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Abstract

We consider general reinforcement learning under the average reward criterion
in Markov decision processes (MDPs) when the learner’s goal is not to learn an
optimal policy but accepts any policy whose average reward is above a certain given
satisfaction level σ. We show that with this more modest objective it is possible to
give algorithms that only have constant regret with respect to the level σ, provided
that there is a policy above this level. This result generalizes findings of Bubeck
et al. [2013] from the bandit setting to MDPs.
Further, we present a more general algorithm that achieves the best of both worlds:
If the optimal policy has average reward above σ this algorithm has bounded regret
with respect to σ. On the other hand, if all policies are below σ then we can show
logarithmic bounds on the expected regret with respect to the optimal policy.

1 Introduction

Learning optimal policies in real-world reinforcement learning (RL) problems is usually intricate.
In this paper we want to investigate the question whether there is an advantage in pursuing a more
modest goal: Instead of aiming at optimal performance the learner is content with average reward
above a specified satisfaction level σ. As performance criterion we consider online regret with respect
to this level σ. That is, as long as the agent follows a policy π whose average reward ρπ is above σ
there is no regret, otherwise the per-step regret is σ − ρπ .

In the following, we show in Section 3 that when the optimal average reward ρ∗ of the underlying
MDP (which we assume to be communicating) is above σ, learning with only constant regret (i.e.,
independent of the number of steps) is possible. This generalizes a result of Bubeck et al. [2013]
from the bandit to the general MDP setting. We proceed to the general case when ρ∗ may be below σ.
Here we provide an algorithm that on the one hand also only suffers constant regret when ρ∗ > σ.
On the other hand, when ρ∗ < σ the same algorithm can be shown to have classic regret (i.e., with
respect to ρ∗) that is bounded logarithmically in the number of steps just as for state-of-the-art RL
algorithms in this setting.

While satisficing objectives have been considered before, most respective investigations have been
made in the much simpler bandit setting [Abernethy et al., 2016, Reverdy et al., 2017, Michel et al.,
2023]. For the general MDP setting, beside some related work on multi-objective RL [cf. Roijers
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et al., 2013, for an overview] and experimental work on a satisficing variant of Q-learning [Goodrich
and Quigley, 2004] we are only aware of [Arumugam and Roy, 2022], which proposes an algorithm
that uses rate distortion theory for satisficing in episodic RL. For this algorithm also regret bounds
are derived, which however are not directly comparable to our results, as the setting considered in
[Arumugam and Roy, 2022] is Bayesian and the bounds accordingly are for the Bayesian regret.

1.1 Setting and Notation

Let M = (S,A, r, p) be an MDP with finite state space S, finite action space A, mean rewards
µ(s, a) for (s, a) ∈ S × A, and transition probabilities p(s′|s, a) for (s′, s, a) ∈ S × S × A. The
random rewards are assumed to be bounded, i.e., contained in [0, 1]. We set S = |S| and A = |A|.
Beside S and A the diameter D(M) as introduced in [Jaksch et al., 2010] is an important parameter
of the MDP.

Definition 1. Consider the stochastic process defined by a stationary policy π : S → A operating on
an MDP M with initial state s. Let T (s′

∣∣M,π, s) be the random variable for the first time step in
which state s′ is reached in this process. Then the diameter of M is defined as

D(M) := max
s,s′∈S

min
π:S→A

E(T (s′
∣∣M,π, s)).

In the following we assume that the diameter D(M) is finite, that is, the underlying MDP M is
communicating. This guarantees that a learner operating in M always is able to recover from a
mistake, as any state is reachable from another state. Indeed, let us define the average reward of a
stationary policy π : S → A starting in initial state s1 to be ρπ(M, s1) := limT→∞

1
T

∑T
t=1 r

π,s1
t ,

where rπ,s1t is the random reward obtained by the policy π at step t when starting in s1. Then the
optimal average reward ρ∗ in M is independent of the initial state when D(M) is finite. Further,
considering nonstationary policies does not increase the optimal average reward [Puterman, 2005]. In
the following, π∗ denotes a respective optimal policy in M such that ρπ∗(M, s1) = ρ∗ for any initial
state s1. Further, for any policy π whose average reward is independent of the initial state s1, we
write ρπ for ρπ(M, s1).

Beside the standard diameter we also consider a similar transition parameter.

Definition 2. For any stationary policy π we set

Dπ(M) := max
s ̸=s′∈S:

E(T (s′|M,π,s)<∞

E(T (s′
∣∣M,π, s))

to be the maximal finite distance between any two connected states under π. Then the worst-case
diameter is defined as

DW (M) := max
π

Dπ(M).

In the following, we often drop the notation for the MDP and write e.g. D instead of D(M) whenever
M is understood from the context.

1.1.1 Regret and σ-regret

We are interested in policies whose average reward is above a given satisfaction level σ. Accordingly,
for a policy π and an initial state s1 we define the gap to σ as ∆σ

π,s1 := max{0, σ − ρπ(M, s1)}.
If the average reward for ρ is independent of the initial state, we drop the latter in the notation and
simply write ∆σ

π. Intuitively, ∆σ
π is the average per-step regret with respect to σ an agent suffers

when playing policy π. Accordingly, we define the σ-regret of a policy π starting in state s1 after T
steps as

Rσ,T
π,s1 := T∆σ

π,s1 .

Note that the respective expected accumulated reward may deviate from Tρπ(M, s1) at most by a
term of order Dπ(M), cf. [Jaksch et al., 2010].

More generally we are interested in the σ-regret of episodic algorithms A which stick to the same
stationary policy for a certain number of steps before changing to another stationary policy. That
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is, if algorithm A plays policy πk in episode k starting in state sk at step Tk (with k = 1, 2, . . .), the
respective regret after n episodes is defined as

R
σ,Tn+1

A,s1
:=

n∑
k=1

(Tk+1 − Tk)∆
σ
πk,sk

.

Beside the σ-regret we will also consider the classic regret with respect to ρ∗ after any T steps as
defined in [Jaksch et al., 2010] as

RT
A,s1 := Tρ∗ −

T∑
t=1

rA,s1
t , (1)

where similar as before rA,s1
t denotes the random reward obtained by algorithm A at step t when

starting in state s1.

Beside the gaps ∆σ
π,s1 we also consider the quantities ∆σ,− := min

π:∆σ
π>0

∆σ
π and ∆σ,+ := max

π:∆σ
π>0

∆σ
π

where both max and min range over policies with average reward independent of the initial state.1

Further, we set ∆σ
∗ := ρ∗ −σ and ∆g := ρ∗ − max

π:ρπ<ρ∗
ρπ to be the gaps between the optimal average

reward and σ resp. the average reward of the best suboptimal policy.

2 Preliminaries

Our proposed approach is based on the two RL algorithms UCRL2 and GOSPRL that we will employ
in a blackbox manner. Accordingly, in the following we briefly recall some basic properties that we
will need for our purposes.

2.1 UCRL2

UCRL2 [Jaksch et al., 2010] is a well-known RL algorithm which is based on the idea of employing
optimism in the face of uncertainty. UCRL2 proceeds in episodes in which a fixed stationary policy
is executed. Based on the episode termination criterion used by UCRL2, the following bound on the
number of episodes holds.
Proposition 1. [Jaksch et al., 2010] The number of episodes of UCRL2 up to step T ⩾ AS is upper
bounded by

AS log2
(
8T
AS

)
.

More importantly, for UCRL2 one can give bounds on the classic online regret as defined in (1). We
will use the following bound on the expected regret.
Theorem 1. [Jaksch et al., 2010] For any initial state s1 ∈ S and any T > 1, the expected regret of
UCRL2 run with confidence parameter δ = 1

3T in a communicating MDP is bounded by

E[RT
UCRL2,s1 ] ⩽

342AS2D2 log(T )

∆g
+
∑
a,s

[
1 + log2( max

π:π(s)=a
Tπ)

]
max

π:π(s)=a
Tπ,

where Tπ is the smallest natural number such that for all T ⩾ Tπ the expected average reward after
T steps is ∆g

2 -close to the average reward of π.

2.2 GOSPRL

Unlike UCRL2, GOSPRL [Tarbouriech et al., 2021] is an exploration algorithm whose goal is to
collect a specified number of samples in an unknown communicating MDP. That is, for a given

1Note that for any policy π and any initial state s1 there is a policy π′ such that the average reward of π′ is
independent of the initial state and ρπ′ = ρπ(M, s1): Since M is assumed to be communicating, for states s
not in the same irreducible class Iπ(s1) as s1, one can choose actions for π′(s) that eventually lead to Iπ(s1),
so that there is only a single irreducible class under π′.
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function b̄ : S × A → N and a confidence parameter δg, GOSPRL(b̄, δg) for any action a ∈ A
and any state s ∈ S collects at least b̄(s, a) samples with overall success probability at least 1− δg.
As shown by Tarbouriech et al. [2021], this is accomplished after Õ(B̄D +AS2D

3
2 ) steps, where

B̄ =
∑

(s,a)∈S×A b̄(s, a) and the Õ notation hides logarithmic dependencies on S,A,D, B̄, and 1
δg

.

Furthermore, based on GOSPRL Tarbouriech et al. [2021] further provide an algorithm that com-
putes an approximation of the diameter of the underlying MDP. This algorithm takes a confidence
parameter δg and a precision parameter εg as input, and after Õ(AS2D3

ε2g
) steps with probability at

least 1− δg outputs an estimate D̄ of the diameter for which D ⩽ D̄ ⩽ (1+ 2εg(1+ εg))(1+ εg)D.

3 Algorithm SAT-RL

In this section, we introduce our algorithm SAT-RL (shown as Algorithm 1) which is designed to find
and keep playing a satificing policy when given a satisfaction level σ, provided that ρ∗ > σ.

Algorithm 1 SAT-RL for satisficing in RL

1: Input: state space S, action space A, satisfaction level σ
2: Initialization:
3: Set confidence level δg := 1

2 , accuracy level εg := 1
2 , and initial sampling number b := S + 1.

4: Define function b̄ : S ×A → N to be b̄(s, a) = b for any (s, a).
5: while an action a ∈ A at some state s ∈ S has not been run b̄(s, a) times do
6: Run GOSPRL(b̄, δg).
7: For any (s, a) ∈ S ×A, define b̄(s, a) := b−N(s, a).
8: end while
9: while the diameter of the estimated MDP Mk is infinite do

10: Run GOSPRL-based(δg, εg) procedure to estimate the diameter of M .
11: end while
12: for episodes k = 1, 2, . . . do
13: Compute an optimal policy πk on Mk that induces a unique irreducible class Iπk

.
14: if ρπk

(Mk, sk) ⩾ σ then perform exploitation episode:
15: Play πk until all states in Iπk

have been visited at least once.
16: else perform exploration episode:
17: Set b := b+ S.
18: while N(s, a) < b for some state-action pair (s, a) do
19: For any (s, a), set b̄(s, a) := b−N(s, a).
20: Run GOSPRL(b̄, δg).
21: end while
22: end if
23: end for

SAT-RL starts by collecting some initial samples for each state-action pair using GOSPRL. That is,
first at least S + 1 samples for each state-action pair are collected (lines 5–8). Here we use N(s, a)
to denote the current number of samples of a state-action pair (s, a). If the diameter of the estimated
MDP is infinite, in addition the procedure to estimate the MDP’s diameter is run (lines 9–11). This is
only done to guarantee that the diameter of the empirical MDP is finite, that is, it is communicating.

After this initialization phase, the algorithm proceeds in episodes k in which at first the optimal
policy πk in the estimated MDP Mk is computed (line 13). As the diameter of Mk is finite at this
step, this optimal policy can be computed by value iteration and can be assumed to have a unique
irreducible class Iπk

. Furthermore, by running another instance of value iteration we can further
assume that for all states not in Iπk

the computed policy πk will move to Iπk
as fast as possible, i.e.,

in expected time at most D.

If the average reward of πk on Mk is at least σ, SAT-RL plays the policy πk in an exploitation
episode, which ends after all states reachable under πk have been visited (line 15). Otherwise, if the
average reward of πk on Mk is < σ, SAT-RL performs an exploration episode, in which GOSPRL is
used to collect another S samples from each state-action pair (lines 17–21).

4



Concerning computational complexity, the computationally most elaborate step of SAT-RL is the
(repeated) calculation of the optimal policy of the empirical MDP (line 13). Similarly, GOSPRL
has to repeatedly solve a stochastic shortest path problem, which is a special instance of finding an
optimal policy in an MDP. This problem can be solved in polynomial time e.g. by LP algorithms (cf.
Section 38.3.1 of Lattimore and Szepesvári [2020]). The suggested value iteration usually works well
in practice, however does not have polynomial time guarantees [Feinberg and Huang, 2014, Balaji
et al., 2019].

Before we proceed to analyze SAT-RL, we note that in Appendix C we present an alternative
algorithm called SAT-RL2 that instead of running the GOSPRL procedure to estimate the diameter
uses a result about the diameter of MDP approximations (Lemma 5) that might be of interest in itself.

4 Regret Bound for SAT-RL

In this section we give a proof sketch for the following bound on the σ-regret of SAT-RL. Details can
be found in Appendix B.

Theorem 2. If ρ∗ > σ, then the expected σ-regret of SAT-RL after any number of steps is bounded
by

Õ

(
AS2D

7
2

(∆σ
∗ )

2
+

(∆σ
∗ )

2S−2A2

DS− 5
2SS−3

+
∆σ,+AS2D3

W

(∆σ,−)2

)
,

where the Õ-notation hides logarithmic dependencies on A,S,DW ,∆σ,−, and ∆σ
∗ .

4.1 Proof of Theorem 2

Let us first introduce some notation. For any episode k and any state-action pair (s, a), we write
rk(s, a), pk(·|s, a), and Nk(s, a) for the empirical average reward, the empirical transition probability
distribution, and the number of times action a has been chosen in state s before the start of episode k.
Similarly, Mk denotes the estimated MDP and sk is the initial state at start of episode k. Further, we
set ρk(πk, sk) := ρπk

(Mk, sk) and ρ(πk, sk) := ρπk
(M, sk).

Let Lk be a random variable for the number of steps in episode k (for k > 0) and in the initialization
phase (for k = 0), respectively. Then the regret after n episodes can be bounded by

E[L0] +

n∑
k=1

E
[
1{ρk(πk, sk) ⩾ σ ∧ ρ(πk, sk) < σ}Lk∆

σ
πk

]
+

n∑
k=1

E
[
1{ρk(πk, sk) < σ}Lk

]
. (2)

We call the three terms in this sum initialization regret RInit, exploitation regret RExploit, and
exploration regret RExplore, respectively. In the following, we derive bounds for each term separately.

Note that in the initialization phase as well as in exploration episodes we perform GOSPRL, which in
general does not execute a stationary policy. Accordingly, the regret of these episodes is actually not
well defined. In order to repair this we simply consider a regret of 1 per step in these episodes k and
accordingly simply bound the (expected) number of steps Lk. This is already reflected in (2).

In the following we define the frequency freqk of episode k to be the number of visits in the state-
action pair (s, a) that has the fewest visits before episode k among the state action-pairs that will be
regularly visited during episode k. That is, for exploration episodes k we set

freqk := min
s,a

Nk(s, a),

while for exploitation episodes k in which policy πk is played we set

freqk := min
s∈Iπk

Nk(s, πk(s)).

Upper Bound on Exploitation Regret

By Theorem 4.8 of Dabbs [2009] the covering time (i.e., the first time at which all states have
been visited) of an irreducible Markov chain with S states and diameter at most D is less than
D(1 + log(S)). Consequently, for a fixed policy πk, we need in average at most Dπk

steps to reach
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the irreducible part Iπk
and at most Dπk

(1 + log(S)) steps to cover it following policy πk. Further,
∆σ

πk
can be upper bounded by ∆σ,+, so that∑

π

E
[
Lk∆

σ
πk

∣∣πk = π ∧ ρk(π, sk) ⩾ σ ∧ ρ(π, sk) < σ
]
⩽ DW (2 + log(S))∆σ,+. (3)

It remains to analyze the term
n∑

k=1

P
(
ρk(πk, sk) ⩾ σ ∧ ρ(πk, sk) < σ

)
=

n∑
k=1

P
(
ρk(πk, sk) ⩾ σ ∧ ρ(πk, sk) < σ ∧ freqk ⩽ θ

)
(4)

+

n∑
k=1

P
(
ρk(πk, sk) ⩾ σ ∧ ρ(πk, sk) < σ ∧ freqk ⩾ θ + 1

)
, (5)

where we choose

θ =

⌈
4S(DW + 1)2

(∆σ,−)2
log

(
8S(DW+1)2

(∆σ,−)2

)⌉
. (6)

Lemma 4 in Appendix A.3 shows that for any number f with S + 1 ⩽ f ⩽ θ, there are at most AS
episodes k for which freqk = f , so that (4) can be bounded as

n∑
k=1

P
(
ρk(πk, sk) ⩾ σ ∧ ρ(πk, sk) < σ ∧ freqk ⩽ θ

)
⩽AS(θ − S) ⩽ Õ

(
AS2D2

W

(∆σ,−)2

)
. (7)

Further, by Lemma 8 in Appendix B.1, we can bound (5) as
n∑

k=1

P
(
ρk(πk, sk) ⩾ σ ∧ ρ(πk, sk) < σ ∧ freqk ⩾ θ + 1

)
⩽

2A

θS−1 log(2θ)
. (8)

Taking together eqs. (3) – (8) we obtain

RExploit ⩽ Õ

(
∆σ,+AS2D3

W

(∆σ,−)2

)
. (9)

Upper Bound on Initialization Regret

The sample complexity of GOSPRL(b̄, δg) is Õ(B̄D +AS2D
3
2 ), where B̄ =

∑
s,a b̄(s, a) and the

Õ-notation hides logarithmic dependencies on S,A, 1
δg

. In our case B̄ = AS(S + 1) and δg = 1
2 .

As GOSPRL is run until each state has been visited at least S + 1 times, the expected regret of the
first part of the initialization phase (lines 5–8 of the algorithm) is at most

∞∑
i=1

( 12 )
i−1Õ(B̄D +AS2D

3
2 ) = Õ(AS2D +AS2D

3
2 ) = Õ(AS2D

3
2 ).

For estimating the diameter (lines 9–11), the sample complexity of the GOSPRL-based(δg, εg)
procedure is Õ

(
AS2D3

ε2g

)
. Similar as before, since δg = εg = 1

2 , the respective regret is at most

∞∑
i=1

( 12 )
i−1 Õ

(
AS2D3

ε2g

)
= Õ(AS2D3),

so that we can bound the total regret in the initialization phase as

RInit ⩽ Õ(AS2D
3
2 ) + Õ(AS2D3) = Õ(AS2D3). (10)

6



Upper Bound on Exploration Regret

Similar to the analysis of RExploit we first bound

E
[
Lk

∣∣ρk(πk, sk) ⩽ σ
]
= Õ(AS2D

3
2 ) (11)

according to the sample complexity of GOSPRL (cf. also the analysis of RInit) and it remains to
bound

n∑
k=1

P
(
ρk(πk, sk) < σ

)
=

n∑
k=1

P
(
ρk(πk, sk) < σ) ∧ freqk ⩽ θ∗

)
+

n∑
k=1

P
(
ρk(πk, sk) < σ ∧ freqk ⩾ θ∗+ 1

)
, (12)

where we set

θ∗ =

⌈
4S(D + 1)2

(∆σ
∗ )

2
log

(
8S(D+1)2

(∆σ
∗ )

2

)⌉
. (13)

By definition of the algorithm, in any exploration episode each state-action pair is visited at least S
times so that also freq will increase by S. Accordingly,

n∑
k=1

P
(
ρk(πk, sk) < σ ∧ freqk ⩽ θ∗

)
⩽

⌈
θ∗
S

⌉
. (14)

Concerning (12), Lemma 11 in Appendix B.2 shows that
n∑

k=1

P
(
ρk(πk, sk) < σ ∧ freqk ⩾ θ∗ + 1

)
⩽

2A

θS−1
∗ log(2θ∗)

. (15)

Consequently, summarizing (11) – (15) we obtain

RExplore ⩽ Õ

(
AS2D

7
2

(∆σ
∗ )

2
+

(∆σ
∗ )

2S−2A2

DS− 5
2SS−3

)
(16)

and summing up the three regret terms (9), (10), and (16) yields the claimed regret bound of the
theorem.

5 The General Case

We have seen that when the satisfaction level σ is attained by the optimal policy, we can have constant
σ-regret. What can we hope for when it is not known whether ρ∗ > σ? Obviously, when ρ∗ < σ it is
not possible to have constant σ-regret anymore, as the latter will always be linear in T . However,
a reasonable aim in this case would be to re-establish standard online regret bounds with respect
to ρ∗ just as the one given in Theorem 1 for UCRL2. In the following, we present the algorithm
SAT-UCRL, which precisely achieves that: When σ is below ρ∗, we have constant regret just as for
SAT-RL. If however ρ∗ ⩽ σ, we show a bound with the same dependency on T as the one given in
Theorem 1. These results generalize the findings of Michel et al. [2023] from the bandit to the MDP
setting.

5.1 Algorithm SAT-UCRL

Our proposed algorithm SAT-UCRL is shown as Algorithm 2. It resembles SAT-RL, only that now
in exploration episodes we do not use GOSPRL but UCRL2 and these exploration episodes have
increasing length (cf. line 18). As already mentioned, UCRL2 itself uses episodes in which it follows
a fixed policy. In order to differentiate between episodes of SAT-UCRL and these internal episodes
of UCRL2, in the following we will refer to the latter as sub-episodes of UCRL2. Note that in an
exploration episode of SAT-UCRL several sub-episodes of UCRL2 are run.
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Algorithm 2 SAT-UCRL for the general RL setting

1: Input: state space S, action space A, satisfaction level σ, horizon T
2: Initialization:
3: Set confidence level δg := 1

2 and accuracy level εg := 1
2 .

4: Set initial sampling number b := S + 1 and bu := AS
8 .

5: Define function b̄ : S ×A → N to be b̄(s, a) = b for any (s, a).
6: while an action a ∈ A at some state s ∈ S has not been run b̄(s, a) times do
7: Run GOSPRL(b̄, δg).
8: For any (s, a) ∈ S ×A, set b̄(s, a) := b−N(s, a).
9: end while

10: while the diameter of the estimated MDP Mk is infinite do
11: Run GOSPRL-based(δg, εg) procedure to estimate the diameter of M .
12: end while
13: for episodes k = 1, 2, . . . do
14: Compute an optimal policy πk on Mk that induces a unique irreducible class Iπk

.
15: if ρπk

(Mk, sk) ⩾ σ then perform exploitation episode:
16: Play πk until all states in Iπk

have been visited at least once.
17: else perform exploration episode using UCRL2 with confidence parameter δ = 1

3T :
18: Set bu := 8bu.
19: while the length of the current episode is below bu do
20: Run a sub-episode of UCRL2.
21: end while
22: end if
23: end for

In order to facilitate the analysis, in the following we assume that the exploration episodes employing
UCRL2 do not use any samples of the exploitation episodes, which in practice of course would speed
up convergence and hence improve the algorithm. Concerning computational complexity, similar to
SAT-UCRL the computationally most eloborate step of SAT-UCRL is the calculation of the optimal
policy in an MDP. Due to the use of UCRL2 this also concerns MDPs with continuous action space.
Still, the computation can be done in polynomial time as shown in Section 38.5.2 of Lattimore and
Szepesvári [2020].

5.2 Regret Bound for SAT-UCRL

Now we present the two promised bounds on the (σ-)regret. We start with the bound on the standard
online regret when σ cannot be attained by any policy.

Theorem 3. Let σ ⩾ ρ∗. For any initial state s1 and any T > 1, the expected regret of SAT-UCRL
with respect to ρ∗ is bounded by

342AS2D2 log(T )

∆g
+ Õ

(
AS2D3

W

(∆σ,−)2

)
,

where the Õ notation hides logarithmic dependencies on A,S,DW ,∆σ,−, and ∆σ
∗ .

Proof. Similar to eq. (2) in the proof of Theorem 2, we first decompose the regret into three terms,
the regret accumulated in the initialization phase and in exploitation episodes as well as the regret
of exploration episodes. The regret in the intialization phase can be bounded just as in (10) in the
proof of Theorem 2. Similarly, the regret accumulated in exploitation episodes can be analyzed as
the respective exploitation regret in the proof of Theorem 2 with the only difference that we now
consider a per-step regret of 1 instead of ∆σ,+. Accordingly, we obtain an upper bound on the regret
in exploitation episodes of

Õ

(
AS2D3

W

(∆σ,−)2

)
,

a term that also subsumes the already mentioned regret in the initialization phase.
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Finally, in order to bound the accumulated regret of exploration episodes we can simply apply
Theorem 1, noting that the proof of Jaksch et al. [2010] also works when the initial states of an
episode do not coincide with the last visited state of the previous episode but are chosen arbitrarily.
Summing up the three regret terms gives the claimed bound.

If σ < ρ∗, we can show also for SAT-UCRL that the σ-regret is bounded by a constant.

Theorem 4. If σ < ρ∗, then the σ-regret of SAT-UCRL is bounded by a constant independent of T .

Proof. Once more we decompose the regret into three terms, the initialization regret, the exploitation
regret, and the exploration regret. As the algorithm is the same as SAT-RL in the initialization
phase and exploitation episodes, the first two regret terms can simply be analyzed as in the proof of
Theorem 2, which yields an upper bound on both terms of

Õ

(
∆σ,+AS2D3

W

(∆σ,−)2

)
. (17)

What remains to do is to analyze the exploration regret due to episodes in which UCRL2 is played,
which happens when all policies are empirically below σ. In the following, we consider only these
exploration episodes and renumber them using the variable m = 1, 2, . . . instead of k in order to
indicate that episode m is the m-th exploration episode. Then by definition of the algorithm, the
number of steps of the m-th of these episodes is at least 23m−3AS and at most 24m−3AS.

Now we distinguish between long and short exploration episodes and set β to be the smallest positive
integer for which 23β−5

β ⩾ max{θM , (θ∗+1)2θ′M}, where θM , θ′M are defined in Appendix D, while
θ∗ is as defined in (13). Then we decompose the exploitation regret with respect to β into

β∑
m=1

E[Lm∆σ
πm

] +
∑
m>β

E[Lm∆σ
πm

], (18)

now using the changed episode numbers and hence slightly abusing notation, so that e.g. Lm denotes
the episode length for the m-th exploration episode. Using the maximal episode length of 24m−3AS
we can bound the first term by

β∑
m=1

E[Lm∆σ
πm

] ⩽
β∑

m=1

24m−3AS∆σ,+ ⩽
24β+1

15
AS∆σ,+. (19)

Thus let us consider the regret caused by exploration episodes m > β. As shown by Lemma 12 in
Appendix D each such exploration episode m > β contains a reliable sub-episode of length at least⌈
23m−5

m

⌉
which employs an optimal policy with probability at least 1− 1

3T . In the following we will
indeed assume that each considered exploration episode m > β has a reliable sub-episode in which
the optimal policy is played.

For m ⩾ β we define the following events:

• Am denotes the event that each state-action pair of the irreducible class of the optimal policy
(played in the reliable sub-episode) has been visited at least 2m−βθ∗ times during episode m,
where θ∗ is as defined in (13).

• Bm denotes the event that Am holds and that rewards or transition probabilities of some state-
action pair in the irreducible class of the optimal policy are not estimated with accuracy ε∗

after episode m, where ε∗ :=
√

2S log(2θ∗)
θ∗

, cf. Appendix B.2.

Note that when Am and Bm hold, an accuracy of ε∗ has been reached, which guarantees that the
optimal policy of the empirical MDP will be satisficing with high probability, cf. Appendix B.2.
Accordingly, exploration episode m playing UCRL2 will only occur when for the previous exploration
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episode m− 1 we have Am−1 or Bm−1. (Recall that samples that may have been collected in the
meantime in exploitation episodes are not used in exploration episodes.) Therefore we have∑

m>β

E
[
Lm∆σ

πm

]
=

∑
m>β

P(Am−1)E
[
Lm∆σ

πm

∣∣Am−1

]
+

∑
m>β

P(Bm−1)E
[
Lm∆σ

πm

∣∣Bm−1

]
.

(20)

Concerning the first term of (20) we again use the upper bound of 24m−3AS on the length of
exploration episode m. Further, by Lemma 14 in Appendix D, the probability of Am is bounded by
( 12 )

(θ∗+1)2m−β−1 so that∑
m>β

P(Am−1)E
[
Lm∆σ

πm

∣∣Am−1

]
⩽

∑
m>β

(24m−3AS∆σ,+)( 12 )
(θ∗+1)2m−1−β−1

⩽ 24β+4−θ∗AS∆σ,+. (21)

For an upper bound on the second term of (20), we can apply the same proof technique as for
Lemmas 9 and 10 and setting d(m) = 2m−β to obtain∑
m>β

P(Bm−1)E[Lm∆σ
πm

|Bm−1]

⩽
∑
m>β

24m−3AS∆σ,+
∑
s,a

P
(
|rm(s, a)− µ(s, a)| ⩾ ε∗ ∧Nm(s, a) ⩾ 2m−β(θ∗ + 1)

)
+

∑
m>β

24m−3AS∆σ,+
∑
s,a

P
(∥∥pm(·|s, a)− p(·|s, a)

∥∥
1
⩾ ε∗ ∧Nm(s, a) ⩾ 2m−β(θ∗ + 1)

)
⩽

∑
m>β

24m−3AS∆σ,+
∑
s,a

∑
t⩾2m−β(θ∗+1)

P
(
|rt(s, a)− µ(s, a)| ⩾ ε∗

)
+

∑
m>β

24m−3AS∆σ,+
∑
s,a

∑
t⩾2m−β(θ∗+1)

P
(∥∥pt(·|s, a)− p(·|s, a)

∥∥
1
⩾ ε∗

)
⩽

∑
m>β

24m−2A2S∆σ,+

2d(m)S−S θ
d(m)S−1
∗ log(2θ∗)

< const · 2βA2S∆σ,+. (22)

Collecting all regret terms (17) – (22) and noting that none of them depends on the horizon T
completes the proof of the theorem.

6 Conclusion

While it is satisfactory to have an algorithm that gives constant σ-regret when ρ∗ > σ and for which
one obtains regret bounds as for UCRL2 otherwise, there is still some work to be done. In particular,
we did not try to optimize the parameters in the constant regret bound, which are hence probably not
optimal. Having a respective lower bound to compare with would help to decide whether e.g. DW

could be replaced by D and which of the gap parameters have to appear in an optimal upper bound.
In any case just as in the bandit setting, while it is possible to have constant σ-regret, it still seems to
be unavoidable (at least in the worst case) to have a dependence on the whole state-action space.

Another improvement that seems desirable and not out of reach is to design an algorithm that does not
take the state space as input, but instead only works with the part of the state space it has discovered
by itself so far.
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A Useful Results

A.1 Concentration Inequalities

The following concentration inequalities are derived from the Hoeffding-Chernoff bound.

Lemma 1. Let r̄t(s, a) and p̄t(s
′
∣∣s, a) be the empirical average reward and the empirical transition

probabilities after observing t samples. Then

P
(∣∣r̄t(s, a)− µ(s, a)

∣∣ ⩾ ε
)
⩽ 2 exp(−2tε2)

and

P
(∣∣p̄t(s′∣∣s, a)− p(s′

∣∣s, a)∣∣ ⩾ ε
)
⩽ 2 exp(−2tε2).

11

https://math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/Dabbs.pdf
https://www.hpl.hp.com/techreports/2003/HPL-2003-97R1.pdf


A.2 MDP Approximations

This section collects results about the error in average reward when working with MDP approxima-
tions that have slightly different rewards and transition probabilities.

Definition 3. An MDP M̂ = (S,A, r̂, p̂) is environmentally an ε-approximation of another MDP
M = (S,A, r, p) if they have the same state and action space and for all s ∈ S and a ∈ A∑

s′∈S

∣∣p̂(s′|s, a)− p(s′|s, a)
∣∣ < ε.

Moreover, if in addition for all s ∈ S and a ∈ A

|µ̂(s, a)− µ(s, a)| < ε

then M̂ is called an ε-approximation of M .

The following result bounds the error in optimal average reward when working with an ε-
approximation.

Lemma 2. [Ortner et al., 2014] Let M be a communicating MDP with optimal policy π∗. If M̂ is
an ε-approximation of M , then for any initial state s1,

|ρ∗(M)− ρ∗(M̂, s1)| ⩽ |ρπ∗(M, s1)− ρπ∗(M̂, s1)| ⩽ ε(D(M) + 1).

Consider two MDPs M , M̂ on the same state and action space and let π be an arbitrary policy that
induces an irreducible class Iπ ⊆ S on M̂ . Assume that the definition of ε-approximation holds just
for the states of Iπ and the actions of π, that is, for all s ∈ Iπ we have∑

s′∈S

∣∣p̂(s′|s, π(s))− p(s′|s, π(s))
∣∣ < ε

and
|µ̂(s, π(s))− µ(s, π(s))| < ε.

Then we call M̂ an (ε, Iπ)-approximation of M . The following result is a consequence of Lemma 2.

Lemma 3. Let M = (S,A, r, p) and M̂ = (S,A, r̂, p̂) be two MDPs with the same state space and
action space, and assume that M is communicating. Suppose that for any (s′, s, a) ∈ S × S × A
if p̂(s′|s, a) > 0 then also p(s′|s, a) > 0. Let π∗ be an optimal policy of M̂ inducing a unique
irreducible class Îπ∗ . If M̂ is an (ε, Îπ∗)-approximation of M , then for any initial state s1,

ρπ∗(M, s1) ⩾ ρπ∗(M̂, s1)− ε(DW (M) + 1).

Proof. Since p̂(s′|s, π∗(s)) > 0 implies that p(s′|s, π∗(s)) > 0, one can conclude that policy π∗ in
M has also a unique irreducible class Iπ∗ containing Îπ∗ . This means that by starting from any state
and following π∗ in M , we reach Îπ∗ after a while.

Now construct two new MDPs M ′ = (Iπ∗ , {a∗}, r′, p′) and M̂ ′ = (Iπ∗ , {a∗}, r̂′, p̂′) as follows. The
state space of both MDPs is Iπ∗ and in each state s there is a unique action a∗ := π∗(s) available.
For any states s ∈ Îπ∗ and s′ ∈ Iπ∗ , the transition probabilities p′(s′|s, a∗) and p̂′(s′|s, a∗) are the
same as p(s′|s, π∗(s)) and p̂(s′|s, π∗(s)), respectively. Similarly, the rewards r′(s, a∗) and r̂′(s, a∗)

are the same as r(s, π∗(s)) and r̂(s, π∗(s)), respectively. For any other pair s, s′ where s ̸∈ Îπ∗ , the
transition probabilities p′(s′|s, a∗) and p̂′(s′|s, a∗) are the same as p(s′|s, π∗(s)). Also the respective
rewards r′(s, a∗) and r̂′(s, a∗) are the same as r(s, π∗(s)) for s ̸∈ Îπ∗ . It is easy to check that M ′

is communicating with diameter at most Dπ∗(M) and that the average reward of π∗ in M ′ and M̂ ′

coincides with ρπ∗(M, s1) and ρπ∗(M ′, s1) , respectively. As M ′ only has a single policy π∗ this
policy is optimal, and since M̂ ′ is an ε-approximation of M ′, the claim follows by Lemma 2.
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A.3 A Combinatorial Lemma

Let U1, U2, . . . , Un be a sequence of non-empty multi-subsets of a universal set U . For any x ∈ U , let
Ni(x) denote the number of occurrences of the element x in sets Uj with j < i. Here all occurrences
of x in the multi-subsets Uj are counted. We define the frequency of a set Ui to be

freq(Ui) := min
x∈Ui

Ni(x).

Lemma 4. Let U1, U2, . . . , Un be a sequence of non-empty multi-subsets of a universal set U . For
any non-negative integer f , there are at most |U | members of this sequence that have frequency f .

Proof. Let 1 ⩽ f1 < f2 < · · · < fℓ ⩽ n be distinct positive integers such that the frequency of
each of Uf1 , Uf2 , . . . , Ufℓ is f . By definition, for any 1 ⩽ j ⩽ ℓ there exists an xfj ∈ Ufj such that
freq(Ufj ) = f = Nfj (xfj ). Note however that for any two distinct sets Ufi , Ufj with fi > fj we
have xfi ̸= xfj , since otherwise we would obtain the contradiction

freq(Ufi) = Nfi(xfi) ⩾ 1 +Nfj (xfi) = 1 + freq(Ufj ) = f + 1.

This completes the proof.

A.4 Another Useful Lemma

Lemma 5. Let c, z be real numbers such that z ⩾ ⌈2c log(4c)⌉ ⩾ e
2 , where e is Euler’s number.

Then
log(2z)

z
<

1

c
.

Proof. Note that log(2z)
z is decreasing when z ⩾ e

2 . For z = 2c log(4c) it is straightforward to check
that the inequality log(4c log(4c))

2c log(4c) < 1
c holds, which completes the proof.

B Analysis of SAT-RL

We start the analysis of our algorithm SAT-RL by deriving some results concering the quality of MDP
approximations that later will be used to bound the error when using the empirical MDP instead of
the true one.

B.1 The Empirical MDP in Exploitation Episodes

In this section, we show that in an exploitation episode, the probability of running a not satisficing
policy is low, as soon as the frequency freqk of the episodes k becomes large enough. Let us set

ε =

√
2S log(2θ)

θ
, where θ =

⌈
4S(DW + 1)2

(∆σ,−)2
log

(
8S(DW+1)2

(∆σ,−)2

)⌉
.

Intuitively, ε is the accuracy needed to guarantee that the policy πk is above σ, while θ will be seen
to be the frequency needed to guarantee this accuracy with high probability.
Proposition 2. If Mk is an (ε, Iπk

)-approximation of M , then πk has average reward above σ on M .

Proof. Setting c = 2S(DW + 1)2/(∆σ,−)2 we have θ = ⌈2c log(4c)⌉ and by Lemma 5

ε <

√
2S

c
=

∆σ,−

(DW + 1)
,

so that
ε(DW + 1) < ∆σ,− ⩽ ∆σ

πk
.

Accordingly, as soon as Mk is an (ε, Iπk
)-approximation of M , the policy πk has average reward

above σ on M , as otherwise by Lemma 3 we would get the contradiction

ρ(πk, sk) ⩾ ρk(πk, sk)− ε(DW + 1) > σ −∆σ
πk

= ρ(πk, sk).
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In the sequel, we show that when freqk > θ then with high probability Mk is an (ε, Iπk
)-

approximation of M and hence πk is satisficing. Let Vk be the set of all state-action pairs (s, πk(s))
such that s ∈ Iπk

and either rewards or transition probabilities are not estimated well enough
at the start of exploitation episode k. That is, for s ∈ Iπk

we have
∑

s′∈S |pk(s′
∣∣s, πk(s)) −

p(s′
∣∣s, πk(s))| ⩾ ε or |rk(s, πk(s))− µ(s, πk(s))| ⩾ ε.

Recall that r̄t(s, a) and p̄t(s
′
∣∣s, a) stand for the empirical average reward and the empirical transition

probability after observing exactly t samples.
Lemma 6. For any state s ∈ S and action a ∈ A, we have∑

t⩾θ+1

P
(
|r̄t(s, a)− µ(s, a)| ⩾ ε

)
⩽

1

SθS−1 log(2θ)
.

Proof. For any state s ∈ S, action a ∈ A, and positive integer t ⩾ θ + 1, by Lemma 1,

P
(
|r̄t(s, a)− µ(s, a)| ⩾ ε

)
= P

(
|r̄t(s, π(s))− µ(s, π(s))| ⩾

√
2S log(2θ)

θ

)
⩽ 2 exp

(
−2t

(√
2S log(2θ)

θ

)2
)

⩽ 2 exp
(

−4St log(2θ)
θ

)
.

Accordingly, ∑
t⩾θ+1

P
(
|r̄t(s, a)− µ(s, a)| ⩾ ε

)
⩽

∞∑
θ+1

2 exp
(

−4St log(2θ)
θ

)
⩽

∫ ∞

θ

2 exp
(

−4St log(2θ)
θ

)
dt

⩽
1

S24S+1θ4S−1 log(2θ)

⩽
1

SθS−1 log(2θ)
.

Lemma 7. For any state s ∈ S and action a ∈ A, we have∑
t⩾θ+1

∑
s′

P
(
|p̄t(s′

∣∣s, a)− p(s′
∣∣s, a)| ⩾ ε

)
⩽

1

SθS−1 log(2θ)
.

Proof. Weissman et al. [2003] show that for the L1-deviation of the true distribution and the empirical
distribution over m distinct events from t samples it holds that

P
(
∥p̄t(·)− p(·)∥1 ⩾ ε

)
⩽ (2m − 2) exp

(
− tε2

2

)
. (23)

For any state s ∈ S and action a ∈ A, the number of s′ ∈ S for which p(s′
∣∣s, a) > 0 is at most S.

Accordingly, by (23) for any t ⩾ θ + 1,

P
(∥∥p̄t(·|s, a)− p(·|s, a)

∥∥
1
⩾

√
2S log(2θ)

θ

)
⩽ 2S exp

(
− t

2

(√
2S log(2θ)

θ

)2
)

⩽ 2S exp
(
−St log(2θ)

θ

)
.

Hence, ∑
t⩾θ+1

∑
s′

P
(∣∣p̄t(s′|s, a)− p(s′|s, a)

∣∣ ⩾ ε
)
⩽

∑
t⩾θ+1

2S exp
(
−St log(2θ)

θ

)
⩽

∫ ∞

θ

2S exp
(
−St log(2θ)

θ

)
dt

⩽
1

SθS−1 log(2θ)
.
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Now, we show that the total probability of choosing a not satisficing policy in exploitation episodes is
bounded by a constant, provided that the frequency of each episode is sufficiently large.

Lemma 8. For any positive integer n, we have

n∑
k=1

P
(
ρk(πk, sk) ⩾ σ ∧ ρ(πk, sk) < σ ∧ freqk ⩾ θ + 1

)
⩽

2A

θS−1 log(2θ)
.

Proof. From Proposition 2 we know that when Mk is an (ε, Iπk
)-approximation of M , then πk has

average reward above σ on M . Accordingly, if ρπk
(Mk, sk) ⩾ σ and ρ(πk, sk) < σ, then there has

to be a state s ∈ Iπk
for which (s, πk(s)) ∈ Vk. Hence, by Lemmas 6 and 7 we have

n∑
k=1

P
(
ρk(πk, sk) ⩾ σ ∧ ρ(πk, sk) < σ ∧ freqk ⩾ θ + 1

)
⩽

n∑
k=1

P
(
∃(s, a) ∈ Vk : πk(s) = a ∧Nk(s, a) ⩾ θ + 1

)
⩽

n∑
k=1

∑
s,a

P
(
|rk(s, a)− µ(s, a)| ⩾ ε ∧ s ∈ Iπk

∧ πk(s) = a ∧Nk(s, a) ⩾ θ + 1
)

+

n∑
k=1

∑
s,a

P
(∣∣∣∣pk(·|s, a)− p(·|s, a)

∣∣∣∣
1
⩾ ε ∧ s ∈ Iπk

∧ πk(s) = a ∧Nk(s, a) ⩾ θ + 1
)

⩽
∑
s,a

∑
t⩾θ+1

P(|r̄t(s, a)− µ(s, a)| ⩾ ε) +
∑
s,a

∑
t⩾θ+1

P
(∥∥p̄t(·|s, a)− p(·|s, a)

∥∥
1
⩾ ε

)
⩽

2A

θS−1 log(2θ)
.

B.2 The Empirical MDP in Exploration Episodes

Now, we show that after a certain number of exploration episodes the probability of having another
exploration episode is low. Similar to the analysis of exploitation episodes we set

ε∗ =

√
2S log(2θ∗)

θ∗
, where θ∗ =

⌈
4S(D + 1)2

(∆σ
∗ )

2
log

(
8S(D+1)2

(∆σ
∗ )

2

)⌉
. (24)

As we will see below, ε∗ is the accuracy needed in order to identify an optimal policy π∗ as satisficing.
Further, accuracy ε∗ will be reached with high probability when the frequency of the respective
episode exceeds θ∗.

Proposition 3. If Mk is an ε∗-approximation of M , then ρk(π
∗, sk) > σ.

Proof. Indeed, setting c = 2S(D + 1)2/(∆σ,∗)2 in Lemma 5, one can see that ε∗(D + 1) < ∆σ
∗ .

Consequently, if Mk is an ε∗-approximation of M , then by Lemma 2

ρk(π
∗, sk) ⩾ ρ∗ − ε∗(D + 1) = σ +∆σ

∗ − ε∗(D + 1) > σ.

Accordingly, as soon as Mk is an ε∗-approximation of M no exploration episode is played anymore
(cf. line 14 of the algorithm). In the following, we show that with high probability Mk is indeed
an ε∗-approximation of M when freqk > θ∗. The following arguments are similar, yet a bit more
general than those given in Section B.1 and will later also be needed in the analysis for the general
algorithm.

Let V ∗
k be the set of all state-action pairs (s, a) for which rewards or transition probabilities are not

estimated well enough at the start of exploration episode k. That is, for (s, a) in V ∗
k we have∑

s′∈S |pk(s′
∣∣s, a)− p(s′

∣∣s, a)| ⩾ ε∗ or |rk(s, a)− µ(s, a)| ⩾ ε∗.

15



Lemma 9. For any state s ∈ S, action a ∈ A, and positive integer d ⩾ 1, we have∑
k

P
(
ρk(πk, sk) < σ ∧ freqk ⩾ dθ∗ + 1 ∧ |r̄k(s, a)− µ(s, a)| ⩾ ε∗

)
⩽

1

S2dS−SθdS−1
∗ ln(2θ∗)

.

Proof. If freqk ⩾ dθ∗ + 1, then any state-action pair has been visited at least dθ∗ + 1 times prior to
episode k. For any state s ∈ S and action a ∈ A, we have∑

k

P
(
ρk(πk, sk) < σ ∧ freqk ⩾ dθ∗ + 1 ∧ |r̄k(s, a)− µ(s, a)| ⩾ ε∗

)
⩽

∑
t⩾dθ∗+1

P
(
|r̄t(s, a)− µ(s, a)| ⩾ ε∗

)
⩽

∑
t⩾dθ∗+1

2 exp

(
−2t

(√
2S log(2θ∗)

θ∗

)2
)

⩽
∑

t⩾dθ∗+1

2 exp
(

−4St log(2θ∗)
θ∗

)
⩽
∫ ∞

dθ∗

2 exp
(

−4St log(2θ∗)
θ∗

)
dt

⩽
1

S24dS+1θ4dS−1
∗ log(2θ∗)

<
1

S2dS−SθdS−1
∗ log(2θ∗)

Lemma 10. For any state s ∈ S, action a ∈ A, and positive integer d ⩾ 1, we have∑
k

P
(
ρk(πk, sk) < σ∧freqk ⩾ dθ∗+1∧∥p̄k(·|s, a)−p(·|s, a)∥1 ⩾ ε∗

)
⩽

1

S2dS−SθdS−1
∗ log(2θ∗)

.

Proof. For any state s ∈ S and action a ∈ A, the number of s′ ∈ S for which p(s′|s, a) > 0 is at
most S. Accordingly, by (23) for any t ⩾ dθ∗ + 1∑

k

P
(
ρk(πk, sk) < σ ∧ freqk ⩾ dθ∗ + 1 ∧ ∥p̄k(·|s, a)− p(·|s, a)∥1 ⩾ ε∗

)
⩽

∑
t⩾dθ∗+1

P
(∥∥p̄t(·|s, a)− p(·

∣∣s, a)∥∥
1
⩾ ε∗

)
⩽

∑
t⩾dθ∗+1

2S exp

(
− t

2

(√
2S log(2θ∗)

θ∗

)2
)

⩽
∑

t⩾dθ∗+1

2S exp
(
−St log(2θ∗)

θ∗

)
⩽
∫ ∞

dθ∗

2S exp
(
−St log(2θ∗)

θ∗

)
dt

⩽
1

S2dS−SθdS−1
∗ log(2θ∗)

Now, we show that the total probability of running exploration episodes is bounded by a constant.

Lemma 11. If ρ∗ > σ, then∑
k

P
(
ρk(πk, sk) < σ ∧ freqk ⩾ dθ∗ + 1

)
⩽

2A

2dS−SθdS−1
∗ log(2θ∗)

.
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Proof. If ρπ∗(Mk, sk) < σ, then Mk cannot be an ε∗-approximation of M by Proposition 3. Hence,
in this case V ∗

k cannot be empty and we have by Lemmas 9 and 10,∑
k

P
(
ρk(πk, sk) < σ ∧ freqk ⩾ dθ∗ + 1

)
⩽

∑
k

P
(
ρk(π

∗, sk) < σ ∧ freqk ⩾ dθ∗ + 1
)

⩽
∑
k

P (∃(s, a) ∈ V ∗
k : Nk(s, a) ⩾ dθ∗ + 1)

⩽
∑
k

∑
s,a

P (|rk(s, a)− µ(s, a)| ⩾ ε∗ ∧Nk(s, a) ⩾ dθ∗ + 1) (25)

+
∑
k

∑
s,a

P
(∣∣∣∣pk(·|s, a)− p(·|s, a)

∣∣∣∣
1
⩾ ε∗ ∧Nk(s, a) ⩾ dθ∗ + 1

)
⩽

∑
s,a

∑
t⩾dθ∗+1

P (|r̄t(s, a)− µ(s, a)| ⩾ ε∗) +
∑
s,a

∑
t⩾dθ∗+1

P
(∣∣∣∣p̄t(·|s, a)− p(·|s, a)

∣∣∣∣
1
⩾ ε∗

)
⩽

2A

S2dS−SθdS−1
∗ log(2θ∗)

C An Error Bound for Estimating the Diameter and SAT-RL2

In this part of the appendix we present an alternative algorithm that does not resort to the GOSPRL-
procedure to estimate the diameter of the underlying MDP in order to guarantee that the empirical
MDP is communicating. Instead, we use a result that provides an error bound on how much the
diameter in the empirical MDP can deviate from its counterpart in the true MDP.

C.1 SAT-RL2: Estimation of the Diameter Without GOSPRL

The algorithm SAT-RL2, shown as Algorithm 3, skips the part of SAT-RL which uses the GOSPRL-
procedure to estimate the diameter of the underlying MDP (i.e., lines 9–11 in SAT-RL). As already
discussed, this is done to guarantee that the empirical MDP is communicating before proceeding.
Instead SAT-RL2 just performs an ordinary exploration episode using GOSPRL (lines 15–19) in
case the empirical MDP is not communicating (cf. line 11). Theorem 5 derived in the following
section will provide a bound on the approximation error for the diameter estimate one obtains from

Algorithm 3 SAT-RL2: Satisficing without using GOSPRL for diameter estimation

Input: state space S, action space A, satisfaction level σ
Initialization:
Set confidence level δg := 1

2 ,and initial sampling number b := S + 1.
Define function b̄ : S ×A → N to be b̄(s, a) = b for any (s, a).
while an action a ∈ A at some state s ∈ S has not been run b̄(s, a) times do

Run GOSPRL(b̄, δg).
For any (s, a) ∈ S ×A, define b̄(s, a) := b−N(s, a).

end while
for episodes k = 1, 2, . . . do

Compute an optimal policy πk on Mk.
if Mk is communicating and ρπk

(Mk, sk) ⩾ σ then perform exploitation episode:
πk can be chosen to induce a unique irreducible class Iπk

.
Play πk until all states in Iπk

have been visited at least once.
else perform exploration episode:

Set b := b+ S.
while N(s, a) < b for some state-action pair (s, a) do

For any (s, a), set b̄(s, a) := b−N(s, a).
Run GOSPRL(b̄, δg).

end while
end if

end for
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the empirical MDP. This result is of interest in itself and further allows us to bound the number of
exploration episodes one has to perform until the empirical MDP becomes communicating.

C.2 Approximation Error for the Empirical Diameter

In this section we derive a bound on the approximation error when estimating the diameter of an
MDP M by its counterpart in an ε-approximation of M .

We start with some auxiliary definitions. Let Π be a multi-set consisting of S stationary policies on
an MDP M such that for each state s ∈ S there exists a unique policy πs ∈ Π. Consider an agent
starting in some state s following policy πs ∈ Π for a while and then changing to policy πs′ ∈ Π
when being in some state s′. By iterating this procedure, we obtain a non-stationary policy. We call
such a policy semi-stationary and denote the set of semi-stationary policies of M by ΠSem(M).
Accordingly, we introduce the semi-diameter, which generalizes the notion of diameter as follows.

Definition 4. Consider the stochastic process defined by a semi-stationary policy π+ ∈ ΠSem(M)
operating on an MDP M with initial state s. Let T (s′

∣∣M,π+, s) be the random variable for the first
time step in which state s′ is reached in this process. Then the semi-diameter of M is defined as

DSem(M) = max
s̸=s′∈S

min
π+∈ΠSem(M)

E
[
T (s′

∣∣M,π+, s)
]
.

Obviously, DSem(M) ⩽ D(M) in any MDP M . Not surprisingly, the two notions coincide in
general.

Proposition 4. For any MDP M ,
DSem(M) = D(M).

As Proposition 4 demonstrates, the notions of semi-stationary policies and semi-diameter do not add
anything substantial to the ordinary notions of startionary policy and diameter. However, they are
practical for the proof of the following main result of this section.

Theorem 5. Let M = (S,A, r, p) be a communicating MDP with diameter D and M̂ = (S,A, r̂, p̂)
be environmentally an ε-approximation of M over the same state-action space, where ε < ℓ−2

ℓ(ℓD−1)

for some positive integer ℓ ⩾ 3. Then the diameter of M̂ is at most ℓ2D − ℓ.

Proof. Since the diameter of M is D, for any two states s and s′ there exists a policy πs,s′ such that
when following πs,s′ starting in s, we reach s′ in at most D steps on average. Hereafter, we call the pro-
cess of starting in s and following policy πs,s′ a πs,s′ -exploration. Performing such a πs,s′ -exploration
for ℓ steps in M generates a sequence s0s1 · · · sℓ with s0 = s and p

(
si
∣∣si−1, πs,s′(si−1)

)
> 0 for

1 ⩽ i ⩽ ℓ.

Now we are going to show that for any s, s′ ∈ S a πs,s′-exploration of ℓD − 1 steps in M̂ visits s′

with probability more than 1
ℓ . For any sequence s0s1 · · · sℓ let us consider the probabilities

Pπs,s′

M

(
s0s1 · · · sℓ

)
=

ℓ∏
i=1

p
(
si
∣∣si−1, πs,s′(si−1)

)
,

Pπs,s′

M̂

(
s0s1 · · · sℓ

)
=

ℓ∏
i=1

p̂
(
si
∣∣si−1, πs,s′(si−1)

)
.

Further, we set

Pπs,s′

min

(
s0s1 · · · sℓ

)
=

ℓ∏
i=1

min
{
p
(
si
∣∣si−1, πs,s′(si−1)

)
, p̂
(
si
∣∣si−1, πs,s′(si−1)

)}
to be the minimal probability of generating the sequence s0s1 · · · sℓ if we follow policy πs,s′ for ℓ
steps in M (resp. M̂ ) starting in s0.
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For any finite sample space Ω, any function f : Ω → R, and an event W ⊆ Ω, we set f(W ) :=∑
w∈W f(w). Consider the sample spaces consisting of all possible πs,s′-explorations of ℓ steps in

M and M̂ , respectively:

WM (s, ℓ) =
{
s0s1 · · · sℓ

∣∣ s0 = s, si ∈ S,Pπs,s′

M (s0s1 · · · sℓ) > 0
}
,

WM̂ (s, ℓ) =
{
s0s1 · · · sℓ

∣∣ s0 = s, si ∈ S,Pπs,s′

M̂
(s0s1 · · · sℓ) > 0

}
.

Further, let WM (s, s′, ℓ) ⊆ WM (s, ℓ) consist of all πs,s′ -explorations of length ℓ in M that contain s′.
That is,

WM (s, s′, ℓ) =
{
s0s1 · · · sℓ

∣∣ s0 = s, sj = s′ for some 0 ⩽ j ⩽ ℓ, si ∈ S,Pπs,s′

M (s0s1 · · · sℓ) > 0
}
.

Denoting by WM (s, s′, ℓ) ⊆ WM (s, ℓ) the complement of WM (s, s′, ℓ) we have by Markov’s
inequality for any positive integer ℓ,

Pπs,s′

M

(
WM (s, s′, ℓD − 1)

)
⩽

1

ℓ
. (26)

Since M̂ is environmentally an ε-approximation of M , we further have by our assumption on ε

Pπs,s′

min

(
WM (s, ℓD − 1) ∩WM̂ (s, ℓD − 1)

)
⩾ (1− ε)ℓD−1 ⩾ 1− (ℓD − 1)ε >

2

ℓ
. (27)

We claim that

Pπs,s′

min

(
WM (s, s′, ℓD − 1) ∩WM̂ (s, ℓD − 1)

)
>

1

ℓ
. (28)

Indeed, otherwise it follows from (27) that Pπs,s′

min

(
WM (s, s′, ℓD − 1) ∩WM̂ (s, ℓD − 1)

)
> 1

ℓ and
consequently

Pπs,s′

M

(
WM (s, s′, ℓD − 1)

)
⩾Pπs,s′

M

(
WM (s, s′, ℓD − 1) ∩WM̂ (s, ℓD − 1)

)
⩾Pπs,s′

min

(
WM (s, s′, ℓD − 1) ∩WM̂ (s, ℓD − 1)

)
>

1

ℓ
,

which contradicts (26).

From (28) we can conclude that

Pπs,s′

M̂

(
WM (s, s′, ℓD − 1) ∩WM̂ (s, ℓD − 1)

)
>

1

ℓ
,

showing that if we run a πs,s′ -exploration of ℓD−1 steps in M̂ , then s′ will be visited with probability
more than 1

ℓ . Now let us consider the following policy to estimate the diameter of M̂ . For any
two states s and s′, start from s and follow the policy πs,s′ for ℓD − 1 steps in M̂ . If after at most
ℓD − 1 steps, the state s′ has not been reached then for the current state s′′ follow the policy πs′′,s′

for another ℓD − 1 steps. Iterate this procedure until s′ is reached. In view of the expectation of
the geometric distribution, the expected number of necessary iterations is ℓ and hence the expected
number of steps until s′ is visited is at most ℓ(ℓD − 1). This holds for any pair of states s, s′, so that
the semi-diameter of M̂ is bounded by ℓ2D − ℓ and the theorem follows by Proposition 4.

C.3 Regret Bound for SAT-RL2

As for SAT-RL we have a constant bound on the σ-regret of SAT-RL2.
Theorem 6. If ρ∗ > σ, then the expected σ-regret of SAT-RL2 after any number of steps is bounded
by

Õ

(
AS2D

7
2

(∆σ
∗ )

2
+

(∆σ
∗ )

2S−2A2

DS− 5
2SS−3

+
∆σ,+AS2D3

W

(∆σ,−)2

)
,

where logarithmic dependencies on A,S,DW ,∆σ,−, and ∆σ
∗ are not shown.
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Proof. The theorem is derived analogously to Theorem 2. The main difference is that one additionally
has to take into account how many exploration episodes have to be performed until the empirical MDP
is communicating with high probability. The respective number of steps in these episodes can be
bounded using Theorem 5 as follows. Choosing ℓ = 3 in Theorem 5 shows that if the empirical MDP
Mk is an ε′-approximation of M with ε′ < 1

9D , then Mk has finite diameter, i.e., is communicating.
Accordingly, it is sufficient if we set ε′ = ε∗

9 because this implies (cf. the proof of Proposition 2)

9ε′D < ε∗(D + 1) < ∆σ
∗ ⩽ 1,

whence ε′ < 1
9D .

On the other hand, for a suitable constant c > 0,

ε′ =
1

9

√
2S log(2θ∗)

θ∗
⩾

√
2S log(cθ∗)

cθ∗
,

so that if we replace θ∗ by cθ∗ in the derivations in Section B.2, we can show that when the frequency
is at least cθ∗ then accuracy ε′ is achieved with high probability. In particular, an equivalent of
Lemma 11 for d = 1 holds stating that

n∑
k=1

P
(
ρk(πk, sk) < σ ∧ freqk ⩾ cθ∗ + 1

)
⩽

2A

(cθ∗)S−1 log(2θ∗)
.

Accordingly, as in each run of an exploration episode the frequency increases by S, after
⌈
cθ∗
S

⌉
exploration episodes the empirical MDP is an ε′-approximation of M with probability at least
1− 2A

(cθ∗)S−1 log(2θ∗)
. This will only cause an additional factor of c in the regret term of the exploration

part, so that the claimed bound holds.

D Details for the Proof of Theorem 4

We start looking at some of the parameters we are using which are related to episodes that are
sufficiently long in order to guarantee optimality or visits in all states of the irreducible class.

D.1 Parameter θM

Beside the bound on the expected regret of UCRL2 in Theorem 1, Jaksch et al. [2010] also show the
following high probability bound.
Theorem 7. The regret of UCRL2 run with confidence parameter δ is bounded by

34 ·DS
√
AT log

(
T
δ

)
for all T with probability at least 1− δ.

This bound also implies that when a sub-episode of UCRL2 has sufficient length, the policy used
in this sub-episode has to be optimal. Indeed, by Theorem 7 the per-step regret after T steps is
34·DS

√
A log(T/δ)√
T

with high probability, so that when T is sufficiently large the per-step regret is
below ∆g . Thus, let θM be the smallest positive integer T such that

34 ·DS
√
A log(T/δ)√
T

< ∆g.

Then by Theorem 7 with probability at least 1− 1
3T any sub-episode of length ⩾ θM in an exploration

episode of SAT-UCRL will play an optimal policy. If ρ∗ ⩾ σ, then the optimal policy is satisficing
and the same argument shows that any policy played by SAT-UCRL for at least θM steps in a
UCRL2-subepisode must be satisficing with high probability. This is used to show the following
lemma.
Lemma 12. With probability at least 1− 1

3T , any exploration episode m > β contains a reliable
sub-episode.
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Proof. By definition of the algorithm, the number of steps of the m-th exploration episode is at
least 23m−3AS and at most 24m−3AS. By Proposition 1, one can conclude that the number of
sub-episodes in episode m is at most 4mAS. (We note that while Proposition 1 assumes that T is the
total number of steps, the claim also holds for any T consecutive steps starting at some sub-epsiode.)

It follows that there is a sub-episode of length at least 23m−5

m , and accordingly, if 23m−5

m ⩾ θM , then
the policy played in this sub-episode is optimal with an overall error probability of at most 1

3T .

D.2 Parameter θ′M

Given a Markov chain C with S states, the expected number of steps it takes to visit each state at
least ℓ times is known as the ℓ-cover time of C, denoted by τℓ(C). Chan et al. [2021] have shown that
the ℓ-cover time of an irreducible Markov chain C is at most (e2 + e log(S))

(
τ1(C) + ℓ

ζC

)
, where e

is Euler’s number and ζC is the minimum stationary probability of a single state.

In our MDP setting, for any optimal policy π with a unique irreducible class Iπ we consider the
induced irreducible Markov chain Mπ restricted to states in Iπ . In accordance with the result of Chan
et al. [2021] we set τπ = (e2 + e log(S))

(
τ1(Mπ) +

1
ζMπ

)
and note that ℓτπ is an upper bound for

τℓ(Mπ). By Markov’s inequality, any random walk of length 2ℓτπ starting in the irreducible class
Iπ will visit each state at least ℓ times with probability at least 1

2 . On the other hand, the irreducible
class can be reached in at most DW steps on average. In our case we are interested in the number of
steps needed to visit all states in the irreducible class of an optimal policy and set

θ′M = max
π:ρ(π)=ρ∗

(
2e2 + 2e log(S)

)(
τ1(Mπ) +

1
ζMπ

)
+ 2DW .

We summarize our observations in the following lemma.
Lemma 13. Let π∗ be an optimal policy that induces a unique irreducible class Iπ∗ on an MDP.
Then following π∗ for ℓℓ′θ′M steps will visit each state in Iπ∗ at least ℓ times with probability at least
1− ( 12 )

ℓ′−1.

Proof. Following π∗ will reach the irreducible class with a probability of 1− ( 12 )
ℓℓ′ within the first

2ℓℓ′DW steps. After reaching Iπ∗ , in the remaining ⩾ 2ℓτπ∗ steps each state in Iπ∗ will be visited at
least ℓ times with a probability of at least 1− ( 12 )

ℓ′ .

D.3 Bounding P(Am)

In the following we use the definition of θ∗ in (24) of Section B.2.
Lemma 14. For any m ⩾ β ⩾ 4,

P(Am) ⩽
(
1
2

)(θ∗+1)2m−β−1
.

Proof. Since
⌈
23m−5

m

⌉
⩾ 4

⌈
23(m−1)−5

m−1

⌉
for m > β ⩾ 4, we have by definition of β that

⌈
23m−5

m

⌉
⩾

4m−β
⌈
23β−5

β

⌉
⩾ (2m−β(θ∗ +1))2 θ′M . Choosing ℓ = ℓ′ = 2m−β(θ∗ +1) in Lemma 13 then proves

the claim.
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