
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PAS: ESTIMATING THE TARGET ACCURACY BEFORE
DOMAIN ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The goal of domain adaptation is to make predictions for unlabeled samples from a
target domain with the help of labeled samples from a different but related source
domain. The performance of domain adaptation methods is highly influenced
by the choice of source domain and pre-trained feature extractor. However, the
selection of source data and pre-trained model is not trivial due to the absence
of a labeled validation set for the target domain and the large number of avail-
able pre-trained models. In this work, we propose Potential Adaptability Score
(PAS), a novel score designed to estimate the transferability of a source domain
set and a pre-trained feature extractor to a target classification task before actually
performing domain adaptation. PAS leverages the generalization power of pre-
trained models and assesses source-target compatibility based on the pre-trained
feature embeddings. We integrate PAS into a framework that indicates the most
relevant pre-trained model and source domain among multiple candidates, thus
improving target accuracy while reducing the computational overhead. Extensive
experiments on image classification benchmarks demonstrate that PAS correlates
strongly with actual target accuracy and consistently guides the selection of the
best-performing pre-trained model and source domain for adaptation.

1 INTRODUCTION

Figure 1: The Potential Adaptability Score
(PAS) estimates the performance of adapting to an
unlabeled target domain given a pre-trained fea-
ture extractor and a labeled source domain. It
helps in the selection of the best pre-trained model
and best source domain among many candidates
and is highly correlated with the final target accu-
racy after domain adaptation.

In many real applications, data is collected from
diverse domains, e.g., data obtained from dif-
ferent equipment, collecting procedures, geo-
graphic locations, or periods in time. Such
differences may lead to a distribution shift be-
tween the domains that must be assessed. Un-
supervised domain adaptation is a paradigm
where only unlabeled data is available for the
domain of interest, the target domain. However,
labeled data is obtained from a related source
domain.

One factor that affects the success of domain
adaptation methods is the choice of the source
domain data. Domain adaptation methods often
rely on many assumptions about the relation-
ship between source and target domains, like
the existence of invariant discriminative fea-
tures, the similarity of the label distribution, or
the invariance of the task. Unfortunately, as the
labels for the target samples are not available,
such assumptions may not be verified in real
applications for selecting the most appropriate
source data. Violating the data assumptions and
considering an irrelevant or distant source domain may introduce noise and conflicting patterns dur-
ing the domain adaptation process. In the worst-case scenario, selecting an undesirable source do-
main may hurt the target domain performance, a scenario known as negative transfer Zhang et al.
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(2022). If many source domains are available, it is reasonable to assume that not all of them may
contribute equally to the target adaptation. Wisely selecting the source domain that may improve the
performance on the target data while avoiding negative transfer is an essential requirement in many
real-world applications.

Another key factor that influences the domain adaptation performance is the choice of the pre-trained
model. Pre-training on large-scale data allows the models to learn generic features and patterns
that are often transferable across domains and tasks, making them valuable for domain adaptation.
Recently, practitioners can choose from a vast number of publicly available pre-trained models,
spanning diverse architectures and training paradigms. Each pre-trained model may have its own
inductive bias and may capture distinct patterns in the data that may be more or less useful when
transferring knowledge between domains.

Figure 2: Source and target samples in the embed-
ding space of a pre-trained model. (top left) Ide-
ally, a target sample from a given class should be
more similar, and hence closer in the embedding
space of the pre-trained model, to a source sample
from the same class. (top right) If new discrim-
inative features need to be learned, the chances
of overfitting on the source domain during adap-
tation increase. (bottom) Illustration of the dis-
tances from a target sample to all source class cen-
troids. Our PAS score considers the relationship
between distances d1 and d2, which correspond to
the shortest and second shortest distances, respec-
tively.

Despite the importance of selecting a suitable
source data and a pre-trained model for the suc-
cess of domain adaptation, it is still an underex-
plored topic. Current methods of transferabil-
ity estimation aim to select the best pre-trained
model for transfer learning. However, these
methods are not applicable to the domain adap-
tation scenario since they require target labels
Bao et al. (2019); Nguyen et al. (2020); You
et al. (2021). One could employ such methods
for selecting the best pre-training model using
only the labeled source data and ignoring the
unlabeled target data. Nevertheless, consider-
ing the target data is essential, as transferring to
an easy target domain should lead to different
results than transferring to a harder one.

Another approach for the problem would be
performing domain adaptation for each com-
bination of available source domains and pre-
trained models, and applying some model se-
lection strategy Ericsson et al. (2023); You et al.
(2019). However, this approach is very time-
consuming since it needs to run a domain adap-
tation algorithm for each combination.

A third approach would be to measure the dis-
tance between source and target feature dis-
tributions in the embedding space of the pre-
trained model. This approach is also chal-
lenging as the popular metrics for the distance
between two feature distributions are symmet-
ric, e.g., Maximum Mean Discrepancy (MMD)
Gretton et al. (2006), Wasserstein distance Val-
lender (1974), and CORAL Sun & Saenko
(2016). However, a metric suitable for our sce-
nario should be asymmetric because transfer-
ring from an easy to a hard domain is more

challenging than transferring from the harder domain to the easier one.

In this work, we examine the interplay between the three key components in the domain adaptation
setting for classification: (1) target data, (2) source data, and (3) the pre-trained model. We propose
the Potential Adaptability Score (PAS), a simple but effective novel measure to quantify the po-
tential success of using a pre-trained model to transfer knowledge from a source domain to the target
domain. Our experiments show how the PAS score is highly correlated to the final target accuracy
after adaptation.
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To the best of our knowledge, this is the first proposal for transferability estimation for the domain
adaptation setting. We demonstrate how PAS can help to select the most relevant source domain
and/or pre-trained model among a set of candidates, indicating the options that are most likely to
lead to the best accuracy on the unlabeled target data (See an overview in figure 1.). Our framework
selects the most suitable options before actually performing domain adaptation, demanding fewer
computational resources and reducing the training time.

PAS leverages the generalization power of models pre-trained on a large-scale dataset, such as the
popular ImageNet-1k Deng et al. (2009). Specifically for domain adaptation, initializing with a good
pre-trained model appears to be a fundamental step in achieving a good transferability between do-
mains Peng et al. (2018); Tang & Jia (2023); Kim et al. (2022); Li et al. (2023); Teterwak et al.
(2023). We assume that a good pre-trained model can extract general discriminative features that
are robust across all domains. If this assumption is true, samples from the same class are expected
to be closer together in the embedding space generated by the pre-trained model, compared to sam-
ples from different classes, even in the presence of feature distribution shift. This ideal scenario is
illustrated in the top left of the figure 2. Otherwise, as shown in the example on the top right of the
figure, the model should learn new discriminative features during the adaptation from the limited la-
beled source data to enable the classification task, increasing the chances of overfitting to the source
domain. Our PAS score is inspired by the Silhouette score, used for assessing the consistency of
data clusters Rousseeuw (1987). We modify the original Silhouette score to measure the similarity
of the unlabeled target samples to some of the known source class clusters defined in the pre-trained
embedding space.

We summarize our contributions as follows:

• We propose PAS, a simple novel measure to quantify the potential contribution of a pre-
trained model and labeled source domain in the adaptation to an unlabeled target domain
before performing domain adaptation.

• We propose a framework to select the most relevant pre-trained model or source domain
from a collection of potential candidates for performing domain adaptation.

• We empirically validate our framework using different domain adaptation methods and
image classification benchmarks, and show how our score has a high correlation with the
target accuracy.

2 RELATED WORK

Unsupervised domain adaptation. The goal of unsupervised domain adaptation (UDA) is to
transfer the knowledge learned from a labeled domain to a different unlabeled target domain. Usu-
ally, this goal is achieved by learning a latent representation that is invariant across domains. Several
works minimize the distribution discrepancy on the representation using statically defined distance
metrics such as Maximum Mean Discrepancy (MMD) (e.g., DAN Long et al. (2015), DDC Tzeng
et al. (2014), JAN Long et al. (2017)), covariance (e.g., DCORAL Sun & Saenko (2016)), or Wasser-
stein distance (e.g., DeepJDOT Damodaran et al. (2018)). The popularization of generative models
inspired the proposal of methods that adopt adversarial learning to align data across different do-
mains. DANN Ganin et al. (2016), CDAN Long et al. (2018), and ADDA Tzeng et al. (2017) are
examples of widely adopted UDA methods that have shown promising results. Self-training is an-
other promising paradigm that exploits the pseudo-labels predicted for the target domain to enhance
the model. CST Liu et al. (2021), CRST Zou et al. (2019), FixMatch Sohn et al. (2020) and MCC Jin
et al. (2020) are examples of methods that explore pseudo-labeling. Most recently, with the dissemi-
nation of transformers and foundation models, new works explore the cross-attention mechanism to
propose transformer-based domain adaptation methods, such as PMTrans Zhu et al. (2023) and DoT
Ren et al. (2024). See Liu et al. (2022); Deng & Jia (2023); Alijani et al. (2024) for a comprehensive
survey on domain adaptation methods.

Pre-training and domain adaptation Recent works suggest that the choice of the pre-trained
feature extractor can significantly improve the result of domain adaptation methods. Teterwak et al.
(2023) show that simply adopting a model with better weight initialization can help the robustness
of a model to out-of-distribution samples. Similarly, Kim et al. (2022) empirically show that SOTA
pre-training outperforms SOTA domain adaptation methods even without access to a target domain.
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With a modern pre-trained backbone, older domain adaptation methods perform better than SOTA
methods, but no method is consistently better in all benchmarks, and negative transfer can occur.
Li et al. (2023) empirically show how, in some cases, the performance of the pre-trained model in
an unseen target domain is already decent. However, no single pre-trained model performs well
in all target datasets. Tang & Jia (2023) study the effects of pre-training on the domain adaptation
between synthetic and real images. Without pre-training, none of the methods considered in the
study outperformed the baseline trained only on the labeled source data. Other studies have also
proposed new datasets and pre-training techniques that achieve competitive performance in the target
domain Shen et al. (2022); Luo et al. (2024). We leverage the potential relationship between pre-
training and domain adaptation success to estimate transferability between domains.

Transferability estimation In the past years, many works have proposed scorees for quantita-
tively estimating the transferability of a pre-trained model to a target task. One of the primary
practical applications of such estimation is selecting the best pre-trained model for fine-tuning on
the target data. H-score Bao et al. (2019), NCE Tran et al. (2019), LEEP Nguyen et al. (2020) and
LogME You et al. (2021) are widely adopted transferability estimation scores. More closely related
to our proposal, some works propose scores for transferability estimation by examining the separa-
bility of classes in the embedding space encoded by the pre-trained model. Pándy et al. (2022) apply
the Bhattacharyya coefficient to quantify the target class separability. Similarly, Meiseles & Rokach
(2020) employ the Silhouette score to assess the transferability of time series data. The current
methods on transferability estimation focus on the transfer learning problem, where a pre-trained
model is adapted to a target task with a few labeled samples. Unfortunately, these methods can not
be applied to the domain adaptation problem, where the target labels are not available.

3 METHOD

3.1 DEFINITIONS

Unsupervised domain adaptation aims to transfer knowledge from a labeled source domain to an
unlabeled target domain in the presence of distribution shift. Let X ⊆ Rd define the input space and
Y = {1, . . . , C} the label space. The labeled source dataset is denoted by DS = {(xS

i , y
S
i )}

|DS |
i=1

and the unlabeled target dataset is denoted by DT = {xT
i }

|DT |
j=1 , with xS

i , x
T
i ∈ X and ySi ∈ Y .

SS
c denotes the set of source samples from class c. The source and target feature distributions are

sampled from different but related distributions, PS(X ) and PT (X ), respectively, being PS ̸= PT .
This scenario is also known as covariate shift. The goal is to learn a hypothesis h : X → Y that
performs well on the target domain.

Let θ be the parameters of a feature extractor fθ : X → Z pre-trained on a large-scale dataset.
zSi = fθ(x

S
i ) and zTi = fθ(x

T
i ) denote, respectively, the embedding of a source and a target sample

in the embedding space defined by fθ.

3.2 ASSUMPTIONS

We assume that a good pre-trained model fθ is able to extract a wide range of patterns and high-level
concepts from an input, including discriminative features that are invariant across different domains.
We expect that samples from the same class are more similar, having many concepts in common. As
a result, two samples from the same class should be closer together in the embedding space Z , no
matter the domain. On the other hand, samples from different classes should have very few concepts
in common, resulting in a dissimilar embedding representation. Due to the distribution shift between
the source and target domains, samples from the same domain are expected to have more concepts
in common and, therefore, have more similar representations than samples from different domains.
Such assumptions lead to a scenario similar to the one represented in the top left of figure 2. The
embeddings of samples from the same domain and class form a well-defined cluster in the space
encoded by fθ. Also, the clusters of samples from the same class, but different domains, are closer
together and, ideally, both are distant from all the other clusters.

To summarize, we assume that 1) a good pre-trained model can extract invariant discriminative
features, 2) samples from the same class are close in the embedding space, even if they are from
different domains, and 3) samples from different classes are distant in the embedding space. Similar

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

assumptions are proposed by Shen et al. (2022) when studying the generalization of embeddings to
out-of-distribution samples.

3.3 THE POTENTIAL ADAPTABILITY SCORE

We introduce the Potential Adaptability Score (PAS) as a measure of the distance from a labeled
source dataset to an unlabeled target dataset in the embedding space encoded by a pre-trained feature
extractor. The PAS score is based on the expectation that each target sample is as close as possible
to source samples from a single class and significantly distant from source samples from all other
classes in the embedding space defined by a pre-trained model fθ. This means that a target sample
is very similar to source samples from one class and has only a few concepts in common with source
samples from all other classes, as illustrated in figure 2. The higher the PAS value, the stronger
the evidence that the pre-trained model can identify invariant discriminative features between the
domains and, consequently, the higher the chances that the pre-trained feature extractor fθ has a
good transferability from the source to the target samples.

The samples are normalized to unit length, and the distance between samples is calculated using the
cosine distance. We assume that the samples from the class c ∈ Y are clustered together. We follow
Dhillon & Modha (2001) and compute the centroid of each source class cluster c so they represent
the vector that, on average, has the highest cosine similarity to all the samples in the cluster.

µc =

∑
xS
i ∈SS

c
fθ(x

S
i )

∥
∑

xS
i ∈SS

c
fθ(xS

i )∥
. (1)

For each target sample xT
i , we calculate its cosine distance to the centroid of each source cluster:

dist(fθ(xT
i ), µc) = 1− (fθ(x

T
i ) · µc). (2)

Let Di = {dist(fθ(xT
i ), µ1), ..., dist(fθ(xT

i ), µC)} be the set of distances of the j-th target sample
to all the source clusters and sort(di) the sorted version of the set in ascending order. We define
d1i = sort(Di)[1] and d2i = sort(Di)[2] as the shortest and the second shortest of the distances,
respectively, as illustrated at the bottom of figure 2.

Finally, the PAS score is defined by

PAS(θ,DS,DT) =
1

|DT |

|DT |∑
i

d2i − d1i
d2i

. (3)

Given one or more candidate source domains and a set of pre-trained models, the PAS score can
help to select the options that are more likely to lead to the best accuracy on the target samples.
The selection is done by computing the PAS score for each trio of target domain, source domain,
and pre-trained model. The combination with the highest PAS value is chosen. The selection is
done before any domain adaptation training. A single-source domain adaptation method can then be
trained with the selected source domain and pre-trained feature extractor.

Our PAS score is inspired by the Silhouette score, used for assessing the consistency of data clusters
Rousseeuw (1987). The Silhouette is a supervised score calculated by (b − a)/max{a, b}, where
a is the mean intra-cluster distance and b is the mean nearest-cluster distance for each sample. It
ranges from −1 to 1, with higher values indicating strong intra-class cohesion and clear inter-class
separation. Note that the Silhouette score is fully supervised and designed for IID samples and its
original form is not suitable for the domain adaptation problem. Our PAS score is an adaptation to
accommodate unlabeled target samples and domain shift. We consider the closest source cluster as
the true class for each target sample. This assumption makes a always smaller than b, and restricts
our score to the interval [0, 1]. The PAS score is close to one if the samples from the target domain
are similar to the centroid of the source class cluster. However, due to the mismatch between the
domains, the target samples exhibit a shift in the feature distribution, making a larger than in the IID
scenario. As a result, the values for our score are typically smaller. Alternative design choices are
discussed and evaluated in section 4.4.
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Figure 3: The correlation between the PAS score value and the target accuracy after the domain
adaptation. Each box summarizes the target accuracy of different domain adaptation methods for
a given source-target pair and a pre-trained feature extractor. Higher values for the PAS score are
strongly correlated with higher target accuracy.

4 EXPERIMENTS

Figure 4: The PAS value and target accuracy for
the DANN and MCC methods using different pre-
trained feature extractors. The PAS score can help
to select the feature extractor that leads to higher
accuracy. (left) A→C adaptation in the Office-
Home benchmark. (right) W→A adaptation in the
Office-31 benchmark.

Datasets. We evaluate PAS on four of the
most popular benchmarks for domain adapta-
tion: Office-Home Venkateswara et al. (2017),
Office-31 Saenko et al. (2010), ImageCLEF 1,
and DomainNet Peng et al. (2019). The bench-
marks’ statistics are listed in the table 2.

Domain adaptation methods Many domain
adaptation methods have been proposed in the
literature, but none have consistently outper-
formed the others in all benchmarks. For this
reason, we obtained the published target accu-
racies of a large variety of state-of-the-art meth-
ods. We consider methods based on different
paradigms and trained using diverse pre-trained
feature extractors. The accuracy values are ob-
tained from the popular open-source Tllib li-
brary for transfer learning Jiang et al. (2022);
Junguang Jiang (2020), Wang et al. (2023), and from the original papers.

Baselines To the best of our knowledge, PAS is the first asymmetric score proposed for trans-
ferability estimation for domain adaptation. We, therefore, compare PAS with the symetric met-
rics Maximum Mean Discrepancy (MMD) Gretton et al. (2012) and A-distance Peng et al.
(2019). The MMD distance is computed using a Gaussian kernel. Due to the quadratic nature of
MMD, we restrict its computation to a maximum of 10,000 randomly selected samples per domain
for the DomainNet benchmark. The A-distance is computed using C-Support Vector Classifica-
tion. We also report the results for an oracle baseline. The oracle is similar to PAS, defined as

1
|DT |

∑|DT |
i

d2i−d1i

max{d1i,d2i} . The d1i distance is the cosine distance to the centroid of the true class
of the target sample (not known in real scenarios), and d2i is the distance to the closest cluster’s
centroid that is not the true class. In the ideal case where the closest class centroid is the actual
class of the sample, the oracle is the same as PAS, otherwise, the oracle value is smaller. The oracle
validates the existing relationship between the clusters distance and the target accuracy.

1http://imageclef.org/2014/adaptation
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Table 1: Average target accuracy of domain adaptation methods and transferability scores for dif-
ferent image classification benchmarks. The highest values are highlighted. Our PAS has a high
correlation with the target accuracy and, for each target domain, attributes the highest value for the
source domain that leads to the highest target accuracy in most scenarios. * Oracle baseline that
considers the target labels.

(a) Office-Home

Target A C P R Correlation with acc.
Source C P R A P R A C R A C P Pearson Spearman
Acc. (avg.) 62.0 61.7 72.5 53.5 52.4 58.9 71.0 70.0 82.1 77.2 70.8 78.7
MMD (neg.) -0.135 -0.113 -0.052 -0.135 -0.097 -0.125 -0.113 -0.097 -0.033 -0.052 -0.125 -0.033 0.77 0.72
A-distance (neg.) -1.876 -1.810 -1.333 -1.876 -1.827 -1.814 -1.810 -1.827 -1.424 -1.333 -1.814 -1.424 0.76 0.78
PAS (our) 0.107 0.143 0.201 0.128 0.156 0.166 0.182 0.168 0.288 0.217 0.147 0.254 0.81 0.82

ResNet-50

Oracle* 0.041 0.037 0.093 -0.022 -0.018 -0.022 0.103 0.100 0.218 0.165 0.096 0.195 0.98 0.93
Acc. (avg.) 74.3 71.7 76.0 61.8 58.5 61.2 81.7 83.2 86.0 83.3 82.5 84.1
MMD (neg.) -0.106 -0.058 -0.024 -0.106 -0.077 -0.102 -0.058 -0.077 -0.026 -0.024 -0.102 -0.026 0.56 0.57
A-distance (neg.) -1.865 -1.761 -1.26 -1.865 -1.843 -1.796 -1.761 -1.843 -1.37 -1.26 -1.796 -1.37 0.52 0.57
PAS (our) 0.143 0.183 0.25 0.175 0.186 0.204 0.261 0.221 0.348 0.295 0.2 0.301 0.67 0.78

DeiT-Small

Oracle* 0.086 0.112 0.18 0.038 0.037 0.047 0.194 0.155 0.291 0.243 0.147 0.246 0.90 0.93
Acc. (avg.) 81.5 78.8 81.1 69.9 65.4 68.0 86.0 86.7 90.6 87.4 87.2 88.5
MMD (neg.) -0.099 -0.056 -0.028 -0.099 -0.091 -0.11 -0.056 -0.091 -0.023 -0.028 -0.11 -0.023 0.56 0.57
A-distance (neg.) -1.832 -1.81 -1.372 -1.832 -1.907 -1.823 -1.81 -1.907 -1.502 -1.372 -1.823 -1.502 0.48 0.51
PAS (our) 0.138 0.176 0.243 0.166 0.172 0.194 0.245 0.209 0.339 0.287 0.193 0.295 0.65 0.73

DeiT-Base

Oracle* 0.09 0.112 0.184 0.048 0.049 0.062 0.191 0.158 0.293 0.245 0.154 0.248 0.88 0.88
Acc. (avg.) 80.1 79.8 82.2 66.4 65.2 68.2 84.1 84.2 89.0 88.0 87.2 88.5
MMD (neg.) -0.116 -0.082 -0.032 -0.116 -0.115 -0.122 -0.082 -0.115 -0.034 -0.032 -0.122 -0.034 0.61 0.49
A-distance (neg.) -1.885 -1.883 -1.348 -1.885 -1.927 -1.862 -1.883 -1.927 -1.515 -1.348 -1.862 -1.515 0.53 0.59
PAS (our) 0.172 0.198 0.262 0.182 0.199 0.217 0.251 0.235 0.357 0.294 0.219 0.316 0.68 0.83

ViT-Small

Oracle* 0.132 0.147 0.212 0.084 0.102 0.113 0.211 0.195 0.321 0.26 0.189 0.285 0.87 0.92
Acc. (avg.) 83.0 82.7 84.5 73.2 72.2 74.4 88.3 88.6 91.4 90.2 89.5 90.8
MMD (neg.) -0.101 -0.069 -0.031 -0.101 -0.106 -0.11 -0.069 -0.106 -0.025 -0.031 -0.11 -0.025 0.59 0.57
A-distance (neg.) -1.85 -1.845 -1.389 -1.85 -1.952 -1.885 -1.845 -1.952 -1.595 -1.389 -1.885 -1.595 0.47 0.51
PAS (our) 0.254 0.28 0.357 0.262 0.271 0.296 0.361 0.339 0.462 0.405 0.316 0.417 0.76 0.85

ViT-Base

Oracle* 0.215 0.233 0.311 0.173 0.188 0.207 0.317 0.295 0.425 0.37 0.286 0.382 0.88 0.92
Acc. (avg.) 88.5 87.7 87.9 78.3 77.1 78.2 91.5 91.9 94.2 92.9 93.0 92.8
MMD (neg.) -0.081 -0.085 -0.039 -0.081 -0.104 -0.097 -0.085 -0.104 -0.033 -0.039 -0.097 -0.033 0.48 0.45
A-distance (neg.) -1.853 -1.892 -1.401 -1.853 -1.95 -1.917 -1.892 -1.95 -1.57 -1.401 -1.917 -1.57 0.42 0.37
PAS (our) 0.232 0.251 0.327 0.231 0.244 0.269 0.323 0.318 0.43 0.37 0.294 0.384 0.72 0.72

Swin-Base

Oracle* 0.198 0.214 0.287 0.162 0.177 0.195 0.295 0.282 0.403 0.343 0.27 0.356 0.83 0.81

(b) Office-31
Target A D W Correlation with acc.
Source D W A W A D Pearson Spearman
Acc. (avg.) 71.8 70.6 90.5 100.0 91.9 98.3
MMD (neg.) -0.145 -0.165 -0.145 -0.046 -0.165 -0.046 0.71 0.72
A-distance (neg.) -2.00 -2.00 -2.00 -1.783 -2.00 -1.783 0.72 0.83
PAS (our) 0.265 0.239 0.286 0.454 0.236 0.423 0.73 0.66

ResNet-50

Oracle* 0.192 0.166 0.246 0.445 0.188 0.407 0.80 0.83
Acc. (avg.) 77.7 77.6 94.7 99.8 94.65 98.5
MMD (neg.) -0.123 -0.129 -0.123 -0.058 -0.129 -0.058 0.66 0.84
A-distance (neg.) -2.00 -1.994 -2.00 -1.969 -1.994 -1.969 0.65 0.60
PAS (our) 0.283 0.266 0.304 0.472 0.278 0.447 0.72 0.94

DeiT-Small

Oracle* 0.2 0.193 0.263 0.465 0.239 0.438 0.80 1.00
Acc. (avg.) 81.3 82.0 96.8 100.0 97.9 99.2
MMD (neg.) -0.113 -0.134 -0.113 -0.074 -0.134 -0.074 0.54 0.60
A-distance (neg.) -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 0.0 0.0
PAS (our) 0.268 0.241 0.304 0.443 0.251 0.418 0.66 0.71

DeiT-Base

Oracle* 0.212 0.192 0.273 0.44 0.224 0.414 0.73 0.89
Acc. (avg.) 83.5 82.2 98.6 100.0 97.7 99.2
MMD (neg.) -0.175 -0.197 -0.175 -0.098 -0.197 -0.098 0.56 0.84
A-distance (neg.) -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 0.0 0.0
PAS (our) 0.283 0.27 0.302 0.509 0.276 0.473 0.61 0.94

ViT-Small

Oracle* 0.23 0.22 0.286 0.506 0.256 0.467 0.69 1.00
Acc. (avg.) 84.0 85.0 97.2 100.0 96.8 99.3
MMD (neg.) -0.098 -0.118 -0.098 -0.071 -0.118 -0.071 0.57 0.72
A-distance (neg.) -2.00 -2.00 -2.00 -1.953 -2.00 -1.953 0.64 0.72
PAS (our) 0.423 0.395 0.453 0.59 0.412 0.558 0.71 0.83

ViT-Base

Oracle* 0.373 0.347 0.434 0.589 0.393 0.554 0.79 0.94
Acc. (avg.) 86.2 86.3 99.7 100.0 99.4 99.5
MMD (neg.) -0.168 -0.169 -0.168 -0.086 -0.169 -0.086 0.51 0.60
A-distance (neg.) -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 0.0 0.0
PAS (our) 0.361 0.349 0.399 0.589 0.374 0.56 0.62 0.89

Swin-Base

Oracle* 0.321 0.313 0.388 0.589 0.366 0.558 0.69 0.89

(c) ImageCLEF
Target C I P Correlation with acc.
Source I P C P C I Pearson Spearman
Acc. (avg.) 95.9 93.7 90.7 90.0 76.0 77.9
MMD (neg.) -0.074 -0.097 -0.074 -0.022 -0.097 -0.022 -0.17 -0.12
A-distance (neg.) -1.583 -1.731 -1.583 -0.807 -1.731 -0.807 -0.24 -0.12
PAS (our) 0.299 0.251 0.235 0.27 0.223 0.297 0.22 0.49

ResNet-50

Oracle* 0.287 0.243 0.195 0.254 0.111 0.2 0.84 0.71
Acc. (avg.) 97.5 97.5 93.7 95.2 78.3 80.8
MMD (neg.) -0.072 -0.081 -0.072 -0.02 -0.081 -0.02 -0.17 -0.11
A-distance (neg.) -1.417 -1.748 -1.417 -0.807 -1.748 -0.807 -0.07 -0.11
PAS (our) 0.344 0.303 0.263 0.322 0.24 0.332 0.41 0.52

DeiT-Small

Oracle* 0.333 0.293 0.239 0.31 0.169 0.25 0.83 0.83
Acc. (avg.) 97.8 97.1 96.6 95.7 79.5 81.9
MMD (neg.) -0.078 -0.095 -0.078 -0.022 -0.095 -0.022 -0.13 -0.12
A-distance (neg.) -1.483 -1.714 -1.483 -0.655 -1.714 -0.655 -0.14 -0.12
PAS (our) 0.399 0.359 0.304 0.377 0.262 0.363 0.55 0.54

ViT-Base

Oracle* 0.391 0.352 0.295 0.37 0.205 0.286 0.84 0.83

(d) DomainNet

Target C P R S Correlation with acc.
Source P R S C R S C P S C P R Pearson Spearman
Acc. (avg.) 45.5 53.7 56.7 39.4 52.2 45.8 55.9 58.1 55.3 44.8 40.7 41.0
MMD (neg.) -0.113 -0.158 -0.079 -0.113 -0.075 -0.108 -0.158 -0.075 -0.173 -0.079 -0.108 -0.173 0.04 0.20
A-distance (neg.) -1.789 -1.73 -1.638 -1.789 -1.656 -1.777 -1.73 -1.656 -1.821 -1.638 -1.777 -1.821 0.50 0.45
PAS (our) 0.108 0.145 0.088 0.08 0.159 0.083 0.128 0.184 0.107 0.088 0.098 0.114 0.58 0.53

ResNet-101

Oracle* -0.109 -0.124 -0.042 -0.06 -0.024 -0.04 0.037 0.092 0.031 -0.087 -0.11 -0.156 0.70 0.67
Acc. (avg.) 52.3 68.8 52.2 58.6 69.7 48.4 62.3 56.6 48.5 64.7 52.4 67.2
MMD (neg.) -0.128 -0.146 -0.088 -0.128 -0.052 -0.16 -0.146 -0.052 -0.186 -0.088 -0.16 -0.186 0.26 0.28
A-distance (neg.) -1.784 -1.734 -1.655 -1.784 -1.639 -1.768 -1.734 -1.639 -1.823 -1.655 -1.768 -1.823 0.30 0.33
PAS (our) 0.13 0.152 0.093 0.091 0.175 0.086 0.139 0.218 0.11 0.096 0.117 0.127 0.39 0.57

DeiT-Small

Oracle* -0.125 -0.118 -0.055 -0.066 -0.015 -0.051 0.031 0.093 0.015 -0.12 -0.163 -0.183 -0.19 -0.17
Acc. (avg.) 55.7 72.2 56.9 64.6 72.9 53.3 65.8 59.4 52.4 68.7 56.7 71.8
MMD (neg.) -0.123 -0.153 -0.095 -0.123 -0.06 -0.171 -0.153 -0.06 -0.227 -0.095 -0.171 -0.227 0.19 0.35
A-distance (neg.) -1.796 -1.746 -1.655 -1.796 -1.682 -1.79 -1.746 -1.682 -1.838 -1.655 -1.79 -1.838 0.26 0.37
PAS (our) 0.126 0.147 0.086 0.085 0.165 0.079 0.137 0.211 0.102 0.089 0.119 0.112 0.26 0.44

DeiT-Base

Oracle* -0.115 -0.097 -0.044 -0.047 0.004 -0.04 0.044 0.105 0.022 -0.109 -0.162 -0.154 -0.17 -0.08
Acc. (avg.) 60.7 77.7 60.7 66.2 75.9 57.2 69.7 64.6 57.9 71.4 62.7 76.3
MMD (neg.) -0.14 -0.157 -0.108 -0.14 -0.116 -0.175 -0.157 -0.116 -0.25 -0.108 -0.175 -0.25 0.07 0.15
A-distance (neg.) -1.814 -1.771 -1.686 -1.814 -1.734 -1.807 -1.771 -1.734 -1.859 -1.686 -1.807 -1.859 0.18 0.21
PAS (our) 0.185 0.226 0.162 0.145 0.233 0.128 0.223 0.282 0.176 0.151 0.171 0.17 0.37 0.35

ViT-Base

Oracle* -0.003 0.018 0.042 0.012 0.066 0.007 0.135 0.184 0.103 -0.021 -0.075 -0.062 -0.13 -0.08
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Table 2: Statistics of the benchmarks used in the experiments.

Dataset #Samples #Classes Domains

Office-Home 15,588 65 A (Art), C (Clipart), P (Product), R (Real-world)
Office-31 4,110 31 A (Amazon), D (DSLR), W (Webcam)
ImageCLEF 1,800 12 C (Caltech-256), I (ImageNet ILSVRC 2012), P (Pascal VOC 2012)
DomainNet 569,010 345 C (Clipart), P (Painting), R (Real), S (Sketch)

Table 3: Correlation with the average target accuracy after adaptation. Showing Pearson correlation
/ Spearman’s rank correlation.

Office-Home Office-31 ImageCLEF DomainNet Total

MMD 0.55 / 0.51 0.45 / 0.53 -0.14 / -0.08 -0.09 / -0.03 0.37 / 0.37
A-distance 0.32 / 0.17 0.26 / 0.35 -0.13 / -0.07 0.07 / 0.06 0.04 / -0.16
PAS (our) 0.76 / 0.81 0.63 / 0.78 0.44 / 0.60 0.53 / 0.56 0.83 / 0.88
Oracle* 0.89 / 0.90 0.71 / 0.86 0.78 / 0.85 0.21 / 0.21 0.88 / 0.91

4.1 SELECTION OF THE SOURCE DOMAIN

The results for the four benchmark datasets are presented in Table 1 (a) - (d). For each source-target
pair in the benchmarks, we group the domain adaptation methods using the same pre-trained feature
extractor and report their average target accuracy, followed by the baselines and our PAS score.
We highlight the highest values among the different choices of source domains. We also report
the correlation (Pearson and Spearman’s rank correlation) between the average target accuracy and
the scores. The detailed results for each individual domain adaptation method are presented in the
Supplementary Material A.1.

We report in Table 3 the overall correlation for all scenarios of each benchmark (all target domains,
source domains and pre-trained models). The results show that the PAS score is strongly correlated
with target accuracy. We observe an overall Spearman’s rank correlation of 0.88 over all the results.

The most important results are reported in Table 4, where we present the correlation for each target
domain. This correlation is the most useful for users in real-world scenarios. Given a target domain
of interest and many options of source domains and pre-trained models, we show that our PAS
score has a strong correlation with the final target accuracy. The empirical results indicate that our
proposed PAS score is effective in selecting the best source domain among many candidates.

We summarize our results in Figure 3. Each box in the graph represents the target accuracy of dif-
ferent domain adaptation methods using the same pre-trained backbone for a source-target domains
pair. We observe that higher PAS values are consistently related to high accuracy on the target
domain. This indicates that PAS may be useful not only for selecting the most appropriate source
domain, but also to estimate beforehand the success of the domain adaptation.

The results on the ImageCLEF benchmark illustrate the scenarios where the PAS score is not ef-
fective. This benchmark (especially the P domain) contains images with multiple objects. In many
cases, the sample is very close to the centroid of one class that is indeed present in the image, but
the true label is related to another object in the scene. In these cases, the PAS for the sample is

Table 4: Correlation with the average target accuracy after adaptation for each target domain. Each
cell considers the results for a target domain and all available source domains and pre-trained mod-
els. Showing Pearson correlation / Spearman’s rank correlation.

Office-Home Office-31 ImageCLEF DomainNet
A C P R A D W C I P C P R S

MMD 0.41 / 0.26 0.28 / 0.21 0.41 / 0.29 0.25 / 0.21 -0.02 / -0.15 0.44 / 0.60 0.45 / 0.36 0.54 / 0.49 -0.03 / -0.22 0.61 / 0.60 -0.56 / -0.42 0.33 / 0.20 0.23 / 0.47 -0.38 / -0.42
A-distance 0.12 / -0.13 -0.46 / -0.43 0.15 / -0.09 -0.05 / -0.26 -0.19 / -0.31 0.27 / 0.28 0.14 / 0.07 0.43 / 0.38 0.10 / 0.05 0.64 / 0.60 0.09 / -0.04 0.35 / 0.17 0.27 / 0.30 -0.10 / -0.32
PAS (our) 0.70 / 0.70 0.81 / 0.78 0.79 / 0.74 0.75 / 0.75 0.65 / 0.81 0.70 / 0.81 0.70 / 0.75 0.82 / 0.76 0.73 / 0.66 0.87 / 0.83 0.71 0.67 0.75 / 0.76 0.59 / 0.71 0.48 / 0.35
Oracle* 0.82 / 0.85 0.91 / 0.90 0.84 / 0.81 0.80 / 0.87 0.74 / 0.88 0.73 / 0.90 0.74 / 0.78 0.81 / 0.76 0.74 / 0.66 0.97 / 0.94 0.36 / 0.50 0.71 / 0.62 0.61 / 0.72 0.28 / 0.33
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high, showing a high similarity with one source class, but the final accuracy is low, as the sample is
classified as the wrong class. We show examples in the supplementary material A.2

4.2 THE SELECTION OF THE PRE-TRAINED FEATURE EXTRACTOR

Figure 5: The PAS value varying with
the number of samples for the Office-
Home. The PAS values are quite robust
to varying numbers of samples. Most
importantly, the relative order of PAS
values for different source domains re-
mains unchanged.

The results in the literature presented in table 1 com-
pare methods with different backbones and demonstrate
that PAS can be applied to select the most suitable pre-
trained feature extractor. However, they do not con-
sider the impact of different pre-trained feature extrac-
tors over the same domain adaptation method. For an-
alyzing the robustness of PAS over different choices
of pre-trained methods, we keep the domain adaptation
method fixed and vary the pre-trained backbone. We se-
lect two of the most challenging domain adaptation sce-
narios: the A→C adaptation in the Office-Home bench-
mark and W→A adaptation in the Office-31 benchmark.
We show results for two popular domain adaptation meth-
ods: DANN Ganin et al. (2016) and MCC Jin et al. (2020).
We train each method following the code provided by the
Tllib library Jiang et al. (2022); Junguang Jiang (2020)
with the default hyperparameters. The results are shown
in figure 4. Higher PAS values are attributed to pre-
trained models that lead to higher target accuracy before
performing domain adaptation, indicating that our score

may be applied for the selection of the pre-trained model.

4.3 THE IMPACT OF THE SAMPLE SIZE

The time complexity of the PAS computation is linear in the number of samples. This can be limiting
for a quick evaluation of larger datasets and scenarios with many candidate source domains.

To optimize the computation time, we show that our score can be calculated using only a subset of
the samples. We randomly select a subset of the samples of both source and target domains. The
results are presented in the figure 5. The PAS values are quite robust to varying numbers of samples.
Most importantly, the relative order of PAS values for different source domains remains unchanged.

4.4 DESIGN CHOICES

Office-Home Office-31 ImageCLEF DomainNet Total

PAS 0.76 0.63 0.44 0.58 0.79
Euclidean distance 0.70 0.69 0.27 0.54 0.68
Average cosine distance 0.66 0.52 0.12 0.48 0.66

Table 5: Pearson correlation between the target accu-
racy and the PAS score, which considers the cosine dis-
tance to the cluster centroid, and modifications using
the Euclidean distance to the centroid and the average
cosine distance to the source cluster samples. The max-
imum correlation value for each benchmark is high-
lighted. The design choices of PAS lead to the higher
overall correlation between the score and the target ac-
curacy.

The PAS score considers the cosine dis-
tance between each target sample and the
source class centroids. We experimentally
evaluated alternative design choices and
compare the correlation between the score
and the target accuracy. The results are
shown in table 5 and demonstrate how the
overall correlation between the target ac-
curacy and PAS, as proposed, is higher.

We change PAS to consider the Euclidean
distance instead of the cosine distance.
In the domain adaptation setting, the co-
sine distance has advantages over using
the Euclidean distance in the original la-
tent space, as it ignores the magnitude of
representations (e.g., a difference in the illumination in images that reflects on the intensity of the
features detected by the model) and focuses only on the differences in the angles (the difference
between classes). Also, the cosine distance is less affected by the high-dimensionality of the data
(the phenomenon known as curse of dimensionality Bellman (1966)).
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We also modify PAS to use the average pairwise distance to the source samples instead of the dis-
tance to the source cluster centroid. The pairwise distance is a good summarization of the closeness
of the target sample to the source samples of the class. On the other hand, the distance to the centroid
measures how well the target sample is aligned to the dimensions of greatest alignment between the
samples in the cluster, as the centroid formulation 1/n

∑|DS |
i=1 xS

i makes samples pointing in similar
directions add up in that direction.

5 CONCLUSION AND FUTURE WORK

We present Potential Adaptability Score (PAS), a new score to select, among many candidates, the
source domain or pre-trained model that are likely to lead to the best target accuracy when used for
unsupervised domain adaptation. We evaluate our score on four of the most popular benchmarks for
domain adaptation and show that it has a high correlation with the target accuracy and selects the
best source domain in most cases. We also show that PAS can be computed more efficiently with
fewer samples.

We suggest two improvements for future work. Although our score could be applied to any classifi-
cation task, we focus on vision problems, specifically the image classification task, which is the most
common task in the domain adaptation literature. Showing its efficacy on other modalities and tasks
demands the availability of a diverse set of benchmarks and specialized domain adaptation methods.
Also, we focus on the single-source domain adaptation problem, where only a single source do-
main is considered during the training. Future works may extend our work to select multiple source
domains, in the setting known as multi-source domain adaptation.

ETHICS STATEMENT

Although our work does not directly address issues of social harm, we acknowledge that our PAS
score is not immune to bias and fairness concerns. If a biased model achieves higher accuracy on the
target data, our framework is likely to select it as the best pre-trained model for domain adaptation.
In our experiments, we mitigate such risks by focusing on pre-trained models and benchmarks that
are widely adopted within the research community.
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A SUPPLEMENTARY MATERIAL

A.1 RESULTS

The tables 6, 7, 8, and 9 show the extended results of table 1. The accuracy for each method is listed,
as well as its accuracy correlation with the scores.

Table 6: Target accuracy of domain adaptation methods and transferability scores for the Office-
Home dataset. The highest values are highlighted. * Oracle baseline that considers the target labels.

Target A C P R Correlation with PAS
Source C P R A P R A C R A C P Pearson Spearman
DAN 57.7 54.9 66.2 45.6 40.0 49.1 67.7 63.8 77.9 73.9 66.0 74.5 0.74 0.81
DANN 55.8 55.8 71.1 53.8 55.1 60.7 62.6 67.3 81.1 74.0 67.3 77.9 0.91 0.85
ADDA 59.7 61.4 71.1 52.6 52.5 58.6 62.9 68.0 80.2 74.0 68.8 77.6 0.84 0.80
JAN 60.6 60.5 71.0 50.8 49.6 55.9 71.9 68.3 80.5 76.5 68.7 76.9 0.78 0.81
CDAN 62.0 62.4 75.5 55.2 54.3 61.0 72.4 69.7 83.8 77.6 70.9 80.5 0.85 0.83
MCD 63.7 61.5 74.5 51.7 52.8 58.4 72.2 69.5 81.8 78.2 70.8 78.0 0.78 0.83
BSP 61.0 60.9 73.4 54.7 55.2 60.3 67.7 69.4 81.2 76.2 70.9 80.2 0.85 0.80
AFN 65.0 65.0 72.3 53.2 51.4 57.8 72.7 71.3 82.4 76.8 72.3 77.9 0.73 0.78
MDD 63.5 62.5 73.5 56.2 54.8 60.9 75.4 72.1 84.5 79.6 73.8 79.9 0.80 0.78
MCC 67.5 66.6 74.4 58.4 54.8 61.4 79.6 77.0 85.6 83.0 78.5 81.8 0.70 0.76
FixMatch 65.3 67.2 74.9 56.4 56.4 63.5 76.4 73.8 84.3 79.9 71.2 80.6 0.81 0.87
Avg. 62.0 61.7 72.5 53.5 52.4 58.9 71.0 70.0 82.1 77.2 70.8 78.7 0.81 0.82

ResNet-50

PAS (our) 0.107 0.143 0.201 0.128 0.156 0.166 0.182 0.168 0.288 0.217 0.147 0.254
TRANS-DA 69.7 68.6 73.5 57.7 56.3 58.5 80.8 83 85 81.5 80.1 81.5 0.69 0.79
WinTR 76.8 73.4 77.2 65.3 60 63.1 84.1 84.5 86.8 85 84.4 85.7 0.64 0.78
DOT 74.9 72.4 76.4 63.7 61 64.1 82.2 84.3 86.7 84.3 83 84.8 0.68 0.79
CDTrans 75.6 72.5 77 60.6 56.7 59.1 79.5 81 85.5 82.4 82.3 84.4 0.63 0.76
Avg. 74.3 71.7 76.0 61.8 58.5 61.2 81.7 83.2 86 83.3 82.5 84.1 0.67 0.78

DeiT-Small

PAS (our) 0.143 0.183 0.25 0.175 0.186 0.204 0.261 0.221 0.348 0.295 0.2 0.301
DOT 80 78.2 79.7 69 65.4 67.3 85.6 85.2 89.3 87 86.4 87.9 0.66 0.75
CDTrans 81.5 79.6 82 68.8 63.3 66 85 87.1 90.6 86.9 87.3 88.2 0.62 0.73
PMTrans 83 78.5 81.7 71.8 67.4 70.7 87.3 87.7 92 88.3 87.8 89.3 0.67 0.73
Avg. 81.5 78.8 81.1 69.9 65.4 68.0 86.0 86.7 90.6 87.4 87.2 88.5 0.65 0.73

DeiT-Base

PAS (our) 0.138 0.176 0.243 0.166 0.172 0.194 0.245 0.209 0.339 0.287 0.193 0.295
SSRT 79.9 80.7 82 67 66 69.4 84.2 84.3 89.9 88.3 87.6 88.3 0.69 0.84
SAMB 80.2 78.8 82.4 65.7 64.4 67 84 84.1 88 87.7 86.7 88.6 0.67 0.82
Avg. 80.1 79.8 82.2 66.4 65.2 68.2 84.1 84.2 89.0 88.0 87.2 88.5 0.68 0.83ViT-Small

PAS (our) 0.172 0.198 0.262 0.182 0.199 0.217 0.251 0.235 0.357 0.294 0.219 0.316
SAMB 80.8 81.6 84.1 68.7 68.7 70.9 85 86 91.1 88.9 88.3 90.2 0.77 0.88
DoT 81.8 81.2 82.9 72.9 70.6 72.2 89.8 89.6 90.8 90.3 90.1 92.4 0.75 0.84
TVT 77.4 75.6 79.1 67.1 64.9 67.2 83.5 85 88 87.3 85.6 86.6 0.78 0.85
SSRT 85.1 85 85.7 75.2 74.2 78.6 89 88.3 91.8 91.1 90 91.3 0.76 0.87
BCAT 84.2 84.1 85.7 74.2 74.5 74.8 90.6 90.9 92.2 90.9 89.9 90.8 0.74 0.83
PMTrans 88.9 88.5 89.5 81.2 80 82.4 91.6 91.6 94.5 92.4 93 93.4 0.74 0.84
Avg. 83.0 82.7 84.5 73.2 72.2 74.4 88.3 88.6 91.4 90.2 89.5 90.8 0.76 0.85

ViT-Base

PAS (our) 0.254 0.28 0.357 0.262 0.271 0.296 0.361 0.339 0.462 0.405 0.316 0.417
PMTrans 88.4 87.9 89 81.3 80.4 80.9 92.9 93.4 94.8 92.8 93.2 93 0.75 0.72
BCAT 88.6 87.4 86.7 75.3 73.7 75.4 90 90.3 93.5 92.9 92.7 92.5 0.68 0.74
Avg. 88.5 87.7 87.9 78.3 77.1 78.2 91.5 91.9 94.2 92.9 93.0 92.8 0.72 0.72Swin-Base

PAS (our) 0.232 0.251 0.327 0.231 0.244 0.269 0.323 0.318 0.43 0.37 0.294 0.384
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Table 7: Target accuracy of domain adaptation methods and transferability scores for the Office-31
dataset. The highest values are highlighted. * Oracle baseline that considers the target labels.

Target A D W Correlation with PAS
Source D W A W A D Pearson Spearman
DANN 73.3 70.4 83.6 100.0 91.4 97.9 0.78 0.66
ADDA 69.6 72.5 90.0 99.7 94.6 97.5 0.67 0.60
BSP 74.1 73.8 88.2 100.0 92.7 97.9 0.75 0.66
DAN 66.9 65.2 87.3 100.0 84.2 98.4 0.83 0.83
JAN 69.2 71.0 89.4 100.0 93.7 98.4 0.70 0.60
CDAN 73.4 70.4 89.9 100.0 93.8 98.5 0.71 0.66
MCD 68.3 67.6 87.3 100.0 90.4 98.5 0.76 0.66
AFN 72.9 71.1 94.4 100.0 94.0 98.9 0.67 0.83
MDD 76.6 72.2 94.4 100.0 95.6 98.6 0.65 0.66
MCC 75.5 74.2 95.6 99.8 94.1 98.4 0.66 0.83
FixMatch 70.0 68.1 95.4 100.0 86.4 98.2 0.75 0.83
Avg. 71.1 70.0 89.6 99.9 90.6 98.1 0.73 0.66

ResNet-50

PAS (our) 0.265 0.239 0.286 0.454 0.236 0.423
TRANS-DA 77 77.1 94.8 100 95.8 98.8 0.69 0.71
CDTrans 78.4 78 94.6 99.6 93.5 98.2 0.74 0.94
Avg. 77.7 77.6 94.7 99.8 94.65 98.5 0.72 0.94DeiT-Small

PAS (our) 0.283 0.266 0.304 0.472 0.278 0.447
CDTrans 81.1 81.9 97 100 96.7 99 0.69 0.83
PMTrans 81.4 82.1 96.5 100 99 99.4 0.64 0.71
Avg. 81.3 82.0 96.8 100.0 97.9 99.2 0.66 0.71DeiT-Base

PAS (our) 0.268 0.241 0.304 0.443 0.251 0.418
SSRT 83.5 82.2 98.6 100 97.7 99.2 0.61 0.94ViT-Small PAS (our) 0.283 0.27 0.302 0.509 0.276 0.473
DoT 85.1 86.8 96.7 100 96.6 99.4 0.74 0.83
TVT 84.9 86.1 96.4 100 96.4 99.4 0.75 0.75
SSRT 79.2 79.9 95.8 100 95.7 99.2 0.72 0.83
BCAT 84.9 85.8 97.5 100 96.1 99.1 0.73 0.83
PMTrans 85.7 86.3 99.4 100 99.1 99.6 0.62 0.83
Avg. 84.0 85.0 97.2 100.0 96.8 99.3 0.71 0.83

ViT-Base

PAS (our) 0.423 0.395 0.453 0.59 0.412 0.558
PMTrans 86.7 86.5 99.8 100 99.5 99.4 0.61 0.83
BCAT 85.7 86.1 99.6 100 99.2 99.5 0.63 0.89
Avg. 86.2 86.3 99.7 100 99.4 99.5 0.62 0.89Swin-Base

PAS (our) 0.361 0.349 0.399 0.589 0.374 0.56

A.2 EXAMPLES OF SAMPLES IN THE ImageCLEF BENCHMARK

We present some examples of when the PAS score fails to predict the target accuracy. The figure 6
shows examples of misclassified images from the P (Pascal VOC 2012) domain of the ImageCLEF
benchmark. Many images contain more than one object. The sample may be very similar to a class
present in the image. However, the true class refers to another object also contained in the image. In
such cases, the PAS value is high, but the accuracy is low.
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Table 8: Target accuracy of domain adaptation methods and transferability scores for the Image-
CLEF dataset. The highest values are highlighted. * Oracle baseline that considers the target labels.

Target C I P Correlation with PAS
Source I P C P C I Pearson Spearman
RTN 95.3 92.2 86.9 86.8 72.7 75.6 0.29 0.49
MADA 96.0 92.2 88.8 87.9 75.2 75.0 0.20 0.26
iCAN 94.7 92 89.9 89.7 78.5 79.5 0.23 0.49
CDAN-E 97.7 94.3 91.3 90.7 74.2 77.7 0.27 0.49
SymNets 97.0 96.4 93.4 93.6 78.7 80.2 0.17 0.60
MEDA 95.7 95.5 92.2 92.5 78.5 79.7 0.16 0.60
SPL 96.7 96.3 95.7 94.5 80.5 78.3 0.02 0.26
DS-c 92.8 91.3 87.3 86.7 70.4 78.7 0.39 0.49
CAN 95.5 95.2 91.6 91.8 76.4 78.5 0.19 0.60
JAN 94.7 91.7 89.5 88.0 74.2 76.8 0.24 0.49
CDAN 98.3 94 90.7 88.3 76.7 77.2 0.22 0.49
Avg. 95.9 93.7 90.7 90.0 76.0 77.9 0.22 0.49

ResNet-50

PAS (our) 0.299 0.251 0.235 0.27 0.223 0.297
TRANS-DA 97.5 97.5 93.7 95.2 78.3 80.8 0.41 0.52DeiT-small PAS (our) 0.344 0.303 0.263 0.322 0.24 0.332
VT-ADA 97.3 96.0 96.2 94.1 78.9 81.8 0.55 0.49
CSTrans 98.2 98.2 97.0 97.2 80.0 82.0 0.54 0.62
Avg. 97.8 97.1 96.6 95.7 79.5 81.9 0.55 0.54ViT-Base

PAS (our) 0.399 0.359 0.304 0.377 0.262 0.363

Table 9: Target accuracy of domain adaptation methods and transferability scores for the DomainNet
dataset. The highest values are highlighted. * Oracle baseline that considers the target labels.

Target C P R S Correlation with PAS
Source P R S C R S C P S C P R Pearson Spearman
DAN 45.9 50.8 56.1 38.8 49.8 45.9 55.2 59.0 55.5 43.9 40.8 38.9 0.54 0.49
DANN 41.7 50.7 55.0 37.9 50.8 45.0 54.3 55.6 54.5 44.4 36.8 40.1 0.53 0.46
JAN 47.2 54.2 56.6 40.5 52.6 46.2 56.7 59.9 55.5 45.1 43.0 41.9 0.63 0.58
CDAN 45.1 55.6 57.2 40.4 53.6 46.4 56.8 58.4 55.7 46.1 40.5 43.0 0.60 0.50
MCD 44.6 52.0 55.5 37.5 51.5 44.6 52.9 54.5 52.0 44.0 41.6 39.7 0.57 0.47
MDD 48.6 58.3 58.7 42.9 53.7 46.5 59.5 59.4 57.7 47.5 42.6 46.2 0.60 0.59
MCC 45.4 54.4 58.1 37.7 53.1 46.3 55.7 59.8 56.2 42.6 39.9 37.0 0.57 0.43
Avg. 45.5 53.7 56.7 39.4 52.2 45.8 55.9 58.1 55.3 44.8 40.7 41.0 0.58 0.53

ResNet-50

PAS (our) 0.108 0.145 0.088 0.08 0.159 0.083 0.128 0.184 0.107 0.088 0.098 0.114
WinTR 53.2 70.5 51.6 62.0 71.3 50.1 63.1 55.9 48.8 65.3 54.1 70.1 0.32 0.54
DOT 51.3 67.6 51.7 58.5 70.4 47.2 62.3 57 49.4 64.6 49.9 65.4 0.42 0.52
CDTRANS 52.5 68.3 53.2 55.4 67.4 48 61.5 56.8 47.2 64.3 53.2 66.2 0.41 0.55
Avg. 52.3 68.8 52.2 58.6 69.7 48.4 62.3 56.6 48.5 64.7 52.4 67.2 0.39 0.57

DeiT-Small

PAS (our) 0.13 0.152 0.093 0.091 0.175 0.086 0.139 0.218 0.11 0.096 0.117 0.127
DOT 53.6 71.2 55.2 61.8 72.2 50.5 62.9 56.9 49.3 67.3 52.9 69.8 0.27 0.45
CDTRANS 57.2 72.6 58.1 62.9 72.1 53.9 66.2 61.5 52.9 69.0 59.0 72.5 0.33 0.43
WINTR 56.3 72.8 57.3 69.2 74.4 55.6 68.2 59.8 55.1 69.9 58.1 73.1 0.20 0.39
Avg 55.7 72.2 56.9 64.6 72.9 53.3 65.8 59.4 52.4 68.7 56.7 71.8 0.26 0.44

DeiT-Base

PAS (our) 0.126 0.147 0.086 0.085 0.165 0.079 0.137 0.211 0.102 0.089 0.119 0.112
SAMB 60.5 77.8 61.8 63.8 77.1 56.8 68 64.7 58.4 71.1 64 77.5 0.38 0.43
DoT 61.3 79.6 60.4 73.2 79.2 59.7 71.1 63.2 56.4 72.6 61.9 78.3 0.24 0.31
SSRT 60.2 75.8 59.8 61.7 71.4 55.2 69.9 66.0 58.9 70.6 62.2 73.2 0.50 0.46
Avg. 60.7 77.7 60.7 66.2 75.9 57.2 69.7 64.6 57.9 71.4 62.7 76.3 0.37 0.35

ViT-Base

PAS (our) 0.185 0.226 0.162 0.145 0.233 0.128 0.223 0.282 0.176 0.151 0.171 0.17
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(a) Predicted: Car |True: Bottle (b) Predicted: Horse |True: Per-
son

(c) Predicted: Motorcycle |True:
Car

(d) Predicted: Plane |True: Bus (e) Predicted: Person |True: Bot-
tle

(f) Predicted: Dog |True: Bird

(g) Predicted: Bike |True: Bus (h) Predicted: Car |True: Person (i) Predicted: Motorcycle |True:
Person

Figure 6: Examples of images misclassified by the domain adaptation method DANN in the dataset
P (Pascal VOC 2012) of the ImageCLEF benchmark
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