample-specific25

optimization limited scalability. Turner et al. (2023) proposed a contrastive approach in which26

steering vectors are computed from the activation differences of contrastive prompt pairs, effectively27

controlling sentiment, topics, and styles. This more efficient method was then further refined by28

(Rimsky et al., 2024b) where larger datasets of contrastive pairs were used to generate more precise29

steering vectors. These foundational methods, while pioneering, primarily relied on simple vector30

arithmetic and laid the groundwork for numerous applications, from exposing vulnerabilities (Wang31

& Shu, 2024; Ghandeharioun et al., 2024) to mitigating biases and unwanted behaviors (Price et al.,32

2024; Lu & Rimsky, 2024). Despite prior success, most activation addition work has been primarily33

empirical without strong justification behind the usage of these techniques. More theoretically34

grounded approaches are now emerging. Todd et al. (2024) introduced “function vectors" as specific35

input-output mappings in activation space, crucial for in-context learning. Park et al. (2024) explored36
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Figure 1: Illustration of the geometric difference between additive and conceptor steering. Top row:
The hidden layer activations are obtained over a set of antonym in-context learning prompts (red
points). The steering vector (blue dot) or conceptor (blue area) are calculated from these example
activations. Bottom row: New activations (green points, zero-shot context) are then translated
(additive steering) and/or projected (conceptor steering) by the steering functions (blue arrow) to
yield the steered activations (yellow).

the Linear Representation Hypothesis, positing that meaningful information is encoded in linear37

subspaces, providing a theoretical basis for AS. Singh et al. (2024) derived optimal affine steering38

functions, showing that under “guardedness" constraints, simple additive steering can be optimal,39

thus justifying existing methods. A more detailed review of related work is given in Appendix B.40

Our work introduces a more general and theoretically grounded framework for activation steering.41

We derive optimal linear and affine steering functions from first principles in Section 2, connecting42

our results to conceptor theory (Jaeger, 2014b), to move beyond the limitations of arithmetically43

combined activation vectors. Our approach employs (soft) projections via steering matrices and44

optional bias vector translations, further enhanced by a Boolean algebra for principled composition45

of these steering functions. Our theory is not restricted to binary concepts, and does not require an46

explicit concept encoding function, as in the work by Singh et al. (2024). We demonstrate that our47

mechanisms achieve superior performance on function vector tasks (Todd et al., 2024) (Section 3.2)48

and their Boolean combinations (Section 3.3). Crucially, we also establish improved efficacy over49

additive vector baselines in complex AI safety-related tasks (Rimsky et al., 2024a) (Section 3.4).50

2 A Theoretical Framework for Activation Steering51

2.1 Preliminaries52

Let ! be an alphabet, i.e., a finite and non-empty set. A language model p is a distribution over !→,53

the set of all strings over the alphabet !. Let ω be a concept-encoding function ω : !→ → C, which54

maps any given string s to its corresponding concept c = ω(s). Let C be the set of concepts that may55

be active in the current text sequence s ↑ !→. These concepts may correspond to functions (Todd56

et al., 2024), binary concepts (Singh et al., 2024), or other behaviors exhibited by language models.57

Given a language model m, we define the following conditional distribution:58

mc(s) := m(s | C = c) ↓ m(s)1{ω(s) = c}, (1)

which expresses the probability of sampling a string s with concept c present. Let enc : !→ → RD59

be a language encoder, a deterministic function from the set of strings to real-valued vectors. This60

need not be a specialized module – we use it to denote the hidden activations of an LLM. With a fixed61

encoder function, we define the following random variable:62

H(s) = enc(s) : !→ → RD
, (2)

which is distributed according to:63

P(H = h | C = c) = P(H↑1(h) | C = c) =
∑

s↓!→

mc(s)1{h = enc(s)} (3)

We assume that H is of finite first and second moment, and denote the concept-conditional mean of64

H with respect to c as µc, the concept-conditional second moment as !̃c, and the concept-conditional65
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covariance matrix as !c:66

µc = E[Hc], !̃c = E[HcH
↔
c ], !c = E[HcH

↔
c ]↔ µcµ

↔
c (4)

We are interested in intervention functions f : RD → RD that map representation-valued random67

variables to other representation-valued random variables (Singh et al., 2024). We are specifically68

interested in steering functions fc, which are intervention functions that steer a given representation69

towards some concept c ↑ C.70

Definition 1 (ω-assisted steering function). We define a steering function fc to be ω-assisted, and71

call it fω
c , if it is of the form:72

f
ω
c (H(s)) =

{
fc(H(s)) if ω(s) ↗= c

↗

H(s) if ω(s) = c,
(5)

where fc : RD → RD is a steering function and ω : !→ → C is a concept encoding function.73

Singh et al. (2024) investigate such ω-assisted steering functions. In the present paper, we instead74

consider unassisted steering functions which do not explicitly make use of a concept encoding75

function ω when steering the model, following prior work on activation steering (Turner et al., 2023;76

Li et al., 2023; Subramani et al., 2022). This approach is more computationally efficient since the77

concept encoding function can be expensive to obtain and evaluate—-for instance, Singh et al. (2024)78

train a small MLP for this task. Additionally, unassisted steering functions maintain their linear79

structure throughout the entire input space, rather than becoming piecewise linear with nonlinear80

decision boundaries (as determined by the concept encoding function). This linearity is particularly81

valuable for the interpretability of these models, as it allows for clearer analysis of how the steering82

mechanism affects model behavior.83

2.2 Additive steering functions84

Additive steering functions have been the dominant approach to steering model behavior (Turner85

et al., 2023; Rimsky et al., 2024b; van der Weij et al., 2024).86

Definition 2 (additive steering function). We define a function fc to be an additive steering function87

if it is of the form:88

fc(H(s)) = bc +H(s) (6)
where bc ↑ RD is the steering vector that corresponds to concept c.89

Typically, this additive steering vector is chosen to be bc = µc (see Eq. 4) (Turner et al., 2023). In90

contrastive activation addition, the steering vector is chosen to be bc = µc ↔ µc↑ where c is the target91

concept and c
↗ is a contrastive concept that is opposite to c. Singh et al. (2024) have shown that, when92

“guardedness” is required (see Appendix B), the optimal affine steering method for binary concepts93

simplifies to contrastive additive steering. We relax this requirement in our theory.94

2.3 Linear steering functions95

Let’s now consider the class of linear steering functions in which conceptors are found. Linear96

steering functions map the activations of the model onto their steered counterpart through a linear97

transformation. This approach is fundamentally different from additive steering, as the change in98

activation is not restricted to a single direction. Instead, linear transformations can modify activations99

along multiple directions simultaneously, allowing for more nuanced and context-sensitive steering.100

A geometric intuition for this distinction is illustrated in Figure 1.101

Definition 3 (linear steering function). We define a function fc to be a linear steering function if it is102

of the form:103

fc(H(s)) = CH(s) (7)
where C ↑ RD↘D is the steering matrix that corresponds to concept c.104

As such, a linear steering function contains D2 parameters and can therefore represent more complex105

steering functions than an additive steering function, which contains only D parameters.106

We now wish to define a linear steering function that is “optimal” for steering a representation towards107

a concept c, in the sense that it should minimize the change to the representation for representations108
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that already exhibit the concept c while still effectively steering all the other representations toward109

the concept c. We formalize this in the following definition.110

Definition 4 (optimal linear steering function). We define the optimal linear steering function to be111

the function fc(H(s)) = CH(s) where C solves the following optimization problem:112

C(ε) = argmin
C

Ec

[
↘Hc ↔ CHc↘22

]
+ ε

↑2↘C↘2F (8)

where ↘ · ↘F is the Frobenius norm, and ε is a regularization parameter, referred to as "aperture".113

This optimization problem has been studied by Jaeger (2014b) and has a unique, closed-form solution.114

The aperture parameter ε balances the trade-off between accurately representing concept-positive115

activation patterns and maintaining a generalized representation. When ε is large, the eigenvalues116

µi approach 1 and C approaches the identity matrix, causing the conceptor to allow for more signal117

components to pass through the conceptor. When ε is small, the eigenvalues µi approach 0, causing118

the conceptor to allow for less variability and approaching the zero mapping.119

Proposition 1. Let !̃c be the concept-conditional second moment of the random variable H(s) and120

ε ↑ (0,≃). Then, the conceptor C(!̃c,ε) is uniquely defined and can be directly computed as:121

C(!̃c,ε) = !̃c

(
!̃c + ε

↑2
I

)↑1
(9)

The matrix C(!̃c,ε) is positive semi-definite with eigenvalues in the range [0, 1).122

Proof. See Appendix A.1 and Jaeger (2014b).123

The unique, closed-form solution is known as the conceptor C(ε) – a positive semi-definite matrix124

with eigenvalues between zero and one. We refer to the application of the conceptor as a “soft125

projection” of the representation towards the concept c. Where the context is apparent, we drop126

the function notation and denote the conceptor matrix simply by C. The conceptor matrix C127

captures the principal directions and variances of a set of neural activation vectors. This structure128

can be visualized as a high-dimensional ellipsoid that describes the overall shape and spread of the129

activations’ “underlying pattern” or state space region, see Figure 6.130

2.3.1 Combining Linear Steering Functions with Boolean Operations131

We can combine multiple steering matrices using Boolean operations on conceptors, as defined by132

Jaeger (2014b). These operations allow us to merge conceptors computed on different data samples to133

construct more complex steering targets. We begin by defining the OR operation on two conceptors,134

which is computed by summing the covariance matrices on which they are based. This operation can135

be understood as merging the data from which each conceptor was derived. The resulting conceptor136

is then computed based on the sum of these covariance matrices.137

Definition 5 (OR Operation on Conceptors). Let C1 and C2 be two conceptors computed from co-138

variance matrices !c1 and !c2 , respectively. The OR operation, C1 ⇐C2, combines these conceptors139

by adding their covariance matrices and is given by:140

C1 ⇐ C2 = (!c1 + !c2)
(
!c1 + !c2 + ε

↑2
I
)↑1 (10)

Using Equation 9, this can be rewritten as:141

C1 ⇐ C2 =
(
I +

(
C1(I ↔ C1)

↑1 + C2(I ↔ C2)
↑1

)↑1
)↑1

(11)

Next, we define the NOT operation. This operation inverts the covariance matrix, producing a142

conceptor that captures data that co-varies inversely to the original conceptor.143

Definition 6 (NOT Operation on Conceptors). Let C be a conceptor derived from covariance matrix144

!c. The NOT operation on a conceptor, denoted by ¬C, is computed by inverting the covariance145

matrix. The NOT operation is defined as:146

¬C = !↑1
c (!↑1

c + ε
↑2

I)↑1 (12)

Using Equation 9, this can be rewritten as:147

¬C = I ↔ C (13)
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From these operations, we can use de Morgan’s law to define the AND operation which captures the148

intersection between two conceptors. The formal definition is given in Appendix C.1.149

These Boolean operations can be used to combine multiple conceptor steering matrices into composite150

steering functions. Similar operations have been proposed for additive steering methods. Todd et al.151

(2024) propose a task arithmetic on function vectors and demonstrate it on a some toy tasks, while152

Subramani et al. (2022) use a vector arithmetic on steering vectors. The negation of additive steering153

vectors has been used widely in contrastive steering as introduced by Rimsky et al. (2024b). We note154

that the AND and OR operations on conceptor steering matrices do not clearly correspond to the155

addition operation on steering vectors. In Section 3.3, we compare combinations of steering vectors156

against combinations of conceptor-based steering matrices.157

2.4 Affine steering functions158

We now turn to the class of affine steering functions, in order to generalize the results on conceptors159

(Jaeger, 2014b), additive steering functions (Turner et al., 2023), and affine steering functions (Singh160

et al., 2024) into a more general framework of affine activation steering.161

Definition 7 (affine steering function). We define a function fc to be an affine steering function if it is162

of the form:163

fc(H(s)) = CH(s) + b (14)
where C ↑ RD↘D is the steering matrix, and b ↑ RD is the steering vector, both of which corre-164

sponding to concept c.165

We define the optimal affine steering function in an analogous way to how we defined the optimal166

linear steering function, as the solution to an optimization problem.167

Definition 8 (optimal affine steering function). We define the optimal affine steering function to be168

the function fc(H(s)) = CH(s) + b which solves the following optimization problem:169

min
C↓RD↓D,b↓RD

E
[
↘Hc ↔ (CHc + b)↘22

]
+ ε

↑2↘C↘2F (15)

In the following proposition, we derive the unique solution for the optimal affine steering function.170

Proposition 2. Let !c be the concept-conditional covariance matrix of H(s), µc its concept-171

conditional mean, and ε ↑ (0,≃). Then, the optimal affine steering function fc, as defined172

above, can be directly computed as:173

C(!c,ε) = !c(!c + 2ε↑2
I)↑1 (16)

b(!c,ε) = µc ↔ C(!c,ε)µc (17)

Let C := C(!c,ε) and b := b(!c,ε), then the final steering function is of the form:174

fc(H(s)) = Cx+ b = Cx+ µc ↔ Cµc (18)
= C(x↔ µc) + µc (19)

Proof. See Appendix A.2.175

2.5 Residual Steering Functions176

In standard conceptor steering, the mapping fc(x) = C x attenuates or preserves each principal177

component of x by a factor µi ↑ [0, 1]. When we instead apply the conceptor residually, i.e.,:178

fc(x) = Cx+ x = (C + I)x (20)

the effective steering matrix becomes C + I and all “steering modes” are shifted to singular values179

ϑi + 1 ↑ [1, 2]. We argue that this shift has two benefits in LLMs. Firstly, as argued by Elhage180

et al. (2021), transformers propagate information via additive updates1
x ⇒→ x+”(x) and by adding181

the steered representation, we conform exactly to that inductive bias–injecting the concept signal182

as an additive perturbation rather than a standalone linear gating. Secondly, original conceptors183

can only scale down directions (ϑi ⇑ 1), potentially erasing subtle features. In contrast, (I + C)184

1This is the case for recurrent and hybrid models, including the ones used in this paper.
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preserves every component (smallest gain ⇓ 1) and gently amplifies concept-relevant modes (largest185

gain ⇑ 2), strengthening signals without discarding baseline information2. Taken together, residual186

conceptor application both respects the architectural biases of LLMs and leverages mild, controlled187

amplification of concept-specific subspaces—likely explaining the empirical improvements observed188

when steering via C + I rather than C alone.189

3 Experiments190

We demonstrate the effectiveness of our steering methods on a set of tasks across several models.191

3.1 Implementing Conceptor Steering192

Given a finite sample Hc ↑ RD↘n of n representations with concept c ↑ C from Hc, we approximate193

the concept-conditional mean with µ̂c =
1
nHc1n and the concept-conditional second moment with194

ˆ̃!c =
1
nHcH

↔
c . From µ̂c, and ˆ̃!c, we compute linear (Eq. 9), affine (Eq. 19), and compositional (Eq.195

51) conceptor steering functions.196

Steering location The input of an LLM is a sequence of tokens ti (where i is the token index) which197

are transformed into embeddings x0
i ↑ RD using a learned embedding matrix E ↑ RD↘V where V198

is the vocabulary size. At each layer 1 ⇑ ϖ ⇑ L, the input vector sequence x
ε↑1
t is transformed by199

the token mixing operation ϱ as xε,1
t = x

ε↑1
t + ϱ(xε↑1

t ) and a subsequent channel mixing operation200

ς as xε
t = x

ε,1
t + ς(xε,1

t ). The transformation of a full layer is thus given by201

x
ε
t = x

ε↑1
t + ϱ(xε↑1

t ) + ς(xε↑1
t + ϱ(xε↑1

t )) (21)

The channel mixing operation ς is typically implemented as a multi-layer perceptron (MLP) or a202

mixture-of-expert (MoE), and the token mixing operation ϱ is typically implemented as a multi-head203

attention (MHA) operation or a recurrent neural network (RNN). Both operations typically contain204

a pre- or post-normalization operation. Following Elhage et al. (2021), we refer to x
ε
t and x

ε,1
t as205

samples from the residual stream. Unless otherwise specified, we steer the activations of the residual206

stream before the token mixing operation, i.e., we intervene on the variable x
ε
t for 0 ⇑ ϖ < L.207

Hyperparameters We already introduced ε as a hyperparameter for conceptor-based steering.208

Following prior work, we introduce φ as a hyperparameter for the steering strength. For additive209

steering, this is applied by using an effective bias vector beff
c = φbc. For conceptor-based steering,210

this is applied by using an effective conceptor Ceff = φC. For all experiments, we find optimal211

hyperparameters for each steering method at every layer, see Appendix D.212

3.2 Function Steering213

We compare conceptor-based and additive steering mechanisms on their ability to steer a given model214

toward correctly executing a set of in-context-learning tasks (“functions”). We test both methods on215

GPT-J with 6B parameters and GPT-NeoX with 20B parameters. For each function, the experiment216

was repeated five times with random seeds, and all reported results were averaged across these runs.217

The examples of the input-output functions come from the dataset by Todd et al. (2024). We use218

the following subset of five functions: antonyms (e.g. good→bad), present-past (e.g. go→went),219

English-French (e.g. hello→bonjour), singular-plural (e.g. mouse→mice), country-capital (e.g.220

Netherlands→Amsterdam), and capitalize (e.g. word→Word). To ensure comparability of our results,221

we follow the work by Todd et al. (2024) as closely as possible. For more details, see Appendix D.1.222

The results in Figure 2 show that conceptor-based steering outperforms the additive steering baseline223

(Todd et al., 2024) for every task on both tested models. Results show the best-performing model224

across a range of hyperparameters. Conceptor steering is strictly more performant than additive225

steering across all tasks for most layers. Results for the complete hyperparameter sweep are presented226

in Appendix D.5. In line with previous findings (Todd et al., 2024; Jorgensen et al., 2023a), steering227

is most effective across layers 9-16 for GPT-J and layers 10-30 for GPT-NeoX.228

2As in activation addition, the norm of the vectors is normalized by the succeeding layernorm.
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Figure 2: Comparison of the accuracy on all six function tasks for conceptor-based steering against
additive steering across all layers for GPT-J and GPT-NeoX. For explanation, see main text.

Figure 3: Performance
of custom LoRA adapters
compared against steer-
ing functions.

As illustrated in Figure 1, additive and conceptor steering correspond to229

different interventions onto the model activations. To compare conceptor230

steering to another linear steering function that would have equivalent231

expressivity, we also train full rank LoRA adapters at the same position232

as the steering interventions. For each task, we select the best layer233

for conceptor steering and train until convergence. The performance234

averaged across all tasks is shown in Figure 3. Despite the adapters using235

at least 10⇔ more compute than the conceptor, they do not outperform236

their competitor. For more details, see Appendix D.2.237

We also present results for affine conceptors in Table 1, as derived in238

Section 2.4. We compare affine conceptors against linear conceptors, and239

also relate these results against a similar operation on additive steering240

called “mean-centering” (Jorgensen et al., 2023b). Mean-centering im-241

proves the performance of additive steering by as much as 2⇔ on the242

country-capital task. Analogously, affine conceptors improved steering243

accuracy on some of the tasks, but the relative improvement was limited to no more than 5% in244

accuracy. For more details, see Appendix D.3.245

Table 1: A comparison of affine conceptors, linear conceptors, activation vectors and mean-centered
(MC) activation vectors on the GPT-J (6B) model, across simple function vector tasks. Results show
the best performance across all hyperparameters and across all layers.

antonyms capitalize country-capital english-french present-past

Addition 20.54% 93.16% 32.04% 18.88% 69.66%
Addition (MC) 31.20% 95.00% 63.90% 34.32% 83.32%
Linear conceptor 52.14% 96.68% 81.62% 59.02% 91.56%
Affine conceptor 52.82% 96.26% 85.32% 61.32% 91.88%

3.3 Steering Composite Functions246

To further investigate whether the boolean operators of conceptors can be leveraged for steering247

composite functions, we created three novel compound input-output functions: English-French &248

atonyms (e.g. good→mauvais), English-French & capitalize (e.g. good→Bon), singular-plural &249

capitalize (e.g. mouse→Mice). This additinal dataset was generated using GPT-4o and will be made250

available for the camera-ready paper, for additional details on the experiment see Appendix D.4.251

To establish a baseline, we show performance of the conceptor C1,2 and the steering vector ¯
h
1,2
ε252

computed directly from the example activations of the compound function. We then combine253

the conceptors computed on the individual functions C
1 and C

2 using the AND operation as254

C
1 ↖ C

2, and we combine the steering vectors h̄1
ε and h̄

2
ε using their arithmetic mean 1

2 (h̄
1
ε + h̄

2
ε).255

Figure 4 shows the performance of all methods across all layers of the GPT-J model. In line with256

results from Section 3.2, the conceptor baseline outperformed the additive baseline on all tasks.257
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Figure 4: Performance of additive and conceptor steering on composite
functions. See main text for a detailed description.

The AND-combined con-258

ceptor outperforms both259

the mean-combined steer-260

ing vectors and the addi-261

tive baseline, in all tasks,262

suggesting that the compo-263

sitional operators of con-264

ceptors align more naturally265

with language composition-266

ality than simple vector ad-267

dition.268

3.4 Steering Complex Behaviors269

To further evaluate our steering frameworks, we investigate their performance on a complex, safety-270

relevant behavioral task: the “Coordinate with other AIs" task from Perez et al. (2022). In this task,271

the model decides whether to coordinate with another AI, potentially diverging from human interests.272

For this specific evaluation, positive examples are instances where the model’s activations correspond273

to outputs agreeing to coordinate, while negative examples represent refusals.274

The steering mechanisms were computed as follows: The standard Conceptor was derived using275

activations solely from these positive examples, following the formulation in Proposition 1. The276

Contrastive Conceptor leveraged the Boolean algebra for conceptors detailed earlier (Section 2), for277

instance by combining a conceptor representing positive examples with the negation of a conceptor278

representing negative examples. The additive steering baseline, Contrastive Vector, was calculated279

as the mean difference between activations from the positive and negative example sets following280

previous work (Rimsky et al., 2024b).281

We selected two distinct model architectures for this evaluation. The Qwen 2.5-1.5B Instruct282

model (Qwen et al., 2025), a transformer-based LLM, was chosen for its wide adoption and strong283

performance. The Mamba 2.8B model Gu & Dao (2024), a recurrent state space model (SSM), was284

included to investigate the steering performance on LLMs that are not based on the transformer285

architecture.286

(a) Multiple-choice performance: Improvement over unsteered model
accuracy for complex behavioral steering on Qwen 2.5-1.5B Instruct
(left) and Mamba 2.8B (right). Results show the performance of stan-
dard Conceptor, Contrastive Conceptor, and Contrastive vector (addi-
tive steering) methods.

(b) Open-ended generation perfor-
mance: Increase in exhibition of the
target behavior with respect to the un-
steered model. Results show the score
(evaluated by GPT-4.1-mini) achieved
by the different steering methods.

Figure 5: Performance of the employed steering methods on the "Coordinate with other AIs"
behavioral task. The scores were obtained on a test set separate from the validation set used to
obtain the steering hyperparameters. (a) Multiple choice improvement over baseline (b) Open-ended
generation improvement over baseline.

Figure 5a suggests that conceptor-based methods can outperform the contrastive vector method in287

controlling complex behavior on the multiple-choice “Coordinate with other AIs" task. More results288

and details for closed-ended datasets, including the one shown here, can be found in D.6. Furthermore,289
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although we anticipate that this enhanced control will coincide with enhanced qualitative display of290

the target behavior as measured by an LLM judge, open-ended steering proves more challenging and291

underperforms vector steering for the specific layer chosen (Figure 5b). We attribute the discrepancy292

between the MCQ and open-ended results to the more sensitive search space for open-ended steering,293

which we’ll explore more exhaustively in the camera-ready version of the paper, as our current294

hyperparameter search was coarse and limited to a <50% subset of the model’s layers. Should295

conceptor-steered open generation match the performance of A/B question answering, our conceptor-296

based framework would advance the Pareto frontier of activation steering, offering more focused and297

potent behavioral modulation while preserving core model competencies. More relevant results and298

details can be found in D.6, and for more details on the analysis of conceptors, see section E299

The anticipated efficacy of these methods is informed by recent work. Braun et al. (2025) highlight300

that the reliability of steering vectors is strongly conditional on the geometric separability of the301

target concept’s positive and negative examples in activation space. This implies that if a concept is302

not clearly distinguishable, steering attempts may be ineffective or unpredictable. This aligns with the303

theoretical underpinnings of conceptors, which, by capturing richer geometric information, may offer304

more robust steering, particularly for concepts not perfectly represented by simple linear directions.305

4 Conclusion306

The integration of conceptor theory with AS provides a new lens for understanding and manipulating307

LLMs. By deriving optimal steering functions from first principles, we establish a rigorous theoretical308

foundation for conceptor steering. Where additive steering applies a uniform translation on all neural309

activations, conceptors enable linear transformation over activations while maintaining a reasonable310

computational cost compared to its LoRA counterpart. In addition, the design of conceptors enables311

them to capture the covariance structure of neural activations, allowing them to encode richer hidden312

state representations, beyond average activation patterns. Notably, conceptor-steering, is inherently313

adaptive without requiring an additional mechanism as the one proposed by Wang et al. (2024).314

This adaptivity occurs naturally because activations already residing within the conceptor’s region315

experience minimal change, whereas activations outside this region undergo more substantial shifts.316

Additionally, the compositional nature of conceptor operations, implemented through Boolean algebra,317

offers a powerful mechanism for multi-task steering. By combining conceptors using operations318

like AND and OR, we are able to create composite steering objectives that outperform traditional319

methods of combining steering vectors. This demonstrates the versatility of our approach, allowing320

for more sophisticated control of LLMs, especially in multi-task scenarios where steering objectives321

may conflict or overlap.322

While our theoretical and empirical results establish conceptor-based steering as a powerful and323

versatile AS technique, the scope of our claims is confined to the model families (transformers324

and recurrent SSMs) and tasks evaluated; extension to larger architectures, long-range dialogue, or325

multilingual settings may reveal additional challenges. While introducing additional complexity326

(requiring covariance matrix computation and more hyperparameter tuning) compared to simpler327

additive methods, conceptor steering’s trade-offs are justified by gains in precision, especially328

where additive steering is insufficient. As highlighted by Krasheninnikov & Krueger (2024), it is329

important to consider that more highly parameterized steering methods—such as conceptors with330

D
2 parameters—may require more data to perform optimally compared to simpler additive vector331

approaches with only D parameters. Importantly, conceptor steering does not by itself guarantee332

fairness: latent biases present in training corpora can persist or even be accentuated within projected333

subspaces, so rigorous fairness audits across demographic and linguistic groups are essential. From334

a safety and ethics standpoint, the ability to suppress or amplify behaviours via conceptors offers335

both promise (e.g., reducing toxic or misleading outputs) and risk (e.g., covertly enabling adversarial336

manipulation). Thorough evaluation under adversarial conditions, alongside quantitative safety337

benchmarks, will be critical to assess dual-use implications before real-world deployment.338

Our work unites conceptor theory and AS, offering a robust framework for both controlling and339

understanding LLMs. By deriving a provably optimal affine steering mechanism and introducing340

composable Boolean operations, we provide a method that not only surpasses traditional steering341

approaches but also lays the groundwork for more advanced activation engineering techniques. While342

challenges remain, the combination of theoretical rigor and empirical success positions conceptor-343

based steering as a powerful tool for the future of LLM control and interpretability.344
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1. Claims871

Question: Do the main claims made in the abstract and introduction accurately reflect the872

paper’s contributions and scope?873

Answer: [Yes]874

Justification: The paper’s claims in the introduction accurately reflect the contributions,875

namely: introducing a general framework for activation steering, proposing conceptor-876

based steering for LLMs, showing its superior performance on function vector tasks, and877

demonstrating how Boolean operations on conceptors can combine functions, and good878

performance on other alignment-relevant benchmarks.879

2. Limitations880

Question: Does the paper discuss the limitations of the work performed by the authors?881

Answer: [Yes]882

Justification: a detailed discussion of the limitations is provided in the discussion section of883

the paper with our assumptions, scope of the claims, computational efficiency, and fairness.884

3. Theory assumptions and proofs885

Question: For each theoretical result, does the paper provide the full set of assumptions and886

a complete (and correct) proof?887

Answer: [Yes]888

Justification: The paper provides theoretical results with clear assumptions and complete889

proofs. For instance, the optimal linear and affine steering functions are formally defined890

with their optimization objectives, and Proposition 1 for the conceptor matrix and Proposition891

2 for the optimal affine steering function are stated with reference to proofs (in the appendix).892

4. Experimental result reproducibility893
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perimental results of the paper to the extent that it affects the main claims and/or conclusions895

of the paper (regardless of whether the code and data are provided or not)?896

Answer: [Yes]897
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cations (GPT-J 6B, GPT-NeoX 20B, Mamba 2.8B, Qwen 3B), datasets used, hyperparameter899

search procedures, and specific implementation details for the steering methods. The authors900
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5. Open access to data and code902

Question: Does the paper provide open access to the data and code, with sufficient instruc-903

tions to faithfully reproduce the main experimental results, as described in supplemental904

material?905

Answer: [Yes]906

Justification: all code and data will be made available on GitHub for the camera-ready907
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package for steering LLMs, which will be made available for the camera-ready submission.909

6. Experimental setting/details910

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-911

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the912

results?913

Answer: [Yes]914

Justification: The paper specifies the models used (GPT-J 6B, GPT-NeoX 20B, GPT-2915

Small), the tasks tested, and mentions that optimal hyperparameters were found for each916

steering method at every layer with details of the grid search in the appendix. The paper917

also describes the implementation of conceptor-based steering in Equations 8-9. Moreover,918

the code (including all scripts for the experiments) will be made available on GitHub for the919

camera-ready submission.920
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7. Experiment statistical significance921

Question: Does the paper report error bars suitably and correctly defined or other appropriate922

information about the statistical significance of the experiments?923

Answer: [Yes]924

Justification: The paper states that each experiment was repeated N times with different925

random seeds (where N is specified in the appendix, typically N = 3 or N = 5), and the926

reported results are averaged across these runs. Experiments in Section 3.4 were not repeated927

multiple times but proper error bars will be included in extended runs in the camera-ready928

version of the paper.929

8. Experiments compute resources930

Question: For each experiment, does the paper provide sufficient information on the com-931

puter resources (type of compute workers, memory, time of execution) needed to reproduce932

the experiments?933

Answer: [Yes]934

Justification: The paper includes information about the computational resources used for935

running experiments with different models, including hardware specifications, memory936

requirements, and approximate execution times.937

9. Code of ethics938

Question: Does the research conducted in the paper conform, in every respect, with the939

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?940

Answer: [Yes]941

Justification: The research focuses on improving methods for controlling language model942

behavior, which aligns with the NeurIPS Code of Ethics’ emphasis on reliable and con-943

trollable AI systems. The paper works with pre-trained open-source models and publicly944

available datasets, with no apparent ethical concerns.945

10. Broader impacts946

Question: Does the paper discuss both potential positive societal impacts and negative947

societal impacts of the work performed?948

Answer: [Yes]949

Justification: our paper includes a discussion of broader impacts and how steering methods950

could help with reducing harmful behavior in LLMs, while also potentially being misused to951

manipulate model outputs in harmful ways. However, the proposed steering mechanism is952

open and transparent, allowing for auditability and oversight, and we believe that this trans-953

parency fosters collaborative oversight, making covert misuse more difficult and enabling954

the community to detect and correct issues early.955

11. Safeguards956

Question: Does the paper describe safeguards that have been put in place for responsible957

release of data or models that have a high risk for misuse (e.g., pretrained language models,958

image generators, or scraped datasets)?959

Answer: [NA]960

Justification: The paper does not release any data or models. It proposes a method for961

steering existing models, working with publicly available models and datasets.962

12. Licenses for existing assets963

Question: Are the creators or original owners of assets (e.g., code, data, models), used in964

the paper, properly credited and are the license and terms of use explicitly mentioned and965

properly respected?966

Answer: [Yes]967

Justification: the original owners of all assets are properly credited and the license are968

properly respected.969

13. New assets970
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Question: Are new assets introduced in the paper well documented and is the documentation971

provided alongside the assets?972

Answer: [NA]973

Justification: No assets are introduced in the paper. All artefacts are pre-existing or generated974

using pre-trained models and easy to reproduce (see reproducibility section).975

14. Crowdsourcing and research with human subjects976

Question: For crowdsourcing experiments and research with human subjects, does the paper977

include the full text of instructions given to participants and screenshots, if applicable, as978

well as details about compensation (if any)?979

Answer: [NA]980

Justification: The paper does not involve crowdsourcing or research with human subjects.981

All experiments are conducted with language models and pre-existing or programmatically982

generated datasets.983

15. Institutional review board (IRB) approvals or equivalent for research with human984

subjects985

Question: Does the paper describe potential risks incurred by study participants, whether986

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)987

approvals (or an equivalent approval/review based on the requirements of your country or988

institution) were obtained?989

Answer: [NA]990

Justification: The paper does not involve research with human subjects, so IRB approval991

was not required.992

16. Declaration of LLM usage993

Question: Does the paper describe the usage of LLMs if it is an important, original, or994

non-standard component of the core methods in this research? Note that if the LLM is used995

only for writing, editing, or formatting purposes and does not impact the core methodology,996

scientific rigorousness, or originality of the research, declaration is not required.997

Answer: [Yes]998

Justification: We use API calls to LLMs to generate datasets for the composite functions task,999

which is fully described in the paper. We further used an LLM as a judge for open-ended1000

steering experiments, which are fully described in the paper’s appendix.1001
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