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ABSTRACT

The rapid growth of large models has raised concerns about their environmental
impact and equity in accessibility due to significant computational costs. Low-Rank
Adapters (LoRA) offer a lightweight solution for finetuning large models, resulting
in an abundance of publicly available adapters tailored to diverse domains. We
ask: Can these pretrained adapters be leveraged to further streamline adaptation
to new tasks while addressing these challenges? We introduce EigenLoRAx, a
parameter-efficient finetuning method that recycles existing adapters to create a
principal subspace aligned with their shared domain knowledge which can be
further augmented with orthogonal basis vectors in low-resource scenarios. This
enables rapid adaptation to new tasks by learning only lightweight coefficients
on the principal components of the subspace, eliminating the need to finetune
entire adapters. EigenLoRAx requires significantly fewer parameters and memory,
improving efficiency for both training and inference. Our method demonstrates
strong performance across diverse domains and tasks, offering a scalable solution
for edge-based applications and equitable deployment of large models in resource-
constrained environments.

1 INTRODUCTION

Recent advancements in machine learning have driven the rise of large-scale models with billions
of parameters. However, the size and complexity of these models not only make it impractical for
most researchers to train or fine-tune them on downstream tasks but also contribute significantly
to their carbon footprint, raising concerns about environmental sustainability. To address these
challenges, there has been growing interest in parameter-efficient finetuning (PEFT) methods, such
as adapters (Houlsby et al., 2019; Chen et al., 2022; Luo et al., 2023), low rank adaptation (LoRA)
methods (Hu et al., 2021; Kopiczko et al., 2023; Liu et al., 2024), prompt-based methods (Lester
et al., 2021; Razdaibiedina et al., 2023; Fischer et al., 2024). LoRA and its follow-up works (Meng
et al., 2024; Liu et al., 2024) have gained significant attention for their simplicity. This has led to the
proliferation of thousands of low-rank adapters within the growing open-source community. Given
that these adapters are underutilized, an important question arises: Can we recycle the information
contained in them to improve the efficiency of subsequent tasks? Recent work has shown that
weight updates in deep neural networks occur within low-dimensional invariant subspaces (Kwon
et al., 2024), aligning with the universality hypothesis that neural network behavior and learned
representations often reside in shared and structured subspaces Chughtai et al. (2023); Guth &
Ménard (2024). This suggests that LoRA adapters may similarly share a reusable principal subspace
, eliminating the need to rediscover it during the training of new adapters.

We introduce EigenLoRAx, a parameter-efficient fine-tuning (PEFT) method that leverages this
insight by decomposing the weights of a set of trained adapters into principal components, identifying
a compact, information-dense subspace. EigenLoRAx reduces the number of learnable parameters by
up to 100× compared to LoRA, accelerates optimization by up to 2× for new adapters, and enables
more memory-efficient inference with multiple task adapters, particularly benefiting edge devices (Liu
et al., 2022). Additionally, in low-resource domains, we demonstrate that EigenLoRAx can be further
enhanced by augmenting the principal subspace with random components, orthogonalized with
respect to the existing subspace, preserving its efficiency and performance.
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Furthermore, we provide an initial theoretical analysis of EigenLoRAx. Our experiments across a
wide range of vision and language tasks demonstrate its versatility and effectiveness, reinforcing the
potential of shared subspaces in neural network adaptation.

Figure 1 provides an overview of our method. We introduce EigenLoRAx, which recycles pretrained
adapters by identifying a shared task-invariant weight subspace. We hypothesize (and validate
experimentally) that task-specific weights lie within this subspace, allowing for more efficient training
with fewer parameters. This reduces memory footprint and enhances inference efficiency by enabling
simultaneous serving of multiple adapters. EigenLoRAx is among the first to recycle pretrained
adapters, replacing many while improving further training efficiency. Our key contributions are:

• (Training): EigenLoRAx uses up to 100× fewer parameters than LoRA and converges
up to 2× faster than comparable methods with similar or better performance.

• (Inference): EigenLoRAx enhances memory efficiency during inference by approximately
18× on multiple tasks, reducing the number of switchable parameters between tasks.

• (Applicability): We demonstrate the effectiveness of EigenLoRAx across a wide range ,
including text and image data, validating the existence of shared principal subspaces across
modalities. It also retains performance in zero-shot and low resource scenarios.

• (Scaling): EigenLoRAx can be scaled up to recycle hundreds of underutilized adapters.
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Figure 1: LoRA uses low-rank matrices for task-specific finetuning. We observe that LoRA adapters share a
principal subspace across task domains. By recycling pretrained adapters, we extract task-invariant principal
components, enabling efficient representation of both existing and future LoRAs using compact task-specific
coefficients. This improves training speed, parameter efficiency, and memory usage. In low-resource settings,
where adapters are scarce, we augment the subspace with randomly initialized components, ensuring orthogonal-
ity via the Gram-Schmidt process, ensuring they complement the extracted subspace without redundancy.

2 RELATED WORK

Low-Rank Adaptation (LoRA) models weight updates using low-rank matrices instead of full-weight
training, a direction rooted in Burer-Monteiro factorization (Burer & Monteiro, 2003). LoRA (Hu
et al., 2021) revived this idea for LLM finetuning, with variants emerging across domains (Ma
et al., 2024; Chi et al., 2019; Kwon et al., 2024). However, with growing model sizes, even low-rank
methods become expensive—for example, LoRA with rank 16 on GPT-3 (Brown et al., 2020) requires
75.5M parameters.

To improve efficiency, mixture-of-experts models (Huang et al., 2023; Wu et al., 2024; Diao et al.,
2023; Zhong et al., 2024; Zhou et al., 2018) combine multiple low-rank modules. However, these
require numerous high-quality adapters (Ku et al., 2024) and incur memory overhead (Zhou et al.,
2022), along with instability from complex gating mechanisms (Zoph et al., 2022).

Recent work focuses on improving subspace initialization. Meng et al. (2024) show singular-vector-
based LoRA initialization outperforms random, and Sharma et al. (2023) suggest discarding minor
singular components for robustness. Other approaches use random principal components (Kopiczko
et al., 2023) or weight matrices (Koohpayegani et al., 2024) to reduce parameter count, but often suffer
from poor task alignment, as shown in Section 4. In contrast, EigenLoRAx extracts a task-aligned
principal subspace from trained adapters, enabling better initialization and improved parameter
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efficiency. Although our method primarily relies on LoRA (Hu et al., 2021), it can be applied to other
PEFT methods (Liu et al., 2024; Zhang et al., 2023) by analyzing shared task-specific weights.

3 METHOD

In this section, we present the theoretical foundation Section 3.1 and algorithmic details Section 3.2 of
our method, followed by a discussion on hyperparameter selection and an assessment of its practical
advantages. The terms EigenLoRA, EigenLoRAx, ELoRA and ELoRAx are used interchangeably.

3.1 THEORETICAL PRELIMINARIES

For a full rank weight matrix W ∈ Rm×n that learns to map input space X ∈ Rm to output space Rn,
the rank is expressed as min(m,n). As the rank of W increases, modifying it to accommodate new
tasks becomes computationally expensive and increasingly complex. This is a common challenge
faced when finetuning pretrained large foundation models. LoRA is a parameter efficient finetuning
approach used for large pretrained models with weights W0 that mitigates this challenge by merely
learning low-rank weight updates W such that the risk between Y and W0X+WX+ b is minimized.
Instead of directly learning W , LoRA proposes to learn a lower ranked decomposition of W by
learning two low-rank matrices, B ∈ Rm×r and A ∈ Rr×n, both having ranks r. This factorization
ensures that the product BA retains the original dimensions of W0 while having a significantly
reduced rank. As a result, although the transformation defined by BA maps from Rm to Rn, it does
not span the full space of such mappings due to its constrained rank. The low-rank weight matrices
result in substantially smaller number of trainable parameters than the full rank parameter count of
m · n. Such parameter efficient finetuning makes LoRA a computationally viable alternative for
fine-tuning large-scale models.

Previous works such as Meng et al. (2024); Liu et al. (2024) have proposed the existence of a common
parameter subspace implying the idea of shared principal subspace. We highlight that LoRA adapters
share such a lower dimensional shared principal subspace when finetuned for diverse tasks. Along
with reduction in computational overhead, it reinforces the idea that task-relevant transformations
reside within a compact, reusable subspace. To formalize this, we first define a space of tasks
representable by linear transformation matrices, providing a foundation for analyzing the role of
shared principal subspaces in model adaptation.

Definition 3.1 (Task definition for LoRAs). We first define a LoRA task ti(Xi, Yi) : Rm → Rn such
that Yi = W ∗

i Xi + b where b is some constant. Then the LoRA task domain Td is a set of d such
tasks, Td = {ti}di=1.

For a given set of pretrained weights (such as those from a foundation model) W0 ∈ Rm×n, LoRA
weights BA at any layer modify the output as W0X +BAX + ϵt, allowing the model to adapt to
the new task and converge toward the optimal solution W ∗

t . The key point here is that only B and
A weights are updated during finetuning. Without loss of generality, assume r ≪ n and let the true
transformation matrix W ∗

t ∈ Rr×n be interpreted as r n-dimensional vectors: w∗1
t , ...,w∗r

t ∈ Rn.
Finding LoRA weights is equivalent to finding sets of these r vectors in Rn.

Definition 3.2 (Set of LoRA weights). We define the weights of a LoRA adapted for task ti as BiAi.
Both Bi and Ai will have their own individual subspaces. For the purpose of the analysis we will
consider a generic task specific weight matrix Wi ∈ Rm×n adapted to task ti such that n < m and
its rank r < n. The analysis, however, is valid for both Bi and Ai. Now we can define a set of
LoRAs as stacked (along columns) weight matrices Ŵ = {Wi}di=1 where each Wi is adapted for
a task ti ∈ Td and a training set Si = {{x, y} | x ∈ Xt, y ∈ Yt} where the size of the training is
si = |Si|. For theoretical analysis we assume that each training set Xi × Yi is distributed according
to some unknown Gaussian distribution with mean X̄i and ∥Xi∥F≤ M for some constant M > 0.
Each weight matrix can have different ranks and the following method and analysis will still hold;
however, for brevity we assume all weight matrices stacked in Ŵ to have the same rank r.

Definition 3.3 (Subspace spanned by LoRAs from a task domain Td). We define the subspace of
weights Zd = {CŴ | C ∈ Rm×m} spanned within Rm×n.
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Using Singular Value Decomposition (SVD) or Principal Component Analysis (PCA for a zero-
centered Ŵ ) , we can obtain Ŵ = UΣVT . We then represent the top K right singular vectors of Ŵ
(or top K principal components if Ŵ is zero-centered) as VT

K ∈ RK×n = {Vk ∈ R1×n}Kk=1.
Definition 3.4 (Shared principal subspace of LoRAs finetuned in domain Td). We define the shared
principal subspace of weights for a task domain Td as ZK

d = {αVT
K | α ∈ Rm×K} spanned by top K

principal components of the LoRAs within Rm×n.

Next, we introduce idea of defining a new related task td+1

Definition 3.5 (New related task td+1). . A new linear task td+1 with true solution W ∗
d+1

is said to be related if it is spanned by the basis of Ŵ i.e. W ∗
d+1 = CŴ and it holds that

∥W ∗
d+1 −α∗

d+1VT
K∥2F≤ ∥W ∗

d+1 −αd+1VT
K∥2F for all rank K linear transformation matrices αd+1

and ∥W ∗
d+1 − α∗

d+1VT
K∥2F≤ ∥C∥22

∑nd
i=K+1 σ

2
i where σi’s are singular values of Ŵ . For such a

task, we learn coefficients of K principal components αd+1 ∈ Rm×K resulting in EigenLoRAx
weights WE = αd+1VT

K .

Definition 3.5 establishes a bound over the related-ness of a new task with those in the known task
domain Td. If the true solution of the new task lies majorly in the principal subspace of Td i.e. has
major principal components (PCs) within the top K principal components of Ŵ with some finite
bound on the misalignment along the PCs orthogonal to the top K PCs of Ŵ , then we can ideally
quantify the relation between a new task and a task domain. Any task that has its true solution within
a subspace defined by the PCs orthogonal to the top K PCs of Ŵ is not as closely related as a task
with its solution completely or majorly within the principal subspace. A task that has its solution
completely orthogonal to all the PCs of Ŵ is completely unrelated and is not our main focus here.

Next, we present an algorithm to find the principal subspace and our experiments in Section 4.

3.2 ALGORITHM

Assume we have N LoRA adapters, each consisting of a set of A,B matrix pairs for every layer,
trained on various tasks within a domain Td for a given base pretrained model. Algorithm 1 computes
a list of top K principal components—referred to as EigenLoRAx PCs—that define an initial principal
subspace for this domain.

To construct this subspace, the algorithm aggregates LoRA matrices across tasks for each layer,
separately for A and B matrices (though it can also be applied to the product BA). Each LoRA
matrix, having rank r, is treated as a list of vectors, and a decomposition is performed on this stacked
set of vectors. The most significant components extracted from this process serve as a basis for the
principal subspace, providing an efficient representation that can be linearly combined to approximate
the original LoRA weight matrices. We showcase our algorithm using representative weight matrices
Wt, where each Wt represents a single A or B matrix from a single LoRA layer of the neural network.
In practice, this procedure is applied to all relevant layers.

Since real-world scenarios often involve low-resource domains with limited availability of LoRA
adapters, we extend our subspace by introducing additional pseudo-PCs. Specifically, we sample
random vectors of the same dimension as each PC and orthogonalize them with respect to all existing
PCs. This process can be iterated to generate more pseudo-PCs, thereby augmenting the principal
subspace. As empirically shown in Table 3, this augmentation strategy significantly outperforms
naive random selection of PCs for subspace expansion.

Learning new tasks Having extracted a set of PCs (including pseudo-PCs, if needed), VK ∈
RK×n = {Vk ∈ R1×n}Kk=1, we can approximate a given (LoRA) weight matrix by minimizing
∥W − αVT

K∥F where α are linear coefficients Section 3.1. In fact, we can analytically compute of
the given LoRA matrices by calculating the linear coefficients which minimizes the above objective.
For new tasks however, for which we do not have a LoRA matrix, we freeze the EigenLoRAx PCs
and randomly initialize the αs. The forward pass in layer is calculated as

h = W0x+ αT
BVBα

T
AVA(x). (1)
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Algorithm 1 EigenLoRAx PCs Calculation

Input: LoRA matrices {Wt ∈ Rm×n}dt=1
, number of PC (K), number of pseudo-PC (P )
Output: EigenLoRAx PCs VT

K

Ŵ =
[
W1 ∈ Rm×n ... Wd ∈ Rm×n

]
, {Stack

LoRA matrices}
Compute the mean of each feature: W̄ =
1
n

∑n
i=1 Wi

Subtract the mean: Ŵc = Ŵ − W̄
Perform SVD: Ŵc = UΣV T

Extract the top K principal components
Select the first K columns of V: VK = V [:, 1 : K]
Optionally, augment the subspace with P pseudo-PCs
for p = 1 to P do

Sample a random vector vp ∼ N (0, In) {Sample
from a normal distribution}
Orthogonalize vp against all PCs in VK using
Gram-Schmidt:
for i = 1 to K + p− 1 do

vp = vp −
vT
p VK [:,i]

∥VK [:,i]∥2VK [:, i]

end for
Normalize vp: vp =

vp
∥vp∥

Append vp to VK if vp is not a null vector
K = K + 1

end for
return VK , µ

Here, W0 are the pretrained weights of the
base model and VB ,VA are EigenLoRAx
components (which represent the shared
subspace) that are frozen during training.
The corresponding lightweight coefficients
αB and αA are learned. This reduces
the number of learnable parameters from
O(2rn) to O(2K), by a factor of rn

K (as-
suming α to be scalar).

Using the definitions 3.1, 3.2, 3.5, 3.4 and
3.3 we state the following theorem;

Theorem 3.6. For a task td+1, we assume
a hypothesis h ∈ HWd+1

expressed as
h(Wd+1, X) = Wd+1Xd+1 +W0Xd+1 +
b where Wd+1 has rank m, b is some
constant and W0 represents weights of
a pretrained foundation model that is
frozen during finetuning respectively. We
have hE ∈ HWE , h

∗ ∈ HW∗
d+1

such
that hE(WE , Xd+1) = αd+1VT

KXd+1 +
W0Xd+1 + b where WE has rank K

and h∗(W ∗
d+1, Xd+1) = CŴXd+1 +

W0Xd+1 + b where h∗(W ∗
d+1, Xd+1) =

Yd+1 is the true solution for task td+1. For
a Lipschitz continuous loss (ℓFSt

(h)) that is
strong convex within the shared principal
subspace spanned by principal components
VT
K with some Lipschitz constant (L), the

risk can be written as RF
Sd+1

(hW ) = ESt [ℓ
F
St
(h)] , and using Rademacher complexity bounds we

can say with probability at least 1− 4δ for some δ > 0,

∥W ∗
d+1 −Wd+1∥2F≤ C1 ·

(√
m

√
st

)
+ C2 (2)

∥α∗
d+1VT

K −WE∥2F≤ C1 ·

(√
K

√
st

)
+ ∥C∥22

nd∑
i=K+1

σ2
i + C2 (3)

where σi are singular values of Ŵ , C is some constant such that W ∗
d+1 = CŴ and C1, C2 are

some constants.

Theorem A.1 provides an upper bound on the Frobenius norm of the difference between Wd+1 or
WE and the optimal solution W ∗

d+1. 5 provides a tighter upper bound on the norm of the difference
when task td+1 majorly lies in the shared principal subspace. The extent to which task td+1 lies in
the shared principle subspace is captured by the second term involving the sum of squared truncated
singular values Ŵ . Hence, if the task completely or majorly lie in the shared principal subspace, then
the first term (sqrt(rank)) will dominate the upper bound. Hence, if rank(Wd+1 ≥ K), then we can
see that the upper bound in eq. 5 will be tighter than in eq. 4 where the task lies majorly in the shared
principal subspace. Similarly, when m ≤ K, the upper bound on the difference norm will be tighter
for Wd+1 than WE . When W ∗

d+1 has a significant alignment or projection along the singular vectors
orthogonal to the ones with top K singular values, then the second term in 4 comes into picture and it
becomes difficult to directly compare the bounds in 4 and 5. However, if majority of the variance of
W ∗

d+1 is along the singular vectors orthogonal to the top K components, it follows that WE will
never be able to achieve convergence while Wd+1. In contrast, Wd+1 could perform significantly
better, as it is not restricted to learning only along the top K principal components of Ŵ .
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Figure 2: The top 16 components
contain the most information from a
total of 4000+ components for 500
LoRAs. (A matrices from layer 1
of Mistral-7b model, Lots of LoRAs,
see Section 4.3).

How to choose optimal number of PCs K The hyperparam-
eter K, which determines the number of top PC, can be viewed
as a function of task domain complexity—simpler domains re-
quire a smaller K, while more complex domains benefit from
a larger K. In practice, we determine K based on empirical
observations (Appendix B), evaluating performance across differ-
ent values. Additionally, we can leverage established techniques
from literature, such as explained variance and singular value
thresholds Gavish & Donoho (2014). As illustrated in Figure 2,
most of the relevant information is often concentrated in a few
top EigenLoRAx PCs, providing a practical criterion for selecting
K.

Memory Efficiency and Complexity Our method demon-
strates significant memory efficiency across experiments. A single
set of EigenLoRAx PCs, combined with lightweight task-specific
coefficients, can effectively replace both past and future LoRAs
within a task domain. This is particularly advantageous when serving a large number of adapters,
where frequent loading and unloading in VRAM incurs high latency, or keeping all adapters in
memory demands excessive VRAM. For d LoRAs of rank r and l layers, the memory footprint is
O(2drln). For EigenLoRAxs, it is O(2Kl(d + n)). As r,K ≪ n, EigenLoRAx becomes more
memory efficient in terms of memory required to save the models as d increases. This becomes
significantly useful for edge devices and large scale user serving AI systems.

4 EXPERIMENTS AND RESULTS

In this section, we demonstrate the efficacy and versatility of EigenLoRAx across diverse
tasks, modalities, and model architectures, highlighting its individual advantages. EigenLo-
RAx requires significantly fewer parameters to match or surpass LoRA’s performance (Tables 1,
2) and achieves similar or faster loss convergence (Figure 3), making it a cost-effective al-
ternative to random initialization and other methods (Meng et al., 2024). Additionally, we
showcase its memory-efficient inference capabilities with a Stable Diffusion text-to-image gen-
eration model (Rombach et al., 2021) (Section 4.4). Notably, EigenLoRAx retains its ef-
ficiency even in low-resource scenarios where a large number of LoRAs are unavailable.

Table 1: Image classification with Vision Transformer.
ZS refers to zero-shot. AUG refers to Augmented for
Low-Resource. EigenLoRAx matches or increases per-
formance with drastically fewer number of parameters.

# TRAIN CIFAR FOOD FLOWERS
PARAMS 100 101 102

FULL TRAINING 86M 97.0 96.64 98.82
BASE MODEL 15K 90.07 90.8 80.71
LORA (r = 4) +147K 93.79 95.73 95.03
LORA (r = 1) +36K 92.45 91.07 90.14
VERA +18K 90.87 91.75 91.25
ELORAXAUG +1K 94.4 95.01 97.5
ELORAX +96 94.8 95.14 98.44
ELORAXZS +0 91.4 92.48 95.7

Note on Baselines Our focus is on recy-
cling adapter knowledge and improving
training and memory efficiency while main-
taining performance, not solely on maxi-
mizing performance. We compare primar-
ily with LoRA, as EigenLoRAx builds its
principal subspace using pretrained LoRA
adapters. Using better adapters and opti-
mization could further enhance the sub-
space and performance.

See more experiments (3D Object pose es-
timation) and detailed ablation experiments
in Appendix A.

4.1 IMAGE CLASSIFICATION

This simpler task involves related datasets where the LoRAs used to construct EigenLoRAx are
well-aligned with the downstream tasks, highlighting its finetuning efficiency.

Setup We evaluate EigenLoRAx using a pretrained ViT (ViT) (Dosovitskiy et al., 2021) across 3
datasets. Each dataset is partitioned into 5–6 non-overlapping sub-datasets, mimicking continual
learning (Kaushik et al., 2021) and federated learning (Shenaj et al., 2023) setups. As the sub-datasets
are derived from the same source, their tasks are more domain-aligned. For EigenLoRAx, we compute
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principal components (PCs) using all but one LoRA trained on individual sub-datasets (leave-one-out
approach, Algorithm 1). The coefficient matrix α for the excluded task is then learned as described in
Section 3.2. All methods are finetuned for 10 epochs, with additional details in Appendix A.2.

Parameter Efficiency Table 1 summarizes our experimental results. All models require training
the last linear layer (approx. 15K parameters) due to the pre-trained ViT having a different number
of categories. For the Base Model, no additional parameters are trained. EigenLoRAx adapts to
new sub-datasets using only two principal components (96 additional parameters), enabling it to
match or outperform LoRA and VeRA, which use significantly more parameters. We also tested a
zero-shot EigenLoRAx (weight initialized randomly within the principal subspace), training only the
last layer. This model outperforms the base model with no additional parameters, demonstrating the
effectiveness of principal subspace extraction. We also test a low resource scenario (ELoRAxAUG),
where only 2 LoRAs are available for extracting the PCs, which are then augmented using random,
orthogonal PCs as described in Algorithm 1.

Figure 3: Fast Convergence and Better Initialization (left) EigenLoRAx demonstrates faster convergence
compared to LoRA and VeRA. EigenLoRAx achieves a speedup of up to 1.5× against LoRA and up to 2×
compared to PISSA. This experiment was carried out on the CoLA task of the GLUE benchmark.

4.2 GLUE BENCHMARK

Table 2: GLUE benchmark results. We report Matthew’s correlation for CoLA,
Pearson correlation for STS-B, and accuracy for the remaining tasks. In all cases,
higher values indicate better performance.

# TRAINABLE MRPC SST-2 COLA QNLI RTE STS-B AVG.METHOD PARAMETERS
FULL TRAINING 125M 88.97 91.28 59.81 92.29 79.78 90.89 83.84
PISSA [36] 1.2M 86.52 94.15 61.32 92.15 71.84 90.25 82.70
EIGENLORAXINIT 1.2M 89.71 93.35 61.58 92.2 74.73 89.56 83.52
LORA (r = 32) 1.2M 86.76 94.72 59.56 92.53 77.61 90.81 83.67
VERA (r = 256) 25K 75.98 93.23 54.14 89.21 66.78 87.03 77.72
EIGENLORAX 12K 87 94.15 59.81 92.73 77.62 90.58 83.65

Next, we evalu-
ate EigenLoRAx
on the General
Language Under-
standing Evaluation
(GLUE) bench-
mark (Wang et al.,
2019) datasets using
the RoBERTabase
model (Liu et al.,
2019). We use 6

different tasks: MRPC, SST-2, CoLA, QNLI, RTE and STS-B. Following the setup of VeRA, we
omit time-intensive MNLI and QQP tasks, thus avoiding the use of MNLI initialization for MRPC,
RTE, and STS-B tasks. In this setting, LoRAs are trained not on sub-datasets but on these different
datasets representing a heterogeneous domain setting, where the domain difference may be larger
relative to the more domain-aligned setting in Section 4.1. We follow the previous leave-one-out
setup, where EigenLoRAx PCs are calculated using LoRAs of all but one task, and α is learnt for the
left-out task. Refer to Appendix A.3 for all hyperparameters and implementation details.

Faster Convergence Our results in Table 2 show that EigenLoRAx (K = 32) matches LoRA’s
performance with 100× fewer trainable parameters and outperforms VeRA. EigenLoRAx extracts
a useful principal subspace across diverse domains, enabling robust adaptation to new tasks. We also
evaluate EigenLoRAx(init) weight initialization speed-up. Unlike PiSSA (Meng et al., 2024), which
initializes LoRA matrices with principal directions of pretrained weights, we randomly initialize
weights within our extracted subspace. As shown in Figure 3, EigenLoRAx converges faster than
PiSSA and VeRA, and slightly faster than LoRA, highlighting the effectiveness of the principal
subspace. VeRA’s poorer performance may stem from suboptimal random initialization that fails
to align with task-critical components. ELoRAx is also more efficient in terms of floating point
operations for both forward and backward pass, as shown in Table 14.
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Low-Resource Scenario To demonstrate the effectiveness of our subspace augmentation
strategy Algorithm 1, we conduct an experiment where EigenLoRAx is initialized with
only 1–2 LoRAs. The results are presented in Table 3. We compare our method against
augmenting EigenLoRAx with random components (EigenLoRAx+random) and using en-
tirely random components (ELoRAxrandom). As shown, our augmentation approach signifi-
cantly outperforms random principal component selection. Interestingly, for MRPC, the base
model’s performance is retained. This suggests that the learned LoRA weights may not
have influenced the base model, likely because they did not capture relevant information.

Table 3: Low-Resource GLUE Subset Results

# PARAM MRPC STS-B

ELORAXRANDOM 24K 68.38 -0.73
ELORAX+RAND 24K 68.38 0.11
ELORAXAUG 24K 83.09 85.28

While we do not provide theoretical guarantees
for our principal component augmentation strat-
egy—where randomly sampled vectors are iteratively
orthogonalized to the existing EigenLoRAx principal
vectors—we hypothesize that this targeted guidance
helps prevent redundancy within the subspace. Con-
sequently, it increases the likelihood of capturing the
necessary task-relevant components.

Table 4: Lots of LoRAs. We report the Rouge-L scores for each of the 5 tasks from the training set and 5 from
the testing set. EigenLoRAx achieves on average 88% of LoRA’s performance while requiring anywhere from
12× to 95× less parameters in a zero-shot setting.

# TRAINABLE 076 627 664 819 1631 039 290 391 442 1598 AVG.METHOD PARAMETERS
LORA (r = 16) 9.4M 69.05 23.96 25 75 99.04 58.77 93.79 93.45 67.84 51.58 65.75
EIGENLORAXZS 98-786K 60.78 18.91 33.33 65.07 94.74 49.96 84.54 88.56 49.78 39.81 58.25
PERFORMANCE RATIO 0.88 0.79 1.33 0.87 0.96 0.79 0.90 0.95 0.73 0.77 0.88

4.3 LOTS OF LORAS

Finally, we also tested our method in settings where a large number of adapters may be trained on
significantly diverse domains. Lots of LoRAs (Brüel-Gabrielsson et al., 2024) is a collection of over
500 adapters of the Mistral-7B-Instruct-v0.2 model (Jiang et al., 2023), trained on a variety of natural
instruction tasks (Wang et al., 2022). It represents the realistic setting where we directly use publicly
available trained adapters, which may present significant diversity in terms of quality and task domain.
As all adapters are accompanied with their respective training datasets, Lots of LoRAs is particularly
useful in evaluating EigenLoRAx. The task presents significant diversity and a higher K is necessary
to represent this open domain.

Setup We split adapters randomly into two sets (490,5). EigenLoRAx PCs were calculated using the
larger “training" set and evaluations were done on the smaller “test" set. We evaluated EigenLoRAx
in a zero-shot setting (calculated using the already available adapter weights, no finetuning) . The
results are shown in Table 4 where we evaluate EigenLoRAx on the 5 tasks from the test set and
also on 5 tasks from the training set to check for catastrophic forgetting or concept drift from scaling.
The first 5 tasks are randomly sampled from the training set. EigenLoRAx nearly matches LoRA

Figure 4: LoRAs (top) vs. EigenLoRAx (bottom) in Text-to-Image generation. (Left) A single EigenLoRAx
analytically reconstructs multiple LoRAs, significantly reducing memory (18× reduction) and compute costs.
(Right) It efficiently learns new tasks with up to 100× fewer parameters than LoRA, maintaining similar visual
quality. See Appendix A.4 for more examples.

with 12− 95× fewer parameters. EigenLoRAx recovers upto 88% of LoRA’s performance even
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in a zero-shot setting at such a large scale. The performance of EigenLoRAx can be improved by
fine-tuning the EigenLoRAx adapters. In this setting we use randomized SVD in order to speed
up the calculation of the PCs. We believe this leads to some degradation in performance as there
randomized methods are approximations of the actual calculations. Performance can be further
improved if better implementations of SVD which do not sacrifice accuracy for speed are used in
calculating the Principal Components.

4.4 TEXT-TO-IMAGE IMAGE GENERATIVE MODELS

We showcase EigenLoRAx’s versatility on complex multimodal tasks like text-to-image generation,
where LoRAs are extensively used to adapt models like Stable Diffusion to various styles and
datasets. Despite thousands of LoRA adapters being available, most remain underutilized, occupying
significant memory alongside their data. As adapter usage grows, a critical challenge is efficiently
hosting multiple adapters for diverse tasks, especially on edge devices. Switching adapters during
inference, often from CPU memory or disk, introduces latency that hinders real-time applications.
EigenLoRAx tackles this by extracting a shared task-invariant subspace, significantly reducing in-
memory parameters and enabling memory-efficient inference without compromising flexibility or
performance. EigenLoRAx can effectively replace pretrained adapters, drastically reducing storage
requirements. To demonstrate this, we extracted K = 14 principal components from N = 20 Stable
Diffusion-XL (Podell et al., 2023) LoRA adapters (rank r = 32) from the HuggingFace diffusers
library (von Platen et al., 2022). Using α ∈ Rr×K , we analytically reconstructed the original LoRA
weights within the extracted principal subspace. For image generation, we used 30 denoising steps
with a fixed seed of 0. Results and comparisons are shown in Figure 4. This approach reduces
storage requirements for all adapters from 4.6GB to just 261MB, achieving an 18× reduction in
low-rank parameters stored in memory. By enabling a large number of adapters to reside in
VRAM simultaneously, EigenLoRAx eliminates I/O bottlenecks, significantly improving memory
efficiency for real-time applications.

Failure Cases and Limitations Despite its advantages, EigenLoRAx has limitations. Appendix
Figure 9 shows a failure case where the method fails to capture a key property of the desired image.
While tasks may share a principal subspace, missing critical orthogonal components can degrade
performance, especially if they were absent in the pretrained LoRAs used for extraction or if the
chosen top K components were suboptimal. In the latter case, empirical analysis of hyperparameters
(Appendix B) can guide optimal K selection. Additionally, our subspace augmentation method
(Table 3) helps by iteratively sampling and orthogonalizing more components to recover missing
subspace elements. A simple extension can further mitigate this issue by allowing a small number
of rank-1 weights to be trainable outside the subspace. Another key limitation (Section 4.3) is
the computational cost and instability of processing a large number of initial LoRAs. A continual
learning approach building on our method could address this. Finally, our experiments did not explore
layer-wise or weight matrix-level optimizations; we tested different K values but kept them fixed
across layers and for both A and B matrices. Additional failure cases are discussed in Appendix B.2.

5 CONCLUSION

We introduce EigenLoRAx, a significantly efficient model finetuning and inference method that
recycles publicly available pretrained adapters by finding a shared principal subspace. This allows
finetuning on new data by simply learning the lightweight coefficients of the shared subspace, and
also requires less number of parameters to be saved for new tasks. Our comprehensive and diverse
experiments show that EigenLoRAx is applicable to a large range of problems and model architectures.
We believe that EigenLoRAx has the potential to mitigate the perpetually widening compute resource
gap (Ahmed & Wahed, 2020; Besiroglu et al., 2024) and reduce the environmental cost of training
and using machine learning models (Wu et al., 2021; Ligozat et al., 2021). It also holds promise for
training personalized models (Tan et al., 2024) on low-resource devices, in privacy-critical use-cases.
We have a large number of experiments (6+) on a diverse set of complex models, tasks and modalities.
We have shown that EigenLoRAx excels in faster and efficient learning, memory savings and zero
shot performance which differentiates it from conventional PEFT models.
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A APPENDIX

A.1 THEORETICAL ANALYSIS

Using the definitions 3.1, 3.2, 3.5, 3.4 and 3.3 we state the following theorem;
Theorem A.1. For a task td+1, we assume a hypothesis h ∈ HWd+1

expressed as h(Wd+1, X) =
Wd+1Xd+1 +W0Xd+1 + b where Wd+1 has rank m, b is some constant and W0 represents weights
of a pretrained foundation model that is frozen during finetuning respectively. We have hE ∈
HWE , h

∗ ∈ HW∗
d+1

such that hE(WE , Xd+1) = αd+1VT
KXd+1+W0Xd+1+ b where WE has rank

K and h∗(W ∗
d+1, Xd+1) = CŴXd+1 + W0Xd+1 + b where h∗(W ∗

d+1, Xd+1) = Yd+1 is the
true solution for task td+1. For a Lipschitz continuous loss (ℓFSt

(h)) that is strong convex within the
shared principal subspace spanned by principal components VT

K with some Lipschitz constant (L),
the risk can be written as RF

Sd+1
(hW ) = ESt

[ℓFSt
(h)] , and using Rademacher complexity bounds we

can say with probability at least 1− 4δ for some δ > 0,

∥W ∗
d+1 −Wd+1∥2F≤ C1 ·

(√
m

√
st

)
+ C2 (4)

∥α∗
d+1VT

K −WE∥2F≤ C1 ·

(√
K

√
st

)
+ ∥C∥22

nd∑
i=K+1

σ2
i + C2 (5)

where σi are singular values of Ŵ , C is some constant such that W ∗
d+1 = CŴ and C1, C2 are

some constants.

Proof. The derivation is straightforward, we can write the difference in risks for hE and h∗ as

RF
Sd+1

(hE)−RF
Sd+1

(h∗) = ESt

[
ℓFSt

(hE)− ℓFSt
(h∗)

]
By definition of strong convex loss function for some constant µ ≥ 0,

ESt

[
ℓFSt

(hE)− ℓFSt
(h∗)

]
≥ µ

2
∥WE −W ∗

d+1∥2F

We also know from generalization error bounds using Rademacher Complexity from Bartlett &
Mendelson (2003) that with probability at least 1− 2δ,

|RF
Sd+1

(hE)− R̂F
Sd+1

(hE)| ≤
Rsd+1

(HWE )

2
+

√
ln(1/δ)

2st

We can rewrite risk as

RF
Sd+1

(h∗)−RF
Sd+1

(hE) =RF
Sd+1

(h∗)− R̂F
Sd+1

(h∗)

−RF
Sd+1

(hE) + R̂F
Sd+1

(hE)

+ R̂F
Sd+1

(h∗)− R̂F
Sd+1

(hE)

Since we know by definition of h∗ that R̂F
Sd+1

(h∗) ≤ R̂F
Sd+1

(hE), we can say

RF
Sd+1

(h∗)−RF
Sd+1

(hE) ≤ RF
Sd+1

(h∗)− R̂F
Sd+1

(h∗)

−RF
Sd+1

(hE) + R̂F
Sd+1

(hE)

Then we take a union bound to conclude that with probability at least 1− 4δ,

RF
Sd+1

(h∗)−RF
Sd+1

(hE) ≤
Rsd+1

(HWE )

2
+

√
2 ln(1/δ)

sd+1

+
Rsd+1

(HW∗
d+1

)

2
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Hence, we can also say that with probability at least 1− 4δ,

µ

2
∥W ∗

d+1 −WE∥2F≤
Rsd+1

(HWE )

2
+

√
2 ln(1/δ)

st
+

Rsd+1
(HW∗

d+1
)

2
(6)

The Rademacher complexity of a low-rank weight matrix class HWE with rank K can be directly
bounded using results from Bartlett & Mendelson (2003) as

Rsd+1
(HWE ) = O(

√
K∥WE∥F√

st
)

We can separate the constants including Rsd+1
(HW∗

d+1
) from 6 and assume that, for a normalised

∥WE∥, it is usually bounded, then we can write:

∥W ∗
d+1 −WE∥2F≤ C1 ·

(√
K

√
st

)
+ C2 (7)

Similarly, we can also say for Wd+1 that

∥W ∗
d+1 −Wd+1∥2F≤ C1 ·

(√
m

√
st

)
+ C2 (8)

This proves 4. Now to further prove 5, we use properties of Frobenius norm,

∥WE − α∗
d+1VT

K∥2F−∥W ∗
d+1 − α∗

d+1VT
K∥2F

≤ ∥WE −W ∗
d+1∥2F

Then following from the definition of W ∗
d+1, we can say that,

∥WE − α∗
d+1VT

K∥2F−∥C∥22
nd∑

i=K+1

σ2
i ≤ ∥WE −W ∗

d+1∥2F

Finally, using the Rademacher complexity bound we provided earlier, we can say that with probability
at least 1− 4δ

∥α∗
d+1VT

K −WE∥2F≤ ∥W ∗
d+1 −WE∥2F

≤ C1 ·

(√
K

√
st

)
+ ∥C∥22

nd∑
i=K+1

σ2
i + C2

We can just rewrite WE = α∗
d+1VT

K and get the same bound as above for ∥α∗
d+1 − αd+1∥2F . We can

similarly obtain the upper bound for 5

This concludes the proof.

Theorem A.1 provides an upper bound on the Frobenius norm of the difference between Wd+1 or
WE and the optimal solution W ∗

d+1. 5 provides a tighter upper bound on the norm of the difference
when task td+1 majorly lies in the shared principal subspace. The extent to which task td+1 lies in
the shared principle subspace is captured by the second term involving the sum of squared truncated
singular values Ŵ . Hence, if the task completely or majorly lie in the shared principal subspace, then
the first term (sqrt(rank)) will dominate the upper bound. Hence, if rank(Wd+1 ≥ K), then we can
see that the upper bound in eq. 5 will be tighter than in eq. 4 where the task lies majorly in the shared
principal subspace. Similarly, when m ≤ K, the upper bound on the difference norm will be tighter
for Wd+1 than WE . When W ∗

d+1 has a significant alignment or projection along the singular vectors
orthogonal to the ones with top K singular values, then the second term in 4 comes into picture and it
becomes difficult to directly compare the bounds in 4 and 5. However, if majority of the variance of
W ∗

d+1 is along the singular vectors orthogonal to the top K components, it follows that WE will
never be able to achieve convergence while Wd+1. In contrast, Wd+1 could perform significantly
better, as it is not restricted to learning only along the top K principal components of Ŵ . While the
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assumption that W ∗
d+1 is spanned by the principal components of the shared principal subspace

might appear to be very strong, we empirically observe in table 4 that such an assumption is not
impractically far from reality. Particularly, we observe in table 2 that for GLUE benchmark, LoRA
adapters trained on 5 diverse tasks shared a principal subspace. We see that EigenLoRAx was able to
leverage the principal components of this shared subspace with just 12K training parameters learned
for a new 6th task and achieve competitive performance compared to fine-tuning full rank weights
with 125M parameters or individual LoRA adaptors with 1.2M parameters, even outperforming them
in certain tasks. Similarly, table 4 demonstrates zero-shot performance using only top K principal
components of the shared subspace obtained through 500 LoRA adaptors trained on diverse tasks.
This further suggests that increasing the number of LoRA adapters enables a richer set of top principal
components, effectively spanning the shared subspace and providing broader coverage for new tasks.

A.2 EXPERIMENTS

For VeRA, LoRA and PiSSA, we experimented with a range of learning rates, from higher to lower,
along with three different scheduling approaches: ReduceLRonPlateau, Linear, and Cosine. The
hyperparameters that yielded the best average performance were selected for further experimentation.
The observed discrepancies with EigenLoRAx hyperparameters are attributable to these methodologi-
cal choices. Comprehensive hyperparameter tuning for EigenLoRAx was not pursued extensively, as
the initially selected hyperparameters, notably a high learning rate paired with ReduceLRonPlateau
or Linear, demonstrated satisfactory performance, thereby conserving computational resources.

A.2.1 IMAGE CLASSIFICATION

Trainable parameters for EigenLoRAx The base model is vit-base-patch16-224. The follow-
ing are the trainable parameters in ViT (Dosovitskiy et al., 2021) that are trained for EigenLo-
RAx. We ignore the last linear layer for simplicity since it is trained for all models and baselines
and is constant. The loading parameter has the shape of [number of EigenLoRAx PC, 1] (we only
have 2 in each EigenLoRAx PC for this experiment). Therefore, the total number of trainable
parameters (for the number of components= 2) is 12 (layers) × 4 (set of parameters per layers) ×
2 (number of trainable parameter per coefficient) = 96 trainable parameters.

Hyperparameters LoRA (Hu et al., 2021) and VeRA (Kopiczko et al., 2023) implementations are
taken from the HuggingFace PEFT (Mangrulkar et al., 2022) library with hyperparameters of the
default method. For Food101 (Bossard et al., 2014) experiment, we randomly remove 1 class for ease
of compute. Experimental hyperparameters are reported in Table 5 and Table 6.

Table 5: Hyperparameters for LoRA (Hu et al., 2021) and VeRA (Kopiczko et al., 2023) for the
Image Classification Experiment

CIFAR100 Flowers102 Food101
Learning Rate 1e−4 1e−4 1e−4
Weight Decay 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06

Epochs 10 10 10
Number of Subsets 5 6 5
Categories/Subset 20 17 20

Seed 42 42 42
Batch Size 128 64 128

Experimental Results The experiments were conducted 5 times utilizing randomly generated
dataset splits. The mean accuracy values are reported in Table 1. Empirical analysis indicates that
without control and annealing of learning rates, the loss for both LoRA and VeRA may diverge or
plateau, particularly with high learning rates. Even with the lower learning rate, Full training or LoRA
can overfit to the training data without proper regularization. In contrast, no such instability was
observed during EigenLoRAx training, where a relatively higher learning rate proved advantageous
for rapid convergence.
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Table 6: Hyperparameters for EigenLoRAx for the Image Classification Experiment

CIFAR100 Flowers102 Food101
Learning Rate 1e−2 1e−2 1e−2
Weight Decay 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06

Epochs 10 10 10
Number of Subsets 5 6 5
Categories/Subset 20 17 20

Seed 42 42 42
Batch Size 128 64 128

Table 7: Image Classification Accuracy results on CIFAR100 (Krizhevsky et al., 2009)

Trainable
Model Params subset1 subset2 subset3 subset4 subset5 Avg.
FT 86389248 98.8 97.95 95.55 96.05 96.3 96.93
LoRA (r = 1) 36864 97.6 93.95 93.75 91.75 85.2 92.45
LoRA (r = 4) 147456 98.15 95.2 93.5 92.85 89.25 93.79
VeRA (r = 2) 18480 93.65 89.7 89.5 89.95 91.55 90.87
EigenLoRAx (K = 2) 96 97.25 95.05 94.55 93 94.15 94.8

Table 8: Image Classification Accuracy results on Food101 (Bossard et al., 2014)

Trainable
Model Params subset1 subset2 subset3 subset4 subset5 Avg.
FT 86389248 98.64 97 97.36 94.28 95.92 96.64
LoRA (r = 1) 36864 93.36 88.44 94.28 89.4 89.9 91.076
LoRA (r = 4) 147456 98.2 96.96 96.08 92.88 94.52 95.728
VeRA (r = 2) 18480 91.22 88.42 94.42 91.88 92.82 91.752
EigenLoRAx (K = 2) 96 97.24 95.96 96 91.88 94.6 95.136

Table 9: Image Classification Accuracy results on Flowers102 (Nilsback & Zisserman, 2008)

Model subset1 subset2 subset3 subset4 subset5 subset6 Avg.
FT 99.7 99.3 98.01 98.22 99.7 98.01 98.82
LoRA (r = 1) 85.9 88.47 92.69 91.02 91.7 91.01 90.13
LoRA (r = 4) 96.23 92.76 97.22 95.01 98.24 90.73 95.03
VeRA (r = 2) 99.2 95.4 97.7 94.7 90.9 95 95.48
EigenLoRAx (K = 2) 99.686 97.905 97.689 98.291 99.344 97.718 98.43
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A.3 NATURAL LANGUAGE PROCESSING - GLUE BENCHMARK

Hyperparameters LoRA (Hu et al., 2021), VeRA (Kopiczko et al., 2023) and PISSA (Meng et al.,
2024) implementations are taken from the HuggingFace PEFT (Mangrulkar et al., 2022) library.
Refer to Table 10 and Table 11 for hyperparameter details. For LoRA (Hu et al., 2021), we use the
ranks ∈ {8, 16}. For VeRA (Kopiczko et al., 2023), we use rank= 256, and for EigenLoRAx, we
use K ∈ {16, 32} and r = 8. Here, r refers to the dimensionality of the trainable coefficients and
not the rank. For both PISSA (Meng et al., 2024) and LoRA, all the parameters of the low rank
matrix are trainable. For the EigenLoRAx initialization experiment, we train both the components
and coefficients for a fair comparison with PISSA. In practice, however, we do not need to do so - we
can tune only the sparse coefficients and after the loss converges, finetune the components for a few
training steps.

Table 10: Hyperparameters for LoRA (Hu et al., 2021), VeRA (Kopiczko et al., 2023) and
PiSSA (Meng et al., 2024) for the GLUE benchmark. (Wang et al., 2019)

CoLA MRPC QNLI RTE SST-2 STS-B

Learning Rate 4e−4 4e−4 4e−4 5e−4 5e−4 4e−4
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06 0.06 0.06

Epochs 80 30 25 80 60 40
Scheduler Linear Linear Linear Linear Linear Linear

Seed 0 0 0 0 0 0
Batch Size 64 64 64 64 64 64

Table 11: Hyperparameters for EigenLoRAx for the GLUE benchmark. (Wang et al., 2019).
(RLrP - ReduceLRonPlateau)

CoLA MRPC QNLI RTE SST-2 STS-B

Learning Rate 4e−3 4e−3 4e−3 5e−3 5e−3 4e−3
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06 0.06 0.06

Epochs 80 30 25 80 60 40
Scheduler RLrP RLrP RLrP RLrP RLrP RLrP

Seed 0 0 0 0 0 0
Batch Size 64 64 64 64 64 64

A.4 TEXT-TO-IMAGE GENERATION (STABLE DIFFUSION MODELS)

Figure 5 and Figure 6 show more examples of a text-to-image stable diffusion model finetuned using
EigenLoRAx. Note that not only there is no publicly available code for VeRA that allows its usage in
complex text-to-image generation tasks, but our VeRA implementation also did not work well in this
task.
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Figure 5: (Part 1) A single EigenLoRAx (identical components, varying loadings) was employed to
produce these images utilizing the Stable Diffusion-XL Podell et al. (2023) model. A comparison
between our results and those obtained from multiple LoRAs does not show a noticeable degradation
in visual quality.

Figure 6: (Part 2) A single EigenLoRAx (identical components, varying loadings) was employed to
produce these images utilizing the Stable Diffusion-XL Podell et al. (2023) model. A comparison
between our results and those obtained from multiple LoRAs demonstrates no noticeable degradation
in visual quality.
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Figure 7: Analytical reconstruction of LoRAs using EigenLoRAx which shows no degradation in relative visual
quality. See Appendix A.4 for more examples.

Figure 8: Comparison of generated images by LoRA and EigenLoRAx trained on Torino Aqua anime style
images. For EigenLoRAx, we utilized 12 components with only trainable coefficients to finetune the base model.
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Figure 9: Failure Case: EigenLoRAx may fail if an important component is missing from the
initialized subspace i.e. the shared subspace is incomplete, which may happen due to inadequacy
in the number of initial adapters or due to the majority of the adapters being of bad quality. E.g.,
the model may have lost the essential "mosaic" property when generating an image for the prompt:
"mosaic picture of a dog."

A.5 ADDITIONAL EXPERIMENTS

Furthermore, we also performed a 3D object pose estimation (Angtian et al., 2021; Kaushik et al.,
2024) finetuning experiment using a modified ResNet-101. The task of 3D object pose estimation
involves the prediction of three rotation parameters (azimuth, elevation, in-plane rotation) of an
object relative to the camera. The pose estimation error between the predicted rotation matrix and the

ground truth rotation matrix is given as ∆(Rpred, Rgt) =
|| logb(R

⊺
predRgt)||F√

2
We show the results for

the π
6 accuracy threshold for this experiment.

Table 12: 3D object pose estimation accuracy (π6 threshold)

Method Param Airplane Motorbike Boat Bottle Bus Car Average

LoRA (r = 16) 215K 79.9 80.1 71.5 89.8 90.1 96.6 84.67
VeRA (r = 256) 40K 68.4 72.4 64.3 88.4 87.2 94.4 79.18
EigenLoRAx (K = 2) 16K 81.4 80.0 71.4 90 92.3 97.5 85.43

B METHOD ANALYSIS AND ABLATION

Through a rigorous comparative analysis of EigenLoRAxs and their target LoRAs, we identified that
the most pronounced reconstruction discrepancies manifest in the initial and terminal layers of the
neural network, as depicted in Figure 10. Allowing the EigenLoRAx PCs in these layers to undergo
fine-tuning along with the coefficients can alleviate failure scenarios, thereby alleviating the need for
comprehensive model fine-tuning.

Figure 10: Average reconstruction error between EigenLoRAx and a set of LoRAs for all UNet layers in a
stable diffusion model.
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B.1 HOW TO CHOOSE K PRINCIPAL COMPONENTS AND r FOR EIGENLORAX

We perform an ablation study on the selection of EigenLoRAx principal components (K). Our
analysis concentrates on one experiment as shown in Figure 13, specifically pertaining to the
MRPC task within the GLUE (Wang et al., 2019) benchmark. The analysis in Figure 11 shows
the training loss in relation to increasing number of EigenLoRAx principal components K, as well
as the explained variance of the LoRAs used to initialize the EigenLoRAx in Figure 12. We find,
empirically, that choosing EigenLoRAx PCs for the explained variance of 50− 80% of the LoRAs
used to initialize EigenLoRAx is sufficient for a robust initialization. This is shown in Figure 12 where
we choose K = 8 which roughly corresponds to the explained variance of 55 − 60%. We further
ablate this choice in Figure 11, where although substantial improvements are evident up to K = 8, an
increase in the number of K thereafter yields only marginal gains, demonstrating diminishing returns
as the number of components increases. The parameter r in EigenLoRAx does not equate the rank
parameter in LoRA and its variants. It reflects the dimensionality of the EigenLoRAx coefficients.
Although r = 1 works well, we observe slight performance improvements as we increase this value
as shown in Figure 14. Increasing this value corresponds to a small amount of parameter increase. We
observe no finetuning instability by changing this value and recommend that it can be set to anywhere
between 1 and the rank of the LoRAs used to initialize EigenLoRAx.

Figure 11: Training Loss convergence for differ-
ent numbers of EigenLoRAx PCs Figure 12: Explained Variance for increasing

number of PCs

Figure 13: Ablation of Number of EigenLoRAx Principal Components

Figure 14: Ablation for the EigenLoRAx’s r hyperparameter. This experiment was done for the
MRPC task in the GLUE benchmark.
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B.2 FAILURE CASES

Figure 9 illustrates a potential failure case of EigenLoRAx, where the incorrect number of principal
components (PCs) was selected. In this instance, the "mosaic style" information was excluded from
the principal subspace identified by EigenLoRAx due to an insufficient number of PCs. However,
this issue can be resolved by selecting a larger number of PCs, as the extended principal subspace
contains the necessary information for the task.

Another hypothetical failure scenario arises if the domain gap between the low-rank adapters used to
initialize EigenLoRAx and the downstream task is significantly large. Although we do not observe
such a case in our experiments, it is plausible that under such conditions, EigenLoRAx might
underperform. This issue could potentially be mitigated by allowing only a subset of PCs to remain
trainable, enabling the model to adapt more effectively to the target domain.

A further observed limitation of EigenLoRAx occurs in complex tasks like Text-to-Image generation,
which may extend to other tasks as well. If the majority of LoRAs used to initialize EigenLoRAx
encode biases (e.g., related to gender, race, or context), these biases tend to propagate into Eigen-
LoRAx outputs. While such biases are a common issue in deep learning models trained using
stochastic gradient descent or similar methods, addressing them remains a critical area of future
work. We consider this an important avenue for improvement and discuss the broader implications in
Appendix C.

B.3 IMPACT OF LORA ADAPTER QUALITY ON EIGENLORAX PC INITIALIZATION

To evaluate EigenLoRAx’s robustness to adapter quality and its resistance to noise, we conducted an
ablation study on a subset of tasks of the NLU experiment specified in Section 4.2. Specifically, we
generated EigenLoRAx adapters using LoRA matrices with varying levels of random noise added.
The results are shown in Table 13

Table 13: EigenLoRAx performance on subset of GLUE task using noisy LoRA adapters for
initialization

Noise Level CoLA MRPC RTE STS-B Avg

5% 60.51 85.45 74.73 89.9 77.65
15% 57.53 83.09 72.92 89.9 75.86
30% 55.23 76.47 71.84 89.8 73.34

The results show that EigenLoRAx exhibits only minor performance changes even as noise levels
increase significantly, indicating some robustness to adapter quality. This suggests that EigenLoRAx
can still perform effectively without high quality adapters. However, there is a limit to this robustness.
If the signal-to-noise ratio (SNR) in the initial LoRA matrices becomes extremely low—where the
LoRAs primarily encode noise rather than meaningful information—the effectiveness of EigenLoRAx
diminishes. In such cases, the principal components (PCs) extracted by EigenLoRAx would corre-
spond to random directions in the parameter space. Consequently, EigenLoRAx’s performance would
resemble that of random matrix methods, such as VeRA and NoLA. These methods rely on a large
number of random components or bases to approximate meaningful results. While they can achieve
reasonable performance, they require fine-tuning a substantially larger number of weights associated
with these large number of random components, leading to less efficient learning compared to Eigen-
LoRAx. This highlights an important consideration: for EigenLoRAx to maintain its efficiency and
effectiveness, the initial LoRA matrices must contain at least a minimal level of meaningful signal.
This requirement ensures that EigenLoRAx can leverage the structured information encoded in the
LoRAs while avoiding the inefficiencies of purely random approaches.

B.4 FORWARD PASS AND BACKWARD PASS FLOPS

While it is obvious that EigenLoRAx utilized significantly less number of model parameters as the
number of tasks in a domain increase, we show that even in terms of floating point operations on a
single task, EigenLoRAx is more efficient than LoRA for our experiments. Even for a single task,
the number of floating point operations or multiply-accumulate operations in a forward pass for
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EigenLoRAx is lower than LoRA for all our experiments. Here are the comparisons of the floating
point operations (FLOPs) for the forward (fwd FLOPs) and including backward pass (fwd+bwd
FLOPs) for each of the Image Classification and GLUE benchmark (batch size = 1) (MFLOPs -
MegaFlops):

Table 14: Floating Point Operation calculations for GLUE Benchmark experiment

Method Training Parameters fwd FLOPs fwd+bwd FLOPs

LoRA 1.2M 97,930 MFLOPS 293,800 MFLOPS
VeRA 25K 106,390 MFLOPS 319,170 MFLOPS
EigenLoRAx 12K 97,030 MFLOPS 291,080 MFLOPS

Table 15: Floating Point Operation calculations for Image Classification experiment

Method Training Parameters fwd FLOPs fwd+bwd FLOPs

LoRA 36K 33,773.8 MFLOPS 101,322 MFLOPS
VeRA 18K 33,744.8 MFLOPS 101.234 MFLOPS
EigenLoRAx 96 33,730.2 MFLOPS 101,191 MFLOPS

B.5 COMPARISON OF PARAMETER COUNT OF LORA AND EIGENLORAX

Table 16 shows the comparison of the number of trainable parameters for LoRA vs EigenLoRAx
for RoBERTabase. The values of K for EigenLoRAx and rank for LoRA range from 1 - 512. We
can clearly observe that EigenLoRAx requires less parameters for values of K like 32 and 64 than a
LoRA with rank = 1 requires.

Table 16: Parameter counts for LoRA and EigenLoRAx across different values of K and the LoRA
rank.

Method K, rank = 1 K, rank = 2 K, rank = 4 K, rank = 8 K, rank = 16 K, rank = 32 K, rank = 64 K, rank = 128 K, rank = 256 K, rank = 512

LoRA 37K 74K 147K 295K 590K 1.2M 2.4M 4.7M 9.4M 18.9M
EigenLoRAx (r=1) 48 96 192 384 768 1.5K 3K 6K 12K 25K
EigenLoRAx (r=2) 96 192 384 768 1.5K 3K 6K 12K 25K 49K
EigenLoRAx (r=4) 192 384 768 1.5K 3K 6K 12K 25K 49K 98K
EigenLoRAx (r=8) 384 768 1.5K 3K 6K 12K 25K 49K 98K 197K
EigenLoRAx (r=16) 768 1.5K 3K 6K 12K 25K 49K 98K 197K 393K
EigenLoRAx (r=32) 1.5K 3K 6K 12K 25K 49K 98K 197K 393K 786K

B.6 TIME REQUIRED TO CALCULATE PRINCIPAL COMPONENTS

To calculate the Principal Components, EigenLoRAx uses either SVD or PCA. There is no significant
effect on the performance based on the choice of the algorithm. The calculation of the PCs is
extremely efficient and can be done naively on a CPU. Table 17 shows the timing calculation for 192
sets of LoRA weights (A+B matrices) using approximately 17k MB of memory in total.

Table 17: Runtime comparison of SVD (low rank, with different iterations) and PCA (full rank, no
iterations) across varying component sizes.

Method 16 components 32 components 64 components 128 components

SVD low rank (niter=10) 50s 70s 94s 168s
SVD low rank (niter=50) 140s 212s 334s 614s
PCA full rank 430s 610s 762s 940s
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C BROADER IMPACT AND IMPLICATIONS

This work presents a novel parameter-efficient method for deep learning methods utilizing open source,
pretrained Low-Rank Adaptation (LoRA) models. By substantially reducing the computational
and memory demands of training and inference, our approach creates a more sustainable and
environmentally friendly deep learning paradigm. Our method democratizes accessibility to larger
models, making them accessible to researchers and practitioners with limited resources. Furthermore,
by harnessing pretrained models, our method can accelerate development and diminish the need
for extensive data collection. However, we recognize the inherent risks associated with the use of
pretrained models. These include potential biases (racial, gender, etc.), explicit content, since there is
no guarantee of the data or method used in training the model, and the potential presence of malicious
code. Appropriate caution is advised when using unverified, open-source models.
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