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Abstract001

Recovering capabilities in pruned language002
models typically requires fine-tuning on large003
datasets, but often yields suboptimal results004
since the original pretraining data is unavail-005
able for state-of-the-art foundation models. In006
this paper, we propose Dual-lens, a data cura-007
tion framework that identifies compact, high-008
utility subsets from public corpora. Dual-lens009
combines two criteria: CE-lens, which targets010
samples the pruned model finds difficult, and011
SAE-lens, which ensures semantic coverage via012
sparse autoencoders trained on latent concept013
distributions. By performing a pipelined fine-014
tuning procedure with the two lens, the pro-015
posed framework balances model-specific cor-016
rection and representational diversity. Experi-017
ments across various models, pruning schemes,018
and downstream tasks show that Dual-lens019
outperforms full-data tuning and recent base-020
lines while using significantly less data, e.g.,021
LLaMA 2.1 13B, pruned with 35% pruning ra-022
tio, achieves a 22% improvement in accuracy023
for downstream reasoning tasks using only 10%024
of the full corpus of Alpaca dataset.025

1 Introduction026

Structured pruning (Ling et al., 2024; Hu et al.,027

2025; Sandri et al., 2025) is a widely used strategy028

to reduce the inference cost and memory footprint029

of large language models (LLMs). However, prun-030

ing often leads to substantial degradation in the rea-031

soning and generalization capabilities of the orig-032

inal models. A common remedy is to apply post-033

pruning fine-tuning to recover the lost functionality.034

Yet, this recovery process is fundamentally limited035

by the inaccessibility of the original pretraining036

data, which is typically proprietary or non-public.037

In such settings, recovery efforts must rely on sub-038

stitute datasets that are publicly available but only039

loosely aligned with the training distribution of the040

original model.041

This gap between the demands of pruned mod-042

els and available data introduces two critical chal-043
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Figure 1: Left: Illustration of our subset–selection ob-
jective, which ranks and chooses the most informative
data points for efficient model tuning. Right: Rea-
soning performance improvement (RI), computed as
RI = Performfull−Performsubset (higher scores indicate
better performance) , for each data selection method.
Here, Performfull is the score obtained when fine-tuning
the LLM on the entire corpus, and Performsubset is the
score achieved when tuning with the selected subset.

lenges. First, pruned models exhibit predictive fail- 044

ures distinct from those of their full-capacity coun- 045

terparts due to reduced representational and com- 046

putational capacity. Even with existing data selec- 047

tion strategies such as scoring based on full-model 048

responses (Liu et al., 2024b; Wang et al., 2024) and 049

estimating the quality of data samples (Cao et al., 050

2023), the selected samples could be misaligned 051

with the unique deficiencies of the pruned mod- 052

els, leading to suboptimal fine-tuning performance. 053

Second, public datasets are typically distribution- 054

ally divergent from the original pretraining data 055

and can also be noisy and redundant, which is par- 056

ticularly problematic when the pretraining corpus 057

is unavailable. These factors undermine the effec- 058

tiveness of unfiltered large-scale fine-tuning and 059

risk exhausting the limited capacity of the pruned 060

model on uninformative samples. 061

Based on these observations, we hypothe- 062

size that a compact, strategically curated sub- 063

set, selected using model-internal signals de- 064

rived from the pruned model’s own behavior can 065

achieve more efficient and effective knowledge re- 066
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covery than full public dataset-based fine-tuning.067

In particular, we identify two complementary selec-068

tion objectives aligned with the challenges outlined069

above without relying on the original training cor-070

pus: one that prioritizes examples where the model071

exhibits predictive uncertainty or failure, and an-072

other that ensures broad coverage of the model’s073

internal semantic representations.074

In this paper, we propose Dual-lens, a data cu-075

ration framework that constructs a compact, infor-076

mative subset for post-pruning fine-tuning. The077

framework integrates two complementary selec-078

tion criteria that together capture distinct notions079

of sample utility.First, which we refer to as the080

CE-lens, identifies data points on which the pruned081

model exhibits high cross-entropy loss, thereby tar-082

geting samples that reveal its current weaknesses.083

This allows the fine-tuning process to concentrate084

on correcting specific knowledge gaps induced by085

pruning.Second, the SAE-lens, selects samples that086

preserve the internal concept distribution of the087

given model. We achieve this by training Sparse088

Autoencoders (SAEs) (Templeton et al., 2024; Kar-089

vonen et al., 2024) on the hidden representations of090

the pruned model to extract latent embeddings, then091

selecting a subset whose embedding distribution092

closely matches that of the full dataset.093

These two criteria are intentionally orthogonal:094

the CE-lens weights pedagogical value by targeting095

difficult examples, while the SAE-lens promotes se-096

mantic coverage by modeling diversity in the latent097

concept space. Hence, the proposed framework098

integrates the two methods by applying SAE-lens099

first to identify a representative candidate pool, fol-100

lowed by CE-lens to select the most informative101

subset within it. It ensures that the selected data is102

both broadly representative and sharply focused on103

the residual deficiencies of the pruned model. Our104

evaluation results show that the complementarity105

is especially beneficial for aggressively pruned or106

capacity-constrained models.107

To our knowledge, this is the first framework108

designed for knowledge recovery in pruned LLMs109

using explicitly model-sensitive data selection. Our110

contributions are summarized as follows:111

1. We introduce Dual-lens, a principled data112

curation framework that unifies two model-113

aware criteria, cross entropy–based difficulty114

and latent-space coverage via sparse autoen-115

coders, for efficient post-pruning recovery.116

2. We devise two complementary selection mech-117

anisms: CE-lens, which prioritizes samples 118

that expose the residual deficiencies of the 119

pruned model, and SAE-lens, which ensures 120

semantic coverage by aligning the subset’s 121

latent distribution with that of the full cor- 122

pus. Their integration balances distributional 123

fidelity and corrective supervision, enabling 124

high-quality recovery with as little as 10% of 125

the original data. 126

3. We validate Dual-lens across various mod- 127

els (LLaMA 1B, 8B, 13B (Patterson et al., 128

2022; Grattafiori et al., 2024; Touvron et al., 129

2023)), pruning methods (LLM-Pruner (Ma 130

et al., 2023), FLAP (An et al., 2023)), datasets 131

(Alpaca (Taori et al., 2023), LaMini (Wu 132

et al., 2023), Dolly (Ouyang et al., 2022)), and 133

downstream tasks including reasoning (Clark 134

et al., 2019; Zellers et al., 2019; Bisk et al., 135

2019; Clark et al., 2018) and math (Cobbe 136

et al., 2021; Lewkowycz et al., 2022). Dual- 137

lens consistently outperforms full-dataset tun- 138

ing and state-of-the-art data selection methods 139

such as IFD (Li et al., 2023a), SelectIT (Liu 140

et al., 2024a), and Nuggets (Li et al., 2023b), 141

achieving up to a 13% improvement in aver- 142

age reasoning accuracy and 25.5% reduction 143

in perplexity compared to the full corpus tun- 144

ing under a pruning ratio of 35%. 145

2 Related Work 146

2.1 Classical Data Selection 147

Prior work on data selection aimed to identify sam- 148

ples with high informational value for classifica- 149

tion. Davis and Hwang (1992) applied geometric 150

inversion techniques to select points near the deci- 151

sion boundary, improving classification accuracy 152

by 6%. In parallel, Lewis (1995) introduced uncer- 153

tainty sampling to identify difficult or ambiguous 154

examples, a strategy that remains conceptually in- 155

fluential for modern LLM training. 156

2.2 Instruction-Tuning Data Selection 157

Recent work have developed various techniques 158

to select a subset of data to train or finetune 159

LLMs. For example, Deita (Liu et al., 2024b) in- 160

troduces a framework that scores samples by com- 161

plexity, quality, and diversity. Other approaches 162

focus on diversity-aware objectives, such as de- 163

terminantal point processes over gradient embed- 164

dings (Wang et al., 2024), or clustering-based re- 165

finement (Yu et al., 2024). Several works aim 166
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to identify difficult examples for instruction tun-167

ing, including IFD (Li et al., 2023a), which pro-168

poses an Instruction-Following Difficulty metric,169

and Nuggets (Li et al., 2023b), a one-shot learning-170

based method that selects samples based on their171

anchor-set perplexity impact. SelectIT (Liu et al.,172

2024a) combines uncertainty estimation with self-173

reflection to score instruction samples. Instruction174

Mining (Cao et al., 2023) uses natural language175

indicators to identify useful subsets, motivated by176

the double descent phenomenon.177

While these methods are effective for general-178

purpose instruction tuning, our work focuses on179

pruned models and introduces model-aware sample180

utility, i.e., difficulty from the loss landscape of a181

pruned model (CE-lens), and the coverage of its182

internal latent distribution (SAE-lens).183

2.3 Curated Instruction-Tuning Benchmarks184

Several public benchmarks provide curated185

instruction-tuning subsets. Alpagasus (Chen et al.,186

2023) contains 9,229 samples distilled from Al-187

paca using ChatGPT (OpenAI, 2023) to filter out188

low-quality examples. LIMA (Zhou et al., 2023)189

presents a 1,330-example dataset curated using the190

Superficial Alignment Hypothesis (Kirstain et al.,191

2021), focusing on high-quality, diverse instruc-192

tions. While these datasets are valuable for evaluat-193

ing tuning strategies, they are manually or heuristi-194

cally filtered and not tailored to the needs of pruned195

models. In contrast, Dual-lens provides a gener-196

alizable, automated, and model-aware method for197

targeted knowledge recovery.198

3 Methods199

3.1 Overview of Dual-lens Sampling200

Figure 2 illustrates the overall architecture of the201

Dual-lens framework, which constructs a compact202

yet effective data subset for fine-tuning pruned lan-203

guage models. Given a pruned model f and a pub-204

licly available dataset D = {(xi, yi)}Ni=1, the ob-205

jective is to identify a smaller subset Sdual-lens ⊂ D206

that enables efficient and high-quality recovery of207

the model’s lost capabilities.208

To this end, Dual-lens combines two distinct se-209

lection strategies. The first strategy, called CE-lens,210

identifies training examples on which the pruned211

model incurs high cross-entropy loss, thereby cap-212

turing its current predictive weaknesses. The sec-213

ond strategy, called SAE-lens, selects examples214

that maintain coverage of the underlying seman-215

tic structure of the dataset, modeled through the 216

latent activations of the pruned network. These 217

two perspectives reflect complementary criteria, 218

i.e., (i) the difficulty from the predictive behavior 219

of the target model and (ii) the representativeness 220

from its internal feature space. By integrating these 221

two model-aware selection criteria, Dual-lens con- 222

structs a training subset that is both corrective and 223

distributionally grounded. 224

3.2 Cross Entropy-based Difficulty Selection 225

(CE-lens) 226

The CE-lens identifies samples that induce high 227

predictive loss under the pruned model, focusing 228

training on residual knowledge gaps. For each 229

input (xi, yi) ∈ D, we compute the cross-entropy 230

loss: 231

ℓi = LCE(f(xi), yi), 232

where f is the pruned model and ℓi reflects the 233

discrepancy between the predicted distribution and 234

the ground truth. 235

Samples are then ranked in descending order of 236

loss (from hardest to easiest), and the top M = 237

⌊ρN⌋ are selected, where ρ ∈ (0, 1) is a user- 238

defined selection ratio. The resulting subset is: 239

SCE = {(xi, yi) ∈ D |
ℓi is among the top-M losses} .

240

By focusing fine-tuning on high-loss samples, 241

CE-lens encourages efficient gradient updates that 242

address the weaknesses of the pruned model. 243

Hence, this strategy helps the compact model make 244

better use of its limited capacity, resulting in im- 245

proved downstream performance. 246

We also explore a variant that computes ℓi using 247

the original pretrained model ffull to examine how 248

loss perception differs before and after pruning (see 249

Section A.5). However, we observe that comput- 250

ing losses directly with the pruned model results 251

in better alignment with its post-pruning recovery 252

objective and leads to higher fine-tuning accuracy. 253

3.3 Latent Representation-based Coverage 254

Selection (SAE-lens) 255

The SAE-lens aims to build a representative train- 256

ing subset by preserving the latent concept distri- 257

bution of the full dataset. This is achieved by mod- 258

eling the internal activations of the pruned model 259

using a sparse autoencoder trained on Top-K neu- 260

ron activations from the final transformer layer. 261
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Figure 2: An overview of the Dual-lens framework for data selection. The top left panel illustrates CE-lens, where
data samples are prioritized based on their difficulty and the top right panel depicts SAE-lens, which selects a data
subset whose distribution closely matches that of the original corpus by utilizing a Sparse Autoencoder trained on
the activations of the pruned model. The bottom panel shows Dual-lens, which integrates both approaches: it first
uses SAE-lens to curate an initial set of samples and then applies CE-lens to further select a subset of these samples
for fine-tuning the pruned model.
Latent activation extraction. Let L denote the262

final layer of the pruned model, and let act(L)(x)263

represent the hidden state vector at that layer for264

input x. Following Bhattacharyya and Kim (2025),265

we extract the K most salient activation dimensions266

based on their gradient magnitude, which helps267

eliminate noisy components and emphasizes the268

most informative features. Specifically, for each269

input x, we compute the element-wise gradient of270

the model’s output with respect to the activations at271

layer L, and select the top K dimensions with the272

highest magnitudes. This filtering is performed per-273

example to focus on salient features. This yields:274

A(x) = TopK
(
act(L)(x), K

)
∈ RK ,275

as a compact latent representation of x.276

Training the sparse autoencoder. We train a277

sparse autoencoder fθ to encode and reconstruct278

these latent representations. The encoder output279

z = fθ(A(x)) captures a low-dimensional, inter-280

pretable embedding of the input:281

z = ReLU(WeA(x) + be),282

where We ∈ Rd×K . Sparsity is enforced on z to283

encourage factor disentanglement and compress284

information into a small number of dimensions,285

improving the interpretability and distributional286

coverage of the selected representations. This acts 287

as a bottleneck that favors localized, semantically 288

distinct features. The encoder is trained on the full 289

dataset and used for all subsequent selection. 290

Subset selection via latent distribution align- 291

ment. After training the encoder, each data point 292

xi in the dataset D = {(xi, yi)}Ni=1 is mapped to an 293

embedding zi = fθ(A(xi)). Let SSAE ⊂ D be a 294

candidate subset. We denote by P̂D and P̂SSAE the 295

empirical distributions over the latent embeddings 296

{zi}Ni=1 for the full dataset and {zj}(xj ,yj)∈SSAE for 297

the selected subset, respectively. To make SSAE 298

a distributionally faithful approximation of D, we 299

minimize the following discrepancy: 300

∆(SSAE) = wB DB

(
P̂D, P̂SSAE

)
+ wKS DKS

(
P̂D, P̂SSAE

)
,

301

where DB denotes the Bhattacharyya distance 302

(global overlap) and DKS the two-sample Kol- 303

mogorov–Smirnov statistic (maximum quantile dif- 304

ference). wB and wKS are the weights correspond- 305

ing for the two metrics, respectively. Lower values 306

of ∆(SSAE) indicate better alignment with the la- 307

tent space distribution of the full dataset. 308

The subset SSAE is initialized by random sam- 309

pling and refined using a swap-based optimization 310
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strategy that iteratively reduces ∆(SSAE). The re-311

sulting selection maintains semantic diversity and312

coverage, enabling robust post-pruning recovery313

with a limited data budget.314

3.4 Dual-lens Integration Strategy315

The Dual-lens framework integrates the CE-lens316

and SAE-lens to combine their complementary ob-317

jectives. While each lens can be applied indepen-318

dently, their integration provides a more balanced319

training subset that addresses both local model de-320

ficiencies and global distributional coverage.321

Let SSAE ⊂ D denote the intermediate subset se-322

lected using the SAE-lens, so that SSAE = ⌊ρ′ ·N⌋323

for a configurable ratio ρ′ ∈ (0, 1), which approxi-324

mates the latent embedding distribution of the full325

dataset. From this subset, the CE-lens further iden-326

tifies the most challenging samples based on their327

and CE losses computed with the pruned model.328

The final training subset Sdual-lens is defined as:329

Sdual-lens = {(xi, yi) ∈ SSAE |
ℓi is among the top-L losses}

330

where ℓi = LCE(f(xi), yi) and L = ⌊Dpr ·N⌋ for331

a target data sampling ratio Dpr.332

This integration ensures that the selected data333

subset is not only representative of the overall se-334

mantic space but also aligned with the specific335

learning needs of the pruned model.336

4 Experiments337

4.1 Experimental Setup338

We evaluate Dual-lens on a diverse set of post-339

pruning fine-tuning tasks using three LLaMA-340

based models: LLaMA 2 13B (Touvron et al.,341

2023), LLaMA 3.1 8B (Grattafiori et al., 2024),342

and LLaMA 3.2 1B (Patterson et al., 2022). Un-343

less otherwise specified, the hyperparameters for344

data selection in Dual-Lens and for fine-tuning are345

kept consistent across all methods to ensure a fair346

and controlled comparison. For dataset curation347

through Dual-lens and SAE-lens, we set wB = 0.7348

and wKS = 0.3. To sample the initial Alpaca sub-349

set with SAE via Dual-lens, we select 90% of the350

original dataset. During finetuning the models, we351

set the learning rate to 5e-4, and lora ratio to 16.352

To assess the generality of our approach across353

pruning techniques, we employ two distinct meth-354

ods: LLM-Pruner (Ma et al., 2023), a structured355

pruning approach with tunable compression sched-356

ules, and FLAP (An et al., 2023), a training-free357

method that prioritizes architectural simplicity. The 358

pruning ratio associated with each method is de- 359

noted as Pr throughout the remainder of the paper. 360

To benchmark the effectiveness of Dual-lens, we 361

compare against two classes of baselines. The first 362

includes full-dataset fine-tuning on Alpaca (Taori 363

et al., 2023), LaMini (Wu et al., 2023), and GPT- 364

J (Anand et al., 2023), as well as randomly sam- 365

pled subsets from Alpaca (denoted “Random Se- 366

lection”). The second group comprises state-of-the- 367

art data selection methods which represent diverse 368

selection philosophies, IFD (Li et al., 2023a), Se- 369

lectIT (Liu et al., 2024a), and Nuggets (Li et al., 370

2023b). We evaluate performance on perplexity- 371

based benchmarks (WikiText) and on common- 372

sense reasoning datasets, including BoolQ (Clark 373

et al., 2019), HellaSwag (Zellers et al., 2019), 374

PIQA (Bisk et al., 2019), and both the ARC-Easy 375

and ARC-Challenge splits (Clark et al., 2018). 376

4.2 Overall Performance Evaluation 377

Table 1 presents the main evaluation results compar- 378

ing Dual-lens against full-data fine-tuning, random 379

sampling, and state-of-the-art (SOTA) data cura- 380

tion baselines across three pruned LLaMA variants 381

(1B, 8B, and 13B), all under a fixed pruning ratio of 382

Pr = 0.35. Across all model sizes and tasks, Dual- 383

lens consistently achieves the best performance in 384

both perplexity (Wikitext) and average reasoning 385

accuracy. Compared to full-data tuning with Al- 386

paca, it reduces perplexity by 25.47% and improves 387

average reasoning accuracy by 15.80%. Relative to 388

the untuned pruned models, the gains are even more 389

pronounced: a 74.25% reduction in perplexity and 390

a 33.62% improvement in reasoning accuracy. 391

We observed that both individual components, 392

i.e., CE-lens and SAE-lens, also outperform full- 393

data baselines and SOTA subset selection methods. 394

SAE-lens usually yields better performance than 395

CE-lens, implying that semantic coverage plays a 396

slightly more critical role than difficulty targeting. 397

However, their combination consistently yields the 398

strongest results, confirming that the two strategies 399

are complementary and the Dual-lens integration 400

is effective for model-aware subset selection. 401

The SOTA baselines, i.e., SelectIT, IFD, and 402

Nuggets show only modest gains over random se- 403

lection but consistently fall short of Dual-lens as 404

these methods could be misaligned with the limited 405

capacity and altered representation space of the 406

pruned model. Random selection performs poorly 407

in most settings due to its lack of alignment with 408
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Methods Wikitext ↓ HellaSwag ↑ BoolQ ↑ PIQA ↑ ARC-e ↑ ARC-c ↑ Average Reasoning ↑
L

L
aM

A
3.

2
1B

|P
r

=
0.

35
Pruned Model (w/o tuning) 141.32 30.17 55.99 62.57 40.07 19.88 41.74

Alpaca-Full 27.99 54.87 52.11 67.24 49.83 19.69 48.75
LaMini-Full 28.21 52.41 51.83 57.30 48.36 19.55 45.89
GPT-J-Full 26.00 54.57 51.70 55.99 37.85 21.33 44.29

Random Selection 97.21 50.94 53.18 59.24 46.90 19.83 46.02
SelectIT 24.00 53.95 55.20 65.51 50.27 21.08 49.20

IFD 24.47 54.17 50.18 65.50 50.04 22.35 48.45
Nuggets 27.22 44.66 52.23 66.43 49.11 23.94 47.27
CE-lens 25.90 54.09 57.09 65.23 49.78 26.02 50.44

SAE-lens 24.20 55.01 57.03 67.63 50.23 26.27 51.23
Dual-lens 23.14 56.09 57.23 68.91 52.11 27.19 52.30

L
L

aM
A

3.
1

8B
|P

r
=

0.
35

Pruned Model (w/o tuning) 56.79 35.59 56.76 66.10 41.79 25.17 45.08
Alpaca-Full 29.48 62.98 63.33 71.22 58.92 28.67 57.02
LaMini-Full 27.33 58.09 64.82 63.92 49.25 20.82 51.38
GPT-J-Full 35.18 57.11 65.22 54.07 49.18 20.37 49.19

Random Selection 41.09 51.39 62.74 49.05 40.29 18.20 44.33
SelectIT 26.14 62.43 63.75 71.54 59.34 30.88 57.59

IFD 27.94 63.08 62.57 70.62 59.51 28.75 56.91
Nuggets 24.26 64.35 63.61 71.60 60.73 30.38 58.13
CE-lens 29.41 63.18 64.25 74.53 63.24 41.08 61.25

SAE-lens 25.01 62.97 64.34 74.00 67.77 42.68 62.35
Dual-lens 23.79 65.69 65.37 74.57 68.23 43.99 63.57

L
L

aM
A

2.
1

13
B

|P
r

=
0.

35 Pruned Model (w/o tuning) 100.87 44.95 61.67 61.11 47.18 31.31 49.24
Alpaca-Full 31.84 55.88 51.72 68.29 67.94 27.17 54.20
LaMini-Full 32.96 50.96 47.07 62.93 61.19 26.16 49.66
GPT-J-Full 32.64 51.07 50.17 67.29 67.91 28.14 52.92

Random Selection 35.17 50.17 48.11 63.27 62.69 33.20 51.49
SelectIT 30.43 50.33 49.87 65.52 57.06 32.44 51.04

IFD 34.21 52.34 49.23 62.71 67.31 31.75 52.66
Nuggets 33.71 49.97 54.31 64.13 68.66 31.01 53.62
CE-lens 20.50 68.15 67.30 75.24 72.75 42.65 65.21

SAE-lens 20.39 68.32 66.75 75.84 73.98 43.34 65.65
Dual-lens 19.17 68.75 67.63 75.94 74.26 44.73 66.26

Table 1: Comparative evaluation of various dataset curation methods on pruned LLaMA models (Pr = 0.35) using
LLM-Pruner for pruning. The Alpaca dataset served as the base for generating curated datasets for SAE-lens,
CE-lens, Dual-lens, and other compared data selection techniques.

the model’s post-pruning state. The one exception409

is the 13B model, where random subsets relatively410

perform well, likely due to higher representational411

capacity or favorable hyperparameter interactions.412

However, we note that the reported performance413

reflects the best among multiple random trials; vari-414

ability is high, making it unreliable in practice.415

Notably, Dual-lens uses only 10% of the Alpaca416

dataset, yet consistently outperforms full-data base-417

lines, e.g., achieving superior performance only418

with 0.22% of the data compared to the number of419

samples in the full LaMini corpus. The findings420

suggest that data quality, not merely scale, is a421

more influential factor in restoring performance in422

pruned models. It supports our core hypothesis that423

a compact, model-aware subset can enable more424

effective recovery than full-corpus fine-tuning.425

4.3 Data Efficiency Across Sampling Budgets426

Figure 3 presents the relationship between the pro-427

portion of the dataset retained (Dpr) and average428

reasoning accuracy for three selection methods. We429

observe that Dual-lens achieves strong performance 430

with remarkably little data: even at Dpr = 0.1 431

(10% of the data), it matches or exceeds the accu- 432

racy of full-data tuning in other methods. Accuracy 433

continues to improve moderately up to Dpr = 0.3, 434

but additional data yields diminishing returns. Be- 435

yond Dpr = 0.5, all methods converge in perfor- 436

mance, suggesting that the benefits of targeted se- 437

lection diminish. These results show that dual- 438

lens can deliver near-peak performance with only 439

a small fraction of the training data. 440

4.4 Robustness Across Pruning Schemes 441

Table 2 evaluates Dual-lens and other data selec- 442

tion methods under two pruning strategies: LLM- 443

Pruner (Ma et al., 2023), a structured approach, 444

and FLAP (An et al., 2023), a training-free pruning 445

method. Despite producing different pruned archi- 446

tectures, Dual-lens consistently achieves the best 447

performance in both perplexity and reasoning ac- 448

curacy across both pruning schemes. These results 449

demonstrate that Dual-lens adapts effectively to 450
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Figure 3: Effect of Dpr on model reasoning accuracy

Pruning Scheme: LLM-Pruner (Pr=0.15)
Dataset Curation Wikitext (↓) Reasoning (↑)
Full Data 16.01 66.70
Random 16.41 65.81
Nuggets 16.61 66.84
IFD 15.81 65.44
SelectIT 16.01 66.64
SAE 15.19 67.34
CE 16.46 65.19
Dual-lens 14.63 70.19
Pruning Scheme: FLAP (Pr=0.15)
Full Data 13.95 66.10
Random 14.16 68.02
Nuggets 13.06 68.19
IFD 13.26 67.79
SelectIT 13.46 68.11
SAE-lens 13.19 69.22
CE-lens 13.99 66.29
Dual-lens 12.42 71.81

Table 2: Evaluation of different data selection methods
with LLaMA 3.1-8B under two pruning schemes (LLM-
Pruner (Ma et al., 2023) and FLAP (An et al., 2023)).
Metrics are reported on Wikitext (perplexity, lower is
better) and Reasoning tasks (accuracy, higher is better).
All subsets use 3k examples.

different pruned model states by leveraging model-451

aware signals to guide data selection. In contrast,452

full-data fine-tuning and other baselines show vari-453

able performance across pruning settings, indicat-454

ing less robustness to architectural differences.455

4.5 Impact of Source Dataset Scale456

Table 3 compares Dual-lens and its components457

when constructed using 1k-sample subsets from458

three datasets with varying original sizes: LaMini459

(large), Alpaca (medium), and Dolly (small). We460

observe a consistent performance trend: subsets461

drawn from larger source datasets lead to stronger462

results across all metrics. Specifically, Dual-lens463

achieves the highest perrformance when selecting464

from LaMini, followed by Alpaca and then Dolly.465

This pattern holds for both SAE-lens and CE-lens466

components as well. The results implies that model-467

aware selection benefits from greater sample diver- 468

sity, enabling more effective coverage and correc- 469

tion of the pruned model’s deficiencies. 470

4.6 Generalization to Mathematical Tasks 471

We evaluate whether Dual-lens extends effectively 472

to more domain-specific tasks by applying it to 473

mathematical reasoning benchmarks: Minerva and 474

GSM8K. Table 4 shows results for two pruned mod- 475

els (LLaMA 3.1 8B and LLaMA 2.1 13B) trained 476

on subsets selected using different methods, all 477

with a pruning ratio of Pr = 0.25. Dual-lens 478

consistently outperforms all baselines, including 479

its individual components and SOTA data selec- 480

tion methods. On both models and benchmarks, it 481

achieves the highest accuracy, improving over the 482

untuned pruned models by 22.9× (8B) and 20.4× 483

(13B), and even surpassing full-data tuning. These 484

findings demonstrate that Dual-lens is not only ef- 485

fective for general language understanding tasks, 486

but also robust to domain shifts. 487

4.7 Effect of Pruning Ratio on Reasoning 488

Performance 489

Figure 4 illustrates the impact of the pruning ra- 490

tio (Pr) on reasoning improvement for LLaMA 491

3.1 8B. As expected, CE-lens performance de- 492

clines steadily as Pr increases, since heavily pruned 493

models lack the capacity to benefit from difficulty- 494

targeted supervision alone. In contrast, SAE-lens 495

exhibits a non-monotonic trend, e.g., its perfor- 496

mance peaks near Pr = 0.55, suggesting that se- 497

mantic coverage becomes increasingly important 498

as model capacity diminishes. Dual-lens consis- 499

tently achieves the highest improvement at mod- 500

erate pruning levels (Pr ≈ 0.5), where both pre- 501

dictive correction and representational alignment 502

are valuable. However, at more extreme pruning 503

levels (Pr > 0.55), SAE-lens slightly outperforms 504

Dual-lens, likely because the CE-based criterion 505

becomes less effective in identifying suitable sam- 506

ples for severely compressed models. This reflects 507

a sensitivity to the sampling ratio applied at each 508

stage of the pipeline; dynamically adapting this 509

ratio based on pruning severity is a promising di- 510

rection for future work. 511

5 Limitations 512

While Dual-lens demonstrates strong performance 513

across pruning levels, it currently employs a fixed 514

sampling ratio between the SAE-lens and CE-lens 515

7



Dataset Wikitext ↓ HellaSwag ↑ BoolQ ↑ PIQA ↑ ARC-e ↑ ARC-c ↑ Average Reasoning ↑

L
L

aM
A

3.
1-

8B
SAE-lens Alpaca 32.18 67.11 61.92 72.69 74.50 43.27 63.89
CE-lens Alpaca 33.80 66.25 62.35 72.20 72.73 41.74 63.05
Dual-lens 32.01 67.55 63.38 72.63 73.92 42.59 63.90
SAE-lens Lamini 30.22 67.10 65.04 73.93 76.22 43.31 65.11
CE-lens Lamini 31.22 66.30 64.99 74.99 75.85 42.57 64.94
Dual-lens 27.17 69.27 65.57 75.09 77.91 44.59 66.49
SAE-lens Dolly 36.19 60.02 58.01 70.83 71.03 39.01 59.78
CE-lens Dolly 37.01 60.00 60.01 71.50 69.81 37.02 59.67
Dual-lens 35.09 62.39 63.07 72.09 72.91 39.74 62.04

Table 3: Performance evaluation of the pruned LLaMA-3.1 8B model fine-tuned on Dual-lens, SAE-lens, and
CE-lens subsets derived from the Alpaca, LaMini, and Dolly datasets (1K samples from each dataset).
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Figure 4: Change of model’s reasoning accuracy improvement with varying Pr

Methods Minerva GSM8K

L
L

aM
A

3.
1

8B

PM(w/o tuning) 4.29 1.00
Full Dataset 13.42 35.29

Random Selection 12.79 36.99
SelectIT 15.89 40.67

IFD 14.92 37.99
Nuggets 14.99 39.12

SAE-lens (MATH) 16.45 41.01
CE-lens (MATH) 16.21 40.88

Dual-lens (MATH) 16.52 42.00

L
L

aM
A

2
13

B

PM(w/o tuning) 6.12 1.10
Full Dataset 17.01 42.88

Random Selection 17.22 41.85
SelectIT 18.95 42.44

IFD 17.02 35.21
Nuggets 18.73 41.00

SAE-lens (MATH) 19.78 43.11
CE-lens (MATH) 19.10 42.69

Dual-lens (MATH) 21.26 44.01

Table 4: Performance evaluation of various methods,
including our approach, on the Minerva and GSM8K
benchmarks. Models were pruned using LLM-Pruner
with a pruning ratio (Pr) of 0.25. The Camel-AI Math
dataset was utilized for training the models.

stages. This static composition may not be opti-516

mal under all compression scenarios. In particular,517

when models are aggressively pruned, CE-based518

difficulty signals become less reliable due to re-519

duced capacity, suggesting that dynamically adapt-520

ing the lens weighting based on pruning severity521

could further improve robustness and efficiency. 522

Additionally, the effectiveness of SAE-lens re- 523

lies on the assumption that the pruned model retains 524

a coherent latent space from which meaningful con- 525

cept representations can be extracted. While our 526

results show that this generally holds across moder- 527

ate pruning regimes, extremely compressed models 528

may exhibit degraded internal activations, poten- 529

tially limiting the representational fidelity required 530

for effective distributional alignment. Exploring 531

strategies to enhance or regularize latent structure 532

in such cases remains an open direction. 533

6 Conclusion 534

We introduced Dual-lens, a model-aware data cura- 535

tion framework for efficient post-pruning recovery 536

of language models. By combining CE-lens and 537

SAE-lens, targeting predictive weaknesses and pre- 538

serving latent semantic coverage, Dual-lens con- 539

structs compact subsets tailored to the residual ca- 540

pacity of pruned models. Extensive experiments 541

show that Dual-lens consistently outperforms full- 542

data fine-tuning and state-of-the-art selection meth- 543

ods, even when using only a fraction of the data. 544

These findings support our hypothesis that a com- 545

pact, model-guided subset can enable more effec- 546

tive recovery than conventional fine-tuning. 547
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A Appendix717

A.1 Visualization of SAE-lens Selection718

Figure 5 provides a qualitative comparison between719

samples selected by SAE-lens and those chosen via720

random sampling. The visualization indicates that721

SAE-lens selects a more diverse and semantically722

clustered set of samples, while random selection723

yields broader, less coherent distributions. This724

structural difference explains the performance gap725

observed between the two methods.726

Other [Not selected]
Random Selection
SAE-lens

Figure 5: UMAP visualization of instruction embed-
dings from the Alpaca dataset. Pink points represent
datapoints not selected by any method, blue points in-
dicate randomly selected datapoints, and violet points
denote datapoints selected using the SAE-lens.

A.2 Impact of Data Sampling Ratio727

Figure 6 plots average reasoning performance728

against the data sampling ratio (Dpr) for three se-729

lection methods. Dual-lens achieves the highest730

performance across most data budgets. However, at731

very high sampling ratios (approaching 0.9), perfor-732

mance differences among methods converge, sug-733

gesting that when nearly all data is used, the impact734

of selection strategies diminishes.735

A.3 Sample Overlap Across Pruning Ratios736

Figure 7 shows the overlap among the top 1K sam-737

ples selected by CE-lens at varying pruning ratios738

(Pr). As expected, sample overlap is higher be-739

tween closer pruning levels (e.g., 0.15 vs. 0.25)740

than between more divergent ones (e.g., 0.15 vs.741

0.35). This trend suggests that pruned models with742
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Figure 6: Change in number of common samples with
varying number of selected samples.

similar capacity retain similar sensitivity patterns, 743

resulting in consistent loss-based rankings. 744

A.4 Comparison with LIMA and 745

ALPAGASUS 746

Table 5 presents a comparative analysis of Dual- 747

lens and other SOTA models evaluated on the 748

LIMA and Alpagasus datasets, using controlled 749

dataset sizes (1k and 9k samples) to ensure fair 750

comparison. Despite the small budget, Dual-lens 751

demonstrates strong performance, indicating its 752

effectiveness at identifying informative samples. 753

Notably, Alpagasus was filtered using ChatGPT, 754

while LIMA was manually curated with 1k diverse 755

examples. These results suggest that Dual-lens can 756

match or exceed the different curation methods 757

through model-aware selection, even under strict 758

size constraints. 759

A.5 Dual-lens with Different Model Sources 760

Figure 8 examines the impact of lens source on 761

performance. Using CE-lens or SAE-lens derived 762

from the same model (original or pruned) consis- 763

tently yields better results than cross-model con- 764

figurations. For instance, training SAE-lens on 765

activations from LLaMA 3.2 1B provides stronger 766

results for that model than using activations from 767

LLaMA 3.1 8B. This suggests that model-specific 768

characteristics are best captured when lenses are 769

trained on the corresponding model. 770
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Dataset Data size Wikitext ↓ HellaSwag ↑ BoolQ ↑ PIQA ↑ ARC-e ↑ ARC-c ↑ Average Reasoning ↑
L

L
aM

A
3.

1-
8B

|P
r

=
0.

35

LIMA 1K 43.67 65.42 61.07 71.50 72.76 41.93 62.54
Random 1K 43.44 65.12 62.44 71.98 73.10 40.49 62.63
IFD 1K 44.03 63.64 62.22 72.36 73.57 42.67 62.89
Nuggets 1K 42.44 66.32 61.96 72.57 72.14 42.50 63.09
SelectIT 1K 41.09 65.71 62.79 71.87 74.39 42.33 63.42
SAE-lens Alpaca 1K 32.18 67.11 61.92 72.69 74.50 43.27 63.89
CE-lens Alpaca 1K 33.80 66.25 62.35 72.20 72.73 41.74 63.05
Dual-lens Alpaca 1K 32.01 67.55 63.38 72.63 73.92 42.59 63.90

Alpagasus 9K 36.22 65.00 62.87 72.63 76.69 43.45 64.13
Random 9K 36.97 67.41 63.21 72.25 75.72 43.10 64.34
IFD 9K 40.11 65.86 62.41 72.43 74.50 43.19 63.68
Nuggets 9K 38.48 68.76 63.51 71.98 77.40 43.19 64.97
SelectIT 9K 39.77 65.37 62.07 73.00 75.87 40.11 63.28
SAE-lens Alpaca 9K 33.57 67.66 64.90 74.33 76.11 42.26 65.05
CE-lens Alpaca 9K 35.41 66.32 63.83 74.31 74.71 40.97 64.03
Dual-lens 9k 32.03 70.92 67.34 77.35 77.91 44.97 67.69

Table 5: Performance comparison of LIMA and Alpagasus datasets using an equal number of data instances
corresponding to their original sizes curated using Dual-lens and other SOTA techniques. Model pruning ratio (Pr)
was set to 0.35.

Instruction : Find the 
main idea of the 
fo�owing passage

Instruction : Edit the 
fo�owing text to 
make it easier to 
read

Instruction :Summarize the 
importance of Mahatma 
Gandhi's actions in India's 
independence movement.

Common Samples

Figure 7: Visualization of common samples in different Pr setting.

Figure 8: Effect of different setting on average reasoning accuracy
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