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Abstract

Recovering capabilities in pruned language
models typically requires fine-tuning on large
datasets, but often yields suboptimal results
since the original pretraining data is unavail-
able for state-of-the-art foundation models. In
this paper, we propose Dual-lens, a data cura-
tion framework that identifies compact, high-
utility subsets from public corpora. Dual-lens
combines two criteria: CE-lens, which targets
samples the pruned model finds difficult, and
SAE-lens, which ensures semantic coverage via
sparse autoencoders trained on latent concept
distributions. By performing a pipelined fine-
tuning procedure with the two lens, the pro-
posed framework balances model-specific cor-
rection and representational diversity. Experi-
ments across various models, pruning schemes,
and downstream tasks show that Dual-lens
outperforms full-data tuning and recent base-
lines while using significantly less data, e.g.,
LLaMA 2.1 13B, pruned with 35% pruning ra-
tio, achieves a 22% improvement in accuracy
for downstream reasoning tasks using only 10%
of the full corpus of Alpaca dataset.

1 Introduction
Structured pruning (Ling et al., 2024; Hu et al.,
2025; Sandri et al., 2025) is a widely used strategy
to reduce the inference cost and memory footprint
of large language models (LL.Ms). However, prun-
ing often leads to substantial degradation in the rea-
soning and generalization capabilities of the orig-
inal models. A common remedy is to apply post-
pruning fine-tuning to recover the lost functionality.
Yet, this recovery process is fundamentally limited
by the inaccessibility of the original pretraining
data, which is typically proprietary or non-public.
In such settings, recovery efforts must rely on sub-
stitute datasets that are publicly available but only
loosely aligned with the training distribution of the
original model.

This gap between the demands of pruned mod-
els and available data introduces two critical chal-
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Figure 1: Left: Illustration of our subset—selection ob-
jective, which ranks and chooses the most informative
data points for efficient model tuning. Right: Rea-
soning performance improvement (RI), computed as
RI = Performg, — Performgypse; (higher scores indicate
better performance) , for each data selection method.
Here, Performyg, is the score obtained when fine-tuning
the LLM on the entire corpus, and Performgypse is the
score achieved when tuning with the selected subset.

lenges. First, pruned models exhibit predictive fail-
ures distinct from those of their full-capacity coun-
terparts due to reduced representational and com-
putational capacity. Even with existing data selec-
tion strategies such as scoring based on full-model
responses (Liu et al., 2024b; Wang et al., 2024) and
estimating the quality of data samples (Cao et al.,
2023), the selected samples could be misaligned
with the unique deficiencies of the pruned mod-
els, leading to suboptimal fine-tuning performance.
Second, public datasets are typically distribution-
ally divergent from the original pretraining data
and can also be noisy and redundant, which is par-
ticularly problematic when the pretraining corpus
is unavailable. These factors undermine the effec-
tiveness of unfiltered large-scale fine-tuning and
risk exhausting the limited capacity of the pruned
model on uninformative samples.

Based on these observations, we hypothe-
size that a compact, strategically curated sub-
set, selected using model-internal signals de-
rived from the pruned model’s own behavior can
achieve more efficient and effective knowledge re-




covery than full public dataset-based fine-tuning.
In particular, we identify two complementary selec-
tion objectives aligned with the challenges outlined
above without relying on the original training cor-
pus: one that prioritizes examples where the model
exhibits predictive uncertainty or failure, and an-
other that ensures broad coverage of the model’s
internal semantic representations.

In this paper, we propose Dual-lens, a data cu-
ration framework that constructs a compact, infor-
mative subset for post-pruning fine-tuning. The
framework integrates two complementary selec-
tion criteria that together capture distinct notions
of sample utility.First, which we refer to as the
CE-lens, identifies data points on which the pruned
model exhibits high cross-entropy loss, thereby tar-
geting samples that reveal its current weaknesses.
This allows the fine-tuning process to concentrate
on correcting specific knowledge gaps induced by
pruning.Second, the SAE-lens, selects samples that
preserve the internal concept distribution of the
given model. We achieve this by training Sparse
Autoencoders (SAEs) (Templeton et al., 2024; Kar-
vonen et al., 2024) on the hidden representations of
the pruned model to extract latent embeddings, then
selecting a subset whose embedding distribution
closely matches that of the full dataset.

These two criteria are intentionally orthogonal:
the CE-lens weights pedagogical value by targeting
difficult examples, while the SAE-lens promotes se-
mantic coverage by modeling diversity in the latent
concept space. Hence, the proposed framework
integrates the two methods by applying SAE-lens
first to identify a representative candidate pool, fol-
lowed by CE-lens to select the most informative
subset within it. It ensures that the selected data is
both broadly representative and sharply focused on
the residual deficiencies of the pruned model. Our
evaluation results show that the complementarity
is especially beneficial for aggressively pruned or
capacity-constrained models.

To our knowledge, this is the first framework
designed for knowledge recovery in pruned LLMs
using explicitly model-sensitive data selection. Our
contributions are summarized as follows:

1. We introduce Dual-lens, a principled data
curation framework that unifies two model-
aware criteria, cross entropy—based difficulty
and latent-space coverage via sparse autoen-
coders, for efficient post-pruning recovery.

2. We devise two complementary selection mech-

anisms: CE-lens, which prioritizes samples
that expose the residual deficiencies of the
pruned model, and SAE-lens, which ensures
semantic coverage by aligning the subset’s
latent distribution with that of the full cor-
pus. Their integration balances distributional
fidelity and corrective supervision, enabling
high-quality recovery with as little as 10% of
the original data.

3. We validate Dual-lens across various mod-
els (LLaMA 1B, 8B, 13B (Patterson et al.,
2022; Grattafiori et al., 2024; Touvron et al.,
2023)), pruning methods (LLM-Pruner (Ma
etal., 2023), FLAP (An et al., 2023)), datasets
(Alpaca (Taori et al., 2023), LaMini (Wu
et al., 2023), Dolly (Ouyang et al., 2022)), and
downstream tasks including reasoning (Clark
et al., 2019; Zellers et al., 2019; Bisk et al.,
2019; Clark et al., 2018) and math (Cobbe
et al., 2021; Lewkowycz et al., 2022). Dual-
lens consistently outperforms full-dataset tun-
ing and state-of-the-art data selection methods
such as IFD (Li et al., 2023a), SelectIT (Liu
et al., 2024a), and Nuggets (Li et al., 2023b),
achieving up to a 13% improvement in aver-
age reasoning accuracy and 25.5% reduction
in perplexity compared to the full corpus tun-
ing under a pruning ratio of 35%.

2 Related Work

2.1 Classical Data Selection

Prior work on data selection aimed to identify sam-
ples with high informational value for classifica-
tion. Davis and Hwang (1992) applied geometric
inversion techniques to select points near the deci-
sion boundary, improving classification accuracy
by 6%. In parallel, Lewis (1995) introduced uncer-
tainty sampling to identify difficult or ambiguous
examples, a strategy that remains conceptually in-
fluential for modern LLM training.

2.2 Instruction-Tuning Data Selection

Recent work have developed various techniques
to select a subset of data to train or finetune
LLMs. For example, Deita (Liu et al., 2024b) in-
troduces a framework that scores samples by com-
plexity, quality, and diversity. Other approaches
focus on diversity-aware objectives, such as de-
terminantal point processes over gradient embed-
dings (Wang et al., 2024), or clustering-based re-
finement (Yu et al., 2024). Several works aim



to identify difficult examples for instruction tun-
ing, including IFD (Li et al., 2023a), which pro-
poses an Instruction-Following Difficulty metric,
and Nuggets (Li et al., 2023b), a one-shot learning-
based method that selects samples based on their
anchor-set perplexity impact. SelectIT (Liu et al.,
2024a) combines uncertainty estimation with self-
reflection to score instruction samples. Instruction
Mining (Cao et al., 2023) uses natural language
indicators to identify useful subsets, motivated by
the double descent phenomenon.

While these methods are effective for general-
purpose instruction tuning, our work focuses on
pruned models and introduces model-aware sample
utility, i.e., difficulty from the loss landscape of a
pruned model (CE-lens), and the coverage of its
internal latent distribution (SAE-lens).

2.3 Curated Instruction-Tuning Benchmarks

Several public benchmarks provide -curated
instruction-tuning subsets. Alpagasus (Chen et al.,
2023) contains 9,229 samples distilled from Al-
paca using ChatGPT (OpenAl, 2023) to filter out
low-quality examples. LIMA (Zhou et al., 2023)
presents a 1,330-example dataset curated using the
Superficial Alignment Hypothesis (Kirstain et al.,
2021), focusing on high-quality, diverse instruc-
tions. While these datasets are valuable for evaluat-
ing tuning strategies, they are manually or heuristi-
cally filtered and not tailored to the needs of pruned
models. In contrast, Dual-lens provides a gener-
alizable, automated, and model-aware method for
targeted knowledge recovery.

3 Methods

3.1 Overview of Dual-lens Sampling

Figure 2 illustrates the overall architecture of the
Dual-lens framework, which constructs a compact
yet effective data subset for fine-tuning pruned lan-
guage models. Given a pruned model f and a pub-
licly available dataset D = {(z;,;)}%,, the ob-
jective is to identify a smaller subset Sgyal-tens C D
that enables efficient and high-quality recovery of
the model’s lost capabilities.

To this end, Dual-lens combines two distinct se-
lection strategies. The first strategy, called CE-lens,
identifies training examples on which the pruned
model incurs high cross-entropy loss, thereby cap-
turing its current predictive weaknesses. The sec-
ond strategy, called SAE-lens, selects examples
that maintain coverage of the underlying seman-

tic structure of the dataset, modeled through the
latent activations of the pruned network. These
two perspectives reflect complementary criteria,
i.e., (i) the difficulty from the predictive behavior
of the target model and (ii) the representativeness
from its internal feature space. By integrating these
two model-aware selection criteria, Dual-lens con-
structs a training subset that is both corrective and
distributionally grounded.

3.2 Cross Entropy-based Difficulty Selection
(CE-lens)

The CE-lens identifies samples that induce high
predictive loss under the pruned model, focusing
training on residual knowledge gaps. For each
input (z;,y;) € D, we compute the cross-entropy
loss:

i = Lee(f(xi),vi),

where f is the pruned model and ¢; reflects the
discrepancy between the predicted distribution and
the ground truth.

Samples are then ranked in descending order of
loss (from hardest to easiest), and the top M =
|pN | are selected, where p € (0,1) is a user-
defined selection ratio. The resulting subset is:

Sce = {(zi, i) € D|
¢; is among the top-M losses} .

By focusing fine-tuning on high-loss samples,
CE-lens encourages efficient gradient updates that
address the weaknesses of the pruned model.
Hence, this strategy helps the compact model make
better use of its limited capacity, resulting in im-
proved downstream performance.

We also explore a variant that computes ¢; using
the original pretrained model fz to examine how
loss perception differs before and after pruning (see
Section A.5). However, we observe that comput-
ing losses directly with the pruned model results
in better alignment with its post-pruning recovery
objective and leads to higher fine-tuning accuracy.

3.3 Latent Representation-based Coverage
Selection (SAE-lens)

The SAE-lens aims to build a representative train-
ing subset by preserving the latent concept distri-
bution of the full dataset. This is achieved by mod-
eling the internal activations of the pruned model
using a sparse autoencoder trained on Top- K neu-
ron activations from the final transformer layer.
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Figure 2: An overview of the Dual-lens framework for data selection. The top left panel illustrates CE-lens, where
data samples are prioritized based on their difficulty and the top right panel depicts SAE-lens, which selects a data
subset whose distribution closely matches that of the original corpus by utilizing a Sparse Autoencoder trained on
the activations of the pruned model. The bottom panel shows Dual-lens, which integrates both approaches: it first
uses SAE-lens to curate an initial set of samples and then applies CE-lens to further select a subset of these samples

for fine-tuning the pruned model.
Latent activation extraction. Let L denote the
final layer of the pruned model, and let act") (x)
represent the hidden state vector at that layer for
input z. Following Bhattacharyya and Kim (2025),
we extract the K most salient activation dimensions
based on their gradient magnitude, which helps
eliminate noisy components and emphasizes the
most informative features. Specifically, for each
input z, we compute the element-wise gradient of
the model’s output with respect to the activations at
layer L, and select the top K dimensions with the
highest magnitudes. This filtering is performed per-
example to focus on salient features. This yields:
A(z) = TopK(act(L) (z), K) S ]RK,
as a compact latent representation of x.
Training the sparse autoencoder. We train a
sparse autoencoder fy to encode and reconstruct
these latent representations. The encoder output
z = fg(A(x)) captures a low-dimensional, inter-
pretable embedding of the input:

z = ReLU(W.A(z) + be),

where W, € R Sparsity is enforced on z to
encourage factor disentanglement and compress
information into a small number of dimensions,
improving the interpretability and distributional

coverage of the selected representations. This acts
as a bottleneck that favors localized, semantically
distinct features. The encoder is trained on the full
dataset and used for all subsequent selection.
Subset selection via latent distribution align-
ment. After training the encoder, each data point
; in the dataset D = {(z;,y;)}2, is mapped to an
embedding z; = fg(A(z;)). Let Ssap C D be a
candidate subset. We denote by ﬁp and ﬁgs AE the
empirical distributions over the latent embeddings
{2}, for the full dataset and {27} 2., eS5ae fOT
the selected subset, respectively. To make Sgap
a distributionally faithful approximation of D, we
minimize the following discrepancy:

A(Ssag) =wp Dp (ﬁ'Du ﬁSSAE)
+ wks DKS(ﬁDa ﬁSSAE)’

where Dp denotes the Bhattacharyya distance
(global overlap) and Dgg the two-sample Kol-
mogorov—Smirnov statistic (maximum quantile dif-
ference). wp and w g are the weights correspond-
ing for the two metrics, respectively. Lower values
of A(Ssag) indicate better alignment with the la-
tent space distribution of the full dataset.

The subset Sg 4 is initialized by random sam-
pling and refined using a swap-based optimization



strategy that iteratively reduces A(Ssag). The re-
sulting selection maintains semantic diversity and
coverage, enabling robust post-pruning recovery
with a limited data budget.

3.4 Dual-lens Integration Strategy

The Dual-lens framework integrates the CE-lens
and SAE-lens to combine their complementary ob-
jectives. While each lens can be applied indepen-
dently, their integration provides a more balanced
training subset that addresses both local model de-
ficiencies and global distributional coverage.

Let Ssag C D denote the intermediate subset se-
lected using the SAE-lens, so that Ssag = [p' - N |
for a configurable ratio p’ € (0, 1), which approxi-
mates the latent embedding distribution of the full
dataset. From this subset, the CE-lens further iden-
tifies the most challenging samples based on their
and CE losses computed with the pruned model.
The final training subset Squal.tens is defined as:

Savat-tens = {(Zi, yi) € Ssag |
¢; is among the top-L losses}

where ¢; = Lcg(f(zi),y;) and L = | D, - N| for
a target data sampling ratio D,

This integration ensures that the selected data
subset is not only representative of the overall se-
mantic space but also aligned with the specific
learning needs of the pruned model.

4 Experiments

4.1 Experimental Setup

We evaluate Dual-lens on a diverse set of post-
pruning fine-tuning tasks using three LLaMA-
based models: LLaMA 2 13B (Touvron et al.,
2023), LLaMA 3.1 8B (Grattafiori et al., 2024),
and LLaMA 3.2 1B (Patterson et al., 2022). Un-
less otherwise specified, the hyperparameters for
data selection in Dual-Lens and for fine-tuning are
kept consistent across all methods to ensure a fair
and controlled comparison. For dataset curation
through Dual-lens and SAE-lens, we set wp = 0.7
and wg g = 0.3. To sample the initial Alpaca sub-
set with SAE via Dual-lens, we select 90% of the
original dataset. During finetuning the models, we
set the learning rate to Se-4, and lora ratio to 16.
To assess the generality of our approach across
pruning techniques, we employ two distinct meth-
ods: LLM-Pruner (Ma et al., 2023), a structured
pruning approach with tunable compression sched-
ules, and FLAP (An et al., 2023), a training-free

method that prioritizes architectural simplicity. The
pruning ratio associated with each method is de-
noted as P, throughout the remainder of the paper.
To benchmark the effectiveness of Dual-lens, we
compare against two classes of baselines. The first
includes full-dataset fine-tuning on Alpaca (Taori
et al., 2023), LaMini (Wu et al., 2023), and GPT-
J (Anand et al., 2023), as well as randomly sam-
pled subsets from Alpaca (denoted “Random Se-
lection”). The second group comprises state-of-the-
art data selection methods which represent diverse
selection philosophies, IFD (Li et al., 2023a), Se-
lectIT (Liu et al., 2024a), and Nuggets (Li et al.,
2023b). We evaluate performance on perplexity-
based benchmarks (WikiText) and on common-
sense reasoning datasets, including BoolQ (Clark
et al., 2019), HellaSwag (Zellers et al., 2019),
PIQA (Bisk et al., 2019), and both the ARC-Easy
and ARC-Challenge splits (Clark et al., 2018).

4.2 Overall Performance Evaluation

Table 1 presents the main evaluation results compar-
ing Dual-lens against full-data fine-tuning, random
sampling, and state-of-the-art (SOTA) data cura-
tion baselines across three pruned LLaMA variants
(1B, 8B, and 13B), all under a fixed pruning ratio of
P, = 0.35. Across all model sizes and tasks, Dual-
lens consistently achieves the best performance in
both perplexity (Wikitext) and average reasoning
accuracy. Compared to full-data tuning with Al-
paca, it reduces perplexity by 25.47% and improves
average reasoning accuracy by 75.80%. Relative to
the untuned pruned models, the gains are even more
pronounced: a 74.25% reduction in perplexity and
a 33.62% improvement in reasoning accuracy.

We observed that both individual components,
i.e., CE-lens and SAE-lens, also outperform full-
data baselines and SOTA subset selection methods.
SAE-lens usually yields better performance than
CE-lens, implying that semantic coverage plays a
slightly more critical role than difficulty targeting.
However, their combination consistently yields the
strongest results, confirming that the two strategies
are complementary and the Dual-lens integration
is effective for model-aware subset selection.

The SOTA baselines, i.e., SelectIT, IFD, and
Nuggets show only modest gains over random se-
lection but consistently fall short of Dual-lens as
these methods could be misaligned with the limited
capacity and altered representation space of the
pruned model. Random selection performs poorly
in most settings due to its lack of alignment with



Methods Wikitext | | HellaSwag T BoolQ T PIQA 1 ARC-e T ARC-c 1' Average Reasoning T
w, | Pruned Model (w/o tuning) | 141.32 30.17 55.99 62.57 40.07 19.88 J‘ 41.74
g |~ 7 7 Alpaca-Full ~ = | 2799 T | T 53487 T "5211 ~ 67247 4983~ T 1969 |, 4875 T T
1 LaMini-Full 28.21 52.41 51.83 57.30 48.36 19.55 1 45.89
s GPT-J-Full 26.00 54.57 51.70 55.99 37.85 21.33 ! 44.29
— |~ "Random Selection” ~ | — 9721 ~ [ ~ 5094 "~ 5318 ~ 59.24" " 4690 ~ 1983 ﬂ‘ T 4602
8 SelectIT 24.00 53.95 55.20 65.51 50.27 21.08 | 49.20
g IFD 24.47 54.17 50.18 65.50 50.04 22.35 48.45
< Nuggets 27.22 44.66 52.23 66.43 49.11 23.94 | 47.27
=0 CE-lens |~ 2590 [ T 5400 T 5709 T 65237 49778 T T2602 'T T T 75044 T 77
3 SAE-lens 24.20 55.01 57.03 67.63 50.23 26.27 : 51.23
~ Dual-lens 23.14 56.09 57.23 68.91 52.11 2719 52.30
w, | Pruned Model (w/o tuning) 56.79 35.59 56.76 66.10 41.79 25.17 45.08
2 |~ 7 7 Alpaca-Full ~ = | 2048 ~ | T 6298 ~ T6333 ~ 71227 5892 T 2867 j‘ S 5702
1 LaMini-Full 27.33 58.09 64.82 63.92 49.25 20.82 51.38
o GPLILFul | 3518 | STAL_ 6522 5407 4948 2037 | 4909
= Random Selection 41.09 51.39 62.74  49.05 40.29 18.20 1 4433
2 SelectIT 26.14 62.43 63.75 71.54 59.34 30.88 ! 57.59
; IFD 27.94 63.08 62.57 70.62 59.51 28.75 : 56.91
< Nuggets 24.26 64.35 63.61 71.60 60.73 30.38 58.13
= CElens  ~ |~ 2941 ~| T 6318 T 6425 T 7453 6324 T 4108 1 T T 76125 T T
3 SAE-lens 25.01 62.97 64.34 74.00 67.77 42.68 ! 62.35
~ Dual-lens 23.79 65.69 65.37  74.57 68.23 43.99 : 63.57
0 Pruned Model (w/o tuning) i 100.87 K 44.95 61.67 61.11 47.18 31.31 49.24
= Alpaca-Full 31.84 55.88 51.72 68.29 67.94 27.17 54.20
I LaMini-Full 32.96 50.96 47.07 62.93 61.19 26.16 ! 49.66
N GPT-J-Full 32.64 51.07 50.17 67.29 67.91 28.14 4‘ 52.92
@ Random Selection 35.17 50.17 48.11 63.27 62.69 33.20 51.49
« SelectIT 30.43 50.33 49.87 65.52 57.06 3244 51.04
— IFD 34.21 52.34 49.23 62.71 67.31 31.75 52.66
1 Nuggets | 3B | 4997 543l 6413 6866 3101 | 32
s CE-lens 20.50 68.15 67.30 75.24 72.75 42.65 65.21
S SAE-lens 20.39 68.32 66.75 75.84 73.98 43.34 65.65
- Dual-lens 19.17 68.75 67.63 7594 74.26 44.73 66.26

Table 1: Comparative evaluation of various dataset curation methods on pruned LLaMA models (P, = 0.35) using
LLM-Pruner for pruning. The Alpaca dataset served as the base for generating curated datasets for SAE-lens,
CE-lens, Dual-lens, and other compared data selection techniques.

the model’s post-pruning state. The one exception
is the 13B model, where random subsets relatively
perform well, likely due to higher representational
capacity or favorable hyperparameter interactions.
However, we note that the reported performance
reflects the best among multiple random trials; vari-
ability is high, making it unreliable in practice.
Notably, Dual-lens uses only 10% of the Alpaca
dataset, yet consistently outperforms full-data base-
lines, e.g., achieving superior performance only
with 0.22% of the data compared to the number of
samples in the full LaMini corpus. The findings
suggest that data quality, not merely scale, is a
more influential factor in restoring performance in
pruned models. It supports our core hypothesis that
a compact, model-aware subset can enable more
effective recovery than full-corpus fine-tuning.

4.3 Data Efficiency Across Sampling Budgets

Figure 3 presents the relationship between the pro-
portion of the dataset retained (D),,) and average
reasoning accuracy for three selection methods. We

observe that Dual-lens achieves strong performance
with remarkably little data: even at D), = 0.1
(10% of the data), it matches or exceeds the accu-
racy of full-data tuning in other methods. Accuracy
continues to improve moderately up to D), = 0.3,
but additional data yields diminishing returns. Be-
yond D,, = 0.5, all methods converge in perfor-
mance, suggesting that the benefits of targeted se-
lection diminish. These results show that dual-
lens can deliver near-peak performance with only
a small fraction of the training data.

4.4 Robustness Across Pruning Schemes

Table 2 evaluates Dual-lens and other data selec-
tion methods under two pruning strategies: LLM-
Pruner (Ma et al., 2023), a structured approach,
and FLAP (An et al., 2023), a training-free pruning
method. Despite producing different pruned archi-
tectures, Dual-lens consistently achieves the best
performance in both perplexity and reasoning ac-
curacy across both pruning schemes. These results
demonstrate that Dual-lens adapts effectively to
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Pruning Scheme: LLM-Pruner (P,=0.15)

Dataset Curation  Wikitext () Reasoning (1)
Full Data 16.01 66.70
Random 16.41 65.81
Nuggets 16.61 66.84
IFD 15.81 65.44
SelectIT 16.01 66.64
SAE 15.19 67.34
CE 16.46 65.19
Dual-lens 14.63 70.19
Pruning Scheme: FLAP (P,=0.15)

Full Data 13.95 66.10
Random 14.16 68.02
Nuggets 13.06 68.19
IFD 13.26 67.79
SelectIT 13.46 68.11
SAE-lens 13.19 69.22
CE-lens 13.99 66.29
Dual-lens 12.42 71.81

Table 2: Evaluation of different data selection methods
with LLaMA 3.1-8B under two pruning schemes (LLM-
Pruner (Ma et al., 2023) and FLAP (An et al., 2023)).
Metrics are reported on Wikitext (perplexity, lower is
better) and Reasoning tasks (accuracy, higher is better).
All subsets use 3k examples.

different pruned model states by leveraging model-
aware signals to guide data selection. In contrast,
full-data fine-tuning and other baselines show vari-
able performance across pruning settings, indicat-
ing less robustness to architectural differences.

4.5 Impact of Source Dataset Scale

Table 3 compares Dual-lens and its components
when constructed using 1k-sample subsets from
three datasets with varying original sizes: LaMini
(large), Alpaca (medium), and Dolly (small). We
observe a consistent performance trend: subsets
drawn from larger source datasets lead to stronger
results across all metrics. Specifically, Dual-lens
achieves the highest perrformance when selecting
from LaMini, followed by Alpaca and then Dolly.
This pattern holds for both SAE-lens and CE-lens
components as well. The results implies that model-

aware selection benefits from greater sample diver-
sity, enabling more effective coverage and correc-
tion of the pruned model’s deficiencies.

4.6 Generalization to Mathematical Tasks

We evaluate whether Dual-lens extends effectively
to more domain-specific tasks by applying it to
mathematical reasoning benchmarks: Minerva and
GSMB8K. Table 4 shows results for two pruned mod-
els (LLaMA 3.1 8B and LLaMA 2.1 13B) trained
on subsets selected using different methods, all
with a pruning ratio of P, = 0.25. Dual-lens
consistently outperforms all baselines, including
its individual components and SOTA data selec-
tion methods. On both models and benchmarks, it
achieves the highest accuracy, improving over the
untuned pruned models by 22.9x (8B) and 20.4x
(13B), and even surpassing full-data tuning. These
findings demonstrate that Dual-lens is not only ef-
fective for general language understanding tasks,
but also robust to domain shifts.

4.7 Effect of Pruning Ratio on Reasoning
Performance

Figure 4 illustrates the impact of the pruning ra-
tio (P,) on reasoning improvement for LLaMA
3.1 8B. As expected, CE-lens performance de-
clines steadily as P, increases, since heavily pruned
models lack the capacity to benefit from difficulty-
targeted supervision alone. In contrast, SAE-lens
exhibits a non-monotonic trend, e.g., its perfor-
mance peaks near P, = 0.55, suggesting that se-
mantic coverage becomes increasingly important
as model capacity diminishes. Dual-lens consis-
tently achieves the highest improvement at mod-
erate pruning levels (P, ~ 0.5), where both pre-
dictive correction and representational alignment
are valuable. However, at more extreme pruning
levels (P, > 0.55), SAE-lens slightly outperforms
Dual-lens, likely because the CE-based criterion
becomes less effective in identifying suitable sam-
ples for severely compressed models. This reflects
a sensitivity to the sampling ratio applied at each
stage of the pipeline; dynamically adapting this
ratio based on pruning severity is a promising di-
rection for future work.

5 Limitations

While Dual-lens demonstrates strong performance
across pruning levels, it currently employs a fixed
sampling ratio between the SAE-lens and CE-lens
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7220 7273 4174 63.05
72.63 7392 4259 63.90
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7509 7791  44.59 66.49
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72.09 7291  39.74 62.04

Table 3: Performance evaluation of the pruned LLaMA-3.1 8B model fine-tuned on Dual-lens, SAE-lens, and
CE-lens subsets derived from the Alpaca, LaMini, and Dolly datasets (1K samples from each dataset).
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Methods Minerva GSMSK

PM(w/o tuning) 4.29 1.00

ga |~ Full Dataset | 1342~ 3529
: Random Selection 12.79 36.99
e SelectIT 15.89 40.67
= IFD 14.92 37.99

S| Nuggets | 1499 3912
- SAE-lens (MATH) 16.45 41.01
CE-lens (MATH) 16.21 40.88
Dual-lens (MATH) 16.52 42.00
PM(w/o tuning) 6.12 1.10

e |  FullDataset | 17.01 4288 =
© | Random Selection 17.22 41.85
: SelectIT 18.95 42.44
S IFD 17.02 35.21
= Nuggets 18.73 41.00

= | SAE-lens (MATH) | 19.78 =~ 43.11
CE-lens (MATH) 19.10 42.69
Dual-lens (MATH) 21.26 44.01

Table 4: Performance evaluation of various methods,
including our approach, on the Minerva and GSM8K
benchmarks. Models were pruned using LLM-Pruner
with a pruning ratio (P,) of 0.25. The Camel-AI Math
dataset was utilized for training the models.

stages. This static composition may not be opti-
mal under all compression scenarios. In particular,
when models are aggressively pruned, CE-based
difficulty signals become less reliable due to re-
duced capacity, suggesting that dynamically adapt-
ing the lens weighting based on pruning severity

could further improve robustness and efficiency.

Additionally, the effectiveness of SAE-lens re-
lies on the assumption that the pruned model retains
a coherent latent space from which meaningful con-
cept representations can be extracted. While our
results show that this generally holds across moder-
ate pruning regimes, extremely compressed models
may exhibit degraded internal activations, poten-
tially limiting the representational fidelity required
for effective distributional alignment. Exploring
strategies to enhance or regularize latent structure
in such cases remains an open direction.

6 Conclusion

We introduced Dual-lens, a model-aware data cura-
tion framework for efficient post-pruning recovery
of language models. By combining CE-lens and
SAE-lens, targeting predictive weaknesses and pre-
serving latent semantic coverage, Dual-lens con-
structs compact subsets tailored to the residual ca-
pacity of pruned models. Extensive experiments
show that Dual-lens consistently outperforms full-
data fine-tuning and state-of-the-art selection meth-
ods, even when using only a fraction of the data.
These findings support our hypothesis that a com-
pact, model-guided subset can enable more effec-
tive recovery than conventional fine-tuning.
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A Appendix

A.1 Visualization of SAE-lens Selection

Figure 5 provides a qualitative comparison between
samples selected by SAE-lens and those chosen via
random sampling. The visualization indicates that
SAE-lens selects a more diverse and semantically
clustered set of samples, while random selection
yields broader, less coherent distributions. This
structural difference explains the performance gap
observed between the two methods.

Other [Not selected]
Random Selection
SAE-lens

Figure 5: UMAP visualization of instruction embed-
dings from the Alpaca dataset. Pink points represent
datapoints not selected by any method, blue points in-
dicate randomly selected datapoints, and violet points
denote datapoints selected using the SAE-lens.

A.2 Impact of Data Sampling Ratio

Figure 6 plots average reasoning performance
against the data sampling ratio (D)) for three se-
lection methods. Dual-lens achieves the highest
performance across most data budgets. However, at
very high sampling ratios (approaching 0.9), perfor-
mance differences among methods converge, sug-
gesting that when nearly all data is used, the impact
of selection strategies diminishes.

A.3 Sample Overlap Across Pruning Ratios

Figure 7 shows the overlap among the top 1K sam-
ples selected by CE-lens at varying pruning ratios
(P;). As expected, sample overlap is higher be-
tween closer pruning levels (e.g., 0.15 vs. 0.25)
than between more divergent ones (e.g., 0.15 vs.
0.35). This trend suggests that pruned models with
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Figure 6: Change in number of common samples with
varying number of selected samples.

similar capacity retain similar sensitivity patterns,
resulting in consistent loss-based rankings.

A4 Comparison with LIMA and
ALPAGASUS

Table 5 presents a comparative analysis of Dual-
lens and other SOTA models evaluated on the
LIMA and Alpagasus datasets, using controlled
dataset sizes (1k and 9k samples) to ensure fair
comparison. Despite the small budget, Dual-lens
demonstrates strong performance, indicating its
effectiveness at identifying informative samples.
Notably, Alpagasus was filtered using ChatGPT,
while LIMA was manually curated with 1k diverse
examples. These results suggest that Dual-lens can
match or exceed the different curation methods
through model-aware selection, even under strict
size constraints.

A.5 Dual-lens with Different Model Sources

Figure 8 examines the impact of lens source on
performance. Using CE-lens or SAE-lens derived
from the same model (original or pruned) consis-
tently yields better results than cross-model con-
figurations. For instance, training SAE-lens on
activations from LLaMA 3.2 1B provides stronger
results for that model than using activations from
LLaMA 3.1 8B. This suggests that model-specific
characteristics are best captured when lenses are
trained on the corresponding model.



Dataset . Data size | Wikitext |  HellaSwag T BoolQ T PIQA T ARC-e 1 ARC-c T Average Reasoning 1

LIMA T IK 4367 6542 61.07 7150 7276 41.93 62.54
fRandom T TIK T 4344 | T 65.12° T T 6244 ~ 7198 T 7310 T T 4049 ﬂ‘ T 6263 0
| IFD 1K 44.03 63.64 6222 7236 7357 4267 | 62.89
2 | Nuggets L IK 42.44 66.32 6196 72.57 7214 4250 | 63.09
S | SelectT L IK 41.09 65.71 6279 7187 7439 4233 | 63.42
" | SAE-lens Alpaca | 1K 32.18 67.11 6192 7260 7450 4327 63.89
% CE-lens Alpaca | 1K 33.80 66.25 6235 7220 7273 4174 | 63.05
2 | Dual-lens Alpaca 1K 32.01 6755 6338 7263 7392 4259 63.90
= | Alpagasus 9K 36.22 65.00 62.87 7263 7669 4345 64.13
< | ﬁaﬁd&ﬁ T T T T 9K T 73697 | T 6741 6321 T 72257 T 75772 7 4310 1 T T 76434 T T T
= I IFD 9K 40.11 65.86 6241 7243 7450 4319 63.68
3 3 | Nuggets oK 38.48 68.76 6351 7198 7740  43.19 64.97
' SelectIT oK 39.77 65.37 6207 7300 7587 4011 | 63.28
| SAE-lens Alpaca | 9K 33.57 67.66 6490 7433 7611 4226 65.05
| CE-lens Alpaca | 9K 35.41 66.32 63.83 7431 7471 4097 | 64.03
' Dual-lens " 32.03 7092 6734 7735 7791 4497 | 67.69

Table 5: Performance comparison of LIMA and Alpagasus datasets using an equal number of data instances
corresponding to their original sizes curated using Dual-lens and other SOTA techniques. Model pruning ratio (P,)
was set to 0.35.
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Figure 7: Visualization of common samples in different P, setting.
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