Conditioned Spatial Downscaling of Climate Variables
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Abstract

Global Climate Models (GCM) play a vital role in assessing the large-scale impacts
of climate change. Downscaling methods can translate coarse-resolution climate
information from GCM to high-resolution predictions to forecast regional effects.
Unfortunately, current downscaling methods struggle to fully take into account
spatial relationships among variables, especially at long distances. In this work,
we propose an instance-conditional pixel synthesis generative adversarial network
(ICPS-GAN), wherein conditioning on spatial information is an explicit way of
providing the GAN with previous high-resolution and current low-resolution data,
resulting in an enhancement of the general performance. Experimental results on
precipitation forecast for US region data outperform both traditional and other
learning-based methods when extrapolating in space. The code is available at
https://github.com/evbecker/climate-spatial-downscaling

1 Introduction

Climate change has immense impacts on people’s lives and ecosystems across the world, and with
the exacerbation of global warming, there are more severe weather conditions now than ever before
(Nicholls & Cazenavel 2010; |Villén-Peréz et al., 2020; [Wang et al., 2020; |Giorgi et al., [2019).
Correctly predicting climate change can save people a lot of time, money, resources, and even lives
(Chakraborty et al., 2000; |Guo et al., 2018)), as people will be able to take necessary precautions
before some unexpected conditions based on the prediction. However, predicting such changes in the
climate is not an easy task to do. In recent years, researchers have attempted to apply learning-based
methods to climate problems (Ardabili et al., [2019; Kareem et al.,[2021), since deep learning-based
approaches are known for discovering complex underlying patterns.

Global Climate Models (GCMs) are effective in predicting general climate conditions, and estimates
based on these models have been applied in many fields, including Earth Science, engineering,
economics, and risk analysis (Groenke et al., [2020). However, GCMs usually operate at a lower
resolution, having a limited ability to provide regional or fine-detailed predictions, even though
they are useful in analyzing the general trend globally. Moreover, there are more large-scale,
lower-resolution data available than lower-scale, higher-resolution data, which makes building high-
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https://github.com/evbecker/climate-spatial-downscaling

resolution models more difficult. Therefore, generating higher resolution climate projections is
important for precise local climate analysis.

Statistical downscaling is the process of using some global information to make local predictions.
Since global climate data is easier to access, statistical downscaling is a good way to make use of the
low-resolution data for high-resolution climate predictions. The statistical downscaling builds the
relationship between the local climate variables and global predictors and uses such a relationship
to make future predictions of the local climate variables based on the global predictors (Hoar &
Nychkal [2008)). In this work, we build a generative deep statistical downscaling model for local
climate variable predictions.

Our contributions are as follows:

1. We propose a type of instance-conditional generative adversarial network (GAN) that
addresses the issue of long range spatial dependencies by explicitly conditioning on location
data and previous time-steps high-resolution images.

2. We characterize this model’s performance on downscaling tasks between real-world US
precipitation models at different resolutions, and demonstrate its improvement over standard
methods.

2 Problem Statement

Many current statistical downscaling methods formulate the downscaling problem as finding some
direct mapping function from low resolution to high resolution data (e.g. some pointwise regression).
The caveat with such methods is that they lack any underlying distribution in the high resolution
space (which can be helpful for computing uncertainties associated with downscaled predictions).
Instead, we pose the super-resolution task as a problem of finding conditional distributions.

Let 11D, € RUEXWxC) and 11 € RUEXWxC) pe g sequence of random variables representing
high-resolution (HR) and low-resolution (LR) images, respectively with height H, width W and
depth C. Each image consists of one or more channels of weather data at set latitudes and longitudes
(x,y) for various time steps ¢ € T'. Our goal is to learn a generator that has the following mapping:
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Here, z is some latent variable following a tractable distribution (e.g. normal). In this paper, the

objective is to estimate the high resolution image I S)R given a previous high resolution image (/ S 1%

for some ¢’ < t) and a current low resolution image (I étl){). The following tuple is the training input

(Ig}%, Ig 1;, Igz)z)- For inference, the model has access to Iétl)i’, to make the prediction where that
particular time-step has not been part of the training. The metrics that will be utilized to assess model
performance over the evaluation period and quantify the representation of mean properties will be
based on those reported for the VALUE baseline ensemble (Widmann et al., 2019) such as root mean
square error (RMSE) and Pearson correlation.

3 Related Works

3.1 Traditional Methods

In traditional methods, the spatial structure of daily values for climate impacts is an important
factor to consider. [Easterling| (1999); Kettle & Thompson| (2004); [Huth et al.| (2008) discuss the
correlations between time series at different spatial locations via Perfect Prog (PP) methods and
find that large-scale predictors tend to overestimate spatial correlations, while more local methods
underestimate them. PP methods work the well in general, but the performance drops in summer
and winter |Ayar et al.|(2016)); [Huth et al.|(2015). In addition, stochastic PP methods are useful when
they explicitly model spatial structures. (Cannon| (2008)); Wilks| (2012); Hu et al.[(2013)) find that both
Nonhomogeneous Hidden Markov Models (NHMMs) and Generalized Linear Models (GLMs) are
likely to underestimate the correlation, while NHMMs are better under certain circumstances.



Analog methods search for historical data to match the current or forecast local variables such as
precipitation over an area to similar times in the past. |Pierce et al.|(2014) performs the statistical
downscaling using Localized Constructed Analogs (LOCA).|Gutmann et al.|(2014)) compare several
analog methods, and most methods overestimate the spatial correlation, except for the method
combining bias correction for monthly fields and spatial disaggregation (BCSDm). They think the
reason why BCSDm does not overestimate the spatial correlation is that the method inherits the
spatial variability from the observations, rather than from the driving model.

3.2 Learning-based Methods

Methods based on deep learning have also been used to solve statistical downscaling. [Sun & Lan
(2021)) use a simple Convolutional Neural Network (CNN) to predict the daily temperature and
precipitation in China. Babaousmail et al.|(2021) apply a convolutional autoencoder on data from
North Africa where the low-resolution global data is the input and the high-resolution regional data
is the output. Misra et al.| (2018) propose a Recurrent Neural Network (RNN) model with Long
Short-Term Memory (LSTM) to capture the spatial and temporal dependencies in local rainfall. The
study tests their model on two datasets: precipitation in the Mahanadi basin in India and precipitation
in the Campbell River basin in Canada, instead of the GCMs. [Sekiyama) (2020) treat the climate data
statistical downscaling problem as a single-image super-resolution (SR) problem.

Statistical downscaling algorithms that are based on deep learning have been shown to have better
empirical accuracy than traditional methods, but they are mostly like black box (Jebeile et al., 2021).
Accarino et al.| (2021) uses a multi-scale Generative Adversarial Network (GAN) to downscale
temperature fields and |Chaudhuri & Robertson| (2020) proposes CliGAN, a Wasserstein GAN that
is used to downscale large-scale annual maximum precipitation given by simulation of multiple
atmosphere-ocean global climate models. [Leinonen et al.| (2020) develops a recurrent, stochastic
super-resolution GAN that can generate ensembles of time-evolving high-resolution atmospheric
fields given an input sequence of low-resolution images of the same field. [Vaughan et al.| encodes
the low-resolution predictor to a latent variable and retrieves the local climate variable as a query of
longitude, latitude, and elevation via the latent neural process utilizing ConvLNP (Vaughan et al.|
2022).

In terms of generative model-based Super Resolution (SR) algorithms, |Ledig et al.| (2017) proposes
SRGAN which is a GAN-based network optimized for a new perceptual loss. ESRGAN (Wang
et al.,|2018) includes a Residual-in-Residual Dense Block (RRDB) to combine multi-level residual
networks and dense connections. ESRGAN+ (Rakotonirina & Rasoanaivo, [2020) adds Gaussian
noise vectors to ESRGAN after each residual along with a learned scaling factor. In GLEAN (Chan
et al.| [2021), to make the model more expressive, each block of the generator takes in a latent vector
while also being conditioned on the output of the encoder. [Hyun & Heo| (2020) proposes VarSR-Net,
which is a variational inference-base SR algorithm. Lugmayr et al.| (2020) proposes SRFlow and
uses normalizing flow models for the SR problem. Based on SRFlow, Jo et al.|(2021)) include more
convolutional layers to have a large receptive field in a single flow step for better results.

4 Method

4.1 Pixel Synthesis

Inspired by the recent work of He et al.| (2021); | Anokhin et al.|(2020)), we leverage the conditionally
independent pixel synthesis generator architecture whose generative model computes climate values
at individual locations, independent of others, given a random noise vector, low-resolution weather
embedding, and positional embedding of its coordinates in time and space. In addition to the latitude,
longitude, and time used by [He et al.|(2015) to generate RGB satellite images, we also encode eleva-
tion information. Elevation is an important spatial feature that should allow the model to interpolate
weather data more accurately across mountainous terrain. To be specific, we encode the latitude,
longitude, elevation, and time stamp through a learnable embedding function f., parameterized by -,
S.t.
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where v is the embedded positional feature, z, y, h and ¢ is the latitude, longitude, elevation, and time
stamp respectively. There is also a function fp, which takes in a low-resolution image at the current



time step and a high-resolution image from the previous time step and outputs the encoded image
features m:

m = fo(1$9, 1)) 3)

lr »

where I, () is the low-resolution image at time ¢ and f(”) is the high-resolution image at time ¢'.
The generator G takes in the encoded image feature m, positional feature v, and a noise vector z to
generate the predicted high-resolution image I .(*):

1,0 = G(z,v,m) = G(X, 2| 11", 1) 4)
where X = (x,y, h, t).

4.2 Instance-Conditioned Loss Function

In the given work, we propose an instance-conditional pixel synthesis generative adversarial network
(ICPS-GAN) where we utilize the super-resolution architecture via conditional pixel synthesis (He
et al., |2021) but with an alteration to its loss function. Instead of training the generator with a
combination of the conditional GAN loss with LO loss, we use Instance-Conditioned GAN (IC-GAN)
(Casanova et al.l [2021)):

G* =L;c—qan)(G, D) + ALL1(G) )
Lic—can (G, D) =Ellog D(I,), X, I}, I{")))+
E[1 —log D(G(X, 2\, 1", f(x:)), X, I I11))] (©)

where X in equation E]is the temporal-spatial coordinate grid (z,y, h,t), while G and D in equa-
tion[5]and [6]represent the Generative and Discriminator networks respectively, and z € R is the
noise vector. The main objective of the IC-GAN is to learn the distribution around each datapoint.
Essentially, leveraging the overlapping clusters in the data manifold where each cluster is represented
by a datapoint or an instance z;. The underlying distribution p(z) of the data will be a mixture of
conditional distributions p(z|f(x;)) where f is an embedding function for each instance. While the
original work pre-trains this embedding function on either classification or self-supervised learning
tasks, we chose to incorporate this training directly into the generator updates, with the hypothesis
that we will still learn encodings useful for clustering low-resolution inputs.

5 Datasets

We train and evaluate our downscaling method on daily weather data from a custom combination
of ERA-iterim, CPC, and WREF datasets. Our base datasets all overlap temporally for a period of 7
years (2000-2006), giving us a minimum of 2,282-time samples for each type of measurement, while
ERA-iterim and CPC overlap temporally from 2000 to 2018. At each time point, measurements for a
single variable will consist of a 2D image whose pixels correspond to a specific latitude and longitude
coordinate pair within the United States. For this work, we focus on daily accumulated precipitation,
measured in millimeters (mm), which provides the opportunity for our model to capture complex
long-range spatial and temporal dependencies across the data.

The low-resolution ERA-iterim dataset has a native resolution of approximately 0.75 x 0.75 degrees
and contains global hourly measurements for weather variables such as temperature, pressure, and
precipitation (Berrisford et al., |2011). The higher resolution CPC US Unified Precipitation data
is provided by NOAA. Resolution is 0.25 x 0.25 degrees and spans the contmental Umted States
(CONUS).The WREF dataset contains very high resolution data at appr0x1mately 35 X 35 degrees
(Rasmussen & Liul 2017). Total precipitation (mm) is recorded at hourly intervals and preprocessed
into daily intervals. Additionally, data is stored not in a regular latitude and longitude grid but in
a projected Lambert Conformal grid. As shown in figure|l} we crop five different 10 x 10 degree
squares across the United States to create climate "images" that we can then feed into our network.
We discuss the train and test splits of these images later in the section We hope that aligning
these three datasets at different resolutions will provide a flexible and reusable benchmark for future
research. Additional prepossessing and feature descriptions are provided in the appendix section
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Figure 1: Regional 10x10 degree "patches" of data  Figure 2: High-Resolution training data for
are taken and used to train the downscaling model: the precipitation (blue) year 2004 vs. High-
Northwestern (red), Northeastern(green), Southwest- Resolution prediction (orange) year 2005 for
ern (orange), Southeastern (blue) regions are shown. a single coordinate.

6 Experiments and Results

6.1 Baseline Methods

BCSD For the bias correction and spatial disaggregation (BCSD) baseline, the quantile mapping
from the low-resolution to high-resolution data is fit for each day using the training data. In Figure
for a fixed longitude and latitude, the precipitation is projected for the year 2005, demonstrated in
orange, where the model was trained on the data represented in blue from the previous year.

Vanilla Autoencoder For the Vanilla Autoencoder (Vanilla AE), we follow the network architecture
described below. The encoder side consists of 3 layers, where each layer has two 3 x 3 convolutional
layers. Each convolutional layer is followed by a Leaky Rectified Linear Unit (ReLU) and batch
normalization. At the end of each layer, we downsample the feature map by max pooling. There are
16, 32, and 64 filters in convolutional layers in each of the three layers, respectively. The decoder
follows the opposite structure except that at the beginning of each layer, we upsample the feature
map by bilinear interpolation.

Naive Version of EAD In this baseline approach, we implemented a naive version of EAD (He et al.,
2021)), where we use the same architecture as the generator of the GAN but without the noise vector,
coordinates, high-resolution image from the previous time step, and the discriminator. Therefore, the
naive version of EAD (Naive EAD) is some form of the deterministic autoencoder.

EAD For the last baseline comparison, we re-implement the EAD method by |He et al.| (2021)), where
it takes in the spatial coordinate as well as the time stamp as an input to the network, which allows it
to locate the exact spatial and temporal information of the given image.

6.2 Implementation Details

For the experiments in this section, we held out the data from Northwestern, Northeastern, Southwest-
ern, and Southeastern from 2001 as the validation set and the ones from the Midwest from the years
2001 to 2007 as a separate test of an unseen region. Due to computational limitations, the networks in
this work were trained on the data from the 4 regions (Northwestern, Northeastern, Southwestern, and
Southeastern) from 2000 to 2007. In Section[6.7} the networks used in the experiments were trained
on the data from those 4 regions from 2000 to 2018. In Section [6.5] the training was only done in 1
region (Northeastern) from 2002 to 2007. In Section[6.8] we used the CPC data as the low-resolution
data with the WRF data as the high-resolution data where we resized the images to 160 x 160, while
in all the other sections in the experiments, we used ERA data as the low-resolution data and CPC
data as the high-resolution data where we resized the images to 40 x 40. For a fair comparison, the
training objective for both of the deterministic methods is L1 loss. For the GAN-based methods, we
set A = 0.2, since this is the optimal value we observe on the validation set, which is in line with the
results in Section on the test set.



160x160 Model Prediction

Daily Precipitation (MM) Midwest 2000-01-03 NW US 2001-03-15

(INPUT) CPC Low Resolution
o

(INPUT) ERA Low Resolution (TRUE) CPC High Resolution

19.06 19.06
16.94 16.94
14.82 14.82
12.71 12.71
10.59 1059
8.47 8.47
6.35 6.35
424 424
2.12 2.12
0.00 _A 0.00

(PREDICTED) AE High Resolution (PREDICTED) EAD High Resolution

9.219
8.195
7.171
6.146
5.122
4.097
3.073
2.049
1024
0.000

9.219
8.195
7.171
6.146
5.122
4.097
3.073
2.049
1024
0.000
(PREDICTED) Our Model High Resolution

9.219
8.195
7.171
6.146
5.122
4.097
3.073
2.049
1024
0.000

19.06
16.94
14.82
12.71
10.59
8.47
6.35
4.24
2.12
0.00

(PREDICTED) Naive High Resolution (PREDICTED) Our Model High Resolution

19.06 19.06
16.94 16.94
14.82 14.82
12.71 12.71
10.59 10.59
8.47 8.47
6.35 6.35
4.24 424
2.12 2.12
0.00 0.00

Figure 3: Downscaling predictions for an unknown year. Figure 4: Downscaling predictions from the
Left column: input low-resolution ERA data, vanilla high-resolution model for an unseen date.
AE predicted result, naive EAD predicted result. Right The top image is the low-resolution image
column: ground truth CPC high-resolution data, EAD from the CPC dataset , the middle image is
predicted result, our predicted result. The deterministic the true WRF high-resolution image, and the
methods fail to generate meaningful results. bottom image is our model’s prediction.

6.3 Baseline Comparison

The baseline quantitative comparison of the held out region can be found in Table[I] Our method
outperforms the other methods quantitatively. We believe this is because our method can generalize
better to the unseen region with the longitude, latitude, and elevation information. The qualitative
results are shown in Fig. [3] where the deterministic methods fail to generate anything meaningful.

Table 1: Comparison against baseline approaches on a held out region

RMSE Pearson Correlation
BCSD 4.21 0.183
Vanilla AE | 2.90 &+ 3.28 0.279 £ 0.272
Naive EAD | 2.88 +3.23 0.296 £+ 0.270
EAD 298 +£3.21 0.235 +£0.248
ours 2.82+3.14 0.311 +0.262

6.4 Ablation Study

We also performed an ablation study on the unseen region, which is shown in Table[2]} It can be
observed that adding both the elevation data and conditioning the GAN on the instance improves the
performance of the model while using both improves the performance the most. Adding the elevation
information to the network is more useful for unseen regions as it improves the Pearson Correlation



by a significant factor, while for unseen years the improvement is marginal. We conclude that if the
network has seen the region during training, it is more likely to implicitly figure out the elevation of
the region to some extent since the longitude and latitude are explicitly given. Therefore, explicitly
telling the network the elevation information allows the network to learn the correlation between
precipitation and elevation, which is shown to be useful for unseen regions. Conditioning the GAN
on the instance is a more direct way of giving the GAN information about the current low-resolution
data and previous high-resolution data compared with normal GAN, and it is shown to be an effective
way of improving the general performance.

Table 2: Ablation study on the unseen region

Elevation IC RMSE Pearson Correlation
2.98 + 3.21 0.235 +0.248

v 2.84 +£3.16 0.275 £ 0.265
v | 283+£3.13 0.287 £ 0.258
v v | 2.82+3.14 0.311 + 0.262

6.5 Analysis on the Hyperparameter \

We additionally analyze the effect of the hyperparameter A in the loss function on the results. The
A parameter controls how much the GAN loss term L;c_gan)(q,p) and L1 loss term Ly, (G)
contribute to the total loss. We want to investigate how this parameter can impact the final results.
LL(;c—cany(a,p) indicates how much the generated images look like the real images, while Lz, (G)
determines how well the prediction is. We conducted the same experiment 10 times where we set A
as 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 during each trial. The results are shown in Table@ where
we can observe that the best results occur when A = 0.2.

Table 3: Comparison with different values for A on a held out year

RMSE Pearson Correlation
A=0.01 | 2.91+3.01 0.260 £ 0.236
A=0.02 | 2.94 +3.17 0.258 +0.249
A=0.05 1] 294+3.13 0.272 £ 0.221
A=0.1 | 3.03+£2.93 0.213 +£0.221
A=0.2 | 3.04+2.95 0.274 +£0.214
A=0.5 |293+2.95 0.284 +£0.233
2.88 +£2.87 0.287 £ 0.242
2.79 £2.97 0.318 £0.238
2.76 £+ 2.80 0.229 £ 0.241
2.70 £2.78 0.330 £ 0.254
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6.6 Analysis of Conditional Image Encodings

As discussed in section@], our embedding function differs from (Casanova et al.|(2021)) in that it is
not pretrained on a classification task. We ensure that our embedding still learns some representation
useful for clustering by doing principal component analysis (PCA) on the encoded conditioning
images. By examining figures[5|and ] it’s clear that our embedding contains information about the
type of weather and region that a coordinate is experiencing. Expert domain knowledge would most
likely be needed to understand whether the encoding is capturing more complex class information
such as weather events (e.g. thunderstorms, blizzards, hurricanes).

6.7 Results on the Full Dataset

The results from the model trained on the full dataset are shown in Table [d] However, we observe
that the results are worse than the ones from the model trained on the data from 2002-2007. We
hypothesize that this is because the data distribution of later years is more different than that of the
early years compared to the test set, as the test set for the unseen region is from 2001 to 2007. Another
possible explanation is that the model capacity was not large enough to handle a more diverse data
distribution, so the performance dropped.
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Figure 5: Plotting the first two principal com-  Figure 6: Plotting the first two principal compo-
ponents of our conditioning image embeddings. nents of our conditioning image embeddings. Each
Each point in the plot corresponds to a specific  point in the image corresponds to a specific coor-
coordinate and time (from the set of 25 points  djnate and time (from the set of 4 points in the
in the NWUS during the year 2000), while the  NWUS during the year 2000), while the color cor-

color corresponds to the log precipitation of the  responds to the average daily precipitation for that
corresponding low resolution image. location.

Table 4: Results on the full dataset

RMSE Pearson Correlation
2.91 +3.16 0.249 + 0.256

6.8 Generating WRF data based on CPC data

As described in the previous sections, the resolution of ERA data is so poor that it is often impossible
to recover some of the higher resolution information from the data. Therefore, we decided to use
CPC data as the low-resolution data and WRF data as the high-resolution data in this experiment to
test the ability of our method to recover high-resolution information based on data that could provide
more information than ERA data. The quantitative results on the unseen regions are shown in Table[5]
The qualitative results are shown in Fig. [4] where our prediction looks blurry.

Table 5: Results of generating WRF data from CPC data

RMSE Pearson Correlation
3.13 £+ 3.66 0.243 +0.243

7 Conclusion and Future Work

In conclusion, we proposed an instance-conditional pixel synthesis GAN while explicitly feeding
in the latitude, longitude, elevation, and time point of each pixel to perform statistic downscaling.
The qualitative analysis has shown that our method is superior in generating realistic climate patterns
compared with previous methods. The quantitative results have shown that our method has decent
generalizability for unseen regions. We believe if our model is trained on more regions than only 4,
the performance would be even better compared to the previous methods due to the explicit modeling
of the positional information. Due to the constraints of computational resources, we have not been
able to perform comprehensive studies on training with the full dataset, generating WRF data based
on CPC data, and other climate variables other than precipitation. Future research in these directions
would be helpful to exhibit the benefit of our proposed method.
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A Appendix

A.1 Multi-scale Climate Dataset for the Continental United States

In order to better facilitate future work in climate downscaling, we have aggregated and preprocessed
precipitation and temperature data at three different resolutions. This combination provides training
data for three possible downscaling tasks, as shown in table [6| Because of limited memory and
preprocessing time, we chose to keep the maximum WRF resolution capped at Tle X % degrees, as
well as restrict climate variables to only accumulated precipitation (mm) and maximum temperature
(K) (for reference, the size of raw WRF temperature data before downsampling was roughly 200
GB).

Table 6: Downscaling options provided by our current dataset

Task Zoom Overlap Variables #Samples
ERA—>CPC  3x 1/1/00 - 12/31/18  precip. 6,935
CPC—>WRF 4x 10/1/00-12/31 precip. 2,282

ERA—>WRF 12x 10/1/00-12/31 precip., temp. 2,282

A.1.1 Preprocessing

While each of our three data sets provides data for the continental United States, their coordinates do
not align exactly (ERA and CPC have a constant offset, but WRF has a non-regular grid). Therefore,
before training, we perform nearest neighbor interpolation to a regular grid closely matching (no
higher resolution than) the highest resolution dataset. Additionally, we downsample the hourly
data from ERA and WRF datasets to daily measurements by taking summations and maxima for
precipitation and temperature data, respectively.

To increase the temporal overlap between the CPC and ERA-iterim datasets, we separately preprocess
a real-time version of the CPC dataset from 2007—201€ﬂ and combine it with the original.

Another attempt at increasing the number of samples is through data augmentation. We take 5
different 10 x 10 degree patches of the United States: Northwestern, Northeastern, Midwestern,
Southwestern, and Southeastern (see Figure [T)). Completely randomizing the training patches and
allowing for overlap may allow for a much larger multiplier on the base dataset size, at the risk of
overfitting. While rotations of the data were also considered, the transformation may interfere with
the network’s coordinate-based conditioning (rotations would result in pixels being mislabeled as the
wrong coordinate) and so it was not performed.

To generate the coordinate grids used in interpolation, we divide the five selected 10 x 10 degree
regions into a regular grid according to the desired highest resolution. We generate three differently
sized image sets this way: 40 x 40 pixel images at 0.25 degree resolution, 100 x 100 pixel images
at 0.10 degree resolution, and 160 x 160 pixel images at % degree resolution. The details of these
image collections are provided in table

Table 7: Collections of climate data at different image sizes

Collection Datasets Incl. Size

precip-40  ERA, CPC 268 MB
precip-100 ERA, CPC, WRF 1.81 GB
precip-160 ERA, CPC, WRF 4.66 GB
temp-160 ERA, WRF 340 GB

A.1.2 Feature Analysis

We justify our data alignment by Figure /| where we see that our spatially averaged ERA-iterim,
CPC, and WREF datasets align closely. In Figure 0] we see that our higher resolution data have larger
extremes than the coarser datasets (as expected).

https://psl.noaa.gov/data/gridded/data.unified.daily.conus.rt.html

12


https://psl.noaa.gov/data/gridded/data.unified.daily.conus.rt.html

—— ERA low resolution

8 4 —— CPC medium resolution
g —— WREF high resolution
E
z
£ 6 A
E
E
[=
8
84
‘a
Kl
o
[=1
&2
i
]
>
[+

o

T T T T T T
o] 50 100 150 200 250 300 350
days since 10/01/2000

Figure 7: Average (spatial) precipitation over a large region of the northwest during a period of 1
year, where high, medium and low-resolution datasets match closely, with the low-resolution data
consistently biased higher during periods of heavy rainfall.
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Figure 8: Maximum (spatial) precipitation over a large region of the northwest during a 100-day
period. Higher resolution data consistently has larger maxima than coarser data.
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Figure 9: The predicted precipitation heat map for the year 2001 was trained on the year 2000 at
40x40 resolution. It also includes the true high-resolution precipitation data for the year 2001. The
data is for the northeast US.
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