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Abstract

Large Language Models (LLMs) are widely used in natural language
processing and other real-world applications due to their ability
to generalize across a broad range of tasks. However, they often
underperform on tabular prediction problems, where traditional
machine learning methods such as gradient boosting remain the
state-of-the-art [17]. In this paper we introduce TREEPROMPT, a
framework that aims to bridge this gap. TREEPrRoOMPT distills a tree
ensemble into a concise textual representation and uses the repre-
sentation for in-context learning in LLMs. This allows an LLM to
effectively incorporate structured tabular information, from the tree
ensemble, without any expensive model re-fitting or fine-tuning.
Across several benchmark datasets, we show that TREEPROMPT con-
sistently improves LLM performance on tabular prediction tasks
and outperforms other in-context learning strategies under a fixed
token budget.

1 Introduction

Large Language Models (LLMs) such as GPT-4, PaLM, and Llama
have demonstrated exceptional capabilities across a wide range of
applications, from question answering and summarization to code
generation [1, 2, 19], and have become increasingly central to mod-
ern machine learning pipelines across many domains and industries
[3]. Despite their versatility and remarkable generalization across
natural language tasks, LLMs—and deep learning approaches more
broadly-remain limited when reasoning over structured tabular
data [17]. For tabular prediction tasks, traditional machine learn-
ing methods such as gradient boosted decision trees (e.g. XGBoost,
LightGBM, and CatBoost) [6, 10, 16] remain the most competitive
and achieve state-of-the-art predictive performance [4].

However, using LLMs for structured tabular data is not with-
out potential. For example, the TabLLM framework demonstrates
that when tabular inputs (rows) are carefully serialized into natural-
language prompts, LLMs achieve non-trivial zero-shot performance
and, with fine-tuning, can match the performance of gradient
boosted decision trees [9]. Moreover, one promising direction to
improve LLM performance in this domain is through in-context
learning (ICL), where the model is provided with a small num-
ber of labeled examples directly in the input prompt at inference
time—without any retraining or parameter updates [5, 7]. This has
the potential to improve predictive performance while avoiding the
substantial computational costs associated with fine-tuning.

In this paper, we propose TREEPROMPT, a novel framework for
improving the performance of LLMs on tabular prediction tasks.
TrREEPROMPT works by distilling trained gradient boosted tree en-
sembles, known for their state-of-the-art predictive accuracy on
structured data, into sets of compact textual representations that
capture the decision logic of the model. These distilled rules are
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then formatted as in-context examples and provided to an LLM

at inference time. This approach allows the LLM to perform accu-

rate predictions on tabular data without any additional training or

fine-tuning, leveraging the structured decision logic of tree-based

models and the flexible reasoning capabilities of language models.
We summarize the contributions of our paper below:

e We propose TREEPROMPT, a novel framework to distill tree
ensembles into textual representations that can be used for
in-context learning in language models.

e We demonstrate through our experiments that LLMs aug-
mented with TREEPROMPT can significantly outperform both
zero-shot and more traditional in-context learning (ICL) ap-
proaches on tabular classification tasks.

The remainder of the paper is organized as follows. We begin
with preliminaries discussing the use of LLMs for tabular predic-
tion tasks along with a review of model distillation techniques
for tree ensembles (§2). We then introduce our proposed TREEP-
ROMPT framework in detail (§3), followed by experimental results
comparing the performance of our framework against competing
approaches (§4). We conclude by exploring the use of TreePrompt
on a real world application (§5).

2 Preliminaries

In this section, we discuss preliminaries on the use of LLMs for
tabular prediction as well as methods for distilling tree ensembles
into rule-based representations.

2.1 LLMs for Tabular Prediction

TabLLM introduces a framework for applying large language mod-
els (LLMs) to tabular classification tasks in both zero-shot (without
re-training) and few-shot settings [9]. The framework explores mul-
tiple strategies for serializing tabular data, ranging from manually
designed list-based and text-based templates to more sophisticated
methods that leverage LLMs themselves to generate serialized rep-
resentations. Each observation (i.e., row) is serialized into a natural
language string and combined with a task-specific prompt—e.g.,
"Answer this question Yes or No"—to frame the classification task.
The model’s output probabilities over specific verbalizer tokens
(e.g., "Yes", "No") are then mapped to class probabilities to make a
final prediction. One surprising finding of TabLLM is that manually
crafted text-template serializations, which enumerate all features
in the form "The feature name is value,’ consistently outperform
more complex alternatives. Using this serialization scheme, TabLLM
exhibits non-trivial predictive accuracy in the zero-shot setting,
which indicates that the framework utilizes knowledge encoded
into the LLM. With fine-tuning in the few-shot setting, TabLLM
can match the performance of boosted tree ensembles, however,



the fine-tuning process is computationally expensive and requires
GPUs [13].

In-context learning (ICL), where prompts are augmented with
task instructions or labeled examples, has also been shown to en-
hance the predictive accuracy of LLMs without fine-tuning [18, 20].
However, the effectiveness of ICL is often constrained by the limited
context windows of LLMs, which restrict the number of examples
that can be provided during inference [20]. In TREEPROMPT, we
address this limitation by distilling a compact set of rules from a
trained tree ensemble. These rules serve as informative in-context
demonstrations that significantly improve the predictive perfor-
mance of the LLM on tabular tasks, compared to providing tradi-
tional in-context labeled examples. We discuss distilling tree en-
sembles in the section below.

2.2 Distilling Tree Ensembles

Boosted tree ensembles consist of many decision trees that are fit
sequentially on the residuals of the previous model to improve
predictive performance. Each individual decision tree within the
ensemble can be succinctly summarized as a collection of logical
rules, obtained by traversing the paths from the root to leaf nodes,
that map feature conditions to predictions.
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Figure 1: Single decision tree of depth 2 fit on the Wisconsin
Breast Cancer Dataset. This decision tree yields four decision
rules, obtained by traversing the tree from the root to leaves.

We demonstrate this in Figure 1, where we examine a single
decision tree of depth 2 fit on the Wisconsin Breast Cancer Dataset
from the UCI Machine Learning Repository [8]. This tree yields 4
decision rules, each corresponding to a unique path from the root
to a leaf node. These rules can be expressed by the following textual
representations:

e Rule 1: If the worst perimeter of the mass is less than 105.95
and the worst concave points is less than 0.158, predict that
the mass is benign.

o Rule 2: If the worst perimeter is less than 105.95 and the
worst concave points is greater than 0.158, predict that the
mass is malignant.

o Rule 3: If the worst perimeter is greater than 105.95 and the
mean concave points is less than 0.049, predict that the mass
is benign.
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Figure 2: Distilling sparse rule sets from a tree ensemble
yields a compact textual representation of the model.

e Rule 4: If the worst perimeter is greater than 105.95 and the
mean concave points is greater than 0.049, predict that the
mass is malignant.

Tree ensembles can be represented by similar sets of rules, how-
ever, their textual representations can grow extremely large. Con-
sider a medium size boosting ensemble of 1000 depth 2 decision
trees, which contains 4000 decision rules. The textual representa-
tion of this ensemble contains 200000 tokens, which far exceeds
the token limit of even large models such as GPT-4o [1].

To address this, we can distill tree ensembles by extracting sets of
rules that 1) perform well in terms of predictive accuracy and 2) are
compact enough to have concise textual representations. We do so
using this general optimization-based framework, where w € R is
a vector of decision variables assigned to each potential rule (node)
in the original tree ensemble and r;j(x), V j € [m], represent the
predictions of the rules:

m
mvivn Ly, jz:;wj-rj(x)) s.t. [[wllo < k. (1)

The constraint ||w||p < k controls the number of rules extracted
and the objective captures data fidelity, i.e., how well the predic-
tions of the extracted rule set fits response vector y. This general
optimization framework has been used by many methods such as
FIRE [11] and ForestPrune [12] to distill tree ensembles into com-
pact representations that account for rule sparsity and interaction
depth.

In Figure 2, we illustrate our distillation approach using the
Wisconsin Breast Cancer Dataset. We first fit a boosting ensemble
of 500 depth 3 decision trees on the dataset. A subset of these trees
is shown in the top of Figure 2. We use the optimization algorithm
presented in FIRE [11] to find a good solution for Problem (1) in
order to extract a compact set of 10 decision rules. These 10 rules
achieve predictive accuracy comparable to the full ensemble. We can
express each rule in a textual format, Figure 2 shows an example
of this, and the resulting rule set is concise enough to be used
as contextual examples for prompting LLMs. We formalize our
TrREEPROMPT framework in the section below.
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Figure 3: A visualization of our TREEPRoMPT framework.

3 TreePrompt Framework

We present our TREEPROMPT framework for binary classification
tasks on tabular datasets. Figure 3 shows a visualization of our
framework.

3.1 Formulation

We start with a tabular dataset of n observations and p features
which, following the notation from TabLLM [9], we represent as
D ={(x, yi)}?zl. Vector x; € R? is the feature vector and y; gives
the class label (binary) for observation i. We assume access to a
labeled subset D; c D and an unlabeled subset D, c D. The
goal of TREEPROMPT is to use a large language model with in-
context learning to generate accurate predictions for the unlabeled
instances in D,,.

3.2 Labeled Data: Generating Contextual Rules

On the labeled subset of the data, 9, we first fit a boosted tree
ensemble such as XGBoost, LightGBM, or a gradient boosting ma-
chine [14], to predict class labels y; using feature vectors x;, for
all (x3,yi) € Dy. Let r1(x),. .., rm(x) represent the set of possible
rules to extract from the ensemble and let vector p € [0, 1] 1Dl rep-
resent the predicted probabilities of the tree ensemble. We follow
the general framework presented in display (1) to extract a sparse
subset of k rules. Consider the optimization problem:
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which is a penalized formulation of (1). We use parameter A to
control the sparsity of the extracted rules to be less than k. In this
approach, we also directly fit the extracted rules to approximate p,
the predicted probabilities of the original tree ensemble. As such,

the output of the extracted rules, wjr;(x) where w; # 0, can be
interpreted as an increase or decrease in the probability that the
predicted class is positive. To obtain high-quality solutions for Prob-
lem (2) we apply an iterative coordinate descent-based algorithm
similar to the one used in [11].

After we use Problem (2) to extract k rules from our ensemble,
we serialize the rules into natural language text, using the following
template-based procedure. For each rule, textually enumerate each
condition, "If the value of feature 1 is greater than threshold 1 and
if the value of feature 2 is less than threshold 2, then..." and if the
rule is satisfied state that the "probability that the class is positive
increases” (or decreases) by output wjr;(x).

After serializing all k rules, we combine the serializations and
append the sentence "These k rules may help guide your answer."
to the prompt. The resulting context prompt is used for ICL,
allowing the language model to incorporate the extracted rules
into its prediction. We show an example of this procedure for the
labeled observations, highlighted in blue, in Figure 3.

3.3 Unlabeled Data

On the unlabeled subset of the data, D,,, we serialize each feature
vector xj € Dy, into natural language text. We use the text template
procedure discussed in [9] to serialize each unlabeled observation
by textually enumerating its feature values. We append the sentence
"Is the class positive: Yes or No? Answer:" to the serialization of each
observation to generate our question prompt. Finally, for each
observation in the unlabeled subset of the data we combine the
context prompt and the question prompt to into the final prompt
to input into the LLM.
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Figure 4: Example regularization path to evaluate the trade-
off between size and performance of the distilled model. The
performance of the original boosted tree ensemble is indi-
cated in red.

3.4 How many contextual rules to include?

An important parameter in our TREEPROMPT framework is the num-
ber of rules k included in the context prompt. In general, increasing
k improves the predictive accuracy of the distilled model by better
approximating the full ensemble. However, including too many
rules can increase inference costs and may cause the prompt to
exceed the context window of the LLM.

We use the following procedure to determine good values for k.
We further split the labeled subset of the data 9 into a training
set and validation set. We extract rule sets of varying sizes, by
sweeping through values of 1 in (2), and evaluate the validation
performance of the models. This yields a regularization path, or a
sequence of rule sets of varying sizes, like the one shown in Figure
4. In this figure, the horizontal axis shows the number of rules and
the vertical axis shows the validation AUC! of the extracted rule
sets. The performance of the full tree ensemble is indicated by the
red line, and we also show a sample context prompt for k = 4 rules.
This regularization path evaluates the trade-off between model size
and predictive performance for the distilled rule set. In practice, we
can select k to be in the "elbow" of the path, for example k = 4 in
Figure 4 to balance model size and performance. Empirically, we
observe that values of k between 10 to 15 work well for ICL.

4 Experiments

In this section, we present our experimental evaluation of TREEP-
ROMPT against several competing methods.

4.1 Setup

We evaluate TREEPROMPT on 7 datasets from the UCI Machine
Learning Repository [8]: BREAST_W, ILPD, BLOOD, PHONEME, DIA-
BETES, CLIMATE, KC2. On each dataset, we randomly split the obser-
vations evenly into a training set and a test set, which correspond
to Dy and D, respectively, and apply our TREEPROMPT framework.

IRecall that we are fitting (2) on the predicted probabilities of the original tree ensemble

On the training dataset, we fit a scikit-learn gradient boosting en-
semble [14] of 500 depth 3 decision trees and use Problem (2) to
distill the model into a compact set of decision rules. We use the
elbow method discussed in §4 to select k. We serialize the distilled
rules to construct the context prompt, and, on the test dataset, we
serialize each observation to construct the question prompts. We
combine the context prompt with the question prompts to obtain
the final prompt to input into the LLM; for experiment, we use GPT-
40 MINI [1]. We use the log-probability of the output verbalizer
token as the predicted probability of the positive class and compute
the test AUC of TREEPROMPT based on these predicted probabilities.
For each dataset, we repeat this procedure of 5 random train-test
splits.

We compare our approach against the following competing al-
gorithms. Neither these baselines nor our TREEPROMPT framework
require retraining or fine-tuning of the LLM.

e LLM-baseline: For this baseline algorithm, we input the
question prompts directly into the LLM, without context
prompts. This evaluates the zero-shot performance of the
LLM [9].

e DT-Context: We fit a single depth 3 decision tree on the
training data and use the textual representation of the tree
as our context prompt. This a new competing algorithm that
we propose for this experiment.

e TabularICL: We randomly select observations in the test
set and serialize them, with their corresponding class labels.
We use these examples for ICL [5] in the context prompt.

Importantly, for a fair comparison, we constrain TREEPRoMPT, DT-
Context, and TabularICL to construct context prompts with the
same token budget.

4.2 Results

TREE LLM DT Tabular
Data PromPT | baseline | Context ICL cees
s w | 099 0.96 0.88 0.95 0.98
- 0.003) | (0.007) | (0.006) | (0.002) | (0.005)
. 0.74 0.70 0.72 0.71 0.72
0.017) | (0.019) | (0.021) | (0.018) | (0.01)
0.74 0.55 0.68 0.61 0.75
BLOOD 0.004) | (0.011) | (0.005) | (0.012) | (0.001)
I 0.74 0.56 0.63 0.62 0.82
0.012) | (0.009) | (0.02) | (0.012) | (0.01)
0.82 0.76 0.78 0.79 0.84
DIABETES | (0.0005) | (0.0001) | (0.007) | (0.0007) | (0.003)
var 0.79 0.53 0.59 0.55 0.81
(0.0005) | (0.019) | (0.041) | (0.02) | (0.004)
o 0.85 0.82 0.74 0.83 0.82
(0.009) | (0.002) | (0.03) | (0.005) | (0.001)
Avg. Rank | 1.00 371 2.71 2.71 -

Table 1: Experiment results in terms of test AUC. TREEP-
ROMPT outperforms all competing algorithms and can out-
perform boosting on several of the datasets considered.

We present the results of our experiment in Table 4, which re-
ports the average test AUC achieved by each method across all



datasets. Values in parentheses indicate standard errors. The right-
most column shows the average test AUC of the boosted tree ensem-
ble, which serves as a strong point of reference given that boosted
trees are specifically designed for predictive tasks on tabular data.

Across all datasets, we observe that TREEPROMPT outperforms
our LLM-baseline, DT-Context, and Tabular-ICL competing meth-
ods. The average rank of each method, obtained over all datasets, is
shown in the bottom row of the table. We also note that the perfor-
mance of TREEPROMPT matches or exceeds to performance of our
GBDT boosting ensemble in several cases. Among our competing
algorithms, we observe that, consistent with findings from Hegsel-
mann et al. [9], the zero-shot LLM-baseline achieves non-trivial
and, on some datasets, surprisingly strong predictive performance.
Our competing in-context learning approaches such as TabularICL,
which includes labeled examples in the prompt, and DT-Context,
which uses a decision tree trained on the labeled data, further im-
prove performance over the baseline.

Our approach, however, achieves the best overall results. We
emphasize that TREEPROMPT, does not require fine-tuning or re-
training of the LLM, which is often computationally prohibitive.
Instead, TREEPROMPT leverages structured label data to construct a
context prompt by distilling a tree ensemble trained on the dataset.
Our experimental results suggest that, under a fixed token budget,
the context prompts generated by TREEPROMPT contain more rele-
vant information than those produced by competing ICL methods,
leading to improved LLM performance on tabular prediction tasks.

5 Conclusion

We conclude with a case study demonstrating the use of TREEP-
ROMPT on a real-world multimodal dataset: the L1ArR benchmark
for fake news detection. This dataset comprises thousands of short
political statements, each labeled for truthfulness by PolitiFact [15].
The available labels include true, mostly-true, half-true, barely-true,
false, and pants-fire. For our case study, we focus on the border-
line categories, barely-true and mostly-true, and train a classifier to
distinguish between them.

Each observation in the LiIAR dataset includes the text of the
statement and the name of the speaker, along with structured tabu-
lar features such as the speaker’s political affiliation, geographic
location, and credibility history, i.e., counts of previous statements
rated as truthful or untruthful. We split the dataset evenly into
training and test sets. On the test set, we apply a baseline LLM
approach that combines the statement text with a serialized repre-
sentation of the tabular features to create question prompts. Using
these question prompts, we ask the model to classify the statement
as either mostly-true (positive class) or barely-true (negative class).
This approach achieves a test AUC of 0.72.

We then apply TREEPROMPT, fitting a gradient boosting tree
ensemble on the structured tabular features from the training set.
Following the procedure outlined in §4.1, we distill the ensem-
ble into 11 interpretable rules and serialize them to construct the
context prompt. When this context prompt is combined with the
question prompts used above, the LLM’s test AUC increases to 0.81.
Notably, the distilled rules capture aspects of the speaker’s credi-
bility history, information not explicitly present in the statement
text. By integrating structured features with natural language input,

TREEPROMPT can significantly improve the performance of LLMs
on tabular prediction tasks.
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