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Abstract

We consider the projected gradient algorithm for the nonconvex best subset se-
lection problem that minimizes a given empirical loss function under an `0-norm
constraint. Through decomposing the feasible set of the given sparsity constraint as
a finite union of linear subspaces, we present two acceleration schemes with global
convergence guarantees, one by same-space extrapolation and the other by subspace
identification. The former fully utilizes the problem structure to greatly accelerate
the optimization speed with only negligible additional cost. The latter leads to a
two-stage meta-algorithm that first uses classical projected gradient iterations to
identify the correct subspace containing an optimal solution, and then switches to a
highly-efficient smooth optimization method in the identified subspace to attain
superlinear convergence. Experiments demonstrate that the proposed accelerated
algorithms are magnitudes faster than their non-accelerated counterparts as well as
the state of the art.

1 Introduction

We consider the sparsity-constrained optimization problem in <n:
minw∈As f(w), (1)

where f is convex with L-Lipschitz continuous gradient, s ∈ N, and As is the sparsity set given by
As := {w ∈ <n : ‖w‖0 ≤ s}, (2)

where ‖w‖0 denotes the `0-norm that indicates the number of nonzero components in w. We further
assume that f is lower-bounded on As.

A classical problem that fits in the framework of (1) is the best subset selection problem in linear
regression [6, 20]. Given a response vector y ∈ <m and a design matrix of explanatory variables
X ∈ <m×n, traditional linear regression minimizes a least squares (LS) loss function

f(w) = ‖y −Xw‖2/2. (3)
However, due to either high dimensionality in terms of the number of features n or having significantly
fewer instances m than features n (i.e., m � n), we often seek a linear model that selects only a
subset of the explanatory variables that will best predict the outcome y. Towards this goal, we can
solve (1) with f given by (3) to fit the training data while simultaneously selecting the best-s features.
Indeed, such a sparse linear regression problem is fundamental in many scientific applications, such
as high-dimensional statistical learning and signal processing [22]. The loss in (3) can be generalized
to the following linear empirical risk to cover various tasks in machine learning beyond regression

f(w) = g(Xw), g(z) =
∑m

i=1
gi(zi), (4)

where g is convex. Such a problem structure makes evaluations of the objective and its derivatives
highly efficient, and such efficient computation is a key motivation for our algorithms for (1).
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Related Works. The discontinuous cardinality constraint in (1) makes the problem difficult to
solve. To make the optimization problem easier, a popular approach is to slightly sacrifice the quality
of the solution (either not strictly satisfying the sparsity level constraint or the prediction performance
is deteriorated) to use continuous surrogate functions for the `0-norm, which lead to a continuous
nonlinear programming problem, where abundant algorithms are at our disposal. For instance, using
a convex penalty surrogate such as the `1-norm in the case of LASSO [36], the problem (1) can be
relaxed into a convex (unconstrained) one that can be efficiently solved by many algorithms. Other
algorithms based on continuous nonconvex relaxations such as the use of smoothly clipped absolute
deviation [15] and the minimax concave penalty [41] regularizers are also popular in scenarios with
a higher level of noise and outliers in the data. However, for applications in which enforcing the
constraints or getting the best prediction performance is of utmost importance, solving the original
problem (1) is inevitable. (For a detailed review, we refer the interested reader to [11, Section 1].)
Unfortunately, methods for (1) are not as well-studied as those for the surrogate problems. Moreover,
existing methods are indeed still preliminary and too slow to be useful in large-scale problems often
faced in modern machine learning tasks.

In view of the present unsatisfactory status for scenarios that simultaneously involve high-volume data
and need to get the best prediction performance, this work proposes efficient algorithms to directly
solve (1) with large-scale data. To our knowledge, all the most popular algorithms that directly tackles
(1) without the use of surrogates involve using the well-known projected gradient (PG) algorithm, at
least as a major component [10–13, 3].1 [10] proved linear convergence of the objective value with
the LS loss function (3) for the iterates generated by PG under a scalable restricted isometry property,
which also served as their tool to accelerate PG. However, given any problem instance, it is hard, if
not computationally impossible, to verify whether the said property holds. On the other hand, [11]
established global subsequential convergence to a stationary point for the iterates of PG on (1) without
the need for such isometry conditions, and their results are valid for general loss functions f beyond
(3). While some theoretical guarantees are known, the practicality of PG for solving (1) remains a
big problem in real-world applications as its empirical convergence speed tends to be slow. The PG
approach is called iterative hard thresholding (IHT) in studies of compressed sensing [13] that mainly
focuses on the LS case. To accelerate IHT, several approaches that alternates between a PG step and
a subspace optimization step are also proposed [12, 3], but such methods mainly focus on the LS
case and statistical properties, while their convergence speed is less studied from an optimization
perspective. Recently, “acceleration” approaches for PG on general nonconvex regularized problems
have been studied in [27, 37]. While their proposed algorithms are also applicable to (1), the obtained
convergence speed for nonconvex problems is not faster than that of PG.

This work is inspired by our earlier work [1], which considered a much broader class of problems
without requiring convexity nor differentiability assumptions for f , and hence obtained only much
weaker convergence results, with barely any convergence rates, for such general problems.

Contributions. In this work, we revisit the PG algorithm for solving the general problem (1) and
propose two acceleration schemes by leveraging the combinatorial nature of `0-norm. In particular, we
decompose the feasible setAs as the finite union of s-dimensional linear subspaces, each representing
a subset of the coordinates {1, . . . , n}, as detailed in (7) of Section 2. Such subspaces are utilized
in devising techniques to efficiently accelerate PG. Our first acceleration scheme is based on a
same-space extrapolation technique such that we conduct extrapolation only when two consecutive
iterates wk−1 and wk lie in the same subspace, and the step size for this extrapolation is determined
by a spectral initialization combined with backtracking to ensure sufficient function decrease. This
is motivated by the observation that for (4), objective and derivatives at the extrapolated point can
be inferred efficiently through a linear combination of Xwk−1 and Xwk. The second acceleration
technique starts with plain PG, and when consecutive iterates stay in the same subspace, it begins to
alternate between a full PG step and a truncated Newton step in the subspace to obtain superlinear
convergence with extremely low computational cost. Our main contributions are as follows:

1. We prove that PG for (1) is globally convergent to a local optimum with a local linear rate,
improving upon the sublinear results of Bertsimas et al. [11]. We emphasize that our framework,
like [11], is applicable to general loss functions f satisfying the convexity and smoothness

1 [17] proposed an algorithm for a similar optimization problem that minimizes f(w) + C‖w‖0 for some
C > 0. But whether it is equivalent to (1) is unclear because both problems are nonconvex, and for any
prespecified sparsity level s, it is hard to find C that leads to a solution w∗ with ‖w∗‖0 = s.
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requirements, and therefore covers not only the classical sparse regression problem but also many
other ones encompassed by the empirical risk minimization (ERM) framework.

2. By decomposing As as the union of linear subspaces, we further show that PG is provably capable
of identifying a subspace containing a local optimum of (1). By exploiting this property, we
propose two acceleration strategies with practical implementation and convergence guarantees
for the general problem class (1). Our acceleration provides both computational and theoretical
advantages for convergence, and can in particular obtain superlinear convergence.

3. In comparison with existing acceleration methods for nonconvex problems [27, 37], this work
provides new acceleration schemes with faster theoretical speeds (see Theorems 3.2 and 3.3), and
beyond being applied to the classical PG algorithm, those schemes can also easily be combined
with existing accelerated PG approaches to further make them converge even faster.

4. Numerical experiments exemplify the significant improvement in both iterations and running time
brought by our acceleration methods, in particular over the projected gradient algorithm by [11]
as well as the accelerated proximal gradient method for nonconvex problems proposed by [27].

This work is organized as follows. We review the projected gradient algorithm and prove its local
linear convergence and subspace identification for arbitrary smooth loss functions in Section 2. In
Section 3, we propose the acceleration schemes devised through decomposing the constraint set in
(1) into subspaces of <n. Experiments in Section 4 then illustrate the effectiveness of the proposed
acceleration techniques, and Section 5 concludes this work. All proofs, details of the experiment
settings, and additional experiments are in the appendices.

2 Projected Gradient Algorithm

The projected gradient algorithm for solving (1) is given by the iterations

wk+1 ∈ TλPG(wk) := PAs(w
k − λ∇f(wk)), (5)

where PAs(w) denotes the projection of w onto As, which is set-valued because of the nonconvexity
of As. When f is given by (3), global linear convergence of this algorithm under a restricted isometry
condition is established in [10]. For a general convex f with L-Lipschitz continuous gradients, that
is,

‖∇f(w)−∇f(w′)‖ ≤ L‖w − w′‖ ∀w,w′ ∈ <n, (6)

the global subsequential convergence of (5) is proved in [11], but neither global nor local rates of
convergence is provided. In this section, we present an alternative proof of global convergence and
more importantly establish its local linear convergence.

A useful observation that we will utilize in the proofs of our coming convergence results is that the
nonconvex set As given by (2) can be decomposed as a finite union of subspaces in <n:

As =
⋃

J∈Js
AJ , AJ := span{ej : j ∈ J}, Js := {J ⊆ {1, 2, . . . , n} : |J | = s} , (7)

where ej is the jth standard unit vector in <n. Throughout this paper, we assume that λ ∈ (0, L−1).

Theorem 2.1. Let {wk} be a sequence generated by (5). Then:

(a) (Subsequential convergence) Either {f(wk)} is strictly decreasing, or there exists N > 0 such
that wk = wN for all k ≥ N . In addition, any accumulation point w∗ of {wk} satisfies
w∗ ∈ PAs(w∗ − λ∇f(w∗)), and is hence a stationary point of (1).

(b) (Subspace identification and full convergence) There exists N ∈ N such that

{wk}∞k=N ⊆
⋃

J∈Iw∗
AJ , Iw∗ := {J ∈ Js : w∗ ∈ AJ}. (8)

whenever wk → w∗. In particular, if TλPG(w∗) is a singleton for an accumulation point w∗ of
{wk}, then w∗ is a local minimum for (1), wk → w∗, and (8) holds.

(c) (Q-linear convergence) If TλPG(w∗) is a singleton for an accumulation point w∗ and w 7→
w − λ∇f(w) is a contraction over AJ for all J ∈ Iw∗ , then {wk} converges to w∗ at a Q-linear
rate. In other words, there is N2 ∈ N and γ ∈ [0, 1) such that∥∥wk+1 − w∗

∥∥ ≤ γ∥∥wk − w∗∥∥, ∀k ≥ N2. (9)
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It is well-known that an optimal solution of (1) is also a stationary point of it [8, Theorem 2.2], and
therefore (a) proves the global subsequential convergence of PG to candidate solutions of (1). Consider
z∗ := w∗−λ∇f(w∗), and let τ be a permutation of {1, . . . , n} such that z∗τ(1) ≥ z

∗
τ(2) ≥ · · · ≥ z

∗
τ(n).

The requirement of TλPG(w∗) being a singleton in Theorem 2.1 (b) then simply means the mild
condition of z∗τ(s) > z∗τ(s+1), which is almost always true in practice. The requirement for (c) can
be fulfilled when f confined to AJ is strongly convex, even if f itself is not. This often holds true
in practice when f is of the form (4) and we restrict s in (1) to be smaller than the number of data
instances m, and is thus also mild. The existence of a stationary point can be guaranteed when {wk}
is a bounded sequence, often guaranteed when f is coercive on AJ for each J ∈ Js.
In comparison to existing results in [11, 2, 14], parts (b) and (c) of Theorem 2.1 are new. In particular,
part (b) provides a full convergence result that usually requires stronger regularity assumptions like
the Kurdyka-Łojasiewicz (KL) condition [2, 14] (see also (21)) that requries the objective value to
decrease proportionally with the minimum-norm subgradient in a neighborhood of the accumulation
point, but we just need the very mild singleton condition right at the accumulation point only. Part (c)
gives a local linear convergence for the PG iterates even if the problem is nonconvex, while the rates
in [14] requires a KL condition and the rate is measured in the objective value.

The following result further provides rates of convergence of the objective values even without the
conventional KL assumption. The first rate below follows from [24].
Theorem 2.2. Let {wk} be a sequence generated by (5). If wk → w∗, such as when TλPG(w∗) is a
singleton at an accumulation point w∗ of (5), then

f(wk)− f(w∗) = o(k−1). (10)

Moreover, under the hypothesis of Theorem 2.1 (c), the objective converges to f(w∗) R-linearly, i.e.,

f(wk)− f(w∗) = O(exp(−k)). (11)

By using Theorem 2.1, we can also easily get rates faster than (10) under a version of the KL condition
that is easier to understand and verify than those assumed in existing works. In particular, existing
analyses require the KL condition to hold in a neighborhood in <n of an accumulation point, but we
just need it to hold around w∗ within AJ for the restriction f |AJ for each J ∈ Iw∗ . These results are
postponed to Theorem 3.2 in the next section as the PG method is a special case of our acceleration
framework.

3 Accelerated methods

The main focus of this work is the proposal in this section of new techniques with solid convergence
guarantees to accelerate the PG algorithm presented in the preceding section. Our techniques fully
exploit the subspace identification property described by the inclusion (8), as well as the problem
structure of (4) to devise efficient algorithms.

We emphasize that the two acceleration strategies described below can be combined together, and
they are also widely applicable such that they can be employed to other existing algorithms for (1) as
long as such algorithms have a property similar to (8).

3.1 Acceleration by extrapolation

Traditional extrapolation techniques are found in the realm of convex optimization to accelerate
algorithms [9, 31] with guaranteed convergence improvements, but were often only adopted as
heuristics in the nonconvex setting, until some recent works showed that theoretical convergence
can also be achieved [27, 37]. However, unlike the convex case, these extrapolation strategies for
nonconvex problems do not lead to faster convergence speed nor an intuitive reason for doing so.
An extrapolation step proceeds by choosing a positive stepsize along the direction determined by
two consecutive iterates. That is, given two iterates wk−1 and wk, an intermediate point zk :=
wk + tk(wk − wk−1) for some stepsize tk ≥ 0 is first calculated before applying the original
algorithmic map (TλPG in our case).2

2 it is clear that if tk ≡ 0, we reduce back to the original algorithm.
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Another popular acceleration scheme for gradient algorithms is the spectral approach pioneered by
[5]. They take the differences of the gradients and of the iterates in two consecutive iterations to
estimate the curvature at the current point, and use it to decide the step size for updating along the
reversed gradient direction. It has been shown in [39] that equipping this step size with a backtracking
procedure leads to significantly faster convergence for proximal gradient on regularized optimization
problems, which includes our PG for (1) as a special case.

To describe our proposed double acceleration procedure that combines extrapolation and spectral
techniques, we first observe that all PG iterates lie on As, and that As can be finitely decomposed as
(7). When two consecutive iterates lie on the same convex subspaceAJ for some J ∈ Js, within these
two iterations, we are actually conducting convex optimization. In this case, an extrapolation step
within AJ is reasonable because it will not violate the constraint, and acceleration can be expected
from the improved rates of accelerated proximal gradient on convex problems in [9, 32]. Judging
from Theorem 2.1 (b), the corresponding J is also a candidate index set that belongs to Iw∗ , so
extrapolation within AJ makes further sense. We set tk = 0 to skip the extrapolation step if dk is
not a descent direction for f at wk. Otherwise, we start from some t̂k > 0 decided by the curvature
information of f , and then execute a backtracking linesearch along dk := wk−wk−1 to set tk = ηit̂k
for the smallest integer i ≥ 0 that provides sufficient descent

f(wk + tkd
k) ≤ f(wk)− σt2k‖dk‖2, (12)

given parameters η, σ ∈ (0, 1). We then apply (5) to zk = wk + tkd
k to obtain wk+1.

For the spectral initialization t̂k for accelerating the convergence, instead of directly using approaches
of [5, 39] that takes the reversed gradient as the update direction, we need to devise a different
mechanism as our direction dk is not directly related to the gradient. We observe that for the stepsize

αk :=
〈
sk, sk

〉
/
〈
sk, rk

〉
, sk := wk − wk−1, rk := ∇f(wk)−∇f(wk−1) (13)

used in [5], the final update −αk∇f(wk) is actually the minimizer of the following subproblem

min
d∈<n

〈
∇f(wk), d

〉
+ ‖d‖2/(2αk). (14)

By juxtaposing the above quadratic problem and the upper bound provided by the descent lemma [7,
Lemma 5.7], we can view α−1

k as an estimate of the local Lipschitz parameter that could be much
smaller than L but still guarantee descent of the objective. We thus follow this idea to decide t̂k using
such curvature estimate and the descent lemma by

t̂k = arg min
t≥0

〈
∇f(wk), tdk

〉
+
∥∥tdk∥∥2

/(2αk) ⇔ t̂k = −
〈
αk∇f(wk), dk

〉
/
∥∥dk∥∥2

. (15)

Another interpretation of (13) is that α−1
k I also serves as an estimate of∇2f(wk),3 and the objective

in (14) is a low-cost approximation of the second-order Taylor expansion of f . However, we notice
that for problems in the form of (4) and with dk ∈ AJ , the exact second-order Taylor expansion

f(wk + tdk) ≈ f(wk) + t
〈
∇f(wk), dk

〉
+ t2

〈
∇2f(wk)dk, dk

〉
/2 (16)

can be calculated efficiently. In particular, for (4) and any dk ∈ AJ , we get from Xdk = X:,Jd
k
J :

∇f(wk)>dk = ∇g
(
(Xwk)

)> (
X:,Jd

k
J

)
,〈

∇2f(wk)dk, dk
〉

=
〈
(X:,Jd

k
J),∇2g

(
(Xwk)

)
(X:,Jd

k
J)
〉
,

(17)

which can be calculated in O(ms) time by computing X:,Jd
k
J first. This O(ms) cost is much cheaper

than the O(mn) one for evaluating the full gradient of f needed in the PG step, so our extrapolation
plus spectral techniques has only negligible cost. Moreover, for our case of dk = wk − wk−1, we
can further reduce the cost of calculate X:,Jd

k
J and thus (17) to O(m) by recycling intermediate

computational results needed in evaluating f(wk) through X:,Jd
k
J = Xwk −Xwk−1. With such

tricks for efficient computation, we therefore consider the more accurate approximation to let t̂k be

3 As ∇f is Lipschitz continuous, it is differentiable almost everywhere. Here, we denote by ∇2f(wk) a
generalized Hessian of f at w, which is well-defined for f with Lipschitz continuous gradient [19].
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the scalar that minimizes the quadratic function on the right-hand side of (16) for problems in the
form (4). That is, we use

t̂k := −
〈
∇f(wk), dk

〉
/
〈
∇2f(wk)dk, dk

〉
. (18)

Finally, for both (18) and (15), we safeguard t̂k by

t̂k ← P[ckαmin,ckαmax]

(
t̂k
)

(19)

for some fixed αmax ≥ αmin > 0, where

ck :=
∥∥(∇f(wk))J

∥∥/(ζk∥∥dk∥∥), ζk := −
〈
dk,∇f(wk)

〉
/(
∥∥dk∥∥∥∥(∇f(wk))J

∥∥) ∈ (0, 1]. (20)

We also note that the low cost of evaluating Xdk is also the key to making the backtracking in
(12) practical, as each f(wk + ηit̂kd

k) can be calculated in O(m) time through linear combinations
of Xwk and Xdk. The above procedure is summarized in Algorithm 1 with global convergence
guaranteed by Theorem 3.1. In Theorem 3.2, we establish its full convergence as well as its
convergence rates under a KL condition at w∗: there exists neighborhood U ⊂ <n of w∗, θ ∈ [0, 1],
and κ > 0 such that for every J ∈ Iw∗ ,

(f(w)− f(w∗))
θ ≤ κ‖(∇f(w))J‖, ∀w ∈ AJ ∩ U. (21)

We denote by nk the number of successful extrapolation steps in the first k iterations of Algorithm 1.
The part of θ ∈ [0, 1/2] with f being convex in the last item of Theorem 3.2 is directly from the
result of [25].
Theorem 3.1. Under the hypotheses of Theorem 2.1, any accumulation point of a sequence generated
by Algorithm 1 is a stationary point.
Theorem 3.2. Consider either (5) or Algorithm 1 with η, σ, ε ∈ (0, 1), and αmax ≥ αmin > 0, and
suppose that there is an accumulation point w∗ of the iterates at which the KL condition holds. Then
wk → w∗. Moreover, the following rates hold:

(a) If θ ∈ (1/2, 1): f(wk)− f(w∗) = O((k + nk)−1/(2θ−1)).
(b) If θ ∈ (0, 1/2]: f(wk)− f(w∗) = O(exp(−(k + nk))).
(c) If θ = 0, or θ ∈ [0, 1/2] and f is convex: there is k0 ≥ 0 such that f(wk) = f(w∗) for all

k ≥ k0.

We stress that convexity of f is not required in Theorems 3.1 and 3.2 except the second half of the
last item of Theorem 3.2. There are several advantages of the proposed extrapolation strategy over
existing ones in [27, 37]. The most obvious one is the faster rates in Theorem 3.2 over PG such
that each successful extrapolation step in our method contributes to the convergence speed, while
existing methods only provide the same convergence speed as PG. Next, existing strategies only
use prespecified step sizes without information from the given problem nor the current progress,
and they only restrict such step sizes to be within [0, 1]. Our method, on the other hand, fully takes
advantage of the function curvature and can allow for arbitrarily large step sizes to better decrease the
objective. In fact, we often observe tk � 1 in our numerical experiments. Moreover, our acceleration
techniques utilize the nature of (7) and (4) to obtain very efficient implementation for ERM problems
such that the per-iteration cost of Algorithm 1 is almost the same as that of PG, while the approach of
[27] requires evaluating f and ∇f at two points per iteration, and thus has twice the per-iteration
cost.

A finite termination result similar to Theorem 3.2 (c) is presented in [29] under a Hölderian error
bound that is closely related to the KL condition, but their result requires convexity of both the
smooth term and the regularizer, so it is not applicable to (1) that involves a nonconvex constraint.

3.2 Subspace Identification

In line with the above discussion, we interpret (8) as a theoretical property guaranteeing that the
iterates of the projected gradient algorithm (5) will eventually identify the subspaces AJ that contain
a candidate solution w∗ after a finite number of iterations. Consequently, the task of minimizing f
over the nonconvex set As can be reduced to a convex optimization problem of minimizing f over
AJ . Motivated by this, we present a two-stage algorithm described in Algorithm 2 that switches
to a high-order method for smooth convex optimization after a candidate piece AJ is identified to

6



Algorithm 1: Accelerated projected gradient algorithm by extrapolation (APG)

1 Given an initial vector w0 ∈ <n and parameters ε, η, σ ∈ (0, 1), αmax ≥ αmin > 0,
λ ∈ (0, 1/L).

2 for k = 0, 1, 2, . . . do
3 if k > 0; wk−1 and wk activate the same AJ ; and ζk ≥ ε then
4 dk ← wk − wk−1, and compute t̂k from (19) with either (15) or (18)
5 for i = 0, 1, . . . do
6 tk ← ηit̂k
7 if (12) is satisfied then zk ← wk + tkd

k, and break
8 else zk ← wk

9 wk+1 ← TλPG(zk)

obtain even faster convergence. Since ∇f is assumed to be Lipschitz continuous, the generalized
Hessian of f exists everywhere [19], so we may employ a semismooth Newton (SSN) method [35]
with backtracking linesearch to get a faster convergence speed with low cost (details in Appendix A).
In particular, we reduce the computation costs by considering the restriction of f on the subspace AJ
by treating the coordinates not in J as non-variables so that the problem considered is indeed smooth
and convex. As we cannot know a priori whether Iw∗ is indeed identified, we adopt the approach
implemented in [26, 28, 23] to consider it identified when wk activates the same AJ for long enough
consecutive iterations. To further safeguard that we are not optimizing over a wrong subspace, we
also incorporate the idea of [38, 4, 28, 23] to periodically alternate to a PG step (5) after switching to
the SSN stage. A detailed description of this two-stage algorithm is in Algorithm 2.

In the following theorem, we show that superlinear convergence can be obtained for Algorithm 2
even if we take only one SSN step every time between two steps of (5), using a simplified setting of
twice-differentiability. For our next theorem, we need to introduce some additional notations. Given
any w ∈ AJ , we use fJ(wJ) := f(w) to denote the function of considering only the coordinates of
w in J as variables and treating the remaining as constant zeros. We assume that the conditions of
Theorem 2.1 (b) hold with w∗ ∈ As, and that f is twice-differentiable around a neighborhood U of
w∗ with∇2fJ Lipschitz continuous in U and∇2fJ(w∗) positive definite for all J ∈ Iw∗ .

Theorem 3.3. Suppose that starting after k ≥ N and PAs(w
k) ⊂ U , we conduct t Newton steps

between every two steps of (5) for t ≥ 1:

wk,0 ∈ PAs(wk),


J ∈ Iwk,0 ,
wk,j+1
i = 0, ∀i /∈ J, j = 1, . . . , t− 1,

wk,j+1
J = wk,jJ −∇2fJ(wk,jJ )−1∇fJ(wk,jJ ),

wk+1 ∈ TλPG(wk,t). (22)

Then wk → w∗ at a Q-quadratic rate.

In practice, the linear system for obtaining the SSN step is only solved inexactly via a (preconditioned)
conjugate gradient (PCG) method, and with suitable stopping conditions for PCG and proper algo-
rithmic modifications such as those in [40, 30], superlinear convergence can still be obtained easily.
Interested readers are referred to Appendix A for a more detailed description of our implementation.

4 Experiments

In this section, we conduct numerical experiments to demonstrate the accelerated techniques presented
in Section 3. We employ Algorithm 1 (APG) with (18) to accelerate PG, and further accelerate APG
by incorporating subspace identification described in Algorithm 2, which we denote by APG+.4
Comparisons with the extrapolated PG algorithm of Li and Lin [27], which we denote by PG-LL, are
also presented. PG-LL is a state-of-the-art approach for nonconvex regularized optimization and thus
suitable for (1). For f in (1), we consider both LS (3) and logistic regression (LR)

f(w) =
∑m

i=1
log
(
1 + exp

(
−yix>i w

))
+ µ‖w‖2/2, (23)

4 That is, if Unchanged < S in Algorithm 2, we calculate zk as in Algorithm 1
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Algorithm 2: Accelerated projected gradient algorithm by subspace identification (PG+)

1 Given an initial vector w0 ∈ <n and S, t ∈ N. Set Unchanged← 0.
2 for k = 0, 1, 2, . . . do
3 if k > 0, and wk−1 and wk activate the same component of As then
4 Let J ∈ Js correspond to the activated component
5 Unchanged← Unchanged +1
6 else Unchanged← 0
7 if Unchanged ≥ S then
8 yk ← PAJ (wk) and use t steps of SSN described in Appendix A, starting from yk, to

find zk that approximately minimizes f |AJ
9 if SSN fails then zk ← wk and Unchanged← 0.

10 else zk ← wk

11 wk+1 ← TλPG(zk)

where (xi, yi) ∈ <n × {−1, 1}, i = 1, . . . ,m, are the training instances, and µ > 0 is a small
regularization parameter added to make the logistic loss coercive.

The algorithms are implemented in MATLAB and tested with public datasets in Tables 2 and 3
in Appendix B. All algorithms compared start from w0 = 0 and terminate when the first-order
optimality condition

Residual(w) := ‖w − PAs (w − λ∇f (w))‖/(1 + ‖w‖+ λ‖∇f (w)‖) < ε̂ (24)

is met for some given ε̂ > 0. More setting and parameter details of our experiments are in Appendix B.

Comparisons of algorithms for large datasets. To fit the practical scenario of using (1), we
specifically selected high-dimensional datasets with n larger than m. We conduct experiments
with various s to widely test the performance under different scenarios. In particular, we consider
s ∈ {d0.01me, d0.05me, d0.1me} on all data except for the largest dataset webspam, for which we
set s ∈ {d0.001me, d0.005me, d0.01me}. The results of the experiment with the smallest s are
summarized in Figure 1, and results of the other two settings of s are in Appendix C.
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(a) news20, s = d0.01me
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(b) rcv1.binary, s = d0.01me
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(d) E2006-log1p, s = d0.01me
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(e) E2006-tfidf, s = d0.01me

Figure 1: Experiment on sparse regularized LR and LS. We present time v.s. residual in (24).

Evidently, the extrapolation procedure in APG provides a significant improvement in the running time
compared with the base algorithm PG, and further incorporating subspace identification as in APG+
results to a very fast algorithm that outperforms PG and APG by magnitudes. Since the per-iteration
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Table 1: Comparison of algorithms for (1) to meet (24) with ε̂ = 10−6, with (23) and (3) and
with sparsity levels s1 = d0.01me and s2 = d0.05me for all datasets except webspam where
s1 = d0.001me and s2 = d0.005me. CPU: CPU time in seconds. GE: number of gradient
evaluations. In one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and
PG-LL+ needs two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN
steps. PA: prediction accuracy (for (23)). MSE: mean-squared error (for (3)). Time with ∗ indicates
that the algorithm is terminated after running 10000 iterations without satisfying (24).

Dataset Method
s1 s2

CPU GE CG PA CPU GE CG PA

news20

PG ∗738.7 10000 0 0.877 ∗728.9 10000 0 0.935
APG 151.7 1583 0 0.877 758.3 8428 0 0.923
APG+ 5.0 52 63 0.853 16.1 171 67 0.923
PG-LL 366.7 4682 0 0.873 ∗1494.4 20000 0 0.922
APG-LL+ 6.6 152 88 0.854 29.2 417 89 0.920

rcv1.binary

PG ∗58.4 10000 0 0.937 ∗72.7 10000 0 0.951
APG 12.6 1120 0 0.935 82.4 6372 0 0.934
APG+ 0.3 21 42 0.931 2.4 192 138 0.940
PG-LL 22.2 3638 0 0.935 72.1 8738 0 0.929
APG-LL+ 0.6 99 49 0.930 4.9 626 236 0.939

webspam

PG ∗18660.1 10000 0 0.964 ∗30776.2 10000 0 0.978
APG 19683.4 7682 0 0.981 7722.4 2008 0 0.991
APG+ 248.3 75 88 0.969 695.4 164 57 0.991
PG-LL 9001.3 4720 0 0.972 10163.5 3098 0 0.990
APG-LL+ 447.3 264 92 0.965 837.3 294 90 0.992

CPU GE CG MSE CPU GE CG MSE

E2006-log1p

PG ∗2998.6 10000 0 0.167 ∗3644.1 10000 0 0.161
APG 270.6 669 0 0.136 811.8 1757 0 0.133
APG+ 19.5 40 49 0.141 105.6 222 124 0.132
PG-LL ∗6049.8 20000 0 0.132 2696.0 7086 0 0.132
APG-LL+ 41.2 142 38 0.142 107.5 326 100 0.138

E2006-tfidf

PG ∗242.7 10000 0 0.152 ∗666.9 10000 0 0.152
APG 1.3 14 0 0.154 3.3 33 0 0.153
APG+ 1.3 8 6 0.141 3.3 31 7 0.139
PG-LL 110.6 4440 0 0.152 304.8 4558 0 0.151
APG-LL+ 1.7 34 6 0.141 3.7 47 7 0.139

cost of PG and APG are almost the same as argued in Section 3, we note that the convergence of
APG in terms of iterations is also superior to that of PG.

We also report the required time and number of gradient evaluations (which is the main computation
at each iteration) for the algorithms to drive (24) below ε̂ = 10−6. For PG, APG, and APG+, one
gradient evaluation is needed per iteration, so the number of gradient evaluations is equivalent to the
iteration count. For PG-LL, two gradient evaluations are needed per iteration, so its cost is twice
of other methods. We also report the prediction performance on the test data, and we in particular
use the test accuracy for (23) and the mean-squared error for (3). Results for the two smaller s
are in Table 1 while that for the largest s is in Appendix C. It is clear from the results in Table 1
that APG outperforms PG-LL for most of the test instances considered, while APG+ is magnitudes
faster than PG-LL. When we equip PG-LL with our acceleration techniques by replacing TλPG in
Algorithms 1 and 2 with the algorithmic map defining PG-LL, we can further speed up PG-LL greatly
as shown under the name APG-LL+ (see Table 1). We do not observe a method that consistently
possesses the best prediction performance, as this is mainly affected by which local optima is found,
while no algorithm is able to find the best local optima among all candidates. With no prediction
performance degradation, we see that APG+ and APG-LL+ reduce the time needed to solve (1) to a
level significantly lower than that of the state of the art.
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In Appendix C.3, we demonstrate the effect on prediction performance when we vary the residual
(24) and illustrate that tight residual level is indeed required to obtain better prediction. Comparisons
with a greedy method is shown in Appendix C.4.

Transition Plots. To demonstrate the behavior of the algorithm for increasing values of s, we fit the
smaller datasets in Table 3 using logistic loss (23) and least squares loss (3) for varying s = dkme,
where k = 0.2, 0.4, 0.6, . . . , 3. The transition plots are presented in Figure 2. We note that the time
is in log scale.

We can see clearly that APG+ and APG-LL+ are consistently magnitudes faster than the baseline PG
method throughout all sparsity levels. On the other hand, the same-subspace extrapolation scheme
of APG is consistently faster than PG and APG-LL and slower than the two Newton acceleration
schemes, although the performance is sometimes closer to APG+/APG-LL+ while sometimes closer
to PG. APG-LL tends to outperform PG in most situations as well, but in several cases when solving
the least square problem, especially when s is small, it can sometimes be slower than PG. Overall
speaking, the results in the transition plots show that our proposed acceleration schemes are indeed
effective for all sparsity levels tested.
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Sparse least squares regression
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Figure 2: Transition plots. We present sparsity levels versus running time (in log scale). Top row:
logistic loss. Bottom row: least square loss.

5 Conclusions

In this work, we revisited the projected gradient algorithm for solving `0-norm constrained opti-
mization problems. Through a natural decomposition of the constraint set into subspaces and the
proven ability of the projected gradient method to identify a subspace that contains a solution, we
further proposed effective acceleration schemes with provable convergence speed improvements.
Experiments showed that our acceleration strategies improve significantly both the convergence speed
and the running time of the original projected gradient algorithm, and outperform the state of the art
for `0-norm constrained problems by a huge margin. We plan to extend our analysis and algorithm to
the setting of a nonconvex objective in the near future.

Acknowledgments

This work was supported in part by Academia Sinica Grand Challenge Program Seed Grant No.
AS-GCS-111-M05 and NSTC of R.O.C. grants 109-2222-E-001-003 and 111-2628-E-001-003.

10



References
[1] Jan Harold Alcantara and Ching-pei Lee. Global convergence and acceleration of fixed point

iterations of union upper semicontinuous operators: proximal algorithms, alternating and
averaged nonconvex projections, and linear complementarity problems, 2022. arXiv:2202.10052.
2

[2] Hédy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and
regularized Gauss–Seidel methods. Mathematical Programming, 137(1):91–129, 2013. 4, 31,
32

[3] Sohail Bahmani, Bhiksha Raj, and Petros T. Boufounos. Greedy sparsity-constrained optimiza-
tion. Journal of Machine Learning Research, 14:807–841, 2013. 2, 25

[4] Gilles Bareilles, Franck Iutzeler, and Jérôme Malick. Newton acceleration on manifolds
identified by proximal-gradient methods. Technical report. arXiv:2012.12936. 7, 33

[5] Jonathan Barzilai and Jonathan M. Borwein. Two-point step size gradient methods. IMA
Journal of Numerical Analysis, 8:141–148, 1988. 5

[6] E. M. L. Beale, M. G. Kendall, and D. W. Mann. The discarding of variables in multivariate
analysis. Biometrika, 54(3-4):357–366, 1967. 1

[7] Amir Beck. First-Order Methods in Optimization. SIAM - Society for Industrial and Applied
Mathematics, Philadelphia, PA, United States, 2017. 5, 27, 28

[8] Amir Beck and Yonina C. Eldar. Sparsity constrained nonlinear optimization: optimality
conditions and algorithms. SIAM Journal on Optimization, 23(3):1480–1509, 2013. 4

[9] Amir Beck and Marc Teboulle. A fast iterative shrinkage thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009. 4, 5

[10] Amir Beck and Marc Teboulle. A linearly convergent algorithm for solving a class of noncon-
vex/affine feasibility problems. In H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser,
D. R. Luke, and H. Wolkowicz, editors, Fixed-Point Algorithms for Inverse Problems in Sci-
ence and Engineering, volume 49 of Springer Optimization and Its Applications, pages 33–48.
Springer, New York, NY, 2011. 2, 3

[11] D. Bertsimas, Angela King, and R. Mazumder. Best subset selection via a modern optimization
lens. Annals of Statistics, 44(2):813–852, 2016. 2, 3, 4, 16

[12] Thomas Blumensath. Accelerated iterative hard thresholding. Signal Processing, 92:752–756,
2012. 2

[13] Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for compressed sensing.
Applied and Computational Harmonic Analysis, 27:265–274, 2009. 2

[14] Jérôme Bolte, Shoham Sabach, Marc Teboulle, and Yakov Vaisbourd. First order methods be-
yond convexity and lipschitz gradient continuity with applications to quadratic inverse problems.
SIAM Journal on Optimization, 28(3):2131–2151, 2018. 4

[15] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American Statistical Association, 96(456):1348–1360, 2001. 2

[16] Leonardo Galli and Chih-Jen Lin. A study on truncated newton methods for linear classification.
IEEE Transactions on Neural Networks and Learning Systems, 2021. 15

[17] Jun-ya Gotoh, Akiko Takeda, and Katsuya Tono. DC formulations and algorithms for sparse
optimization problems. Mathematical Programming, 169(1):141–176, 2018. 2

[18] Robert Hesse, D. Russell Luke, and Patrick Neumann. Alternating projections and Douglas-
Rachford for sparse affine feasibility. IEEE Trans. Signal Processing, 62:4868–4881, 2014.
30

11



[19] Jean-Baptiste Hiriart-Urruty, Jean-Jacques Strodiot, and V Hien Nguyen. Generalized Hes-
sian matrix and second-order optimality conditions for problems with C1,1 data. Applied
Mathematics & Optimization, 11(1):43–56, 1984. 5, 7, 14

[20] Ronald R. Hocking and R. N. Leslie. Selection of the best subset in regression analysis.
Technometrics, 9(4):531–540, 1967. 1

[21] Chih-Yang Hsia, Wei-Lin Chiang, and Chih-Jen Lin. Preconditioned conjugate gradient methods
in truncated newton frameworks for large-scale linear classification. In Asian Conference on
Machine Learning, pages 312–326, 2018. 14

[22] Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning. Foundations
and Trends in Machine Learning, 10(3–4):142–363, 2017. 1

[23] Ching-pei Lee. Accelerating inexact successive quadratic approximation for regularized opti-
mization through manifold identification. Technical report, 2020. arXiv:2012.02522. 7

[24] Ching-pei Lee and Stephen J. Wright. First-order algorithms converge faster than O(1/k) on
convex problems. In Proceedings of the International Conference on Machine Learning, 2019.
4, 29

[25] Ching-pei Lee and Stephen J. Wright. Revisiting superlinear convergence of proximal Newton
methods to degenerate solutions. Technical report, 2022. 6, 33

[26] Sangkyun Lee and Stephen J. Wright. Manifold identification in dual averaging for regularized
stochastic online learning. Journal of Machine Learning Research, 13:1705–1744, 2012. 7

[27] Huan Li and Zhouchen Lin. Accelerated proximal gradient methods for nonconvex program-
ming. In Advances in Neural Information Processing Systems, volume 28, 2015. 2, 3, 4, 6,
7

[28] Yu-Sheng Li, Wei-Lin Chiang, and Ching-pei Lee. Manifold identification for ultimately
communication-efficient distributed optimization. In Proceedings of the 37th International
Conference on Machine Learning, 2020. 7

[29] Mingrui Liu and Tianbao Yang. Adaptive accelerated gradient converging method under
Hölderian error bound condition. Advances in Neural Information Processing Systems, 30,
2017. 6

[30] Boris S. Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally convergent
proximal Newton-type method in nonsmooth convex optimization. Mathematical Programming,
2022. Online first. 7, 15

[31] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983. 4

[32] Yurii E. Nesterov. Gradient methods for minimizing composite functions. Mathematical
Programming, 140(1):125–161, 2013. 5

[33] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA,
2e edition, 2006. 14, 33

[34] Boris T. Polyak. Introduction to Optimization. Translation Series in Mathematics and Engineer-
ing. 1987. 32

[35] Liqun Qi and Jie Sun. A nonsmooth version of Newton’s method. Mathematical programming,
58(1-3):353–367, 1993. 7

[36] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society Series B, 58(1):267–288, 1996. 2

[37] Bo Wen, Xiaojun Chen, and Ting Kei Pong. A proximal difference-of-convex algorithm with
extrapolation. Computational Optimization and Applications, 69:297–324, 2018. 2, 3, 4, 6

12



[38] Stephen J. Wright. Accelerated block-coordinate relaxation for regularized optimization. SIAM
Journal on Optimization, 22(1):159–186, 2012. 7

[39] Stephen J. Wright, Robert D. Nowak, and Mário A. T. Figueiredo. Sparse reconstruction by
separable approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009. 5

[40] Man-Chung Yue, Zirui Zhou, and Anthony Man-Cho So. A family of inexact SQA methods
for non-smooth convex minimization with provable convergence guarantees based on the
Luo–Tseng error bound property. Mathematical Programming, 174(1-2):327–358, 2019. 7, 15

[41] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894–942, 2010. 2

13


	Introduction
	Projected Gradient Algorithm
	Accelerated methods
	Acceleration by extrapolation
	Subspace Identification

	Experiments
	Conclusions

