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Abstract

Single-modal object re-identification (ReID) faces great
challenges in maintaining robustness within complex vi-
sual scenarios. In contrast, multi-modal object ReID uti-
lizes complementary information from diverse modalities,
showing great potentials for practical applications. How-
ever, previous methods may be easily affected by irrele-
vant backgrounds and usually ignore the modality gaps. To
address above issues, we propose a novel learning frame-
work named EDITOR to select diverse tokens from vi-
sion Transformers for multi-modal object ReID. We be-
gin with a shared vision Transformer to extract tokenized
features from different input modalities. Then, we intro-
duce a Spatial-Frequency Token Selection (SFTS) module
to adaptively select object-centric tokens with both spa-
tial and frequency information. Afterwards, we employ
a Hierarchical Masked Aggregation (HMA) module to fa-
cilitate feature interactions within and across modalities.
Finally, to further reduce the effect of backgrounds, we
propose a Background Consistency Constraint (BCC) and
an Object-Centric Feature Refinement (OCFR). They are
formulated as two new loss functions, which improve the
feature discrimination with background suppression. As
a result, our framework can generate more discrimina-
tive features for multi-modal object ReID. Extensive ex-
periments on three multi-modal ReID benchmarks verify
the effectiveness of our methods. The code is available at
https://github.com/924973292/EDITOR.

1. Introduction
Object re-identification (ReID) aims to retrieve specific ob-
jects (e.g., person, vehicle) across non-overlapping cam-
eras. Over the past few decades, object ReID has advanced
significantly. However, traditional object ReID with single-
modal input encounters substantial challenges [17], partic-
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Figure 1. Comparison of different methods and token selections.
(a) Framework of previous methods; (b) Framework of our pro-
posed EDITOR; (c) RGB images; (d) Spatial-based token selec-
tion; (e) Multi-modal frequency transform; (f) Frequency-based
token selection; (g) Selected tokens in the NIR modality; (h) Se-
lected tokens in the TIR modality.

ularly in complex visual scenarios, such as extreme illu-
mination, thick fog and low image resolution. It can re-
sult in noticeable distortions in critical object regions, lead-
ing to disruptions during the retrieval process [53]. There-
fore, there has been a notable shift toward multi-modal
approaches in recent years, capitalizing on diverse data
sources to enhance the feature robustness for practical ap-
plications [43, 44, 53]. However, as illustrated in Fig. 1, pre-
vious multi-modal ReID methods typically extract global
features from all regions of images in different modali-
ties and subsequently aggregate them. Nevertheless, these
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methods present two key limitations: (1) Within individual
modalities, backgrounds introduce additional noise [37], es-
pecially in challenging visual scenarios. (2) Across differ-
ent modalities, backgrounds introduce overhead in reduc-
ing modality gaps, which may amplify the difficulty in ag-
gregating features [15]. Hence, our method prioritizes the
selection of object-centric information, aiming to preserve
the diverse features of different modalities while minimiz-
ing background interference.

To address above issues, we propose a novel feature
learning framework named EDITOR to select diverse to-
kens for multi-modal object ReID. Our EDITOR com-
prises two key modules: Spatial-Frequency Token Selec-
tion (SFTS) and Hierarchical Masked Aggregation (HMA).
Technically, we begin with a shared vision Transformer
(ViT) [7] to extract tokenized features from different input
modalities. Then, SFTS employs a dual approach to select
object-centric tokens from both spatial and frequency per-
spectives. In the spatial-based token selection, we combine
all spatial indices selected by various heads in multi-head
self-attention [7] within each modality. Afterwards, we fur-
ther combine the indices from different modalities to en-
hance the token diversity across modalities. However, as
shown in Fig. 1 (d), the spatial-based token selection may
not fully capture all object-centric tokens. Therefore, we
incorporate a frequency-based token selection to collabora-
tively extract the most salient tokens, as shown in Fig. 1
(e)-(f). With the selected tokens, we introduce HMA to ef-
fectively aggregate object-centric tokens within and across
modalities. To further reduce the effect of backgrounds, we
propose a Background Consistency Constraint (BCC) and
an Object-Centric Feature Refinement (OCFR). They are
formulated as two new loss functions, which improve the
feature discrimination with background suppressions. With
the proposed modules, our framework can extract more dis-
criminative features for multi-modal object ReID. Experi-
ments on the three multi-modal object ReID benchmarks,
i.e., RGBNT201, RGBNT100 and MSVR310 demonstrate
the effectiveness of our proposed EDITOR.

In summary, our contributions are as follows:
• We introduce EDITOR, a novel feature learning frame-

work for multi-modal object ReID. To our best knowl-
edge, it is the first attempt to enhance multi-modal object
ReID through object-centric token selection.

• We propose a Spatial-Frequency Token Selection (SFTS)
module and a Hierarchical Masked Aggregation (HMA)
module. These modules effectively facilitate the selection
and aggregation of multi-modal tokenized features.

• We propose two new loss functions with a Background
Consistency Constraint (BCC) and an Object-Centric
Feature Refinement (OCFR) to improve the feature dis-
crimination with background suppressions.

• Extensive experiments are performed on three multi-

modal object ReID benchmarks. The results fully validate
the effectiveness of our proposed methods.

2. Related Work
2.1. Single-modal Object ReID

Single-modal object ReID extracts discriminative features
from single-modality inputs, such as RGB, Near Infrared
(NIR), Thermal Infrared (TIR), or depth images. Most of
existing object ReID methods are based on Convolutional
Neural Networks (CNNs) or Transformers [39]. Regarding
CNN-based methods, PCB [34] and MGN [40] employ a
part-based image partitioning approach to extract features
at multiple levels of granularity. In addition, with a unified
aggregation gate mechanism, OSNet [57] dynamically fuses
features across omni-scales. DMML [3] offers a meta-level
view of metric learning, demonstrating the alignment of
softmax and triplet losses in the meta space. Circle loss [35]
introduces a novel approach to re-weight similarity scores
and achieve a more flexible optimization. AGW [47] ex-
tracts fine-grained features with non-local attention mecha-
nisms. However, CNN-based methods [5, 20, 22, 42] may
not be sufficiently robust in complex scenarios due to their
limited receptive field. Drawing inspiration from the suc-
cess of ViT [7], the first pure Transformer-based method
named TransReID [13] is proposed with the adaptive mod-
eling of image patches, yielding competitive results. Fur-
thermore, AAformer [59] introduces an automated align-
ment strategy to extract local features. DCAL [58] pro-
poses a dual cross-attention method, which enhances self-
attention with global-local and pairwise cross-attentions.
PHA [51] improves ViTs by enhancing high-frequency fea-
ture representations through a patch-wise contrastive loss.
Moreover, a multitude of Transformer-based approaches, as
presented in works [19, 21, 25, 41, 45, 49, 50, 60], show-
case their benefits in object ReID. Nevertheless, these ap-
proaches rely on single-modal input, which offer limited
representation capabilities, especially in complex scenar-
ios. In contrast, our proposed EDITOR integrates diverse
modalities and leverages token selections, enabling to cap-
ture more fine-grained features in a variety of scenarios.

2.2. Multi-modal Object ReID

Aggregating robust representations from multi-modal data
has attracted considerable attention in recent years. In the
field of multi-modal person ReID, Zheng et al. [53] first
design a PFNet to learn robust features with progressive fu-
sion. Wang et al. [44] advance the field further with their
IEEE framework, which employs three learning strategies
to enhance modality-specific representations. Then, Zheng
et al. [55] introduce the pixel-level reconstruction to ad-
dress the modal-missing problem. For multi-modal vehi-
cle ReID, Li et al. [17] propose a HAMNet to fuse dif-
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Figure 2. An illustration of our proposed EDITOR. First, features from different input modalities are extracted by using the shared ViT-B/16
backbone. Then, a Spatial-Frequency Token Selection (SFTS) is utilized to select diverse tokens with object-centric features. Meanwhile,
the Background Consistency Constraint (BCC) loss is designed for stabilizing the selection process. After that, a Hierarchical Masked
Aggregation (HMA) is grafted to aggregate the selected tokens. Finally, combined with the Object-Centric Feature Refinement (OCFR)
loss, the whole framework can obtain more discriminative features for multi-modal object ReID.

ferent modal features with a heterogeneous score coher-
ence loss. Then, Zheng et al. [54] reduce the discrep-
ancies from sample and modality aspects. From the per-
spective of generating modalities, Guo et al. [9] propose a
GAFNet to fuse the multiple data sources. He et al. [12]
propose a GPFNet to adaptively fuse multi-modal features
with graph learning. With Transformers, Pan et al. [29] in-
troduce a PHT, employing a feature hybrid mechanism to
balance modal-specific and modal-shared information. Jen-
nifer et al. [4] provide a UniCat by analyzing the issue of
modality laziness. Very recently, Wang et al. [43] propose a
novel token permutation mechanism for robust multi-modal
object ReID. While contributing to the multi-modal object
ReID, they commonly overlook the influence of irrelevant
backgrounds on the aggregation of features across different
modalities. In contrast, our proposed EDITOR explicitly
addresses the influence of irrelevant backgrounds on multi-
modal feature aggregation. Our approach effectively iden-
tifies critical regions within each modality while fostering
inter-modal collaboration. Furthermore, the incorporation
of BCC and OCRF losses, along with the innovative SFTS
and HMA modules, distinguishes our work as a promising
avenue for improved performance in complex scenarios.

2.3. Token Selection in Transformer

With the increasing adoption of Transformers [16, 24, 31],
token selection has gained significant attention [1, 8, 10, 11,
23, 28, 33, 46], due to its ability to focus on essential objects
and reduce computational overhead. In vision tasks, such as

ReID, where fine-grained features are crucial, the extraction
of key regions becomes particularly important. For exam-
ple, TransFG [11] utilizes the multi-head self-attention of
ViT to select representative local patches, achieving out-
standing performance in fine-grained classification tasks.
DynamicViT [33] employs gating mechanisms to dynam-
ically accelerate both training and inference. TVTR [46]
extends token selection to cross-modal ReID, aligning fea-
tures by selecting the top-K salient tokens. However, our
method differs from them in the following ways: (1) Our se-
lection is instance-level, where for different input images,
the model dynamically selects different numbers of object-
centirc tokens. Unlike previous methods, which specify the
fixed top-K local regions for feature aggregation, our ap-
proach allows the model to adapt more flexibly to various
inputs. (2) Previous methods do not consider the impact of
distracted backgrounds during the early selection process.
With our proposed losses, we effectively stabilize the se-
lection process, achieving dynamic distribution alignments.
Thus, we provide a more flexible framework, ultimately en-
hancing ReID performance in complex scenarios.

3. Proposed Method

As illustrated in Fig. 2, our proposed EDITOR com-
prises three key components: Shared Feature Extraction,
Spatial-Frequency Token Selection (SFTS) and Hierarchi-
cal Masked Aggregation (HMA). In addition, we incor-
porate the Background Consistency Constraint (BCC) and
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Figure 3. Illustration of spatial-based token selection.

Object-Centric Feature Refinement (OCFR) to further re-
duce the effect of irrelevant backgrounds. We will describe
these key modules in the following subsections.

3.1. Shared Feature Extraction

To extract multi-modal features while reducing the model
parameters, we deploy a shared vision Transformer (ViT)
for multi-modal inputs. Without loss of generality, for the
RGB, NIR and TIR modalities, the multi-modal tokenized
features can be expressed as:

FR = ViT (IR) , FN = ViT (IN ) , FT = ViT (IT ) , (1)

where IR, IN and IT represent the input RGB, NIR and TIR
images, respectively. The tokenized features FR, FN and
FT , each of which has a shape of RD×(Np+1), are extracted
from the last layer of ViT. Here, we follow previous works
and employ additional learnable class tokens fg

R, fg
N and

fg
T for corresponding modalities. Np means the number of

patch tokens while D is the embedding dimension.

3.2. Spatial-Frequency Token Selection

To preserve diverse information within and across modal-
ities while eliminating the influence of irrelevant back-
grounds, we propose the Spatial-Frequency Token Selection
(SFTS) module. It consists of spatial-based token selection
and frequency-based token selection. Through the collab-
oration of these two selection methods, our EDITOR can
focus on the critical regions of the object.
Spatial-based Token Selection. As shown in Fig. 3, our
spatial-based token selection is enhanced by both head-level
union and modality-level union. This kind of combinations
facilitate a dynamic selection of instance-level tokens, pre-
serving diverse information across different input modal-
ities. Technically, the spatial-based token selection takes
tokens from the three modalities and ultimately produces
a selection mask MS for all three modalities. Taking the

RGB modality as an example, assuming there are a total of
K layers in the backbone network, and there are Nh heads
in the self-attention layer, the attention weights of the k-th
layer for the RGB modality can be represented as follows:

aik =
[
ai0k , ai1k , ai2k , · · · , aiNp

k

]
, i ∈ 1, 2, · · · , Nh, (2)

where aik is the attention weight in the i-th head of the k-th
layer. ai0k is the corresponding weight of the class token.
Thus, the attention weights of all layers are organized as:

Ak =
[
a1k, a

2
k, a

3
k, · · · , a

Nh

k

]
, k ∈ 1, 2, · · · ,K. (3)

To further concentrate attention on objects, we follow [11]
to integrate attention weights from all the preceding lay-
ers. Specifically, the attention score is iteratively computed
through a matrix multiplication in the following manner:

Ascore =

K∏
k=1

Ak. (4)

Here, Ascore represents the comprehensive relationships
between patches. Then, we extract the weights associated
with the class token ai0score from each head in Ascore. For
each head, we retain the crucial tokens and generate the
mask M i

R. This process can be formalized as:

M i
R = Mask(Tops(a

i0
score)), i ∈ 1, 2, · · · , Nh, (5)

where Mask represents transforming the selected tokens
into a mask form, and Tops retains the top s important to-
kens (s ∈ N+). In multi-head self-attention, different heads
focus on different aspects. To capture more details within
modality, we employ head-level union to combine the se-
lected tokens from different heads. Finally, we obtain the
mask of RGB modality MR, which can be formulated as:

MR =

Nh⋃
i=1

M i
R. (6)

For other modalities, we execute similar operations as:

MN =

Nh⋃
i=1

M i
N ,MT =

Nh⋃
i=1

M i
T . (7)

Based on above operations, we complete the selection pro-
cess within individual modalities. As a result, each modal-
ity chooses tokens that focus on objects and eliminate most
background interferences. However, the significant varia-
tions across modalities lead to challenges when directly ag-
gregating these tokenized features. To address this issue and
facilitate the modality complementary, we further introduce
modality-level union. It can be expressed as follows:

MS = MR ∪MN ∪MT , (8)
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Figure 4. Illustration of frequency-based token selection.

where MS means the final mask from spatial-based token
selection. Through the head-level union and modality-level
union, we achieve an instance-level token selection strategy,
providing diverse tokenized features for modal fusion.
Frequency-based Token Selection. As shown in Fig. 1 (d),
the spatial-based token selection may result in the neglect
of some salient tokens. Considering the frequency infor-
mation could provide a structural perception of images, we
introduce a frequency-based token selection to mine more
salient tokens. As shown in Fig. 4, we apply the Discrete
Haar Wavelet Transform (DHWT) [27] to the images of dif-
ferent modalities. Taking the RGB modality as an example,
we obtain four frequency components:

I llR, I
lh
R , IhlR , IhhR = DHWT(IR), (9)

where I llR is the low-frequency component, while the other
three terms are the high-frequency components. The same
operations are carried out for other modalities. It can be ob-
served that the decomposition results of different modalities
exhibit significant frequency differences. Technically, we
first sum up the decomposition results from different modal-
ities at each scale. Then, we perform the Inverse Discrete
Haar Wavelet Transform (IDHWT) with the summed results
to obtain the inverse transformed image. As shown in the
middle of Fig. 4, the inverse transformed image highlights
salient regions. Finally, we use a sliding window to count
the pixel values within each patch. The tokens of top f
values are selected as the frequency-based selection result,
denoted as MF . As a result, by uniting spatial mask MS

and frequency mask MF , we obtain the final mask MU .
Background Consistency Constraint. Most of previous
methods [11, 46] directly discard non-selected tokens, treat-
ing them as backgrounds. However, this may lead to the loss
of important information. Therefore, we step further to im-
pose consistency constraints on these non-selected tokens
from different modalities. Formally, the background mask

MB ∈ RNp is defined as:

MB = 1−MU . (10)

Then the background tokens from different modalities can
be represented as follows:

F b
R = F p

R⊙MB , F
b
N = F p

N ⊙MB , F
b
T = F p

T ⊙MB , (11)

where F p
R, F p

N and F p
T represents the patch features of FR,

FN and FT , respectively. MB is the background indices.
⊙ denotes the element-wise multiplication. Then, the back-
ground tokens from paired modalities are constrained by the
Mean Squared Error (MSE) loss:

LR2N =

Nr∑
i=1

||F b
R − F b

N ||22, (12)

LR2T =

Nr∑
i=1

||F b
R − F b

T ||22, (13)

LN2T =

Nr∑
i=1

||F b
N − F b

T ||22. (14)

The final consistency constraint loss can be formulated as:

LBCC =
1

Nr
(LR2N + LR2T + LN2T), (15)

where Nr is the number of reserved tokens. With LBCC , we
can achieve dynamic alignments of backgrounds and stabi-
lize the token selection process.

3.3. Hierarchical Masked Aggregation

For enhancing the feature robustness, we introduce the Hi-
erarchical Masked Aggregation (HMA) to effectively ag-
gregate selected diverse tokens from different modalities.
More specifically, the HMA consists of independent aggre-
gation and collaborative aggregation. In the independent
aggregation stage, each modality interacts with its selected
tokens, highlighting specific regions and improving the fea-
ture discrimination. In the collaborative aggregation stage,
tokens from all modalities interact with each other, facilitat-
ing the exchange and fusion of multi-modal information.
Independent Aggregation. Without loss of generality, tak-
ing the RGB modality as an example, we first concatenate
fg
R with selected tokens to form F̂R ∈ RD×(Np+1). Then,

it is fed into a masked encoder for feature interaction:

FR = Θ(F̂R), F̂R = [fg
R, F

p
R ⊙MU ], (16)

where [·] is the concatenation operation. FR ∈ RD×(Np+1)

represents the aggregated features. The masked encoder Θ
is essentially a Transformer block with a Multi-Head Self-
Attention (MHSA) [7] and a Feed-forward Neural Network
(FFN) [7]. Thus, we obtain tokenized features aligned with
object-centric regions. Other modalities are processed as:

FT = Θ(F̂T ), FN = Θ(F̂N ). (17)
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As a result, global features of each modality will further fo-
cus on key tokens, obtaining object-centric features.
Collaborative Aggregation. To collaboratively aggregate
tokens from different modalities, we first concatenate FR,
FN and FT along the token dimension to form F ∈
RD×3(Np+1). Then, it is fed into Θ for feature interaction:

FAgg = Θ(F ), F = [FR, FN , FT ], (18)

where FAgg ∈ RD×3(Np+1) is the aggregated feature from
different modalities. Then, we extract class tokens fR, fN
and fT from FAgg , and concatenate them as the output
fHMA ∈ R3D of HMA. With HMA, we achieve an adaptive
token aggregation within and across modalities, enhancing
the discriminative ability of multi-modal features.
Object-Centric Feature Refinement. After suppressing
background interferences, we propose the Object-Centric
Feature Refinement to enhance the aggregation of intra-
modal features. As shown in the bottom right corner of Fig.
2, we construct and update the feature center for the i-th ID.
Without loss of generality, taking the NIR modality as an
example, this is achieved by first computing the averaged
feature belonging to the i-th ID in the current mini-batch:

f i
N =

1

P

∑
yi=i

(F
cls

N [label = yi]), (19)

where yi is the label of the current feature, and P is the
number of instances in each ID in a mini-batch. F

cls

N is the
class token of FN . Then, the updated center is:

Ci
N |iter := αf i

N + (1− α)Ci
N |iter−1, (20)

where α is the exponential decay rate, and iter denotes the
current iteration. Furthermore, by using a MSE loss, we en-
sure that features belonging to the same ID are pulled closer
to the ID center. This can be represented as follows:

LN =
1

B

∑
i

∑
yi=i

||F cls

N [label = yi]− Ci
N ||22, (21)

where B represents the batch size. Similarly, the features
from the RGB and TIR modalities will align with their re-
spective centers, resulting in the following loss:

LOCFR = LR + LN + LT . (22)

3.4. Objective Function

As illustrated in Fig. 2, our objective function comprises
four components: losses for the ViT backbone, HMA, BCC
and OCFR. For the backbone and HMA, they are both su-
pervised by the label smoothing cross-entropy loss [36] and
triplet loss [14] with equal weights:

Lg = Lce + Ltri. (23)

Finally, the total loss for our framework can be defined as:

Ltotal = LV iT
g + LHMA

g + LBCC + LOCFR. (24)

4. Experiments
4.1. Dataset and Evaluation Protocols

To evaluate the performance of our method, we employ
three multi-modal object ReID benchmarks. More specif-
ically, RGBNT201 [53] is the first multi-modal person
ReID dataset encompassing RGB, NIR, and TIR modali-
ties. RGBNT100 [17] is a large-scale multi-modal vehicle
ReID dataset. MSVR310 [54] is a small-scale multi-modal
vehicle ReID dataset with complex visual scenarios. As for
evaluation metrics, we follow previous works and utilize the
mean Average Precision (mAP) and Cumulative Matching
Characteristics (CMC) at Rank-K (K = 1, 5, 10).

4.2. Implementation Details

Our model is implemented by using the PyTorch toolbox.
Experiments are conducted on two NVIDIA A100 GPUs.
We employ pre-trained Transformers from the ImageNet
classification dataset [6] as our backbones. For data pro-
cessing, images are resized to 256×128 for RGBNT201 and
128×256 for RGBNT100/MSVR310. During the training
process, we employ random horizontal flipping, cropping,
and erasing [56] for data augmentation. The mini-batch size
is set to 128, containing 8 randomly selected object identi-
ties, and 16 images sampled for each identity. To optimize
our model, we use the Stochastic Gradient Descent (SGD)
optimizer with a momentum of 0.9 and a weight decay of
0.0001. The learning rate is initialized at 0.001 and follows
a warmup strategy with a cosine decay. In spatial-based to-
ken selection, s is set to 2, while in frequency-based token
selection, f is set to 10. For the OCFR, we set α to 0.8.

4.3. Comparison with State-of-the-Art Methods

We perform comparisons with state-of-the-art methods on
three multi-modal ReID datasets. Our method demonstrates
competitive results compared with previous methods.
Multi-modal Person ReID. As presented in Tab. 1, we
compare EDITOR with both single-modal and multi-modal
methods on RGBNT201. In general, single-modal meth-
ods tend to exhibit lower performance. Among the single-
modal methods, PCB [34] stands out with an impressive
mAP of 32.8%, showcasing the effectiveness of its part-
based matching strategy. For multi-modal methods, TOP-
ReID (B) [43] achieves a remarkable mAP of 64.6%. How-
ever, our EDITOR (B) with a mAP of 65.7%, outperforms
TOP-ReID (B), delivering an 1.1% improvement. More-
over, there is a noticeable improvement in the rank metrics,
indicating the effectiveness of our method in addressing the
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Table 1. Performance comparison on three multi-modal object ReID benchmarks. The best and second results are in bold and underlined,
respectively. *denotes Transformer-based methods, while the rest are CNN-based methods. Both single-modal and multi-modal methods
are included. For the comparison between TOP-ReID and EDITOR, A and B means the AL setting and BL setting [43], respectively.

(a) Comparison on RGBNT201.

Methods
RGBNT201

mAP R-1 R-5 R-10

Single

MUDeep [30] 23.8 19.7 33.1 44.3

HACNN [18] 21.3 19.0 34.1 42.8

MLFN [2] 26.1 24.2 35.9 44.1

PCB [34] 32.8 28.1 37.4 46.9

OSNet [57] 25.4 22.3 35.1 44.7

CAL [32] 27.6 24.3 36.5 45.7

Multi

HAMNet [17] 27.7 26.3 41.5 51.7

PFNet [53] 38.5 38.9 52.0 58.4

IEEE [44] 49.5 48.4 59.1 65.6

DENet [55] 42.4 42.2 55.3 64.5

UniCat* [4] 57.0 55.7 - -

TOP-ReID (A)* [43] 72.3 76.6 84.7 89.4
TOP-ReID (B)* [43] 64.6 64.6 77.4 82.4

EDITOR (A)* 66.5 68.3 81.1 88.2

EDITOR (B)* 65.7 68.8 82.5 89.1

(b) Comparison on RGBNT100 and MSVR310.

Methods
RGBNT100 MSVR310
mAP R-1 mAP R-1

Single

PCB [34] 57.2 83.5 23.2 42.9
MGN [40] 58.1 83.1 26.2 44.3
DMML [3] 58.5 82.0 19.1 31.1
BoT [26] 78.0 95.1 23.5 38.4

OSNet [57] 75.0 95.6 28.7 44.8
Circle Loss [35] 59.4 81.7 22.7 34.2

HRCN [52] 67.1 91.8 23.4 44.2
AGW [47] 73.1 92.7 28.9 46.9

TransReID* [13] 75.6 92.9 18.4 29.6

Multi

HAMNet [17] 74.5 93.3 27.1 42.3
PFNet [53] 68.1 94.1 23.5 37.4
GAFNet [9] 74.4 93.4 - -
CCNet [54] 77.2 96.3 36.4 55.2
GraFT* [48] 76.6 94.3 - -
GPFNet [12] 75.0 94.5 - -
PHT* [29] 79.9 92.7 - -
UniCat* [4] 79.4 96.2 - -

TOP-ReID (A)* [43] 73.7 92.2 30.2 33.7
TOP-ReID (B)* [43] 81.2 96.4 35.9 44.6

EDITOR (A)* 79.8 93.9 35.8 43.1
EDITOR (B)* 82.1 96.4 39.0 49.3

challenges of multi-modal person ReID. Although showing
inferior performance than TOP-ReID (A), EDITOR (A) is
more robust across different settings, potentially addressing
the modality laziness problem [4]. Besides, EDITOR has
fewer parameters than TOP-ReID, making it more efficient.
Multi-modal Vehicle ReID. As shown in Tab. 1, single-
modal methods generally exhibit lower performance com-
pared with multi-modal methods. In single-modal meth-
ods, CNN-based methods like AGW [47], OSNet [57]
and BoT [26] consistently achieve better results across
datasets. While Transformer-based methods, such as Tran-
sReID [13], exhibit slightly inferior performance, especially
on smaller datasets like MSVR310, where they lag behind
CNN-based methods. However, Transformer-based meth-
ods prove their effectiveness in integrating multi-modal
data. Specifically, TOP-ReID (B) [43] achieves a mAP of
81.2% on RGBNT100. Our EDITOR (B) surpasses TOP-
ReID (B) on RGBNT100, demonstrating a 0.9% higher
mAP. Notably, our improvement over TransReID on the
smaller dataset MSVR310 highlights our model’s resilience
to over-fitting. Meanwhile, our EDITOR (B) achieves a
2.6% higher mAP than CCNet. These results verify the ef-
fectiveness of our method in multi-modal vehicle ReID.

4.4. Ablation Studies

We conduct ablation studies on the RGBNT201 dataset to
validate the proposed components. Our baseline utilizes a

Table 2. Performance comparison with different components.

Module Loss RGBNT201
SFTS HMA BCC OCFR mAP R-1 R-5 R-10

A ✕ ✕ ✕ ✕ 54.0 53.5 70.2 78.8
B ✕ ✓ ✕ ✕ 60.7 62.4 77.2 83.6
C ✓ ✓ ✕ ✕ 62.2 65.0 79.3 85.4
D ✓ ✓ ✓ ✕ 65.2 65.9 82.2 87.1
E ✓ ✓ ✕ ✓ 64.8 66.9 82.3 87.3
F ✓ ✓ ✓ ✓ 65.7 68.8 82.5 89.1

ViT-B/16 with camera embeddings, supervised by LV iT
g .

Effect of Key Components. Tab. 2 shows the performance
comparison with different components. The model A is the
baseline. Model B incorporates HMA, resulting in a 6.7%
increase in mAP, demonstrating the effectiveness in aggre-
gating multi-modal features. Furthermore, Model C intro-
duces SFTS, achieving further performance improvement
through object-centric token selection. The introduction
of BCC effectively achieves dynamic alignments of multi-
modal distributions, resulting in a 3% mAP improvement
compared with Model C. Besides, Model E makes the fea-
ture distribution more compact, leading to robust improve-
ments. By integrating all components, our model achieves
the optimal performance. These results validate the effec-
tiveness of our EDITOR in complex scenarios.
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Table 3. Comparison between modality union and separation. The
BCC and OCFR losses are not added here.

Methods
RGBNT201

mAP R-1 R-5 R-10
w/o selection 60.7 62.4 77.2 83.6
w/ separation 57.7 58.5 75.4 82.5

w/ union 62.2 65.0 79.3 85.4

Table 4. Effect of different selection methods in SFTS.

Selection Methods
Reserved Tokens RGBNT201
Average number mAP R-1

Modality 30.2 64.2 65.7
Spatial 55.0 65.0 66.8

Frequency 55.0 64.1 65.3
Spatial+Frequency 58.0 65.7 68.8

Figure 5. Alignment visualization in HMA with RGB modality.

Effect of Modality Union vs. Separation. As shown
in Tab. 3, we verify the effect of using modality union.
The results show that modality union significantly improves
the performance. Selected tokens from different modali-
ties vary significantly, potentially causing instability in the
subsequent aggregation. This is evident in the second row
of Tab. 3. Therefore, by establishing shared indices, our
modality union enables a collaborative interaction among
different modalities, providing a more stable aggregation.
Effect of Different Selection Methods. In Tab. 4, we val-
idate different selection methods in SFTS. The first row is
modality union, and the second row introduces head union,
forming the complete spatial-based token selection. The
introduction of head union increases retained tokens, lead-
ing to better performance. In contrast, frequency-based to-
ken selection shows inferior results. The best results are
achieved by combining them.

4.5. Visualization

Feature Alignment of HMA. In Fig. 5, we measure the co-
sine similarity between class tokens of different modalities
before and after HMA. The results show that, after HMA,
the class token of the RGB modality effectively aligns with
patch tokens of other modalities. Similar results can be ob-

(a) (b)

(c) (d)

Figure 6. Comparison of feature distributions with t-SNE [38].
Different colors represent different identities. (a) Baseline; (b)
Baseline + SFTS + HMA; (c) Baseline + SFTS + HMA + OCFR;
(d) Baseline + SFTS + HMA + OCFR + BCC.

served for other modalities, confirming the effectiveness of
HMA on feature alignment and aggregation. More visual-
izations are provided in the supplementary material.
Feature Distributions. Fig. 6 shows the feature distri-
butions with different components. When comparing Fig.
6(a) and Fig. 6(b), one can observe that SFTS and HMA
can pull features to their ID clusters and increase gaps be-
tween different IDs. As shown in Fig. 6(c), with OCFR,
it obtains more compact features within the same ID, effec-
tively enhancing feature distinctiveness. Finally, with BCC,
it enlarges gaps between different IDs. These visualizations
vividly verify the effectiveness of different modules.

5. Conclusion
In this work, we propose EDITOR, a novel feature learning
framework that selects diverse tokens from vision Trans-
formers for multi-modal object ReID. Our framework
integrates Spatial-Frequency Token Selection (SFTS) and
Hierarchical Masked Aggregation (HMA), which select
and aggregate multi-modal features, respectively. To
reduce the effect of backgrounds, we introduce Background
Consistency Constraint (BCC) and Object-Centric Feature
Refinement (OCFR) losses. Extensive experiments on three
benchmarks validate the effectiveness of our method.
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