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ABSTRACT

Membership inference attacks (MIAs) threaten the privacy of machine learning
models by revealing whether a specific data point was used during training. Ex-
isting MIAs often rely on impractical assumptions—such as access to public
datasets, shadow models, confidence scores, or training data distribution knowl-
edge—making them vulnerable to defenses like confidence masking and adversarial
regularization. Label-only MIAs, even under strict constraints suffer from high
query requirements per sample. We propose a cost-effective label-only MIA frame-
work based on transferability and model extraction. By querying the target model
M using active sampling, perturbation-based selection, and synthetic data, we
extract a functionally similar surrogate S on which membership inference is per-
formed. This shifts query overhead to a one-time extraction phase, eliminating
repeated queries to M . Operating under strict black-box constraints, our method
matches the performance of state-of-the-art label-only MIAs while significantly
reducing query costs. On benchmarks including Purchase, Location, and Texas
Hospital, we show that a query budget equivalent to testing ≈ 1% of training
samples suffices to extract S and achieve membership inference accuracy within
±1% of M . We also evaluate the effectiveness of standard defenses (e.g., DP-SGD,
regularization) proposed for label-only MIAs against our attack.

1 INTRODUCTION

The widespread deployment of machine learning (ML) models in sensitive domains (e.g., health-
care (Guerra-Manzanares et al., 2023), finance (Grigoriadis et al., 2023)) raises critical concerns
about privacy and model security. These models are often trained on data containing personal medical
records, financial transactions, or behavioral patterns. When exposed via public APIs, they can
become prime targets for adversaries seeking to exploit privacy vulnerabilities through black-box
interactions. A prominent threat in this context is the membership inference attack (MIA), where the
attacker aims to determine whether a specific sample was part of a model’s training set (Shokri et al.,
2017). Even without direct data reconstruction, such inferences can lead to harmful disclosures, such
as a patient’s participation in a disease-specific clinical trial.

Related work in membership inference attacks. Early MIAs (Shokri et al., 2017; Salem et al.,
2019; Pyrgelis et al., 2018; Truex et al., 2021; Hayes et al., 2019; Hilprecht et al., 2019; Song et al.,
2019; Sablayrolles et al., 2019; Long et al., 2020; Li et al., 2021; Hui et al., 2021; Nasr et al., 2019;
Jia et al., 2019; Yang et al., 2020) consider white-box or confidence-based settings, assuming access
to confidence scores, auxiliary datasets, or shadow models. These assumptions are often unrealistic
in practice and can be mitigated by defenses such as confidence masking (Shokri et al., 2017; Salem
et al., 2019; Truex et al., 2021; Jia et al., 2019; Yang et al., 2020), adversarial regularization (Nasr
et al., 2019) or generalization enhancement (Shokri et al., 2017; Salem et al., 2019; Truex et al., 2021;
Abadi et al., 2016; Srivastava et al., 2014). Recent MIA studies focus on various research directions
such as conducting attacks with lower costs (Zarifzadeh et al., 2024), designing attacks against large
language models (Duan et al., 2024; Mireshghallah et al., 2022; Mattern et al., 2023), utilizing AI
explainability (Liu et al., 2024), using MIAs for auditing models (Ye et al., 2022), proposing attacks
with high accuracy in low FPR-regimes (Carlini et al., 2022), or developing attacks under label-only
settings (Choquette-Choo et al., 2021; Li & Zhang, 2021). In this work, we focus on the restrictive and
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realistic label-only MIAs. Yeom et al. (2018) introduced a naive baseline for label-only membership
inferences such that correctly labeled samples are considered as members. Choquette-Choo et al.
(2021) introduced a method that infers membership by evaluating the robustness of predicted labels
under input perturbations, showing that significant leakage is possible even in highly restricted
settings. However, their method requires a source model trained on labeled data to calibrate the
membership threshold τ . Li & Zhang (2021) proposed a more constrained approach that calibrates τ
on adversarial synthetic samples which removes the need for external data. Although these techniques
reduce the assumptions of early MIAs, they remain highly query-intensive: determining membership
for a single sample may still require thousands of queries, and threshold calibration adds further
query cost, limiting the scalability of label-only MIAs particularly on large membership datasets.

Related work in model extraction attacks. The constraints in label-only MIAs (Choquette-Choo
et al., 2021; Li & Zhang, 2021) can be addressed using another privacy attack in the literature. Model
extraction attacks (Tramèr et al., 2016; Orekondy et al., 2019; Juuti et al., 2019; Papernot et al.,
2017; Jagielski et al., 2020; Truong et al., 2021; Krishna et al., 2020; Karmakar & Basu, 2023) aim
to replicate the functionality of a target model by strategically querying it and training a surrogate
model to approximate its decision boundaries. These attacks pose a serious threat to ML models
deployed online, rendering them vulnerable to extraction and theft. Depending on the available
outputs—probabilities, logits, or hard labels—attackers adapt their strategies to recover models with
varying fidelity. Extraction is hardest when restricted to hard-label outputs, yet remains attainable.

The proposed framework. In this paper, we propose a new attack vector that integrates label-
only model extraction with membership inference, designed to operate under the most restrictive
conditions. The attacker is assumed to have no access to public datasets, shadow datasets from the
target distribution, or knowledge of the model architecture. Extraction is initialized with synthetic
data and, at most, a minimal auxiliary dataset containing a few unrelated samples per class. Rather
than querying the target model M for each membership decision, the attacker first extract a surrogate
model S using a query-efficient sampling strategy and then perform membership inference offline.
This is possible thanks to transferability properties reported in prior work (Papernot et al., 2016;
Liu et al., 2017; Naseer et al., 2019; Demontis et al., 2019) in which the surrogate model S not
only replicates the target’s predictions but also retains its membership leakage behavior. This also
concentrates the query cost of membership inference into a single extraction phase. While the
extraction phase may require more queries upfront than per-sample inference on a small set, it
becomes substantially more efficient for large-scale membership inference.

Our framework integrates two complementary techniques for extraction: active-learning–based,
query-efficient sampling (cf. MARICH (Karmakar & Basu, 2023)) and adversarial synthetic sample
generation with perturbation (cf. AUTOLYCUS (Oksuz et al., 2024)). Neither technique alone
suffices—the former presumes access to public data, the latter relies on explanation-based leakage—so
we adapt and combine them for a stricter label-only setting in which neither assumption holds. In
this setting, synthetic data supplies the query pool that active sampling iteratively refines, yielding a
self-contained, data-free extraction strategy consistent with black-box conditions. In the second stage,
we apply unsupervised, label-only MIAs to S, reflecting scenarios where adversaries have limited
or no access to the surrogate’s training data yet still wish to conduct offline inference. Moreover,
label-only attacks also provide a lightweight alternative to confidence-vector MIAs, which typically
require training numerous shadow models (e.g., LiRA (Carlini et al., 2022)) and incur substantial
computational and memory overhead. Given sufficient queries, label-only methods approach the
effectiveness of confidence-vector attacks, making them a practical choice within our framework.

The rest of this paper is organized as follows. Section 2 describes our system/threat model. Section 3
presents our proposed framework. Section 4 details experimental results. Section 5 evaluates the
impact of defenses. Section 6 concludes the paper and suggests potential future directions.

2 SYSTEM AND THREAT MODEL

We consider a deployed black-box classifier M : X → Y trained on an unknown dataset DM as the
target model M . The attacker trains a surrogate S using only oracle access to M that returns hard
labels yi = M(xi) for inputs xi ∈ X . A finite query budget q limits total interaction with M during
extraction and all subsequent computations on S are offline and unconstrained by q. The attacker
has no public or shadow dataset aligned with DM and no prior knowledge of M ’s architecture,
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hyperparameters, or defenses. At most, a minimal off-distribution auxiliary set DA (e.g., 1–2 samples
per class) may be available to seed synthetic generation. Inputs must satisfy domain constraints (e.g.,
feature ranges/types, sparsity patterns), and explanations or other side channels are not provided.
Defenses such as dropout, ℓ2 regularization, or DP-SGD may be present but are unknown to the
attacker and treated as part of the environment.

In the extraction phase, the attacker’s objective is to learn a surrogate S that closely agrees with M ,
measured by label-agreement fidelity FS

M = Prx∼DN [S(x) = M(x)] on a neutral test set DN under
budget q. In the membership inference phase, given an evaluation set Dmem = {xi}, the objective is
to infer membership bits m̂i ∈ {0, 1} which indicates whether each xi ∈ DM . Inference performance
is reported via accuracy and AUC when ground truth is available. A key property of this model is
amortization of query cost: all queries to M occur once during the extraction phase, after which
membership inference is performed offline on S without further access to M . Membership decisions
are derived from a scalar robustness/distance-based score computed on S and a single threshold τ
calibrated without querying M (e.g., using synthetic data). The target model excludes access to
confidences/logits/explanations, white-box or gradient interfaces, curated public/shadow datasets
aligned with DM , poisoning/backdoor manipulations, and traffic/side-channel leakage. Success
is demonstrated by achieving high FS

M and competitive test performance under budget q, and by
attaining strong membership accuracy/AUC on Dmem—ideally within a small margin of attacks run
directly against M—despite operating under these stricter label-only constraints.

3 METHODOLOGY

The first stage of our framework is the model extraction. Since the target model M only provides
labels, we require a technique that is both query-efficient and capable of producing surrogate models
that are equivalent to the target model in terms of their predictions. In label-only scenarios, the
extraction technique we adopt is MARICH (Karmakar & Basu, 2023), a query-efficient, label-only,
multi-stage extraction method based on active-learning and, primarily focused on stealing image
classifiers by leveraging public datasets as auxiliary resources. These public datasets may or may
not be derived from the same distribution as the target model’s training data DM . These datasets are
utilized in optimized sample selection for the active learning of the surrogates. While MARICH is
tailored for image data and, to a degree, text data, applying similar techniques to tabular datasets
presents additional challenges due to the absence of spatial relationships and the reliance solely on
feature-level attributions. Hence, we incorporate a synthetic data generation scheme from another
label-only extraction framework, AUTOLYCUS (Oksuz et al., 2024) to address these challenges
and represent a more realistic scenario where public datasets are not available. AUTOLYCUS
generates synthetic datasets through dynamic augmentation and perturbation, which are used in
optimal sample selection. AUTOLYCUS optimizes data generation by applying perturbations only to
the most important k features, as identified via AI explanations (XAI). Since we consider a scenario
where XAI is unavailable, we only adopt its probabilistic perturbation strategy. Specifically, our
attack combines the synthetic data generation of AUTOLYCUS with MARICH’s active learning
methodology to construct surrogates S. Technical overview of our attack is provided below.

3.1 MODEL EXTRACTION ATTACK

In active learning, the extraction process can framed as an optimization problem aimed at maximizing
mutual information and label agreement between M and S. In each tth iteration of active learning,
let Dt

Q denote the query dataset used for optimization, obtained by augmenting and perturbing DA.
The optimization objective is defined in Equation 1, where I(·) represents mutual information and qt

denotes the query budget of tth iteration. The goal is to reduce the mismatch between the prediction
distributions while enhancing the informativeness of the surrogate model in each iteration.

max
∑

I
(
Pr(M(Q)) ∥ Pr(S(Q))

)
, Q ∼ Dt

Q (1)

The extraction process in our framework consists of five iterative steps: aggregating and perturbing
DA using AUTOLYCUS, followed by entropy sampling, entropy gradient sampling, and loss-based
sampling techniques from active learning, as implemented in MARICH, and finally re-training S
with the newly acquired samples Dt

S .
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The extraction begins by training an initial surrogate model S0 using DA labeled by M . For any
iteration t, DA is augmented by a factor of α, which represents the augmentation factor, creating a
query dataset Dt

Q where DA is repeated α times, with |DQ| = |DA| ∗ α. Then, each sample in Dt
Q

is assigned a unique perturbation mask. This mask alters the features with a probability ρ. For binary
features, the mask applies Bernoulli noise to flip the features, while for continuous features, the mask
applies noise based on the standard deviation σj of each feature or a user-set arbitrary noise value,
while ensuring that the feature remains within its range Rj . Once each sample in Dt

Q is ensured to be
unique and not part of the existing surrogate training set (Dt−1

S ), Dt
Q is sent for entropy sampling.

In the entropy sampling stage, a subset Qt
entropy of size |Qt

entropy| = B is selected from Dt
Q by

maximizing the entropy of predictions from the surrogate model St−1 as in Equation 2, where H(·)
denotes the entropy function. The subset Qt

entropy ⊆ Dt
Q denotes where St−1 is least certain.

Qt
entropy = arg max

Q⊆Dt
Q,|Q|=B

H
(
St−1(Q)

)
, (2)

In the entropy gradient sampling stage, Qt
entropy is further refined by clustering the entropy gradients

∇QH(St−1(Q)) of the selected queries using k-means clustering. The number of clusters k typically
corresponds to the number of possible labels nc. The objective is to ensure that a sufficiently diverse
subset of selected queries Qt

entropy from each label is used during the extraction process. From the
clustered queries, the most diverse subset Qt

grad, of size γ1B, is selected to maximize input-space
variability coverage as formulated in Equation 3, where C represents the cluster centers. This
stage enhances the robustness and diversity of the extraction process by ensuring balanced label
representation and broad input-space variability.

Qt
grad = arg min

Q⊆Qt
entropy,|Q|=γ1B

∑
xi∈Q

∑
c∈C

∥∇qH(St−1(xi))− c∥2, (3)

In the loss sampling stage, Qt
grad is further refined by selecting γ1γ2B queries, denoted as Qt

loss.
These are the samples from Qt

grad that are closest to the surrogate training samples, with the greatest
loss between the target model M and the surrogate model St−1. The formulation of loss sampling is
provided in Equation 4 For each x ∈ Dt−1

S , we compute the cross-entropy loss of St−1 using the
label y provided by M as L(x) = − log pSt−1(y | x). Top k samples from Dt−1

S with the highest loss
are selected as Dt−1

S_topk_loss. Then, γ1γ2B samples from Qt
grad closest to Dt−1

S_topk_loss are selected
as Qt

loss. Once Qt
loss is selected, it is sent to M to obtain predicted labels Y t

loss = M(Qt
loss). These

labeled samples are added to the training set as Dt
S = Dt−1

S ∪Qt
loss and Y t

S = Y t−1
S ∪ Y t

loss.

Qt
loss = arg min

Q⊆Qt
grad,|Q|=γ1γ2B

∑
xi∈Q

∑
s∈Dt−1

S_topk_loss

∥xi − s∥2. (4)

Older surrogate model St−1 is updated to St by being trained on the newer extended dataset as
St = train(Dt

S , Y
t
S), using standard optimization techniques such as stochastic gradient descent or

Adam (Kingma & Ba, 2015). This query selection and model training process is repeated iteratively
until the total query budget q is exhausted or the desired level of fidelity FS

M between the target
and the surrogate model is achieved. At the end of the process, the final surrogate model S (or
Sfinal) approximates M in terms of predictive distribution. This approach ensures high fidelity,
informativeness, and diversity while maintaining query efficiency.

3.2 MEMBERSHIP INFERENCE ATTACK

Extracting functionally equivalent surrogate model S from the target model M allows the attacker to
perform membership inference attacks (MIAs) on a dataset Dmem (whose membership is aiming to
determine) offline, circumventing the high query costs per sample associated with label-only attacks.
This also eliminates unrealistic assumptions, such as the use of shadow datasets and an excessive
number of online adversarial membership queries, which are typically required by both traditional
and label-only MIAs. Label-only MIAs achieve performance comparable to traditional MIAs when
query budgets are not constrained (Choquette-Choo et al., 2021). To simulate a scenario where S
may originate from an external resource or be deployed in an open repository with no access to DS ,
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and to account for the assumption that no data from the training distribution of the target model M is
available, we conduct an unsupervised label-only MIA on S in the second stage of our attack.

dboundary(xi) = min
δi∈Rd

∥xi + δi∥2 subject to S(xi + δi) ̸= S(xi). (5)

For each sample xi ∈ Dmem, the unsupervised label-only membership inference attack is based solely
on the hard-label prediction ŷi = S(xi). The goal is to infer whether the sample xi was part of the
training set of the target model M based on its proximity to the decision boundary of the surrogate
model S. To perform this inference, we calculate the decision boundary distance dboundary(xi) for
each sample xi ∈ Dmem using Equation 5.

m̂i =

{
1 if dboundary(xi) ≥ τ

0 if dboundary(xi) < τ,
(6)

This distance quantifies how far xi is from the nearest decision boundary of S. Using the calibrated
threshold τ , we classify xi as a member if d(xi) ≥ τ and as a non-member otherwise (see Eq. 6),
where m̂i denotes the predicted membership label. The intuition is that training members tend to lie
farther from the model’s decision boundary due to overfitting.

dboundary(xi) = min
δi∈Rd

∥δi∥2 subject to S(xi + δi) ̸= S(xi). (7)

MIA begins with the calibration of the decision boundary distance threshold τ on S. In order to
calibrate τ , we first generate a set of random samples Xrandom = {xi ∈ Rd \DS}, where each sample
xi is drawn uniformly random from the feature space of the target model’s training data. These
synthetic samples serve as surrogate inputs for calibrating the decision boundary distance. For each
generated sample xi, the goal is to determine the minimal adversarial perturbation δi ∈ Rd needed to
change model’s prediction. This is achieved by solving the optimization problem in Equation 7.

τ = max
xi∈Xrandom

dboundary(xi). (8)

After computing the decision-boundary distance dboundary(xi) for each sample xi, we set the threshold
τ to the maximum of these distances (Eq. 8). This threshold serves as the cutoff at which the model’s
classification is expected to change and is used to determine membership for other samples. The
scalar threshold can be generalized to class-specific thresholds T = {τ1, τ2, . . . , τnc} when auxiliary
information (e.g., decision regions, training or population distributions, or partial training data) is
available. However, because decision regions in complex models are highly irregular and nonlinear
and the attacker has little or no auxiliary information, we adopt a single global threshold.

3.3 PERFORMANCE EVALUATION

We assess the attack along two axes—extraction and membership inference. For extraction, we report
(i) fidelity FS

M (label agreement between S and M ), (ii) test accuracy Acc(·, DN ) of S and M , and
(iii) the query budget q consumed during extraction. For membership inference, we report (i) accuracy
on Dmem at a calibrated threshold and (ii) threshold-free AUC from continuous membership scores.

High FS
M together with competitive Acc(·, DN ) at a modest q indicates a successful, cost-effective

extraction. Comparing membership metrics between S and M evaluates leakage transfer: close
accuracy/AUC implies that S preserves the target’s membership signal, whereas a gap suggests
incomplete transfer (e.g., due to underfitting during extraction). Since membership inference on S is
conducted offline, our approach is advantageous at scale. Once S is extracted, large Dmem can be
evaluated without additional queries to M .

4 EVALUATION

In this section, we describe the datasets, experimental setup, metrics and the obtained results.

4.1 DATASETS

We evaluate our framework using three benchmark datasets widely adopted in privacy and security
research Shokri et al. (2017): Location, Purchase, and Texas Hospital. The key statistics of these
datasets, training configurations, selected perturbation factors, and target model performances are
summarized in Table 1. Note that all target models are overfitted and achieve close to perfect training
accuracy (≈ 100%) to simulate realistic privacy risks in deployed machine learning systems.
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Table 1: Dataset statistics, training configurations, and target model performance.

Dataset # of Total
Samples (|D|)

# of Features
(nj)

# of Classes
(nc)

# of Training
Samples (|DM|)

# of Auxiliary
Samples (|DA|) ρ

M′s Testing
Accuracies

Location 5,010 446 30 1,600 150 0.10 0.6033 ± 0.0084
Purchase 197,324 600 100 10,000 1,000 0.08 0.6489 ± 0.0031
Texas Hospital 67,330 6,170 100 10,000 1,000 0.005 0.4819 ± 0.0024

4.2 EXPERIMENTAL SETUP

In our experiments, both target M and surrogate models S are implemented and trained using
PyTorch. Following the setup of Shokri et al. (2017), M are configured as feedforward neural
networks with a single hidden layer of 128 nodes and the tanh activation function. Models are
trained for up to 200 epochs using the AdamW optimizer (Loshchilov & Hutter, 2019), with a
learning rate of 0.001 and a weight decay coefficient of λ = 1e-7. Batch shuffling is applied at each
epoch, with batch sizes of 100 for the Location dataset and 200 for the Purchase and Texas Hospital
datasets. To simulate the adversary’s limited knowledge of dataset characteristics, augmentation
and perturbation parameters used across all datasets during model extraction are set to k = nj

(uniform binary flipping), α = 4, and γ1 = γ2 = 0.5. Apart from ρ, introduced parameters are
architecture agnostic in our framework and primarily regulate per-iteration training-set growth rather
than extraction quality. If ρ is too large, perturbations yield unrealistic queries; if too small, queries
become uninformative—both cases degrade extraction fidelity. Therefore, ρ needs to be set before
the query budget is spent. A set of synthetic samples or the initial DA can be utilized to configure ρ
as σ(|xi > 0|), xi ∈ DA (σ is standard deviation). Further details on variability and computational
resources used in our experimental setup is in Section C of Appendix.

Membership inference attacks are conducted in a strict label-only setting, leveraging the surrogate
models to minimize query overhead. We use the Adversarial Robustness Toolbox (ART) of
IBM (Nicolae et al., 2019) to implement standardized label-only membership inference attacks.

4.3 EXPERIMENTS

We assess the effectiveness of our attacks using five key metrics, grouped into two categories: model
extraction metrics and membership inference metrics. The first three—fidelity of the surrogate
model, test accuracy and the query budget—primarily evaluate the model extraction stage. Fidelity
(F S

M) quantifies the label agreement between S and M over a neutral dataset (DN ), which measures
the percentage of predictions where S and M produce identical outputs, indicating how accurately
S replicates M ’s decision boundaries. Test accuracy reflects the classification performance of both
the surrogate model (S) and the target model (M ) on DN and its ground-truth labels, providing a
standardized evaluation of their generalization capabilities. The query budget determines the number
of samples allowed to be classified by M . The remaining two metrics—attack accuracy and the
area under the ROC curve (AUC)—are used to assess membership inference effectiveness, based
on false positive rates (FPR) and true positive rates (TPR). While each metric primarily supports
its corresponding attack component, they also offer insight into the relationship between extraction
fidelity and membership leakage.

We further evaluate the model extraction process by measuring how well the surrogate model S
replicates the membership inference performance of the target model M in a black-box, label-
only setting. We evaluate the attack across surrogate models which have varying query budgets q.
For the Location dataset, we use q ∈ {1K, 10K, 100K}, and for the Purchase and Texas datasets,
q ∈ {10K, 100K, 1M}. Accordingly, a model denoted as S100K represents a surrogate trained by
querying the target model 100,000 times. Our extraction and inference performances across different
datasets and q are provided in Table 2, and ROC curves are shown in Figure 1.

Across all datasets, we observe that increasing the query budget leads to consistent and often non-
linear improvements in both model fidelity and membership inference performance. On the Location
dataset, S1K achieves a fidelity of 0.4969 and an AUC of 0.5722, which rise to 0.9081 and 0.8582 at
S100K. ROCs in Figure 1a highlights that Ms are not fully extracted with q = 100K but membership
inference accuracies are in 2− 3% distance. If q is to be increased by 2-3x, perfect extraction and
unlimited inference is a possibility. ROC curve of S10K is closer to its successor S100K more than the

6
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Figure 1: ROC curves for membership inference attack on surrogate and target models across datasets.

Table 2: Performance summary of privacy attacks under varying query budgets, with model extraction
results shown in the upper block and membership inference results in the lower block.

Dataset Model Similarities (FS
M) Test Accuracies

S1K S10K S100K S1K S10K S100K M

Location 0.4969 ± 0.0084 0.7619 ± 0.0080 0.9081 ± 0.0044 0.4426 ± 0.0059 0.5584 ± 0.0090 0.5967 ± 0.0086 0.6033 ± 0.0084

S10K S100K S1M S10K S100K S1M M

Purchase 0.5743 ± 0.0052 0.7043 ± 0.0042 0.9620 ± 0.0033 0.5418 ± 0.0054 0.6026 ± 0.0038 0.6486 ± 0.0031 0.6489 ± 0.0031
Texas 0.5329 ± 0.0049 0.7592 ± 0.0026 0.8966 ± 0.0054 0.4229 ± 0.0044 0.4863 ± 0.0015 0.4844 ± 0.0034 0.4819 ± 0.0024

Dataset Attack Accuracies AUC

S1K S10K S100K M S1K S10K S100K M

Location 0.5873 ± 0.0311 0.7773 ± 0.0199 0.8563 ± 0.0161 0.8783 ± 0.0138 0.5722 ± 0.0378 0.7993 ± 0.0242 0.8582 ± 0.0274 0.8762 ± 0.0155

S10K S100K S1M M S10K S100K S1M M

Purchase 0.5850 ± 0.0110 0.6882 ± 0.0116 0.8495 ± 0.0091 0.8552 ± 0.0089 0.5888 ± 0.0126 0.7169 ± 0.0158 0.8530 ± 0.0107 0.8600 ± 0.0097
Texas 0.5467 ± 0.0066 0.6953 ± 0.0102 0.7823 ± 0.0137 0.8123 ± 0.0084 0.5350 ± 0.0074 0.6965 ± 0.0084 0.7996 ± 0.0132 0.8321 ± 0.0092

(S100K, S1M) pairs of Purchase and Texas datasets. This can be explained with the lesser complexity
of M (due to smaller nc, nj and |DM |) trained on Location dataset.

On the Purchase dataset, the surrogate’s fidelity reaches 0.9620 and AUC reaches 0.8530 at S1M,
nearly matching the target model’s AUC of 0.8600. ROCs in Figure 1b highlights that S100K has the
least similarity with M among the three datasets and, it is reflected as a sharp decrease in membership
inference attack accuracy and AUCs. Despite this, S1M and M have almost identical membership
inference performances, congruent to their model similarity. This allows the unlimited number of
samples to be inferred and potentially allowing more advanced attacks (e.g., model inversion) to be
conducted on M . Considering the complexity of M (nc, nj and |DM |) trained on Purchase dataset,
q = 1M is sufficient enough for almost full extraction.

In contrast, the Texas dataset shows a more gradual trajectory. At S1M, the surrogate achieves 0.8966
fidelity and 0.7996 AUC, still below the target’s 0.8321 AUC. The slower convergence suggests that
high-dimensional, sparse, or less structured datasets require more extensive exploration to accurately
approximate membership-sensitive regions. Furthermore, comparison between the ROC curves
of S10K in Texas and S1K in Location demonstrate that higher FS

M does not equate a better attack
accuracy or AUC in membership inference. This emphasizes that decision boundary alignment in
areas critical to high-precision privacy attacks is more difficult to replicate in complex feature spaces
especially under low query budget regimes.

Overall, the results demonstrate that high surrogate fidelity and sufficient query budget q are critical
for strong membership inference performance, as the models get more complex and the data gets
more sparse. On Location, S10K achieves an AUC of 0.7993 with only 0.7619 fidelity, suggesting
that partial boundary recovery may suffice in lower-dimensional or well-generalized settings. In
contrast, for Purchase and Texas, meaningful replication of membership leakage only emerges once
fidelity exceeds 0.90 and q > 100K, indicating that more complex or sparse feature spaces require
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tighter alignment with the target’s decision boundaries. These findings highlight the potential need
for further querying or targeted optimization over underrepresented classes or feature regions.

Cost-Effectiveness and Comparison to Prior Work.

Label-only membership inference attacks such as the one proposed by Choquette-Choo et al. (2021)
achieve strong MIA performance, but they incur significant query costs—approximately 10,000
queries per victim sample. In their reported experiments, they achieve membership accuracies of
0.8920, 0.8740, and 0.8030 on Location, Purchase, and Texas, respectively. However, conducting the
attack for 100 victim samples would require 1 million queries in total with their given query budget.

Our approach reallocates query budgets of membership inference to extract a surrogate model S from
the target model M , which can then be queried offline to perform membership inference on an arbitrary
number of samples at no additional cost. This amortization makes our attack significantly more
cost-effective when the goal is to evaluate membership across many samples. Once S is sufficiently
extracted, inference is performed entirely offline, without incurring further query overhead with
adversarial perturbations, and without requiring confidence scores or shadow models.

Our method may not always be the preferable option: if the number of samples to be evaluated
is small, direct label-only membership inference—despite its high per-sample cost—may remain
the more efficient route. Our approach is more appropriate for adversaries seeking to audit or infer
membership for large populations, where the one-time cost of surrogate extraction can be justified.

To initiate model extraction, we used small auxiliary datasets outside of the distribution of DM ,
typically constrained to 10% of the size of the target model’s training set. While full synthetic initial-
ization is also possible, doing so would require more queries and risk generating unrealistic samples
in structured domains—hence we maintained minimal auxiliary data as a practical compromise in
our experiments.

Overall, our results demonstrate that with a fixed query budget, attackers can trade per-sample
overhead for one-time extraction cost, achieving scalable and reusable membership inference. The
surrogates not only approximate the prediction function of the target model, but also reproduces
its decision boundary vulnerabilities, highlighting a viable and generalizable pathway for privacy
leakage in label-only black-box settings.

5 COUNTERMEASURES

We evaluate the impact of three defense mechanisms—DP-SGD (Abadi et al., 2016), Dropout (Sri-
vastava et al., 2014), and L2 regularization (Ng, 2004; Krogh & Hertz, 1991) on the performance
of our attack. These techniques are selected based on their reported effectiveness against label-only
membership inference attacks, as demonstrated by (Choquette-Choo et al., 2021). All models are
trained on the same training split of the Location dataset, with only the applied defense varying. The
results are summarized in Table 3.

In our experiments, the target model with applied defenses is denoted as M ′, while the undefended
model is denoted as M . As expected, the undefended model M exhibits the highest vulnerability,
yielding AUC scores of 0.8919 and 0.8964 when attacked directly and through its surrogate model S,
respectively. These results indicate substantial membership leakage in both the target and surrogate
models, confirming that, in the absence of defense mechanisms, our attack remains highly effective.

Among the evaluated defenses, DP-SGD demonstrates the strongest reduction in attack success.
Particularly at ϵ = 20, where the privacy guarantee is strongest due to the highest level of noise
injection, we observe a substantial drop in AUC on M ′ (0.7636) and S (0.7351), relative to the
undefended model. DP-SGD can be applied with even lower ϵs. The key takeaway is that the
resulting model’s fidelity to the original target model M decreases drastically, as evidenced by FM ′

M
scores. If the target model is not intentionally overfitted for functional fidelity, it offers the best
privacy protection and effectively decrease the capabilities of even label-only MIAs.

Dropout, while less disruptive to utility, proves less effective at reducing membership leakage. Even
at a high dropout rate (p = 0.8), AUC values on M ′ and S remain elevated, and the surrogate
model continues to closely approximate the target. This suggests that Dropout alone is insufficient to
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Table 3: Effect of countermeasures on attack and model performance in the Location dataset.

Defensive Strategy Setting M ′ Metrics S Metrics

FM ′

M Test Acc Attack Acc AUC FS
M FS

M ′ Test Acc Attack Acc AUC

DP-SGD

ϵ = 20 0.6598 0.5996 0.7367 0.7636 0.6621 0.8541 0.6002 0.7200 0.7351
ϵ = 50 0.7044 0.6005 0.8233 0.8383 0.7021 0.8605 0.6121 0.7900 0.8178
ϵ = 100 0.7060 0.6116 0.8433 0.8488 0.7076 0.8612 0.6076 0.7800 0.7916
ϵ = 200 0.7169 0.6087 0.8400 0.8327 0.7012 0.8500 0.5999 0.8133 0.8305

Dropout

p = 0.2 0.8682 0.6189 0.8767 0.8546 0.8480 0.9080 0.6140 0.8567 0.8442
p = 0.4 0.8548 0.6028 0.8800 0.8674 0.8391 0.9077 0.6040 0.8400 0.8636
p = 0.6 0.8423 0.6013 0.8700 0.8879 0.8275 0.9157 0.5915 0.8300 0.8448
p = 0.8 0.8028 0.6128 0.8467 0.8500 0.7932 0.9272 0.6143 0.8200 0.8415

L2 Reg.

λ = 0.0001 0.8535 0.6291 0.8667 0.8581 0.8346 0.9160 0.6140 0.8567 0.8548
λ = 0.0005 0.8378 0.6323 0.8667 0.8532 0.8195 0.9182 0.6236 0.8433 0.8461
λ = 0.001 0.8269 0.6379 0.8467 0.8572 0.8086 0.9186 0.6326 0.8400 0.8614
λ = 0.005 0.8102 0.6660 0.8167 0.8312 0.7967 0.9160 0.6640 0.8200 0.8300

Undefended (M) – – 0.6078 0.8867 0.8919 0.9128 – 0.5999 0.8833 0.8964

significantly hinder our attack pipeline, particularly the membership inference stage. Similarly, L2
regularization by itself exhibits little privacy protection. Increasing the regularization parameter λ
slightly reduces the extraction fidelity and membership inference success, while improving general-
ization accuracy. At most λ = 0.005, we observe at most 6–7% reduction in AUC on both M ′ and S
relative to the undefended case.

Overall, our findings highlight that while DP-SGD provides the most substantial privacy gains and a
viable option even against label-only membership inference attacks. L2 regularization does not offer
substantial privacy improvements but it increases the test accuracy of M . It can be a good defense
when merged with DP-SGD for privacy protection and increased utility. Finally dropout, by itself
offer little mitigation in privacy and has negligible impact on utility, making it the least impactful of
the three proposed countermeasures.

6 CONCLUSION AND FUTURE DIRECTIONS

We present a label-only membership inference attack that operates under minimal auxiliary knowl-
edge by first extracting a surrogate model using a query-efficient model extraction strategy. This
enables offline inference without further queries to the target. On benchmark tabular datasets, our
method matches the performance of prior label-only attacks while requiring significantly fewer
queries—achieving comparable accuracy and AUC using a query budget equivalent to inferring
membership of only 1% of the target’s training data. As the number of evaluated samples increases,
our attack gets more cost-effective. We assess the robustness of our approach under standard defenses
dropout, L2 regularization, and DP-SGD. Apart from DP-SGD, the privacy protections they offer are
very limited, resulting in only minor reductions in membership accuracy and AUC (≤ 6− 7%). Our
findings show that even under the strictest constraints, label-only interfaces remain susceptible to
increasingly efficient attacks, while the protection offered by standard defenses continues to diminish.
As future work, we aim to improve the efficiency and generality of our method for complex models
and high-dimensional data types such as images and sequences.
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A DISCLAIMER

In this paper, LLMs (e.g., ChatGPT 5) are used for proofreading and polishing the writing. LLMs
are not used for retrieval and discovery (e.g., finding related work), research ideation or any other
purposes.

B COMMONLY USED SYMBOLS AND NOTATIONS

The following table summarizes the commonly used symbols and notations in this paper:

Table 4: Commonly Used Symbols and Notations

Symbol Description
M Target (victim) model
S Surrogate (a.k.a extracted or stolen) model

DM Dataset used to train the target model
DS Dataset used to train the surrogate model
DA Auxiliary dataset used for training S0 and synthesizing samples
DQ Augmented and perturbed query dataset used in active learning for training S
DN Neutral dataset used for evaluating model fidelity
Dmem Membership dataset used for evaluating membership inference attack performance
xi Input sample to the model
yi Predicted class (label) for the sample xi

nj Number of features in the input
nc Number of output classes
Rj Range of possible values for feature j
Rc Range of possible values for classes (labels)
τ Decision boundary distance threshold
L Loss function

∇θL Gradient of the loss with respect to model parameters
F S

M Fidelity of the surrogate model S relative to the target model M
q Query budget for the adversary

C EXPERIMENTAL SETUP - VARIABILITY AND COMPUTATIONAL SETTINGS

In the regular and countermeasure experiments, we ran each experiment multiple times (10+) to
ensure result stability and to report means and standard deviations of key metrics given different query
budgets q. Across different datasets and configurations, we observed consistent trends with minimal
variation. Note that, the standard deviations reported are between different runs with different target
and surrogate models, data splits. Despite the existing randomness in query generations (model
extraction) and randomized samples used for calibrating τ (membership inference), inner variability
of results when the same models (e.g., M , S100K) are attacked or evaluated with the same splits of the
data (e.g., DA, DN ) are far lesser than the reported deviations.

All experiments were conducted on an Apple M2 Pro Mac Mini (A2816) with a 10-core CPU, 16-core
GPU, 16-core Neural Engine, 16 GB of unified memory, and 1 TB of disk space. All machine learning
models were trained using the CPU. The overall compute cost was modest, with each experiment
completing in under a few hours. However, it is important to note that increasing the query budgets or
the internal parameters of the membership inference attack (e.g., the number of adversarial samples
generated) may lead to higher runtime and memory consumption. The total compute usage for the
project, including preliminary and discarded trials, remained within the limits of a single-CPU setup
and is reproducible on commodity hardware.
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