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ABSTRACT

The goal of domain adaptation is to make predictions for unlabeled samples from a
target domain with the help of labeled samples from a different but related source
domain. The performance of domain adaptation methods is highly influenced
by the choice of source domain and pre-trained feature extractor. However, the
selection of source data and pre-trained model is not trivial due to the absence
of a labeled validation set for the target domain and the large number of avail-
able pre-trained models. In this work, we propose Potential Adaptability Score
(PAS), a novel score designed to estimate the transferability of a source domain
set and a pre-trained feature extractor to a target classification task before actually
performing domain adaptation. PAS leverages the generalization power of pre-
trained models and assesses source-target compatibility based on the pre-trained
feature embeddings. We integrate PAS into a framework that indicates the most
relevant pre-trained model and source domain among multiple candidates, thus
improving target accuracy while reducing the computational overhead. Extensive
experiments on image classification benchmarks demonstrate that PAS correlates
strongly with actual target accuracy and consistently guides the selection of the

best-performing pre-trained model and source domain for adaptation.

1 INTRODUCTION

In many real applications, data is collected from
diverse domains, e.g., data obtained from dif-
ferent equipment, collecting procedures, geo-
graphic locations, or periods in time. Such
differences may lead to a distribution shift be-
tween the domains that must be assessed. Un-
supervised domain adaptation is a paradigm
where only unlabeled data is available for the
domain of interest, the target domain. However,
labeled data is obtained from a related source
domain.

One factor that affects the success of domain
adaptation methods is the choice of the source
domain data. Domain adaptation methods often
rely on many assumptions about the relation-
ship between source and target domains, like
the existence of invariant discriminative fea-
tures, the similarity of the label distribution, or
the invariance of the task. Unfortunately, as the
labels for the target samples are not available,
such assumptions may not be verified in real
applications for selecting the most appropriate
source data. Violating the data assumptions and
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Figure 1: The Potential Adaptability Score
(PAS) estimates the performance of adapting to an
unlabeled target domain given a pre-trained fea-

ture extractor and a labeled source domain.

It

helps in the selection of the best pre-trained model
and best source domain among many candidates
and is highly correlated with the final target accu-
racy after domain adaptation.

considering an irrelevant or distant source domain may introduce noise and conflicting patterns dur-
ing the domain adaptation process. In the worst-case scenario, selecting an undesirable source do-
main may hurt the target domain performance, a scenario known as negative transfer Zhang et al.
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(2022). If many source domains are available, it is reasonable to assume that not all of them may
contribute equally to the target adaptation. Wisely selecting the source domain that may improve the
performance on the target data while avoiding negative transfer is an essential requirement in many
real-world applications.

Another key factor that influences the domain adaptation performance is the choice of the pre-trained
model. Pre-training on large-scale data allows the models to learn generic features and patterns
that are often transferable across domains and tasks, making them valuable for domain adaptation.
Recently, practitioners can choose from a vast number of publicly available pre-trained models,
spanning diverse architectures and training paradigms. Each pre-trained model may have its own
inductive bias and may capture distinct patterns in the data that may be more or less useful when
transferring knowledge between domains.

Despite the importance of selecting a suitable
V4 source data and a pre-trained model for the suc-
cess of domain adaptation, it is still an underex-
plored topic. Current methods of transferabil-
° ity estimation aim to select the best pre-trained
e model for transfer learning. However, these
methods are not applicable to the domain adap-
tation scenario since they require target labels
Bao et al.| (2019); INguyen et al.| (2020); |You
= et al|(2021). One could employ such methods
/&’ ld, for selecting the best pre-training model using
= - - ‘e'® only the labeled source data and ignoring the
® : L P unlabeled target data. Nevertheless, consider-
hd ing the target data is essential, as transferring to
an easy target domain should lead to different

results than transferring to a harder one.
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Figure 2: Source and target samples in the embed-
ding space of a pre-trained model. (top left) Ide-
ally, a target sample from a given class should be
more similar, and hence closer in the embedding
space of the pre-trained model, to a source sample
from the same class. (top right) If new discrim-
inative features need to be learned, the chances
of overfitting on the source domain during adap-
tation increase. (bottom) Illustration of the dis-
tances from a target sample to all source class cen-
troids. Our PAS score considers the relationship
between distances d; and ds, which correspond to
the shortest and second shortest distances, respec-
tively.

performing domain adaptation for each com-
bination of available source domains and pre-
trained models, and applying some model se-
lection strategy [Ericsson et al.[(2023));|You et al.
(2019). However, this approach is very time-
consuming since it needs to run a domain adap-
tation algorithm for each combination.

A third approach would be to measure the dis-
tance between source and target feature dis-
tributions in the embedding space of the pre-
trained model. This approach is also chal-
lenging as the popular metrics for the distance
between two feature distributions are symmet-
ric, e.g., Maximum Mean Discrepancy (MMD)
Gretton et al.| (2006), Wasserstein distance |Val-
lender| (1974), and CORAL |[Sun & Saenko
(2016). However, a metric suitable for our sce-
nario should be asymmetric because transfer-
ring from an easy to a hard domain is more

challenging than transferring from the harder domain to the easier one.

In this work, we examine the interplay between the three key components in the domain adaptation
setting for classification: (1) target data, (2) source data, and (3) the pre-trained model. We propose
the Potential Adaptability Score (PAS), a simple but effective novel measure to quantify the po-
tential success of using a pre-trained model to transfer knowledge from a source domain to the target
domain. Our experiments show how the PAS score is highly correlated to the final target accuracy
after adaptation.
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To the best of our knowledge, this is the first proposal for transferability estimation for the domain
adaptation setting. We demonstrate how PAS can help to select the most relevant source domain
and/or pre-trained model among a set of candidates, indicating the options that are most likely to
lead to the best accuracy on the unlabeled target data (See an overview in figure[I]). Our framework
selects the most suitable options before actually performing domain adaptation, demanding fewer
computational resources and reducing the training time.

PAS leverages the generalization power of models pre-trained on a large-scale dataset, such as the
popular ImageNet- 1k |Deng et al.|(2009). Specifically for domain adaptation, initializing with a good
pre-trained model appears to be a fundamental step in achieving a good transferability between do-
mains [Peng et al.| (2018]); Tang & Jial (2023)); Kim et al.| (2022); [Li et al.| (2023); Teterwak et al.
(2023). We assume that a good pre-trained model can extract general discriminative features that
are robust across all domains. If this assumption is true, samples from the same class are expected
to be closer together in the embedding space generated by the pre-trained model, compared to sam-
ples from different classes, even in the presence of feature distribution shift. This ideal scenario is
illustrated in the top left of the figure[2] Otherwise, as shown in the example on the top right of the
figure, the model should learn new discriminative features during the adaptation from the limited la-
beled source data to enable the classification task, increasing the chances of overfitting to the source
domain. Our PAS score is inspired by the Silhouette score, used for assessing the consistency of
data clusters Rousseeuw|(1987). We modify the original Silhouette score to measure the similarity
of the unlabeled target samples to some of the known source class clusters defined in the pre-trained
embedding space.

‘We summarize our contributions as follows:

* We propose PAS, a simple novel measure to quantify the potential contribution of a pre-
trained model and labeled source domain in the adaptation to an unlabeled target domain
before performing domain adaptation.

* We propose a framework to select the most relevant pre-trained model or source domain
from a collection of potential candidates for performing domain adaptation.

* We empirically validate our framework using different domain adaptation methods and
image classification benchmarks, and show how our score has a high correlation with the
target accuracy.

2 RELATED WORK

Unsupervised domain adaptation. = The goal of unsupervised domain adaptation (UDA) is to
transfer the knowledge learned from a labeled domain to a different unlabeled target domain. Usu-
ally, this goal is achieved by learning a latent representation that is invariant across domains. Several
works minimize the distribution discrepancy on the representation using statically defined distance
metrics such as Maximum Mean Discrepancy (MMD) (e.g., DAN |Long et al.|(2015), DDC [Tzeng
et al. (2014), JAN|Long et al.|(2017))), covariance (e.g., DCORAL|Sun & Saenko|(2016)), or Wasser-
stein distance (e.g., DeepJDOT Damodaran et al.|(2018)). The popularization of generative models
inspired the proposal of methods that adopt adversarial learning to align data across different do-
mains. DANN |Ganin et al.| (2016), CDAN [Long et al.| (2018)), and ADDA [Tzeng et al. (2017) are
examples of widely adopted UDA methods that have shown promising results. Self-training is an-
other promising paradigm that exploits the pseudo-labels predicted for the target domain to enhance
the model. CST|Liu et al.|(2021)), CRST Zou et al.|(2019), FixMatch|Sohn et al.| (2020) and MCC |Jin
et al.[(2020) are examples of methods that explore pseudo-labeling. Most recently, with the dissemi-
nation of transformers and foundation models, new works explore the cross-attention mechanism to
propose transformer-based domain adaptation methods, such as PMTrans|Zhu et al.|(2023)) and DoT
Ren et al.| (2024). See|Liu et al.[(2022); Deng & Jia(2023)); Alijani et al.|(2024) for a comprehensive
survey on domain adaptation methods.

Pre-training and domain adaptation Recent works suggest that the choice of the pre-trained
feature extractor can significantly improve the result of domain adaptation methods. [Teterwak et al.
(2023) show that simply adopting a model with better weight initialization can help the robustness
of a model to out-of-distribution samples. Similarly, [Kim et al.|(2022) empirically show that SOTA
pre-training outperforms SOTA domain adaptation methods even without access to a target domain.
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With a modern pre-trained backbone, older domain adaptation methods perform better than SOTA
methods, but no method is consistently better in all benchmarks, and negative transfer can occur.
Li et al.|(2023) empirically show how, in some cases, the performance of the pre-trained model in
an unseen target domain is already decent. However, no single pre-trained model performs well
in all target datasets. [Tang & Jia| (2023)) study the effects of pre-training on the domain adaptation
between synthetic and real images. Without pre-training, none of the methods considered in the
study outperformed the baseline trained only on the labeled source data. Other studies have also
proposed new datasets and pre-training techniques that achieve competitive performance in the target
domain Shen et al.| (2022); |[Luo et al.| (2024). We leverage the potential relationship between pre-
training and domain adaptation success to estimate transferability between domains.

Transferability estimation In the past years, many works have proposed scorees for quantita-
tively estimating the transferability of a pre-trained model to a target task. One of the primary
practical applications of such estimation is selecting the best pre-trained model for fine-tuning on
the target data. H-score |Bao et al.[|(2019), NCE [Tran et al.| (2019), LEEP Nguyen et al.| (2020) and
LogME |You et al.| (2021)) are widely adopted transferability estimation scores. More closely related
to our proposal, some works propose scores for transferability estimation by examining the separa-
bility of classes in the embedding space encoded by the pre-trained model. |Pandy et al.|(2022) apply
the Bhattacharyya coefficient to quantify the target class separability. Similarly, Meiseles & Rokach
(2020) employ the Silhouette score to assess the transferability of time series data. The current
methods on transferability estimation focus on the transfer learning problem, where a pre-trained
model is adapted to a target task with a few labeled samples. Unfortunately, these methods can not
be applied to the domain adaptation problem, where the target labels are not available.

3 METHOD

3.1 DEFINITIONS

Unsupervised domain adaptation aims to transfer knowledge from a labeled source domain to an
unlabeled target domain in the presence of distribution shift. Let X C R? define the input space and

Y = {1,...,C} the label space. The labeled source dataset is denoted by D° = {(x7, y,s)}‘lzil

T
and the unlabeled target dataset is denoted by DT = {xiT}‘jzll, with 27,27 € X and y7 € ).
S2 denotes the set of source samples from class c. The source and target feature distributions are
sampled from different but related distributions, Ps(X) and Pr(X), respectively, being Pg # Pr.
This scenario is also known as covariate shift. The goal is to learn a hypothesis h : X — ) that

performs well on the target domain.

Let 6 be the parameters of a feature extractor fy : X' — Z pre-trained on a large-scale dataset.
27 = fo(zF) and 2] = fy(xI") denote, respectively, the embedding of a source and a target sample
in the embedding space defined by fy.

3.2 ASSUMPTIONS

We assume that a good pre-trained model fj is able to extract a wide range of patterns and high-level
concepts from an input, including discriminative features that are invariant across different domains.
We expect that samples from the same class are more similar, having many concepts in common. As
a result, two samples from the same class should be closer together in the embedding space Z, no
matter the domain. On the other hand, samples from different classes should have very few concepts
in common, resulting in a dissimilar embedding representation. Due to the distribution shift between
the source and target domains, samples from the same domain are expected to have more concepts
in common and, therefore, have more similar representations than samples from different domains.
Such assumptions lead to a scenario similar to the one represented in the top left of figure [2| The
embeddings of samples from the same domain and class form a well-defined cluster in the space
encoded by fy. Also, the clusters of samples from the same class, but different domains, are closer
together and, ideally, both are distant from all the other clusters.

To summarize, we assume that 1) a good pre-trained model can extract invariant discriminative
features, 2) samples from the same class are close in the embedding space, even if they are from
different domains, and 3) samples from different classes are distant in the embedding space. Similar
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assumptions are proposed by [Shen et al.|(2022) when studying the generalization of embeddings to
out-of-distribution samples.

3.3 THE POTENTIAL ADAPTABILITY SCORE

We introduce the Potential Adaptability Score (PAS) as a measure of the distance from a labeled
source dataset to an unlabeled target dataset in the embedding space encoded by a pre-trained feature
extractor. The PAS score is based on the expectation that each target sample is as close as possible
to source samples from a single class and significantly distant from source samples from all other
classes in the embedding space defined by a pre-trained model fy. This means that a target sample
is very similar to source samples from one class and has only a few concepts in common with source
samples from all other classes, as illustrated in figure [2| The higher the PAS value, the stronger
the evidence that the pre-trained model can identify invariant discriminative features between the
domains and, consequently, the higher the chances that the pre-trained feature extractor fy has a
good transferability from the source to the target samples.

The samples are normalized to unit length, and the distance between samples is calculated using the
cosine distance. We assume that the samples from the class ¢ € ) are clustered together. We follow
Dhillon & Modhal (2001) and compute the centroid of each source class cluster ¢ so they represent
the vector that, on average, has the highest cosine similarity to all the samples in the cluster.

a:fESCS f‘g(x;g)
//[/ = .
‘ HZx?GSE fe(xf)”

For each target sample =7, we calculate its cosine distance to the centroid of each source cluster:

(D

dist(fo(x] ), pe) = 1= (fo(a]) - pc)- )

Let D; = {dist(fo(zI), 1), ..., dist(fo(zT), uc)} be the set of distances of the j-th target sample
to all the source clusters and sort(d;) the sorted version of the set in ascending order. We define
dy; = sort(D;)[1] and dg; = sort(D;)[2] as the shortest and the second shortest of the distances,
respectively, as illustrated at the bottom of figure 2}

Finally, the PAS score is defined by

pT
1|

PAS(9,DS,DT) = >

| do; — di;
DT '

d2i

3)

Given one or more candidate source domains and a set of pre-trained models, the PAS score can
help to select the options that are more likely to lead to the best accuracy on the target samples.
The selection is done by computing the PAS score for each trio of target domain, source domain,
and pre-trained model. The combination with the highest PAS value is chosen. The selection is
done before any domain adaptation training. A single-source domain adaptation method can then be
trained with the selected source domain and pre-trained feature extractor.

Our PAS score is inspired by the Silhouette score, used for assessing the consistency of data clusters
Rousseeuw| (1987). The Silhouette is a supervised score calculated by (b — a)/maxz{a, b}, where
a is the mean intra-cluster distance and b is the mean nearest-cluster distance for each sample. It
ranges from —1 to 1, with higher values indicating strong intra-class cohesion and clear inter-class
separation. Note that the Silhouette score is fully supervised and designed for IID samples and its
original form is not suitable for the domain adaptation problem. Our PAS score is an adaptation to
accommodate unlabeled target samples and domain shift. We consider the closest source cluster as
the true class for each target sample. This assumption makes a always smaller than b, and restricts
our score to the interval [0, 1]. The PAS score is close to one if the samples from the target domain
are similar to the centroid of the source class cluster. However, due to the mismatch between the
domains, the target samples exhibit a shift in the feature distribution, making a larger than in the IID
scenario. As a result, the values for our score are typically smaller. Alternative design choices are
discussed and evaluated in section 4.4}
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Figure 3: The correlation between the PAS score value and the target accuracy after the domain
adaptation. Each box summarizes the target accuracy of different domain adaptation methods for
a given source-target pair and a pre-trained feature extractor. Higher values for the PAS score are
strongly correlated with higher target accuracy.

4 EXPERIMENTS

Datasets. We evaluate PAS on four of the

most popular benchmarks for domain adapta- Office-Home [A+C] Office-31 [W-A]

tion: Office-Home Venkateswara et al] 2017), ™ e o w ’
Office-31(Saenko et al[(2010), ImageCLEF[]  f«| LS -5
and DomainNet|[Peng et al.[(2019). The bench-  &so0{m" $50] v
marks’ statistics are listed in the table 2] wlm 65{n®
0.06 0.08 0.10 0.12 0.08 0.10 012 014 016 0.18
. . 3 PAS metric PAS metric

Doma":l adaptatlon methOdS Many d(.)maln ® resnetl8 <« inception_v3 @ deit3_base_patch16_224
adaptation methods have been proposed in the v resnetso > vitbasepstchl6 224 EE DANN

A densenetl2l W vit_base_patch16_224.dino WMl MCC

literature, but none have consistently outper-

formed the others in all benchmarks. For this Figure 4: The PAS value and target accuracy for

reason, we obtained the published target accu-
racies of a large variety of state-of-the-art meth-
ods. We consider methods based on different
paradigms and trained using diverse pre-trained

the DANN and MCC methods using different pre-
trained feature extractors. The PAS score can help
to select the feature extractor that leads to higher
accuracy. (left) A—C adaptation in the Office-

feature extractors. The accuracy values are ob-
tained from the popular open-source T/lib li-
brary for transfer learning Jiang et al. (2022);
Junguang Jiang| (2020), [Wang et al.|(2023), and from the original papers.

Home benchmark. (right) W—A adaptation in the
Office-31 benchmark.

Baselines To the best of our knowledge, PAS is the first asymmetric score proposed for trans-
ferability estimation for domain adaptation. We, therefore, compare PAS with the symetric met-
rics Maximum Mean Discrepancy (MMD) Gretton et al| (2012) and .A-distance [Peng et al.
(2019). The MMD distance is computed using a Gaussian kernel. Due to the quadratic nature of
MMD, we restrict its computation to a maximum of 10,000 randomly selected samples per domain
for the DomainNet benchmark. The .A-distance is computed using C-Support Vector Classifica-
tion. We also report the results for an oracle baseline. The oracle is similar to PAS, defined as
|T1T\ ZLDT‘ %. The d;; distance is the cosine distance to the centroid of the true class
of the target sample (not known in real scenarios), and ds; is the distance to the closest cluster’s
centroid that is not the true class. In the ideal case where the closest class centroid is the actual
class of the sample, the oracle is the same as PAS, otherwise, the oracle value is smaller. The oracle
validates the existing relationship between the clusters distance and the target accuracy.

'http://imageclef.org/2014/adaptation
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Table 1: Average target accuracy of domain adaptation methods and transferability scores for dif-
ferent image classification benchmarks. The highest values are highlighted. Our PAS has a high
correlation with the target accuracy and, for each target domain, attributes the highest value for the
source domain that leads to the highest target accuracy in most scenarios. * Oracle baseline that
considers the target labels.

(a) Office-Home

Target A C P R Correlation with acc.
Source C P R A P R A C R A C P Pearson  Spearman
Acc. (avg.) 62.0 61.7 725 535 524 58.9 71.0 70.0 82.1 772 70.8 78.7
MMD (neg.) -0.135 -0.113  -0.052 | -0.135 -0.097 -0.125 | -0.113 -0.097 -0.033 | -0.052 -0.125 -0.033 0.77 0.72
ResNet-50 | A-distance (neg.) | -1.876 -1.810 -1.333 | -1.876 -1.827 -1.814 | -1.810 -1.827 -1.424 -1.333 -1.814 -1.424 0.76 0.78
PAS (our) 0.107 0.143  0.201 | 0.128 0.156 0.166 | 0.182 0.168 0.288 | 0.217 0.147 0.254 0.81 0.82
Oracle* 0.041  0.037 0.093 | -0.022 -0.018 -0.022 | 0.103 0.100 0.218 | 0.165 0.096 0.195 0.98 0.93
Acc. (avg.) 743 1.7 76.0 61.8 585 61.2 81.7 83.2 86.0 833 825 84.1
MMD (neg.) -0.106 -0.058 -0.024 | -0.106 -0.077 -0.102 | -0.058 -0.077 -0.026 -0.024 -0.102 -0.026 0.56 0.57
DeiT-Small | A-distance (neg.) | -1.865 -1.761 -1.26 | -1.865 -1.843 -1.796 | -1.761 -1.843 -1.37 -1.26 -1.796  -1.37 0.52 0.57
PAS (our) 0.143  0.183 025 | 0.175 0.186 0204 | 0.261 0.221  0.348 | 0.295 02 0.301 0.67 0.78
Oracle* 0.086 0.112 0.18 | 0.038 0.037 0.047 | 0.194 0.155 0.291 | 0.243 0.147 0.246 0.90 0.93
Acc. (avg.) 81.5 78.8 8I.1 69.9 65.4 68.0 86.0 86.7 90.6 87.4 87.2 88.5
MMD (neg.) -0.099 -0.056 -0.028 | -0.099 -0.091 -0.11 | -0.056 -0.091 -0.023 | -0.028  -0.11 -0.023 | 0.56 0.57
DeiT-Base | A-distance (neg.) | -1.832 -1.81 -1.372 | -1.832 -1.907 -1.823 -1.81 -1.907 -1.502 -1.372 -1.823 -1.502 0.48 0.51
PAS (our) 0.138  0.176  0.243 | 0.166 0.172 0.194 | 0.245 0209 0.339 | 0.287 0.193  0.295 0.65 0.73
Oracle* 0.09 0.112 0.184 | 0.048 0.049 0.062 | 0.191 0.158 0.293 | 0245 0.154 0.248 0.88 0.88
Acc. (avg.) 80.1 79.8 822 66.4 65.2 68.2 84.1 84.2 89.0 88.0 87.2 88.5
MMD (neg.) -0.116  -0.082 -0.032 | -0.116 -0.115 -0.122 | -0.082 -0.115 -0.034 -0.032 -0.122 -0.034 0.61 0.49
ViT-Small | A-distance (neg.) | -1.885 -1.883 -1.348 | -1.885 -1.927 -1.862 | -1.883 -1.927 -1.515 -1.348 -1.862 -1.515 0.53 0.59
PAS (our) 0.172  0.198 0.262 | 0.182 0.199 0.217 | 0.251 0235 0357 | 0.294 0219 0.316 0.68 0.83
Oracle* 0.132  0.147 0212 | 0.084 0.102 0.113 | 0211 0.195 0.321 026 0.189 0.285 0.87 0.92
Acc. (avg.) 83.0 82.7 845 732 72.2 74.4 88.3 88.6 91.4 90.2 89.5 90.8
MMD (neg.) -0.101  -0.069 -0.031 -0.101 -0.106 -0.11 | -0.069 -0.106 -0.025 | -0.031 -0.11  -0.025 0.59 0.57
ViT-Base | A-distance (neg.) -1.85 -1.845 -1.389 -1.85 -1.952 -1.885 | -1.845 -1.952 -1.595 -1.389 -1.885 -1.595 0.47 0.51
PAS (our) 0.254 028 0357 | 0262 0271 0296 | 0361 0339 0462 | 0405 0316 0.417 0.76 0.85
Oracle* 0215 0233 0311 | 0.173 0.188 0207 | 0317 0295 0425 037 0.286 0.382 0.88 0.92
Acc. (avg.) 88.5 87.7 87.9 78.3 77.1 782 91.5 91.9 94.2 92.9 93.0 92.8
MMD (neg.) -0.081 -0.085 -0.039 -0.081 -0.104 -0.097 | -0.085 -0.104 -0.033 | -0.039 -0.097 -0.033 0.48 0.45
Swin-Base | A-distance (neg.) | -1.853 -1.892 -1.401 -1.853 -1.95 -1.917 | -1.892 -1.95 -1.57 -1401 -1917 -1.57 0.42 0.37
PAS (our) 0232 0251 0327 | 0231 0244 0.269 | 0323 0318 043 037 0.294 0.384 0.72 0.72
Oracle* 0.198  0.214 0287 | 0.162 0.177 0.195 | 0.295 0282 0.403 | 0.343 027  0.356 ‘ 0.83 0.81
(b) Office-31
Target A D w Correlation with acc.
Source D w A w A D | Pearson Spearman
Acc. (ave) 718 706 | 905 1000| 919 983
MMD (neg.) 20145 0.165 [ 0145 -0.046 | 0.165 -0.046 | 071 072
ResNet50 | Adistnce (ne) | 200 200 | 200 1783 | 200 1783 | 072 0.83 (C) ImageCLEF
PAS (our) 0.265 0239 | 0286 0454 | 0236 0423 0.73 0.66
Oracle* 0192 0.166 | 0246  0.445 ﬂ 0.407 0.80 0.83
Acc. (avg) 777 776 947 998 [ 0465 985 Target ‘ c 1 P Correlation with acc.
MMD (neg.) 20123 0.129 | 0123 0058 | 0129 0058 | 0.6 084 Source 1 P c P C 1 | Pearson Spearman
DeiT-Small | A-distance (neg.) | -2.00 -1.994 | 200 -1969 | -1.994 -1969 | 065 0.60 —
T PaStoun * | 0383 0266 | 0304 0472 | 0278 0447 | 072 094 e ol o P 0] o | 017 o2
Oracle* 02 0193 ] 0263 0465 | 0239 0438 | 080 1.00 ResNet-50 Ardmm?(“c Ry R R oy % o 0
sNet-3 c(neg) -1.583 1731 | -1.583 -0.807 | -1.731 -0.807 | -024 0.12
Acc. (avg) 813~ 820 [ 968 100.0 [ 979 99.2 PAS (our) 0299 0251 | 0235 027 | 0223 0297 | 022 049
MMD (neg.) 0113 -0.134 [ 0113 0074 | 0134 0074 | 054 0.60 Oraclor | 0287 0243 | 0195 0554 | o111 02| os4 hert
DeiT-Base | A-distance (neg.) | -2.00 200 | 200 200 | -200 -2.00 | 00 0.0 Aot (g TS 975 937 — 953 T35 B0% d
PAS (our) 0268 0241 | 0304 0443 | 0251 0418 | 0.66 071 VD (o 0072 0081 | 000 002 | 0081 002 | -017 ol
Oracle* 0212 092 | 0273 044 | 0224 0414 | 073 0.89 DeiT-Sma (neg) - y y - y ;
— o eiT-Small | A-distance (neg.) -1.417 -1.748 | -1.417 -0.807 | -1.748 -0.807 -0.07 -0.11
Acc. (ave) BaZy 8227 956 QINNON 977 RoRd PAS (our) 0344 0303 | 0263 0322 024 0332 041 052
MMD (neg.) 20175 0.197 [ 0175 -0.098 | -0.197 0098 | 056 034 Oraclor DAl on | 023, Ml " )
ViT-Small | A-distance (neg) | -2.00 -2.00 | -2.00 -2.00 | -2.00 -2.00 | 00 0.0 QA — 918 — 97T 966 —9STT 95 8o & -
PAS (our) 0283 027 | 0302 0509 | 0276 0473 | 0.61 094 M‘Bj['[;“ ) 0078 0.095 | 0078 mE0032n| -0.095 |=0032]| -0.13 o
Oracle* 023 022 | 0286 0506 | 0256 0467 | 0.69 1.00 ' (neg) - - g e > e . >
= : > ViT-Base | A-distance (neg) -1483 -1714 | -1.483 -0.655 | -1.714 -0.655 | -0.14 0.12
'\‘ﬁ;é”(‘:‘i g{) oo u"fl‘g N _"]f’D‘l;'l’ ooy _Joﬁ 057 o PAS (our) 0399 0359 | 0304 0377 | 0262 0363 | 055 0.54
VilBase | A-distance (neg) | -2.00 -2.00 | -200 -1953 | -200 -1953 | 064 072 Oracle* | 0391 0352 0295 037] 0205 028 | 084 0383
PAS (our) 0423 0395 | 0453 059 | 0412 0558 | 071 083
Oracle* 0373 0347 | 0434 0589 | 0393 0554 | 079 094
Acc. (avg) 862 863 | 997 1000 994 95
MMD (neg.) -0.168 -0.169 | -0.168 -0.086 | -0.169 -0.086 0.51 0.60
Swin-Base | A-distance (neg) | -2.00  -200 | 200 -200 | -200 -200 | 00 0.0
PAS (our) 0361 0349 | 0399 0589 | 0374 056 | 0.62 0.89
Oracle* 0321 0313 | 0388 0.589 | 0366 0.558 | 0.69 0.89
(d) DomainNet
Target C P R S Correlation with acc.
Source P R S C R S C P S C P R Pearson  Spearman
Acc. (avg.) 455 537 56.7 39.4 522 458 559 58.1 55.3 44.8 40.7 41.0
MMD (neg.) -0.113  -0.158 -0.079 | -0.113 -0.075 -0.108 | -0.158 -0.075 -0.173 -0.079 -0.108 -0.173 0.04 0.20
ResNet-101 | A-distance (neg.) | -1.789  -1.73 -1.638 | -1.789 -1.656 -1.777 -1.73  -1.656 -1.821 -1.638 -1.777 -1.821 0.50 0.45
PAS (our) 0.108  0.145 0.088 0.08 0.159 0.083 | 0.128 0.184 0.107 | 0.088 0.098 0.114 0.58 0.53
Oracle* -0.109  -0.124  -0.042 -0.06  -0.024  -0.04 | 0.037 0.092 0.031 | -0.087 -0.11  -0.156 0.70 0.67
Acc. (avg.) 523 68.8 522 58.6 69.7 48.4 62.3 56.6 485 64.7 524 67.2
MMD (neg.) -0.128 -0.146 -0.088 | -0.128  -0.052 -0.16 | -0.146  -0.052 -0.186 -0.088 -0.16 -0.186 0.26 0.28
DeiT-Small | A-distance (neg.) | -1.784 -1.734 -1.655 | -1.784 -1.639 -1.768 | -1.734 -1.639 -1.823 -1.655 -1.768 -1.823 0.30 0.33
PAS (our) 0.13  0.152 0.093 | 0.091 0.175 0.086 | 0.139 0.218 0.11 | 0.096 0.117  0.127 0.39 0.57
Oracle* -0.125  -0.118 -0.055 | -0.066 -0.015 -0.051 | 0.031 0.093 0.015 -0.12 -0.163  -0.183 -0.19 -0.17
Acc. (avg.) 55.7 722 56.9 64.6 72.9 533 65.8 59.4 524 68.7 56.7 71.8
MMD (neg.) -0.123  -0.153  -0.095 | -0.123 -0.06 -0.171 | -0.153 -0.06 -0.227 -0.095 -0.171 -0.227 0.19 0.35
DeiT-Base | A-distance (neg.) | -1.796 -1.746 -1.655 | -1.796  -1.682 -1.79 | -1.746  -1.682 -1.838 -1.655 -1.79 -1.838 0.26 0.37
PAS (our) 0.126  0.147 0.086 | 0.085 0.165 0.079 | 0.137 0211 0.102 | 0.089 0.119 0.112 0.26 0.44
Oracle* -0.115  -0.097 -0.044 | -0.047 0.004 -0.04 | 0.044 0.105 0.022 | -0.109 -0.162 -0.154 -0.17 -0.08
Acc. (avg.) 60.7 717 60.7 66.2 75.9 572 69.7 64.6 579 71.4 62.7 76.3
MMD (neg.) -0.14  -0.157 -0.108 -0.14 -0.116 -0.175 | -0.157 -0.116 -0.25 -0.108 -0.175 -0.25 0.07 0.15
ViT-Base A-distance (neg.) | -1.814 -1.771 -1.686 | -1.814 -1.734 -1.807 | -1.771 -1.734 -1.859 -1.686 -1.807 -1.859 0.18 0.21
PAS (our) 0.185 0.226 0.162 | 0.145 0.233 0.128 | 0.223 0282 0.176 | 0.151 0.171 0.17 0.37 0.35
Oracle* -0.003 0.018 0.042 | 0012 0.066 0.007 | 0.135 0.184 0.103 | -0.021 -0.075 -0.062 -0.13 -0.08
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Table 2: Statistics of the benchmarks used in the experiments.

Dataset #Samples  #Classes Domains

Office-Home 15,588 65 A (Art), C (Clipart), P (Product), R (Real-world)

Office-31 4,110 31 A (Amazon), D (DSLR), W (Webcam)

ImageCLEF 1,800 12 C (Caltech-256), I (ImageNet ILSVRC 2012), P (Pascal VOC 2012)
DomainNet 569,010 345 C (Clipart), P (Painting), R (Real), S (Sketch)

Table 3: Correlation with the average target accuracy after adaptation. Showing Pearson correlation
/ Spearman’s rank correlation.

Office-Home  Office-31  ImageCLEF  DomainNet Total

MMD 0.55/0.51 045/053 -0.14/-0.08 -0.09/-0.03 0.37/0.37
A-distance  0.32/0.17 026/0.35 -0.13/-0.07 0.07/0.06 0.04/-0.16
PAS (our) 0.76 / 0.81 0.63/0.78  0.44/0.60 0.53/0.56 0.83/0.88
Oracle* 0.89/090 0.71/0.86 0.78/0.85 0.21/0.21 0.88/0.91

4.1 SELECTION OF THE SOURCE DOMAIN

The results for the four benchmark datasets are presented in Table|l|(a) - (d). For each source-target
pair in the benchmarks, we group the domain adaptation methods using the same pre-trained feature
extractor and report their average target accuracy, followed by the baselines and our PAS score.
We highlight the highest values among the different choices of source domains. We also report
the correlation (Pearson and Spearman’s rank correlation) between the average target accuracy and
the scores. The detailed results for each individual domain adaptation method are presented in the

Supplementary Material

We report in Table 3] the overall correlation for all scenarios of each benchmark (all target domains,
source domains and pre-trained models). The results show that the PAS score is strongly correlated
with target accuracy. We observe an overall Spearman’s rank correlation of 0.88 over all the results.

The most important results are reported in Table[d} where we present the correlation for each target
domain. This correlation is the most useful for users in real-world scenarios. Given a target domain
of interest and many options of source domains and pre-trained models, we show that our PAS
score has a strong correlation with the final target accuracy. The empirical results indicate that our
proposed PAS score is effective in selecting the best source domain among many candidates.

We summarize our results in Figure 3] Each box in the graph represents the target accuracy of dif-
ferent domain adaptation methods using the same pre-trained backbone for a source-target domains
pair. We observe that higher PAS values are consistently related to high accuracy on the target
domain. This indicates that PAS may be useful not only for selecting the most appropriate source
domain, but also to estimate beforehand the success of the domain adaptation.

The results on the ImageCLEF benchmark illustrate the scenarios where the PAS score is not ef-
fective. This benchmark (especially the P domain) contains images with multiple objects. In many
cases, the sample is very close to the centroid of one class that is indeed present in the image, but
the true label is related to another object in the scene. In these cases, the PAS for the sample is

Table 4: Correlation with the average target accuracy after adaptation for each target domain. Each
cell considers the results for a target domain and all available source domains and pre-trained mod-
els. Showing Pearson correlation / Spearman’s rank correlation.

Office-Home Office-31 ImageCLEF DomainNet
C P D 1

A R ‘ A w ‘ ¢ 3 ¢ 3 R s

MMD 0.41/0.26 0.28/0.21 0.41/0.29 0.25/0.21 -0.02/-0.15 0.44/0.60 0.45/0.36 | 0.54/0.49 -0.03/-0.22 0.61/0.60 | -0.56/-0.42 0.33/0.20 0.23/0.47 -0.38/-0.42
A-distance  0.12/-0.13  -0.46/-0.43  0.15/-0.09 -0.05/-0.26 | -0.19/-0.31  0.27/0.28 0.14/0.07 | 0.43/0.38  0.10/0.05  0.64/0.60 | 0.09/-0.04 0.35/0.17 0.27/0.30 -0.10/-0.32
PAS (our)  0.70/0.70 0.81/0.78 0.79/0.74 0.75/0.75 0.65/0.81  0.70/0.81 0.70/0.75 | 0.82/0.76  0.73/0.66  0.87/0.83 0.71 0.67 0.75/0.76  0.59/0.71  0.48/0.35
Oracle* 0.82/0.85 0.91/0.90 0.84/0.81 0.80/0.87 0.7470.88  0.73/090 0.74/0.78 | 0.81/0.76  0.74/0.66  0.97/0.94 | 036/050 0.71/0.62 061/0.72 028/0.33
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high, showing a high similarity with one source class, but the final accuracy is low, as the sample is
classified as the wrong class. We show examples in the supplementary material [A.2]

4.2 THE SELECTION OF THE PRE-TRAINED FEATURE EXTRACTOR

The results in the literature presented in table [I| com-
o pare methods with different backbones and demonstrate

—— Correlation

0275 that PAS can be applied to select the most suitable pre-
S = roe  trained feature extractor. However, they do not con-
T sider the impact of different pre-trained feature extrac-
g ZIeapees tors over the same domain adaptation method. For an-
2 “we| ¢ alyzing the robustness of PAS over different choices
o7 EEE: “% of pre-trained methods, we keep the domain adaptation
o0 ~cr| . method fixed and vary the pre-trained backbone. We se-
01251 - poR lect two of the most challenging domain adaptation sce-
01004 * el P narios: the A—C adaptation in the Office-Home bench-
T e mark and W—A adaptation in the Office-31 benchmark.

We show results for two popular domain adaptation meth-
Figure 5: The PAS value varying with ods: DANN|Ganin et al|(2016) and MCC|Jin et al.| (2020).
the number of samples for the Office- We train each method following the code provided by the
Home. The PAS values are quite robust  Tllib library Jiang et al.| (2022); Junguang Jiang| (2020)
to varying numbers of samples. Most with the default hyperparameters. The results are shown
importantly, the relative order of PAS in figure Higher PAS values are attributed to pre-
values for different source domains re- trained models that lead to higher target accuracy before
mains unchanged. performing domain adaptation, indicating that our score
may be applied for the selection of the pre-trained model.

4.3 THE IMPACT OF THE SAMPLE SIZE

The time complexity of the PAS computation is linear in the number of samples. This can be limiting
for a quick evaluation of larger datasets and scenarios with many candidate source domains.

To optimize the computation time, we show that our score can be calculated using only a subset of
the samples. We randomly select a subset of the samples of both source and target domains. The
results are presented in the figure[5] The PAS values are quite robust to varying numbers of samples.
Most importantly, the relative order of PAS values for different source domains remains unchanged.

4.4 DESIGN CHOICES

The PAS score considers the cosine dis-

tance between eaCh target Sample and the Office-Home  Office-31 ImageCLEF DomainNet Total

source class centroids. We experimentally ~ pAs 0.76 0.63 044 0.58 079
. . . Euclidean distance 0.70 0.69 0.27 0.54 0.68

evaluated alternative design choices and  Average cosine distance 0.6 0.52 0.12 048 0.66

compare the correlation between the score )
and the target accuracy. The results are Table 5: Pearson correlation between the target accu-

shown in table Bland demonstrate how the racy and the PAS score, which considers the cosine dis-
overall correlation between the target ac- tance to the cluster centroid, and modifications using
curacy and PAS, as proposed, is higher. the Euclidean distance to the centroid and the average

. ) cosine distance to the source cluster samples. The max-
We change PAS to consider the Euclidean  jnym correlation value for each benchmark is high-
distance instead of the cosine distance. [ighted. The design choices of PAS lead to the higher

In the domain adaptation setting, the co-  gyerall correlation between the score and the target ac-
sine distance has advantages over using cyracy,

the Euclidean distance in the original la-

tent space, as it ignores the magnitude of

representations (e.g., a difference in the illumination in images that reflects on the intensity of the
features detected by the model) and focuses only on the differences in the angles (the difference
between classes). Also, the cosine distance is less affected by the high-dimensionality of the data
(the phenomenon known as curse of dimensionality |Bellman| (1966)).
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We also modify PAS to use the average pairwise distance to the source samples instead of the dis-
tance to the source cluster centroid. The pairwise distance is a good summarization of the closeness
of the target sample to the source samples of the class. On the other hand, the distance to the centroid
measures how well the target sample is aligned to the dimensions of greatest alignment between the

S
samples in the cluster, as the centroid formulation 1/n Zgl ! x7 makes samples pointing in similar
directions add up in that direction.

5 CONCLUSION AND FUTURE WORK

We present Potential Adaptability Score (PAS), a new score to select, among many candidates, the
source domain or pre-trained model that are likely to lead to the best target accuracy when used for
unsupervised domain adaptation. We evaluate our score on four of the most popular benchmarks for
domain adaptation and show that it has a high correlation with the target accuracy and selects the
best source domain in most cases. We also show that PAS can be computed more efficiently with
fewer samples.

We suggest two improvements for future work. Although our score could be applied to any classifi-
cation task, we focus on vision problems, specifically the image classification task, which is the most
common task in the domain adaptation literature. Showing its efficacy on other modalities and tasks
demands the availability of a diverse set of benchmarks and specialized domain adaptation methods.
Also, we focus on the single-source domain adaptation problem, where only a single source do-
main is considered during the training. Future works may extend our work to select multiple source
domains, in the setting known as multi-source domain adaptation.

ETHICS STATEMENT

Although our work does not directly address issues of social harm, we acknowledge that our PAS
score is not immune to bias and fairness concerns. If a biased model achieves higher accuracy on the
target data, our framework is likely to select it as the best pre-trained model for domain adaptation.
In our experiments, we mitigate such risks by focusing on pre-trained models and benchmarks that
are widely adopted within the research community.
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A  SUPPLEMENTARY MATERIAL

A.1 RESULTS

The tables|[6}[7} [8] and[9]show the extended results of table[I] The accuracy for each method is listed,
as well as its accuracy correlation with the scores.

Table 6: Target accuracy of domain adaptation methods and transferability scores for the Office-
Home dataset. The highest values are highlighted. * Oracle baseline that considers the target labels.

Target A C P R Correlation with PAS
Source C P R A P R A C R A C P Pearson  Spearman
DAN 577 549 662 | 456 400 491 ] 677 638 719 | 739 660 745 | 074 081
DANN 558 558 71.1 | 538 551 607 | 626 673 811 | 740 673 779 | 0091 0.85
ADDA 597 614 711 | 526 525 586 | 629 680 802 | 740 688 77.6 | 0.84 0.80
JAN 606 605 710 | 508 496 559 | 719 683 805 | 765 687 769 | 078 0.81
CDAN 620 624 755 | 552 543 610 | 724 697 838 | 776 709 805 | 085 0.83
MCD 637 615 745 | 517 528 584 | 722 695 818 | 782 708 780 | 078 0.83
ResNet-50 | BSP 610 609 734 | 547 552 603 | 677 694 812 | 762 709 802 | 085 0.80
AFN 650 650 723 | 532 514 578 | 727 713 824 | 768 723 779 | 073 0.78
MDD 63.5 625 735 | 562 548 609 | 754 721 845 | 796 738 799 | 0.80 0.78
MCC 67.5 666 744 | 584 548 614 | 796 7710 856 | 830 785 818 | 0.70 0.76
FixMatch 653 672 749 | 564 564 635 | 764 738 843 | 799 712  80.6 | 081 0.87
Avg. 620 617 725 | 535 524 589 | 710 700 821 | 772 708 787 | 081 0.82
PAS (our) | 0.107 0.143 0.201 | 0.128 0.156 0.166 | 0.182 0.168 0.288 | 0.217 0.147 0.254
TRANS-DA | 69.7 686 735 | 577 563 585 | 808 33 85 | 815 801 815 | 069 0.79
WinTR 768 734 772 | 653 60 631 | 841 845 868 85 844 857 | 064 0.78
Deit-Small | DOT 749 724 764 | 63.7 61 641 | 822 843 867 | 843 83 848 | 0.68 0.79
cr=Small | CDTrans 756 725 77| 606 567 591 | 795 81 855 | 824 823 844 | 063 0.76
Avg. 743 717 760 | 618 585 612 | 817 832 86 | 833 825 841 | 067 0.78
PAS (our) | 0.143 0183 025 | 0.175 0.186 0.204 | 0261 0221 0348 | 0295 02 0.301
DOT 80 782 79.7 69 654 673 | 856 852 893 87 864 879 | 066 0.75
CDTrans 815  79.6 82 | 688 633 66 85 871 906 | 869 873 882 | 0.2 0.73
DeiT-Base | PMTrans 83 785 817 | 718 674 707 | 813 817 92| 83 878 893 | 067 0.73
Avg. 815 788 O8I.1 | 699 654 680 | 860 867 90.6 | 874 872 885 | 0.65 0.73
PAS (our) | 0.138 0.176 0.243 | 0.166 0.172 0.194 | 0.245 0209 0.339 | 0.287 0.193 0.295
SSRT 799 807 82 67 66 694 | 842 843 899 | 883 87.6 883 | 0.69 0.84
ViT-Small | SAMB 802 788 824 | 657 644 67 84  84.1 88 | 877 867 886 | 067 0.82
Avg. 80.1 798 822 | 664 652 682 | 841 842 89.0 | 880 872 885 | 0.8 0.83
PAS (our) | 0.172 0198 0.262 | 0.182 0.199 0217 | 0251 0235 0.357 | 0.294 0219 0316
SAMB 808 816 841 | 687 687 709 85 86 OL1 | 889 883 902 | 077 0.88
DoT 818 812 89| 729 706 722 | 898 896 908 | 903 90.1 924 | 075 0.84
TVT 774 756  79.1 | 67.1 649 672 | 835 85 88 | 873 856 866 | 0.78 0.85
ViTBase | SSRT 85.1 85 857 | 752 742 786 89 883 918 | 9LI 9 913 | 076 0.87
ri-base | pCAT 842 841 857 | 742 745 748 | 906 909 922 | 909 899 908 | 074 0.83
PMTrans 889 885 89.5 | 812 80 824 | 916 916 945 | 924 93 934 | 074 0.84
Avg. 830 827 845 | 732 722 744 | 883 886 9L4 | 902 895 908 | 0.76 0.85
PAS (our) | 0254 028 0357 | 0262 0271 0.296 | 0.361 0339 0.462 | 0.405 0316 0.417
PMTrans 884 879 89 | 813 804 8090 | 929 934 948 | 928 932 93 [ 075 0.72
) BCAT 886 874 867 | 753 137 754 90 903 935 | 929 927 925 | 068 0.74
Swin-Base \ =0 885 877 879 | 783 771 782 | 915 919 942 | 929 930 928 | 0.2 0.72
PAS (our) | 0232 0251 0327 | 0231 0244 0269 | 0323 0318 043 | 037 0294 0.384
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Table 7: Target accuracy of domain adaptation methods and transferability scores for the Office-31
dataset. The highest values are highlighted. * Oracle baseline that considers the target labels.

Target A D w Correlation with PAS
Source D ' A \\ A D Pearson  Spearman
DANN 73.3 70.4 83.6  100.0 914 979 0.78 0.66
ADDA 69.6 725 90.0  99.7 946 975 0.67 0.60
BSP 74.1 73.8 88.2 100.0 927 979 0.75 0.66
DAN 66.9 65.2 87.3 100.0 842 984 0.83 0.83
JAN 692 71.0 89.4 100.0 937 984 0.70 0.60
CDAN 734 704 89.9 100.0 93.8 985 0.71 0.66
ResNet-50 | MCD 68.3 67.6 87.3 100.0 904 985 0.76 0.66
AFN 729  71.1 94.4  100.0 940 989 0.67 0.83
MDD 76.6 722 944  100.0 95.6  98.6 0.65 0.66
MCC 75.5 74.2 95.6  99.8 94.1 98.4 0.66 0.83
FixMatch 70.0  68.1 95.4  100.0 86.4 982 0.75 0.83
Avg. 711  70.0 89.6 999 90.6  98.1 0.73 0.66
PAS (our) 0.265 0.239 | 0.286 0.454 | 0.236  0.423
TRANS-DA 77 711 94.8 100 95.8 9838 0.69 0.71
. DeiT-Small CDTrans 78.4 78 94.6  99.6 93.5 98.2 0.74 0.94
Avg. 717  77.6 947  99.8 | 94.65 98.5 0.72 0.94
PAS (our) 0.283 0.266 | 0.304 0.472 | 0.278 0.447
CDTrans 81.1 81.9 97 100 96.7 99 0.69 0.83
. DeiT-Base PMTrans 814  82.1 96.5 100 99 994 0.64 0.71
Avg. 81.3 82.0 96.8 100.0 | 979 99.2 0.66 0.71
PAS (our) 0.268 0.241 | 0.304 0.443 | 0.251 0.418
ViT-Small SSRT 835 822 98.6 100 | 97.7  99.2 0.61 0.94
PAS (our) 0283 0.27 | 0.302 0.509 | 0.276 0.473
DoT 85.1 86.8 96.7 100 96.6 994 0.74 0.83
TVT 84.9 86.1 96.4 100 964 994 0.75 0.75
SSRT 792 799 95.8 100 95.7  99.2 0.72 0.83
ViT-Base | BCAT 84.9 85.8 97.5 100 96.1 99.1 0.73 0.83
PMTrans 85.7 86.3 99.4 100 99.1 99.6 0.62 0.83
Avg. 84.0  85.0 972 100.0 | 96.8 99.3 0.71 0.83
PAS (our) 0.423 0.395 | 0.453 0.59 | 0.412 0.558
PMTrans 86.7 86.5 99.8 100 99.5 99.4 0.61 0.83
. Swin-Base BCAT 85.7 86.1 99.6 100 99.2 995 0.63 0.89
Avg. 86.2  86.3 99.7 100 | 994 995 0.62 0.89
PAS (our) 0.361 0.349 | 0.399 0.589 | 0.374  0.56

A.2 EXAMPLES OF SAMPLES IN THE /mageCLEF BENCHMARK

We present some examples of when the PAS score fails to predict the target accuracy. The figure []
shows examples of misclassified images from the P (Pascal VOC 2012) domain of the ImageCLEF
benchmark. Many images contain more than one object. The sample may be very similar to a class
present in the image. However, the true class refers to another object also contained in the image. In
such cases, the PAS value is high, but the accuracy is low.
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Table 8: Target accuracy of domain adaptation methods and transferability scores for the Immage-
CLEF dataset. The highest values are highlighted. * Oracle baseline that considers the target labels.

Target C 1 P Correlation with PAS
Source 1 P C P C I Pearson  Spearman
RTN 95.3 922 86.9 86.8 72.7 75.6 0.29 0.49
MADA 96.0 922 88.8 87.9 752 75.0 0.20 0.26
iCAN 94.7 92 89.9 89.7 78.5 79.5 0.23 0.49
CDAN-E 97.7 94.3 91.3 90.7 74.2 71.7 0.27 0.49
SymNets 97.0 96.4 93.4 93.6 78.7 80.2 0.17 0.60
MEDA 95.7 95.5 92.2 92.5 78.5 79.7 0.16 0.60
ResNet-50 | SPL 96.7 96.3 95.7 94.5 80.5 78.3 0.02 0.26
DS-c 92.8 91.3 87.3 86.7 70.4 78.7 0.39 0.49
CAN 95.5 95.2 91.6 91.8 76.4 78.5 0.19 0.60
JAN 94.7 91.7 89.5 88.0 74.2 76.8 0.24 0.49
CDAN 98.3 94 90.7 88.3 76.7 77.2 0.22 0.49
Avg. 95.9 93.7 90.7 90.0 76.0 77.9 0.22 0.49
PAS (our) 0.299 0.251 | 0.235 0.27 | 0.223  0.297
DeiT-small TRANS-DA 97.5 97.5 93.7 95.2 78.3 80.8 0.41 0.52
PAS (our) 0.344 0303 | 0.263 0.322 024  0.332
VT-ADA 97.3 96.0 96.2 94.1 78.9 81.8 0.55 0.49
ViT-Base CSTrans 98.2 98.2 97.0 97.2 80.0 82.0 0.54 0.62
Avg. 97.8 97.1 96.6 95.7 79.5 81.9 0.55 0.54
PAS (our) 0.399 0.359 | 0304 0.377 | 0.262 0.363

Table 9: Target accuracy of domain adaptation methods and transferability scores for the DomainNet
dataset. The highest values are highlighted. * Oracle baseline that considers the target labels.

Target C P R S Correlation with PAS
Source P R S C R S C P S C P R Pearson  Spearman

DAN 459 508  56.1 388 498 459 [ 552 590 555 439 408 389 0.54 0.49

DANN 417 507 550 | 379 508 450 | 543 556 545 | 444 368 401 0.53 0.46

JAN 472 54.2 56.6 40.5 52.6 46.2 56.7 59.9 555 45.1 43.0 419 0.63 0.58

CDAN 45.1 55.6 57.2 40.4 53.6 46.4 56.8 58.4 55.7 46.1 40.5 43.0 0.60 0.50

ResNet-50 | MCD 44.6 52.0 55.5 37.5 51.5 44.6 529 54.5 52.0 44.0 41.6 39.7 0.57 0.47

MDD 48.6 583 58.7 429 53.7 46.5 59.5 59.4 57.7 475 42.6 46.2 0.60 0.59

MCC 454 54.4 58.1 37.7 53.1 46.3 55.7 59.8 56.2 42.6 39.9 37.0 0.57 043

Avg. 455 537 567 | 394 522 458 | 559 581 553 | 448 407 410 0.58 0.53
PAS (our) | 0.108 0.145 0.088 | 0.08 0.159 0.083 | 0.128 0.184 0.107 | 0.088 0.098 0.114

WinTR 532 70.5 51.6 62.0 71.3 50.1 63.1 559 48.8 65.3 54.1 70.1 0.32 0.54

DOT 51.3 67.6 51.7 585 70.4 472 62.3 57 494 64.6 49.9 65.4 0.42 0.52

DeiT-Small | CDTRANS 52.5 68.3 532 554 67.4 48 61.5 56.8 472 64.3 53.2 66.2 0.41 0.55

' Avg. 523 688 522 | 586 697 484 | 623 566 485 | 647 524 672 0.39 0.57
PAS (our) 0.13  0.152 0.093 | 0.091 0175 0.086 | 0.139 0218 0.11 | 0.096 0.117 0.127

DOT 536 712 552 61.8 722 505 629 569 493 [ 673 529 698 0.27 0.45

CDTRANS | 572 726 581 629 721 539 | 662 615 529 | 69.0 59.0 725 0.33 0.43

DeiT-Base | WINTR 56.3 72.8 57.3 69.2 74.4 55.6 68.2 59.8 55.1 69.9 58.1 73.1 0.20 0.39

' Avg 55.7 72.2 56.9 64.6 72.9 533 65.8 59.4 524 68.7 56.7 71.8 0.26 0.44
PAS (our) 0.126  0.147 0.086 | 0.085 0.165 0.079 | 0.137 0211 0.102 | 0.089 0.119 0.112

SAMB 605 778 618 [ 638 771 56.8 68 647 584 I 64 775 0.38 043

DoT 613 796 604 | 732 792 59.7 | 711 632 564 | 726 619 783 0.24 0.31

ViT-Base | SSRT 602 758 598 | 61.7 714 552 | 699 660 589 | 706 622 732 0.50 0.46

' Avg. 60.7 71.7 60.7 66.2 75.9 572 69.7 64.6 579 71.4 62.7 76.3 0.37 0.35
PAS (our) 0.185 0226 0.162 | 0.145 0.233 0.128 | 0.223 0.282 0.176 | 0.151 0.171 0.17
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i '5 =)

(a) Predicted: Car |True: Bottle (b) Predicted: Horse |True: Per-
son Car

(g) Predicted: Bike |True: Bus (h) Predicted: Car |True: Person (i) Predicted: Motorcycle |True:
Person

Figure 6: Examples of images misclassified by the domain adaptation method DANN in the dataset
P (Pascal VOC 2012) of the ImageCLEF benchmark
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