EIGENLORAX: EFFICIENT LOW RANK ADAPTATION USING RECYCLED PRINCIPAL SUBSPACES

Anonymous authorsPaper under double-blind review

000

001

002 003 004

010 011

012

013

014

015

016

017

018

021

023

025

031

032

033

034

037

040

041

042

043

044

046 047

048

051

052

ABSTRACT

The rapid growth of large models has raised concerns about their environmental impact and equity in accessibility due to significant computational costs. Low-Rank Adapters (LoRA) offer a lightweight solution for finetuning large models, resulting in an abundance of publicly available adapters tailored to diverse domains. We ask: Can these pretrained adapters be leveraged to further streamline adaptation to new tasks while addressing these challenges? We introduce EigenLoRAx, a parameter-efficient finetuning method that recycles existing adapters to create a principal subspace aligned with their shared domain knowledge which can be further augmented with orthogonal basis vectors in low-resource scenarios. This enables rapid adaptation to new tasks by learning only lightweight coefficients on the principal components of the subspace, eliminating the need to finetune entire adapters. EigenLoRAx requires significantly fewer parameters and memory, improving efficiency for both training and inference. Our method demonstrates strong performance across diverse domains and tasks, offering a scalable solution for edge-based applications and equitable deployment of large models in resourceconstrained environments.

1 Introduction

Recent advancements in machine learning have driven the rise of large-scale models with billions of parameters. However, the size and complexity of these models not only make it impractical for most researchers to train or fine-tune them on downstream tasks but also contribute significantly to their carbon footprint, raising concerns about environmental sustainability. To address these challenges, there has been growing interest in parameter-efficient finetuning (PEFT) methods, such as adapters (Houlsby et al., 2019; Chen et al., 2022; Luo et al., 2023), low rank adaptation (LoRA) methods (Hu et al., 2021; Kopiczko et al., 2023; Liu et al., 2024), prompt-based methods (Lester et al., 2021; Razdaibiedina et al., 2023; Fischer et al., 2024). LoRA and its follow-up works (Meng et al., 2024; Liu et al., 2024) have gained significant attention for their simplicity. This has led to the proliferation of thousands of low-rank adapters within the growing open-source community. Given that these adapters are underutilized, an important question arises: Can we recycle the information contained in them to improve the efficiency of subsequent tasks? Recent work has shown that weight updates in deep neural networks occur within low-dimensional invariant subspaces (Kwon et al., 2024), aligning with the universality hypothesis that neural network behavior and learned representations often reside in shared and structured subspaces Chughtai et al. (2023); Guth & Ménard (2024). This suggests that LoRA adapters may similarly share a reusable *principal subspace* , eliminating the need to rediscover it during the training of new adapters.

We introduce **EigenLoRAx**, a parameter-efficient fine-tuning (PEFT) method that leverages this insight by decomposing the weights of a set of trained adapters into principal components, identifying a compact, information-dense subspace. EigenLoRAx reduces the number of learnable parameters by up to $100 \times$ compared to LoRA, accelerates optimization by up to $2 \times$ for new adapters, and enables more memory-efficient inference with multiple task adapters, particularly benefiting edge devices (Liu et al., 2022). Additionally, in low-resource domains, we demonstrate that EigenLoRAx can be further enhanced by augmenting the principal subspace with random components, orthogonalized with respect to the existing subspace, preserving its efficiency and performance.

Furthermore, we provide an initial theoretical analysis of EigenLoRAx. Our experiments across a wide range of vision and language tasks demonstrate its versatility and effectiveness, reinforcing the potential of shared subspaces in neural network adaptation.

Figure 1 provides an overview of our method. We introduce **EigenLoRAx**, which recycles pretrained adapters by identifying a shared *task-invariant* weight subspace. We hypothesize (and validate experimentally) that task-specific weights lie within this subspace, allowing for more efficient training with fewer parameters. This reduces memory footprint and enhances inference efficiency by enabling simultaneous serving of multiple adapters. EigenLoRAx is among the first to recycle pretrained adapters, replacing many while improving further training efficiency. Our key contributions are:

- (Training): EigenLoRAx uses up to 100× fewer parameters than LoRA and converges up to 2× faster than comparable methods with similar or better performance.
- (Inference): EigenLoRAx enhances memory efficiency during inference by approximately 18× on multiple tasks, reducing the number of switchable parameters between tasks.
- (Applicability): We demonstrate the effectiveness of EigenLoRAx across a wide range, including text and image data, validating the existence of shared principal subspaces across modalities. It also retains performance in zero-shot and low resource scenarios.
- (Scaling): EigenLoRAx can be scaled up to recycle hundreds of underutilized adapters.

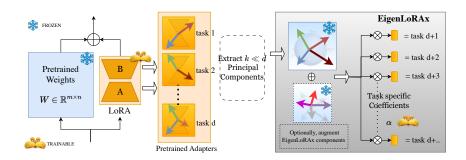


Figure 1: LoRA uses low-rank matrices for task-specific finetuning. We observe that LoRA adapters share a principal subspace across task domains. By recycling pretrained adapters, we extract *task-invariant* principal components, enabling efficient representation of both existing and future LoRAs using compact *task-specific* coefficients. This improves training speed, parameter efficiency, and memory usage. In low-resource settings, where adapters are scarce, we augment the subspace with randomly initialized components, ensuring orthogonality via the Gram-Schmidt process, ensuring they complement the extracted subspace without redundancy.

2 RELATED WORK

Low-Rank Adaptation (LoRA) models weight updates using low-rank matrices instead of full-weight training, a direction rooted in Burer-Monteiro factorization (Burer & Monteiro, 2003). LoRA (Hu et al., 2021) revived this idea for LLM finetuning, with variants emerging across domains (Ma et al., 2024; Chi et al., 2019; Kwon et al., 2024). However, with growing model sizes, even low-rank methods become expensive—for example, LoRA with rank 16 on GPT-3 (Brown et al., 2020) requires 75.5M parameters.

To improve efficiency, mixture-of-experts models (Huang et al., 2023; Wu et al., 2024; Diao et al., 2023; Zhong et al., 2024; Zhou et al., 2018) combine multiple low-rank modules. However, these require numerous high-quality adapters (Ku et al., 2024) and incur memory overhead (Zhou et al., 2022), along with instability from complex gating mechanisms (Zoph et al., 2022).

Recent work focuses on improving subspace initialization. Meng et al. (2024) show singular-vector-based LoRA initialization outperforms random, and Sharma et al. (2023) suggest discarding minor singular components for robustness. Other approaches use random principal components (Kopiczko et al., 2023) or weight matrices (Koohpayegani et al., 2024) to reduce parameter count, but often suffer from poor task alignment, as shown in Section 4. In contrast, EigenLoRAx extracts a *task-aligned principal subspace* from trained adapters, enabling better initialization and improved parameter

efficiency. Although our method primarily relies on LoRA (Hu et al., 2021), it can be applied to other PEFT methods (Liu et al., 2024; Zhang et al., 2023) by analyzing shared task-specific weights.

3 МЕТНОО

In this section, we present the theoretical foundation Section 3.1 and algorithmic details Section 3.2 of our method, followed by a discussion on hyperparameter selection and an assessment of its practical advantages. The terms EigenLoRA, EigenLoRAx, ELoRA and ELoRAx are used interchangeably.

3.1 THEORETICAL PRELIMINARIES

For a full rank weight matrix $W \in \mathbb{R}^{m \times n}$ that learns to map input space $X \in \mathbb{R}^m$ to output space \mathbb{R}^n , the rank is expressed as $\min(m,n)$. As the rank of W increases, modifying it to accommodate new tasks becomes computationally expensive and increasingly complex. This is a common challenge faced when finetuning pretrained large foundation models. LoRA is a parameter efficient finetuning approach used for large pretrained models with weights W_0 that mitigates this challenge by merely learning low-rank weight updates W such that the risk between Y and $W_0X + WX + b$ is minimized. Instead of directly learning W, LoRA proposes to learn a lower ranked decomposition of W by learning two low-rank matrices, $B \in \mathbb{R}^{m \times r}$ and $A \in \mathbb{R}^{r \times n}$, both having ranks r. This factorization ensures that the product BA retains the original dimensions of W_0 while having a significantly reduced rank. As a result, although the transformation defined by BA maps from \mathbb{R}^m to \mathbb{R}^n , it does not span the full space of such mappings due to its constrained rank. The low-rank weight matrices result in substantially smaller number of trainable parameters than the full rank parameter count of $m \cdot n$. Such parameter efficient finetuning makes LoRA a computationally viable alternative for fine-tuning large-scale models.

Previous works such as Meng et al. (2024); Liu et al. (2024) have proposed the existence of a common parameter subspace implying the idea of shared principal subspace. We highlight that LoRA adapters share such a lower dimensional shared principal subspace when finetuned for diverse tasks. Along with reduction in computational overhead, it reinforces the idea that task-relevant transformations reside within a compact, reusable subspace. To formalize this, we first define a space of tasks representable by linear transformation matrices, providing a foundation for analyzing the role of shared principal subspaces in model adaptation.

Definition 3.1 (Task definition for LoRAs). We first define a LoRA task $t_i(X_i, Y_i) : \mathbb{R}^m \to \mathbb{R}^n$ such that $Y_i = W_i^* X_i + b$ where b is some constant. Then the LoRA task domain \mathcal{T}_d is a set of d such tasks, $\mathcal{T}_d = \{t_i\}_{i=1}^d$.

For a given set of pretrained weights (such as those from a foundation model) $W_0 \in \mathbb{R}^{m \times n}$, LoRA weights BA at any layer modify the output as $W_0X + BAX + \epsilon_t$, allowing the model to adapt to the new task and converge toward the optimal solution W_t^* . The key point here is that only B and A weights are updated during finetuning. Without loss of generality, assume $r \ll n$ and let the true transformation matrix $W_t^* \in \mathbb{R}^{r \times n}$ be interpreted as r n-dimensional vectors: $\mathbf{w}_t^{*1}, ..., \mathbf{w}_t^{*r} \in \mathbb{R}^n$. Finding LoRA weights is equivalent to finding sets of these r vectors in \mathbb{R}^n .

Definition 3.2 (Set of LoRA weights). We define the weights of a LoRA adapted for task t_i as B_iA_i . Both B_i and A_i will have their own individual subspaces. For the purpose of the analysis we will consider a generic task specific weight matrix $W_i \in \mathbb{R}^{m \times n}$ adapted to task t_i such that n < m and its rank r < n. The analysis, however, is valid for both B_i and A_i . Now we can define a set of LoRAs as stacked (along columns) weight matrices $\hat{W} = \{W_i\}_{i=1}^d$ where each W_i is adapted for a task $t_i \in \mathcal{T}_d$ and a training set $\mathcal{S}_i = \{\{x,y\} \mid x \in X_t, y \in Y_t\}$ where the size of the training is $s_i = |\mathcal{S}_i|$. For theoretical analysis we assume that each training set $X_i \times Y_i$ is distributed according to some unknown Gaussian distribution with mean \bar{X}_i and $\|X_i\|_F \leq M$ for some constant M > 0. Each weight matrix can have different ranks and the following method and analysis will still hold; however, for brevity we assume all weight matrices stacked in \hat{W} to have the same rank r.

Definition 3.3 (Subspace spanned by LoRAs from a task domain \mathcal{T}_d). We define the subspace of weights $\mathcal{Z}_d = \{C\hat{W} \mid C \in \mathbb{R}^{m \times m}\}$ spanned within $\mathbb{R}^{m \times n}$.

Using Singular Value Decomposition (SVD) or Principal Component Analysis (PCA for a zero-centered \hat{W}), we can obtain $\hat{W} = \mathcal{U}\Sigma\mathcal{V}^T$. We then represent the top K right singular vectors of \hat{W} (or top K principal components if \hat{W} is zero-centered) as $\mathcal{V}_K^T \in \mathbb{R}^{K \times n} = \{\mathcal{V}_k \in \mathbb{R}^{1 \times n}\}_{k=1}^K$.

Definition 3.4 (Shared principal subspace of LoRAs finetuned in domain \mathcal{T}_d). We define the shared principal subspace of weights for a task domain \mathcal{T}_d as $\mathcal{Z}_d^K = \{\alpha \mathcal{V}_K^T \mid \alpha \in \mathbb{R}^{m \times K}\}$ spanned by top K principal components of the LoRAs within $\mathbb{R}^{m \times n}$.

Next, we introduce idea of defining a new related task t_{d+1}

Definition 3.5 (New related task t_{d+1}). A new linear task t_{d+1} with true solution W^*_{d+1} is said to be related if it is spanned by the basis of \hat{W} i.e. $W^*_{d+1} = C\hat{W}$ and it holds that $\|W^*_{d+1} - \alpha^*_{d+1}\mathcal{V}_K^T\|_F^2 \leq \|W^*_{d+1} - \alpha_{d+1}\mathcal{V}_K^T\|_F^2$ for all rank K linear transformation matrices α_{d+1} and $\|W^*_{d+1} - \alpha^*_{d+1}\mathcal{V}_K^T\|_F^2 \leq \|C\|_2^2 \sum_{i=K+1}^{nd} \sigma_i^2$ where σ_i 's are singular values of \hat{W} . For such a task, we learn coefficients of K principal components $\alpha_{d+1} \in \mathbb{R}^{m \times K}$ resulting in EigenLoRAx weights $W_{\mathcal{E}} = \alpha_{d+1}\mathcal{V}_K^T$.

Definition 3.5 establishes a bound over the related-ness of a new task with those in the known task domain \mathcal{T}_d . If the true solution of the new task lies majorly in the principal subspace of \mathcal{T}_d i.e. has major principal components (PCs) within the top K principal components of \hat{W} with some finite bound on the misalignment along the PCs orthogonal to the top K PCs of \hat{W} , then we can ideally quantify the relation between a new task and a task domain. Any task that has its true solution within a subspace defined by the PCs orthogonal to the top K PCs of \hat{W} is not as closely related as a task with its solution completely or majorly within the principal subspace. A task that has its solution completely orthogonal to all the PCs of \hat{W} is completely unrelated and is not our main focus here.

Next, we present an algorithm to find the principal subspace and our experiments in Section 4.

3.2 Algorithm

Assume we have N LoRA adapters, each consisting of a set of A,B matrix pairs for every layer, trained on various tasks within a domain \mathcal{T}_d for a given base pretrained model. Algorithm 1 computes a list of top K principal components—referred to as EigenLoRAx PCs—that define an initial principal subspace for this domain.

To construct this subspace, the algorithm aggregates LoRA matrices across tasks for each layer, separately for A and B matrices (though it can also be applied to the product BA). Each LoRA matrix, having rank r, is treated as a list of vectors, and a decomposition is performed on this stacked set of vectors. The most significant components extracted from this process serve as a basis for the principal subspace, providing an efficient representation that can be linearly combined to approximate the original LoRA weight matrices. We showcase our algorithm using representative weight matrices W_t , where each W_t represents a single A or B matrix from a single LoRA layer of the neural network. In practice, this procedure is applied to all relevant layers.

Since real-world scenarios often involve low-resource domains with limited availability of LoRA adapters, we extend our subspace by introducing additional pseudo-PCs. Specifically, we sample random vectors of the same dimension as each PC and orthogonalize them with respect to all existing PCs. This process can be iterated to generate more pseudo-PCs, thereby augmenting the principal subspace. As empirically shown in Table 3, this augmentation strategy significantly outperforms naive random selection of PCs for subspace expansion.

Learning new tasks Having extracted a set of PCs (including pseudo-PCs, if needed), $\mathcal{V}_K \in \mathbb{R}^{K \times n} = \{\mathcal{V}_k \in \mathbb{R}^{1 \times n}\}_{k=1}^K$, we can approximate a given (LoRA) weight matrix by minimizing $\|W - \alpha \mathcal{V}_K^T\|_F$ where α are linear coefficients Section 3.1. In fact, we can analytically compute of the given LoRA matrices by calculating the linear coefficients which minimizes the above objective. For new tasks however, for which we do not have a LoRA matrix, we freeze the EigenLoRAx PCs and randomly initialize the α s. The forward pass in layer is calculated as

$$h = W_0 x + \alpha_B^T \mathcal{V}_B \alpha_A^T \mathcal{V}_A(x). \tag{1}$$

Here, W_0 are the pretrained weights of the base model and V_B , V_A are EigenLoRAx components (which represent the shared subspace) that are frozen during training. The corresponding lightweight coefficients α_B and α_A are learned. This reduces the number of learnable parameters from O(2rn) to O(2K), by a factor of $\frac{rn}{K}$ (assuming α to be scalar).

216

217

218

219

220

221

222

224

225

226

227

228

229

230

231

232

234

235

236

237

238

239

240

241

242

243

244

245 246

247

249 250

251

253

254

255 256

257

258

259

260

261

262

263

264 265

266

267

268

269

Using the definitions 3.1, 3.2, 3.5, 3.4 and 3.3 we state the following theorem;

Theorem 3.6. For a task t_{d+1} , we assume a hypothesis $h \in \mathcal{H}_{W_{d+1}}$ expressed as $h(W_{d+1}, X) = W_{d+1}X_{d+1}^{d+1} + W_0X_{d+1} + W_0$ b where W_{d+1} has rank m, b is some constant and W₀ represents weights of a pretrained foundation model that is frozen during finetuning respectively. We have $h^{\mathcal{E}} \in \mathcal{H}_{W_{\mathcal{E}}}, h^* \in \mathcal{H}_{W^*_{d+1}}$ such that $h^{\mathcal{E}}(W_{\mathcal{E}}, X_{d+1}) = \alpha_{d+1} \mathcal{V}_K^T X_{d+1} +$ $W_0X_{d+1} + b$ where $W_{\mathcal{E}}$ has rank Kand $h^*(W^*_{d+1}, X_{d+1}) = CWX_{d+1} +$ $W_0X_{d+1} + b$ where $h^*(W^*_{d+1}, X_{d+1}) =$ Y_{d+1} is the true solution for task t_{d+1} . For a Lipschitz continuous loss $(\ell_{S_t}^F(h))$ that is strong convex within the shared principal subspace spanned by principal components \mathcal{V}_{K}^{T} with some Lipschitz constant (L), the

Algorithm 1 EigenLoRAx PCs Calculation

Input: LoRA matrices $\{W_t \in \mathbb{R}^{m \times n}\}_{t=1}^d$, number of PC (K), number of pseudo-PC (P)Output: EigenLoRAx PCs \mathcal{V}_K^T $\hat{W} = [W_1 \in \mathbb{R}^{m \times n} \quad \dots \quad W_d \in \mathbb{R}^{m \times n}], \text{ Stack}$ LoRA matrices} Compute the mean of each feature: \overline{W} $\frac{1}{n}\sum_{i=1}^{n}W_{i}$ Subtract the mean: $\hat{W}_c = \hat{W} - \hat{W}$ Perform SVD: $\hat{W}_c = U\Sigma V^T$ Extract the top K principal components Select the first K columns of \mathcal{V} : $\mathcal{V}_K = V[:, 1:K]$ Optionally, augment the subspace with P pseudo-PCs for p = 1 to P do Sample a random vector $v_p \sim \mathcal{N}(0, I_n)$ {Sample from a normal distribution} Orthogonalize v_p against all PCs in \mathcal{V}_K using Gram-Schmidt:

 $\begin{aligned} & \textbf{for } i = 1 \text{ to } K + p - 1 \textbf{ do} \\ & v_p = v_p - \frac{v_p^T V_K[:,i]}{\|\mathcal{V}_K[:,i]\|^2} \mathcal{V}_K[:,i] \end{aligned}$ Normalize v_p : $v_p=\frac{v_p}{\|v_p\|}$ Append v_p to \mathcal{V}_K if v_p is not a null vector K = K + 1end for return \mathcal{V}_K, μ

risk can be written as $R^F_{S_{d+1}}(h_W) = E_{S_t}[\ell^F_{S_t}(h)]$, and using Rademacher complexity bounds we can say with probability at least $1 - 4\delta$ for some $\delta > 0$,

$$||W^*_{d+1} - W_{d+1}||_F^2 \le C_1 \cdot \left(\frac{\sqrt{m}}{\sqrt{s_t}}\right) + C_2$$
 (2)

$$\|\alpha_{d+1}^* \mathcal{V}_K^T - W_{\mathcal{E}}\|_F^2 \le C_1 \cdot \left(\frac{\sqrt{K}}{\sqrt{s_t}}\right) + \|C\|_2^2 \sum_{i=K+1}^{nd} \sigma_i^2 + C_2$$
(3)

where σ_i are singular values of \hat{W} , C is some constant such that $W^*_{d+1} = C\hat{W}$ and C_1 , C_2 are some constants.

Theorem A.1 provides an upper bound on the Frobenius norm of the difference between W_{d+1} or $W_{\mathcal{E}}$ and the optimal solution W^*_{d+1} . 5 provides a tighter upper bound on the norm of the difference when task t_{d+1} majorly lies in the shared principal subspace. The extent to which task t_{d+1} lies in the shared principle subspace is captured by the second term involving the sum of squared truncated singular values \hat{W} . Hence, if the task completely or majorly lie in the shared principal subspace, then the first term (sqrt(rank)) will dominate the upper bound. Hence, if rank($W_{d+1} \ge K$), then we can see that the upper bound in eq. 5 will be tighter than in eq. 4 where the task lies majorly in the shared principal subspace. Similarly, when $m \leq K$, the upper bound on the difference norm will be tighter for W_{d+1} than $W_{\mathcal{E}}$. When W^*_{d+1} has a significant alignment or projection along the singular vectors orthogonal to the ones with top K singular values, then the second term in 4 comes into picture and it becomes difficult to directly compare the bounds in 4 and 5. However, if majority of the variance of W^*_{d+1} is along the singular vectors orthogonal to the top K components, it follows that $W_{\mathcal{E}}$ will never be able to achieve convergence while W_{d+1} . In contrast, W_{d+1} could perform significantly better, as it is not restricted to learning only along the top K principal components of W.

How to choose optimal number of PCs K The hyperparameter K, which determines the number of top PC, can be viewed as a function of task domain complexity—simpler domains require a smaller K, while more complex domains benefit from a larger K. In practice, we determine K based on empirical observations (Appendix B), evaluating performance across different values. Additionally, we can leverage established techniques from literature, such as explained variance and singular value thresholds Gavish & Donoho (2014). As illustrated in Figure 2, most of the relevant information is often concentrated in a few top EigenLoRAx PCs, providing a practical criterion for selecting K

Memory Efficiency and Complexity Our method demonstrates significant memory efficiency across experiments. A single set of EigenLoRAx PCs, combined with lightweight task-specific coefficients, can effectively replace both past and future LoRAs

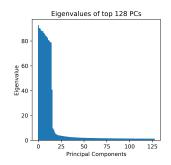


Figure 2: The top 16 components contain the most information from a total of 4000+ components for 500 LoRAs. (A matrices from layer 1 of Mistral-7b model, Lots of LoRAs, see Section 4.3).

within a task domain. This is particularly advantageous when serving a large number of adapters, where frequent loading and unloading in VRAM incurs high latency, or keeping all adapters in memory demands excessive VRAM. For d LoRAs of rank r and l layers, the memory footprint is O(2drln). For EigenLoRAxs, it is O(2Kl(d+n)). As $r,K\ll n$, EigenLoRAx becomes more memory efficient in terms of memory required to save the models as d increases. This becomes significantly useful for edge devices and large scale user serving AI systems.

4 EXPERIMENTS AND RESULTS

In this section, we demonstrate the efficacy and versatility of EigenLoRAx across diverse tasks, modalities, and model architectures, highlighting its individual advantages. EigenLo-RAx requires significantly fewer parameters to match or surpass LoRA's performance (Tables 1, 2) and achieves similar or faster loss convergence (Figure 3), making it a cost-effective alternative to random initialization and other methods (Meng et al., 2024). Additionally, we showcase its memory-efficient inference capabilities with a Stable Diffusion text-to-image generation model (Rombach et al., 2021) (Section 4.4). Notably, EigenLoRAx retains its efficiency even in low-resource scenarios where a large number of LoRAs are unavailable.

Note on Baselines Our focus is on recycling adapter knowledge and improving training and memory efficiency while maintaining performance, not solely on maximizing performance. We compare primarily with LoRA, as EigenLoRAx builds its principal subspace using pretrained LoRA adapters. Using better adapters and optimization could further enhance the subspace and performance.

See more experiments (3D Object pose estimation) and detailed ablation experiments in Appendix A.

Table 1: Image classification with Vision Transformer. ZS refers to zero-shot. AUG refers to Augmented for Low-Resource. EigenLoRAx matches or increases performance with drastically fewer number of parameters.

	# TRAIN PARAMS	CIFAR 100	Food 101	FLOWERS 102
FULL TRAINING	86M	97.0	96.64	98.82
BASE MODEL	15K	90.07	90.8	80.71
$Lorate{orange}$ Lorate $(r = 4)$	+147K	93.79	95.73	95.03
LoRA (r = 1)	+36K	92.45	91.07	90.14
VERA	+18K	90.87	91.75	91.25
ELoRAXAUG	+1K	94.4	95.01	97.5
ELORAX	+96	94.8	95.14	98.44
ELoRAx ^{ZS}	+0	91.4	92.48	95.7

4.1 IMAGE CLASSIFICATION

This simpler task involves related datasets where the LoRAs used to construct EigenLoRAx are well-aligned with the downstream tasks, highlighting its finetuning efficiency.

Setup We evaluate EigenLoRAx using a pretrained ViT (ViT) (Dosovitskiy et al., 2021) across 3 datasets. Each dataset is partitioned into 5–6 non-overlapping sub-datasets, mimicking continual learning (Kaushik et al., 2021) and federated learning (Shenaj et al., 2023) setups. As the sub-datasets are derived from the same source, their tasks are more domain-aligned. For EigenLoRAx, we compute

principal components (PCs) using all but one LoRA trained on individual sub-datasets (leave-one-out approach, Algorithm 1). The coefficient matrix α for the excluded task is then learned as described in Section 3.2. All methods are finetuned for 10 epochs, with additional details in Appendix A.2.

Parameter Efficiency Table 1 summarizes our experimental results. All models require training the last linear layer (approx. 15K parameters) due to the pre-trained ViT having a different number of categories. For the Base Model, no additional parameters are trained. EigenLoRAx adapts to new sub-datasets using only two principal components (96 additional parameters), enabling it to match or outperform LoRA and VeRA, which use significantly more parameters. We also tested a zero-shot EigenLoRAx (weight initialized randomly within the principal subspace), training only the last layer. This model outperforms the base model with no additional parameters, demonstrating the effectiveness of principal subspace extraction. We also test a low resource scenario (ELoRAx^{AUG}), where only 2 LoRAs are available for extracting the PCs, which are then augmented using random, orthogonal PCs as described in Algorithm 1.

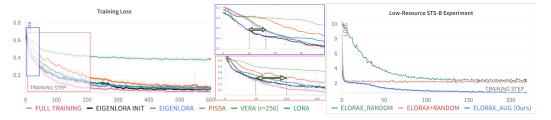


Figure 3: Fast Convergence and Better Initialization (left) EigenLoRAx demonstrates faster convergence compared to LoRA and VeRA. EigenLoRAx achieves a speedup of up to $1.5\times$ against LoRA and up to $2\times$ compared to PISSA. This experiment was carried out on the CoLA task of the GLUE benchmark.

4.2 GLUE BENCHMARK

Table 2: GLUE benchmark results. We report Matthew's correlation for CoLA, Pearson correlation for STS-B, and accuracy for the remaining tasks. In all cases, higher values indicate better performance.

	# Trainable	MRPC	SST-2	CoLA	ONLI	RTE	STS-B	AVG.
METHOD	PARAMETERS	MKFC	331-2	COLA	QNLI	KIL	313-Б	AVG.
FULL TRAINING	125M	88.97	91.28	59.81	92.29	79.78	90.89	83.84
PISSA [36]	1.2M	86.52	94.15	61.32	92.15	71.84	90.25	82.70
EIGENLORAX ^{INIT}	1.2M	89.71	93.35	61.58	92.2	74.73	89.56	83.52
Lora $(r = 32)$	1.2M	86.76	94.72	59.56	92.53	77.61	90.81	83.67
VERA (r = 256)	25K	75.98	93.23	54.14	89.21	66.78	87.03	77.72
EIGENLORAX	12K	87	94.15	59.81	92.73	77.62	90.58	83.65

Next, we evalu-EigenLoRAx ate General on the Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019) datasets using the RoBERTa_{base} model (Liu et al., 2019). We use 6

different tasks: MRPC, SST-2, CoLA, QNLI, RTE and STS-B. Following the setup of VeRA, we omit time-intensive MNLI and QQP tasks, thus avoiding the use of MNLI initialization for MRPC, RTE, and STS-B tasks. In this setting, LoRAs are trained not on sub-datasets but on these different datasets representing a *heterogeneous* domain setting, where the domain difference may be larger relative to the more domain-aligned setting in Section 4.1. We follow the previous leave-one-out setup, where EigenLoRAx PCs are calculated using LoRAs of all but one task, and α is learnt for the left-out task. Refer to Appendix A.3 for all hyperparameters and implementation details.

Faster Convergence Our results in Table 2 show that EigenLoRAx (K=32) matches LoRA's performance with $100 \times$ fewer trainable parameters and outperforms VeRA. EigenLoRAx extracts a useful principal subspace across diverse domains, enabling robust adaptation to new tasks. We also evaluate EigenLoRAx(^{init}) weight initialization speed-up. Unlike PiSSA (Meng et al., 2024), which initializes LoRA matrices with principal directions of pretrained weights, we randomly initialize weights within our extracted subspace. As shown in Figure 3, EigenLoRAx converges faster than PiSSA and VeRA, and slightly faster than LoRA, highlighting the effectiveness of the principal subspace. VeRA's poorer performance may stem from suboptimal random initialization that fails to align with task-critical components. ELoRAx is also more efficient in terms of floating point operations for both forward and backward pass, as shown in Table 14.

Low-Resource Scenario To demonstrate the effectiveness of our subspace augmentation strategy Algorithm 1, we conduct an experiment where EigenLoRAx is initialized with only 1–2 LoRAs. The results are presented in Table 3. We compare our method against augmenting EigenLoRAx with random components (EigenLoRAx+random) and using entirely random components (ELoRAx^{random}). As shown, our augmentation approach significantly outperforms random principal component selection. Interestingly, for MRPC, the base model's performance is retained. This suggests that the learned LoRA weights may not have influenced the base model, likely because they did not capture relevant information.

While we do not provide theoretical guarantees for our principal component augmentation strategy—where randomly sampled vectors are iteratively orthogonalized to the existing EigenLoRAx principal vectors—we hypothesize that this targeted guidance helps prevent redundancy within the subspace. Consequently, it increases the likelihood of capturing the necessary task-relevant components.

Table 3: Low-Resource GLUE Subset Results

	# PARAM	MRPC	STS-B
ELORAX ^{RANDOM} ELORAX+RAND	24K 24K	68.38 68.38	-0.73 0.11
ELoRAx ^{AUG}	24K	83.09	85.28

Table 4: Lots of LoRAs. We report the Rouge-L scores for each of the 5 tasks from the training set and 5 from the testing set. EigenLoRAx achieves on average 88% of LoRA's performance while requiring anywhere from $12 \times$ to $95 \times$ less parameters in a zero-shot setting.

МЕТНОО	# TRAINABLE PARAMETERS	076	627	664	819	1631	039	290	391	442	1598	AVG.
$Lorate{orange}$ Lorate $(r = 16)$	9.4M	69.05	23.96	25	75	99.04	58.77	93.79	93.45	67.84	51.58	65.75
EIGENLORAX ^{ZS}	98-786K	60.78	18.91	33.33	65.07	94.74	49.96	84.54	88.56	49.78	39.81	58.25
PERFORMANCE RATIO		0.88	0.79	1.33	0.87	0.96	0.79	0.90	0.95	0.73	0.77	0.88

4.3 Lots of Loras

Finally, we also tested our method in settings where a large number of adapters may be trained on significantly diverse domains. Lots of LoRAs (Brüel-Gabrielsson et al., 2024) is a collection of over 500 adapters of the Mistral-7B-Instruct-v0.2 model (Jiang et al., 2023), trained on a variety of natural instruction tasks (Wang et al., 2022). It represents the realistic setting where we directly use publicly available trained adapters, which may present significant diversity in terms of quality and task domain. As all adapters are accompanied with their respective training datasets, Lots of LoRAs is particularly useful in evaluating EigenLoRAx. The task presents significant diversity and a higher K is necessary to represent this open domain.

Setup We split adapters randomly into two sets (490,5). EigenLoRAx PCs were calculated using the larger "training" set and evaluations were done on the smaller "test" set. We evaluated EigenLoRAx in a zero-shot setting (calculated using the already available adapter weights, no finetuning). The results are shown in Table 4 where we evaluate EigenLoRAx on the 5 tasks from the test set and also on 5 tasks from the training set to check for catastrophic forgetting or concept drift from scaling. The first 5 tasks are randomly sampled from the training set. **EigenLoRAx nearly matches LoRA**

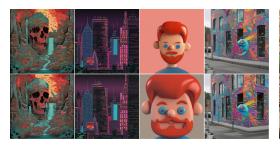


Figure 4: LoRAs (top) vs. EigenLoRAx (bottom) in Text-to-Image generation. (Left) A single EigenLoRAx analytically reconstructs multiple LoRAs, significantly reducing memory ($18 \times$ reduction) and compute costs. (Right) It efficiently learns new tasks with up to $100 \times$ fewer parameters than LoRA, maintaining similar visual quality. See Appendix A.4 for more examples.

with $12 - 95 \times$ fewer parameters. EigenLoRAx recovers upto 88% of LoRA's performance even

in a zero-shot setting at such a large scale. The performance of EigenLoRAx can be improved by fine-tuning the EigenLoRAx adapters. In this setting we use randomized SVD in order to speed up the calculation of the PCs. We believe this leads to some degradation in performance as there randomized methods are approximations of the actual calculations. Performance can be further improved if better implementations of SVD which do not sacrifice accuracy for speed are used in calculating the Principal Components.

4.4 Text-to-Image Image Generative Models

> We showcase EigenLoRAx's versatility on complex multimodal tasks like text-to-image generation, where LoRAs are extensively used to adapt models like Stable Diffusion to various styles and datasets. Despite thousands of LoRA adapters being available, most remain underutilized, occupying significant memory alongside their data. As adapter usage grows, a critical challenge is efficiently hosting multiple adapters for diverse tasks, especially on edge devices. Switching adapters during inference, often from CPU memory or disk, introduces latency that hinders real-time applications. EigenLoRAx tackles this by extracting a shared task-invariant subspace, significantly reducing inmemory parameters and enabling memory-efficient inference without compromising flexibility or performance. EigenLoRAx can effectively replace pretrained adapters, drastically reducing storage requirements. To demonstrate this, we extracted K=14 principal components from N=20 Stable Diffusion-XL (Podell et al., 2023) LoRA adapters (rank r=32) from the HuggingFace diffusers library (von Platen et al., 2022). Using $\alpha \in \mathbb{R}^{r \times K}$, we analytically reconstructed the original LoRA weights within the extracted principal subspace. For image generation, we used 30 denoising steps with a fixed seed of 0. Results and comparisons are shown in Figure 4. This approach reduces storage requirements for all adapters from 4.6GB to just 261MB, achieving an 18× reduction in low-rank parameters stored in memory. By enabling a large number of adapters to reside in VRAM simultaneously, EigenLoRAx eliminates I/O bottlenecks, significantly improving memory efficiency for real-time applications.

> Failure Cases and Limitations Despite its advantages, EigenLoRAx has limitations. Appendix Figure 9 shows a failure case where the method fails to capture a key property of the desired image. While tasks may share a principal subspace, missing critical orthogonal components can degrade performance, especially if they were absent in the pretrained LoRAs used for extraction or if the chosen top K components were suboptimal. In the latter case, empirical analysis of hyperparameters (Appendix B) can guide optimal K selection. Additionally, our subspace augmentation method (Table 3) helps by iteratively sampling and orthogonalizing more components to recover missing subspace elements. A simple extension can further mitigate this issue by allowing a small number of rank-1 weights to be trainable outside the subspace. Another key limitation (Section 4.3) is the computational cost and instability of processing a large number of initial LoRAs. A continual learning approach building on our method could address this. Finally, our experiments did not explore layer-wise or weight matrix-level optimizations; we tested different K values but kept them fixed across layers and for both A and B matrices. Additional failure cases are discussed in Appendix B.2.

5 CONCLUSION

We introduce EigenLoRAx, a significantly efficient model finetuning and inference method that recycles publicly available pretrained adapters by finding a shared principal subspace. This allows finetuning on new data by simply learning the lightweight coefficients of the shared subspace, and also requires less number of parameters to be saved for new tasks. Our comprehensive and diverse experiments show that EigenLoRAx is applicable to a large range of problems and model architectures. We believe that EigenLoRAx has the potential to mitigate the perpetually widening compute resource gap (Ahmed & Wahed, 2020; Besiroglu et al., 2024) and reduce the environmental cost of training and using machine learning models (Wu et al., 2021; Ligozat et al., 2021). It also holds promise for training personalized models (Tan et al., 2024) on low-resource devices, in privacy-critical use-cases. We have a large number of experiments (6+) on a diverse set of complex models, tasks and modalities. We have shown that EigenLoRAx excels in faster and efficient learning, memory savings and zero shot performance which differentiates it from conventional PEFT models.

REFERENCES

- Nuri Mahmoud Ahmed and Muntasir Wahed. The de-democratization of ai: Deep learning and the compute divide in artificial intelligence research. <u>ArXiv</u>, abs/2010.15581, 2020. URL https://api.semanticscholar.org/CorpusID:225102971.
- Wang Angtian, Adam Kortylewski, and Alan Yuille. Nemo: Neural mesh models of contrastive features for robust 3d pose estimation. In <u>Proceedings International Conference on Learning Representations (ICLR)</u>, 2021.
- Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: risk bounds and structural results. J. Mach. Learn. Res., 3(null):463–482, March 2003. ISSN 1532-4435.
- Tamay Besiroglu, Sage Andrus Bergerson, Amelia Michael, Lennart Heim, Xueyun Luo, and Neil Thompson. The compute divide in machine learning: A threat to academic contribution and scrutiny? <u>ArXiv</u>, abs/2401.02452, 2024. URL https://api.semanticscholar.org/CorpusID:266818226.
- Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 mining discriminative components with random forests. In European Conference on Computer Vision, 2014.
- Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
- Rickard Brüel-Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin, and Justin Solomon. Compress then serve: Serving thousands of lora adapters with little overhead, 2024. URL https://arxiv.org/abs/2407.00066.
- Samuel Burer and Renato D. C. Monteiro. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. <u>Mathematical Programming</u>, 95:329–357, 2003. URL https://api.semanticscholar.org/CorpusID:7691228.
- Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo. Adaptformer: Adapting vision transformers for scalable visual recognition. <u>ArXiv</u>, abs/2205.13535, 2022. URL https://api.semanticscholar.org/CorpusID:249097890.
- Yuejie Chi, Yue M. Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix factorization: An overview. IEEE Transactions on Signal Processing, 67(20):5239–5269, 2019. doi: 10.1109/TSP.2019.2937282.
- Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse engineering how networks learn group operations, 2023. URL https://arxiv.org/abs/2302.03025.
- Shizhe Diao, Tianyang Xu, Ruijia Xu, Jiawei Wang, and Tong Zhang. Mixture-of-Domain-Adapters:

 Decoupling and Injecting Domain Knowledge to Pre-trained Language Models Memories. June 2023. doi: 10.48550/arXiv.2306.05406.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.
- Marc Fischer, Alexander Bartler, and Bin Yang. Prompt tuning for parameter-efficient medical image segmentation. Medical Image Analysis, 91:103024, 2024.

- Matan Gavish and David L. Donoho. The optimal hard threshold for singular values is 4/sqrt(3), 2014. URL https://arxiv.org/abs/1305.5870.
- Florentin Guth and Brice Ménard. On the universality of neural encodings in CNNs. In ICLR 2024 Workshop on Representational Alignment, 2024. URL https://openreview.net/forum?id=ofEBFOrITI.
 - Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/houlsby19a.html.
 - Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. <u>arXiv preprint</u> arXiv:2106.09685, 2021.
 - Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Efficient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269, 2023.
 - Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.
 - Prakhar Kaushik, Alex Gain, Adam Kortylewski, and Alan Yuille. Understanding catastrophic forgetting and remembering in continual learning with optimal relevance mapping, 2021. URL https://arxiv.org/abs/2102.11343.
 - Prakhar Kaushik, Aayush Mishra, Adam Kortylewski, and Alan L. Yuille. Source-free and image-only unsupervised domain adaptation for category level object pose estimation. <u>ArXiv</u>, abs/2401.10848, 2024. URL https://api.semanticscholar.org/CorpusID:267060973.
 - Soroush Abbasi Koohpayegani, Navaneet K L, Parsa Nooralinejad, Soheil Kolouri, and Hamed Pirsiavash. NOLA: Compressing loRA using linear combination of random basis. In The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=TjfXcDqvzk.
 - Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. VeRA: Vector-based Random Matrix Adaptation. October 2023. URL https://openreview.net/forum?id=NjNfLdxr3A.
 - Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced research). 2009. URL http://www.cs.toronto.edu/~kriz/cifar.html.
 - Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.). Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL https://aclanthology.org/2024.acl-long.0.
 - Soo Min Kwon, Zekai Zhang, Dogyoon Song, Laura Balzano, and Qing Qu. Efficient compression of overparameterized deep models through low-dimensional learning dynamics, 2024. URL https://arxiv.org/abs/2311.05061.
 - Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wentau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243.

- Anne-Laure Ligozat, Julien Lefèvre, Aurélie Bugeau, and Jacques Combaz. Unraveling the hidden environmental impacts of ai solutions for environment. ArXiv, abs/2110.11822, 2021. URL https://api.semanticscholar.org/CorpusID:239616423.
 - Di Liu, Hao Kong, Xiangzhong Luo, Weichen Liu, and Ravi Subramaniam. Bringing ai to edge: From deep learning's perspective. Neurocomput., 485(C):297–320, May 2022. ISSN 0925-2312. doi: 10.1016/j.neucom.2021.04.141. URL https://doi.org/10.1016/j.neucom.2021.04.141.
 - Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation, 2024. URL https://arxiv.org/abs/2402.09353.
 - Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. https://api.semanticscholar.org/CorpusID:198953378.
 - Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun, Guangnan Jiang, Zhiyu Wang, and Rongrong Ji. Towards efficient visual adaption via structural re-parameterization. arXiv:preprint arXiv:2302.08106, 2023.
 - Cong Ma, Xingyu Xu, Tian Tong, and Yuejie Chi. Provably Accelerating Ill-Conditioned Low-Rank Estimation via Scaled Gradient Descent, Even with Overparameterization, pp. 133–165. Springer Nature Switzerland, Cham, 2024. ISBN 978-3-031-66497-7. doi: 10.1007/978-3-031-66497-7_7. URL https://doi.org/10.1007/978-3-031-66497-7_7.
 - Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.com/huggingface/peft, 2022.
 - Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large Language Models, May 2024. URL http://arxiv.org/abs/2404.02948. arXiv:2404.02948 [cs].
 - Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In Indian Conference on Computer Vision, Graphics and Image Processing, Dec 2008.
 - Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis, 2023. URL https://arxiv.org/abs/2307.01952.
 - Anastasiia Razdaibiedina, Yuning Mao, Madian Khabsa, Mike Lewis, Rui Hou, Jimmy Ba, and Amjad Almahairi. Residual prompt tuning: improving prompt tuning with residual reparameterization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp. 6740–6757, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.421. URL https://aclanthology.org/2023.findings-acl.421.
 - Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10674–10685, 2021. URL https://api.semanticscholar.org/CorpusID:245335280.
 - Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction, December 2023. URL http://arxiv.org/abs/2312.13558. arXiv:2312.13558 [cs].
 - Donald Shenaj, Marco Toldo, Alberto Rigon, and Pietro Zanuttigh. Asynchronous federated continual learning. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 5055-5063, 2023. URL https://api.semanticscholar.org/CorpusID:258041245.

- Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng Jiang. Democratizing large language models via personalized parameter-efficient fine-tuning. <u>arXiv preprint</u> arXiv:2402.04401, 2024.
- Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul, Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/diffusers, 2022.
- Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019. URL https://arxiv.org/abs/1804.07461.
- Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta Patro, Tanay Dixit, and Xudong Shen. Super-NaturalInstructions: Generalization via declarative instructions on 1600+ NLP tasks. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 5085–5109, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.340. URL https://aclanthology.org/2022.emnlp-main.340/.
- Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael K. Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Kumar Jain, Michael G. Rabbat, and Kim M. Hazelwood. Sustainable ai: Environmental implications, challenges and opportunities. <u>ArXiv</u>, abs/2111.00364, 2021. URL <a href="https://api.semanticscholar.org/CorpusID:240354766.
- Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. arXiv preprint arXiv:2404.13628, 2024.
- Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient finetuning, 2023. URL https://arxiv.org/abs/2303.10512.
- Ming Zhong, Yelong Shen, Shuohang Wang, Yadong Lu, Yizhu Jiao, Siru Ouyang, Donghan Yu, Jiawei Han, and Weizhu Chen. Multi-lora composition for image generation. <u>arXiv:2402.16843</u>, 2024.
- Qihao Zhou, Kan Zheng, Lu Hou, Jinyu Xing, and Rongtao Xu. X-lora: An open source lpwa network. arXiv preprint arXiv:1812.09012, 2018.
- Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Y Zhao, Andrew M. Dai, Zhifeng Chen, Quoc V Le, and James Laudon. Mixture-of-experts with expert choice routing. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum? id=jdJolHIVinI.
- Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022. URL https://arxiv.org/abs/2202.08906.

A APPENDIX

A.1 THEORETICAL ANALYSIS

Using the definitions 3.1, 3.2, 3.5, 3.4 and 3.3 we state the following theorem;

Theorem A.1. For a task t_{d+1} , we assume a hypothesis $h \in \mathcal{H}_{W_{d+1}}$ expressed as $h(W_{d+1}, X) = W_{d+1}X_{d+1} + W_0X_{d+1} + b$ where W_{d+1} has rank m, b is some constant and W_0 represents weights of a pretrained foundation model that is frozen during finetuning respectively. We have $h^{\mathcal{E}} \in \mathcal{H}_{W_{\mathcal{E}}}, h^* \in \mathcal{H}_{W^*_{d+1}}$ such that $h^{\mathcal{E}}(W_{\mathcal{E}}, X_{d+1}) = \alpha_{d+1}\mathcal{V}_K^T X_{d+1} + W_0 X_{d+1} + b$ where $W_{\mathcal{E}}$ has rank K and $h^*(W^*_{d+1}, X_{d+1}) = C\hat{W}X_{d+1} + W_0 X_{d+1} + b$ where $h^*(W^*_{d+1}, X_{d+1}) = Y_{d+1}$ is the true solution for task t_{d+1} . For a Lipschitz continuous loss $(\ell_{\mathcal{S}_t}^F(h))$ that is strong convex within the shared principal subspace spanned by principal components \mathcal{V}_K^T with some Lipschitz constant (L), the risk can be written as $R_{\mathcal{S}_{d+1}}^F(h_W) = E_{\mathcal{S}_t}[\ell_{\mathcal{S}_t}^F(h)]$, and using Rademacher complexity bounds we can say with probability at least $1-4\delta$ for some $\delta>0$,

$$||W^*_{d+1} - W_{d+1}||_F^2 \le C_1 \cdot \left(\frac{\sqrt{m}}{\sqrt{s_t}}\right) + C_2 \tag{4}$$

$$\|\alpha_{d+1}^* \mathcal{V}_K^T - W_{\mathcal{E}}\|_F^2 \le C_1 \cdot \left(\frac{\sqrt{K}}{\sqrt{s_t}}\right) + \|C\|_2^2 \sum_{i=K+1}^{nd} \sigma_i^2 + C_2$$
 (5)

where σ_i are singular values of \hat{W} , C is some constant such that $W^*_{d+1} = C\hat{W}$ and C_1 , C_2 are some constants.

Proof. The derivation is straightforward, we can write the difference in risks for $h^{\mathcal{E}}$ and h^* as

$$R_{\mathcal{S}_{d+1}}^F(h^{\mathcal{E}}) - R_{\mathcal{S}_{d+1}}^F(h^*) = \mathbb{E}_{\mathcal{S}_t} \left[\ell_{\mathcal{S}_t}^F(h^{\mathcal{E}}) - \ell_{\mathcal{S}_t}^F(h^*) \right]$$

By definition of strong convex loss function for some constant $\mu \geq 0$,

$$\mathbb{E}_{\mathcal{S}_t} \left[\ell_{\mathcal{S}_t}^F(h^{\mathcal{E}}) - \ell_{\mathcal{S}_t}^F(h^*) \right] \ge \frac{\mu}{2} \|W_{\mathcal{E}} - W^*_{d+1}\|_F^2$$

We also know from generalization error bounds using Rademacher Complexity from Bartlett & Mendelson (2003) that with probability at least $1-2\delta$,

$$|R_{\mathcal{S}_{d+1}}^F(h^{\mathcal{E}}) - \hat{R}_{\mathcal{S}_{d+1}}^F(h^{\mathcal{E}})| \le \frac{\mathcal{R}_{s_{d+1}}(\mathcal{H}_{W_{\mathcal{E}}})}{2} + \sqrt{\frac{\ln(1/\delta)}{2s_t}}$$

We can rewrite risk as

$$\begin{split} R^{F}_{\mathcal{S}_{d+1}}(h^{*}) - R^{F}_{\mathcal{S}_{d+1}}(h^{\mathcal{E}}) = & R^{F}_{\mathcal{S}_{d+1}}(h^{*}) - \hat{R}^{F}_{\mathcal{S}_{d+1}}(h^{*}) \\ & - R^{F}_{\mathcal{S}_{d+1}}(h^{\mathcal{E}}) + \hat{R}^{F}_{\mathcal{S}_{d+1}}(h^{\mathcal{E}}) \\ & + \hat{R}^{F}_{\mathcal{S}_{d+1}}(h^{*}) - \hat{R}^{F}_{\mathcal{S}_{d+1}}(h^{\mathcal{E}}) \end{split}$$

Since we know by definition of h^* that $\hat{R}^F_{\mathcal{S}_{d+1}}(h^*) \leq \hat{R}^F_{\mathcal{S}_{d+1}}(h^{\mathcal{E}})$, we can say

$$R_{\mathcal{S}_{d+1}}^{F}(h^{*}) - R_{\mathcal{S}_{d+1}}^{F}(h^{\mathcal{E}}) \leq R_{\mathcal{S}_{d+1}}^{F}(h^{*}) - \hat{R}_{\mathcal{S}_{d+1}}^{F}(h^{*}) - R_{\mathcal{S}_{d+1}}^{F}(h^{\mathcal{E}}) + \hat{R}_{\mathcal{S}_{d+1}}^{F}(h^{\mathcal{E}})$$

Then we take a union bound to conclude that with probability at least $1-4\delta$,

$$R_{\mathcal{S}_{d+1}}^{F}(h^{*}) - R_{\mathcal{S}_{d+1}}^{F}(h^{\mathcal{E}}) \leq \frac{\mathcal{R}_{s_{d+1}}(\mathcal{H}_{W_{\mathcal{E}}})}{2} + \sqrt{\frac{2\ln(1/\delta)}{s_{d+1}}} + \frac{\mathcal{R}_{s_{d+1}}(\mathcal{H}_{W^{*}_{d+1}})}{2}$$

Hence, we can also say that with probability at least $1-4\delta$,

$$\frac{\mu}{2} \|W^*_{d+1} - W_{\mathcal{E}}\|_F^2 \le \frac{\mathcal{R}_{s_{d+1}}(\mathcal{H}_{W_{\mathcal{E}}})}{2} + \sqrt{\frac{2\ln(1/\delta)}{s_t}} + \frac{\mathcal{R}_{s_{d+1}}(\mathcal{H}_{W^*_{d+1}})}{2}$$
(6)

The Rademacher complexity of a low-rank weight matrix class $\mathcal{H}_{W_{\mathcal{E}}}$ with rank K can be directly bounded using results from Bartlett & Mendelson (2003) as

$$\mathcal{R}_{s_{d+1}}(\mathcal{H}_{W_{\mathcal{E}}}) = \mathcal{O}(\frac{\sqrt{K} \|W_{\mathcal{E}}\|_F}{\sqrt{s_t}})$$

We can separate the constants including $\mathcal{R}_{s_{d+1}}(\mathcal{H}_{W^*_{d+1}})$ from 6 and assume that, for a normalised $||W_{\mathcal{E}}||$, it is usually bounded, then we can write:

$$\|W^*_{d+1} - W_{\mathcal{E}}\|_F^2 \le C_1 \cdot \left(\frac{\sqrt{K}}{\sqrt{s_t}}\right) + C_2$$
 (7)

Similarly, we can also say for W_{d+1} that

$$||W^*_{d+1} - W_{d+1}||_F^2 \le C_1 \cdot \left(\frac{\sqrt{m}}{\sqrt{s_t}}\right) + C_2 \tag{8}$$

This proves 4. Now to further prove 5, we use properties of Frobenius norm,

$$||W_{\mathcal{E}} - \alpha_{d+1}^* \mathcal{V}_K^T||_F^2 - ||W^*_{d+1} - \alpha_{d+1}^* \mathcal{V}_K^T||_F^2$$

$$\leq ||W_{\mathcal{E}} - W^*_{d+1}||_F^2$$

Then following from the definition of W^*_{d+1} , we can say that,

$$\|W_{\mathcal{E}} - \alpha_{d+1}^* \mathcal{V}_K^T\|_F^2 - \|C\|_2^2 \sum_{i=K+1}^{nd} \sigma_i^2 \le \|W_{\mathcal{E}} - W^*_{d+1}\|_F^2$$

Finally, using the Rademacher complexity bound we provided earlier, we can say that with probability at least $1-4\delta$

$$\|\alpha_{d+1}^* \mathcal{V}_K^T - W_{\mathcal{E}}\|_F^2 \le \|W^*_{d+1} - W_{\mathcal{E}}\|_F^2$$

$$\le C_1 \cdot \left(\frac{\sqrt{K}}{\sqrt{s_t}}\right) + \|C\|_2^2 \sum_{i=K+1}^{nd} \sigma_i^2 + C_2$$

We can just rewrite $W_{\mathcal{E}} = \alpha_{d+1}^* \mathcal{V}_K^T$ and get the same bound as above for $\|\alpha_{d+1}^* - \alpha_{d+1}\|_F^2$. We can similarly obtain the upper bound for 5

This concludes the proof.
$$\Box$$

Theorem A.1 provides an upper bound on the Frobenius norm of the difference between W_{d+1} or $W_{\mathcal{E}}$ and the optimal solution W^*_{d+1} . 5 provides a tighter upper bound on the norm of the difference when task t_{d+1} majorly lies in the shared principal subspace. The extent to which task t_{d+1} lies in the shared principle subspace is captured by the second term involving the sum of squared truncated singular values \hat{W} . Hence, if the task completely or majorly lie in the shared principal subspace, then the first term (sqrt(rank)) will dominate the upper bound. Hence, if $\operatorname{rank}(W_{d+1} \geq K)$, then we can see that the upper bound in eq. 5 will be tighter than in eq. 4 where the task lies majorly in the shared principal subspace. Similarly, when $m \leq K$, the upper bound on the difference norm will be tighter for W_{d+1} than $W_{\mathcal{E}}$. When W^*_{d+1} has a significant alignment or projection along the singular vectors orthogonal to the ones with top K singular values, then the second term in 4 comes into picture and it becomes difficult to directly compare the bounds in 4 and 5. However, if majority of the variance of W^*_{d+1} is along the singular vectors orthogonal to the top K components, it follows that $W_{\mathcal{E}}$ will never be able to achieve convergence while W_{d+1} . In contrast, W_{d+1} could perform significantly better, as it is not restricted to learning only along the top K principal components of \hat{W} . While the

assumption that W^*_{d+1} is spanned by the principal components of the shared principal subspace might appear to be very strong, we empirically observe in table 4 that such an assumption is not impractically far from reality. Particularly, we observe in table 2 that for GLUE benchmark, LoRA adapters trained on 5 diverse tasks shared a principal subspace. We see that EigenLoRAx was able to leverage the principal components of this shared subspace with just 12K training parameters learned for a new 6th task and achieve competitive performance compared to fine-tuning full rank weights with 125M parameters or individual LoRA adaptors with 1.2M parameters, even outperforming them in certain tasks. Similarly, table 4 demonstrates zero-shot performance using only top K principal components of the shared subspace obtained through 500 LoRA adaptors trained on diverse tasks. This further suggests that increasing the number of LoRA adapters enables a richer set of top principal components, effectively spanning the shared subspace and providing broader coverage for new tasks.

A.2 EXPERIMENTS

For VeRA, LoRA and PiSSA, we experimented with a range of learning rates, from higher to lower, along with three different scheduling approaches: ReduceLRonPlateau, Linear, and Cosine. The hyperparameters that yielded the best average performance were selected for further experimentation. The observed discrepancies with EigenLoRAx hyperparameters are attributable to these methodological choices. Comprehensive hyperparameter tuning for EigenLoRAx was not pursued extensively, as the initially selected hyperparameters, notably a high learning rate paired with ReduceLRonPlateau or Linear, demonstrated satisfactory performance, thereby conserving computational resources.

A.2.1 IMAGE CLASSIFICATION

Trainable parameters for EigenLoRAx The base model is vit-base-patch16-224. The following are the trainable parameters in ViT (Dosovitskiy et al., 2021) that are trained for EigenLo-RAx. We ignore the last linear layer for simplicity since it is trained for all models and baselines and is constant. The loading parameter has the shape of [number of EigenLoRAx PC, 1] (we only have 2 in each EigenLoRAx PC for this experiment). Therefore, the total number of trainable parameters (for the number of components= 2) is (layers) \times 4 (set of parameters per layers) \times 2 (number of trainable parameters per coefficient) = 96 trainable parameters.

Hyperparameters LoRA (Hu et al., 2021) and VeRA (Kopiczko et al., 2023) implementations are taken from the HuggingFace PEFT (Mangrulkar et al., 2022) library with hyperparameters of the default method. For Food101 (Bossard et al., 2014) experiment, we randomly remove 1 class for ease of compute. Experimental hyperparameters are reported in Table 5 and Table 6.

Table 5: Hyperparameters for LoRA (Hu et al., 2021) and VeRA (Kopiczko et al., 2023) for the Image Classification Experiment

	CIFAR100	Flowers102	Food101
Learning Rate	1e-4	1e-4	$1e{-4}$
Weight Decay	0.1	0.1	0.1
Warmup ratio	0.06	0.06	0.06
Epochs	10	10	10
Number of Subsets	5	6	5
Categories/Subset	20	17	20
Seed	42	42	42
Batch Size	128	64	128

Experimental Results The experiments were conducted 5 times utilizing randomly generated dataset splits. The mean accuracy values are reported in Table 1. Empirical analysis indicates that without control and annealing of learning rates, the loss for both LoRA and VeRA may diverge or plateau, particularly with high learning rates. Even with the lower learning rate, Full training or LoRA can overfit to the training data without proper regularization. In contrast, no such instability was observed during EigenLoRAx training, where a relatively higher learning rate proved advantageous for rapid convergence.

Table 6: Hyperparameters for EigenLoRAx for the Image Classification Experiment

	CIFAR100	Flowers102	Food101
Learning Rate	1e-2	1e-2	1e-2
Weight Decay	0.1	0.1	0.1
Warmup ratio	0.06	0.06	0.06
Epochs	10	10	10
Number of Subsets	5	6	5
Categories/Subset	20	17	20
Seed	42	42	42
Batch Size	128	64	128

Table 7: Image Classification Accuracy results on CIFAR100 (Krizhevsky et al., 2009)

Model	Trainable Params	subset1	subset2	subset3	subset4	subset5	Avg.
FT	86389248	98.8	97.95	95.55	96.05	96.3	96.93
LoRA $(r=1)$	36864	97.6	93.95	93.75	91.75	85.2	92.45
LoRA $(r=4)$	147456	98.15	95.2	93.5	92.85	89.25	93.79
VeRA (r=2)	18480	93.65	89.7	89.5	89.95	91.55	90.87
EigenLoRAx $(K=2)$	96	97.25	95.05	94.55	93	94.15	94.8

Table 8: Image Classification Accuracy results on Food101 (Bossard et al., 2014)

Model	Trainable Params	subset1	subset2	subset3	subset4	subset5	Avg.
FT	86389248	98.64	97	97.36	94.28	95.92	96.64
LoRA (r = 1)	36864	93.36	88.44	94.28	89.4	89.9	91.076
LoRA $(r=4)$	147456	98.2	96.96	96.08	92.88	94.52	95.728
VeRA (r = 2)	18480	91.22	88.42	94.42	91.88	92.82	91.752
EigenLoRAx ($K=2$)	96	97.24	95.96	96	91.88	94.6	95.136

Table 9: Image Classification Accuracy results on Flowers102 (Nilsback & Zisserman, 2008)

Model	subset1	subset2	subset3	subset4	subset5	subset6	Avg.
FT	99.7	99.3	98.01	98.22	99.7	98.01	98.82
LoRA $(r=1)$	85.9	88.47	92.69	91.02	91.7	91.01	90.13
LoRA $(r=4)$	96.23	92.76	97.22	95.01	98.24	90.73	95.03
VeRA (r = 2)	99.2	95.4	97.7	94.7	90.9	95	95.48
EigenLoRAx ($K=2$)	99.686	97.905	97.689	98.291	99.344	97.718	98.43

A.3 NATURAL LANGUAGE PROCESSING - GLUE BENCHMARK

Hyperparameters LoRA (Hu et al., 2021), VeRA (Kopiczko et al., 2023) and PISSA (Meng et al., 2024) implementations are taken from the HuggingFace PEFT (Mangrulkar et al., 2022) library. Refer to Table 10 and Table 11 for hyperparameter details. For LoRA (Hu et al., 2021), we use the ranks $\in \{8, 16\}$. For VeRA (Kopiczko et al., 2023), we use rank= 256, and for EigenLoRAx, we use $K \in \{16, 32\}$ and r=8. Here, r refers to the dimensionality of the trainable coefficients and not the rank. For both PISSA (Meng et al., 2024) and LoRA, all the parameters of the low rank matrix are trainable. For the EigenLoRAx initialization experiment, we train both the components and coefficients for a fair comparison with PISSA. In practice, however, we do not need to do so - we can tune only the sparse coefficients and after the loss converges, finetune the components for a few training steps.

Table 10: Hyperparameters for LoRA (Hu et al., 2021), VeRA (Kopiczko et al., 2023) and PiSSA (Meng et al., 2024) for the GLUE benchmark. (Wang et al., 2019)

	CoLA	MRPC	QNLI	RTE	SST-2	STS-B
Learning Rate	$4e{-4}$	$4e{-4}$	$4e{-4}$	$5e{-4}$	$5e{-4}$	$4e{-4}$
Weight Decay	0.1	0.1	0.1	0.1	0.1	0.1
Warmup ratio	0.06	0.06	0.06	0.06	0.06	0.06
Epochs	80	30	25	80	60	40
Scheduler	Linear	Linear	Linear	Linear	Linear	Linear
Seed	0	0	0	0	0	0
Batch Size	64	64	64	64	64	64

Table 11: Hyperparameters for EigenLoRAx for the GLUE benchmark. (Wang et al., 2019). (RLrP - ReduceLRonPlateau)

	CoLA	MRPC	QNLI	RTE	SST-2	STS-B
Learning Rate	4e - 3	4e - 3	$4e{-3}$	5e-3	5e-3	4e - 3
Weight Decay	0.1	0.1	0.1	0.1	0.1	0.1
Warmup ratio	0.06	0.06	0.06	0.06	0.06	0.06
Epochs	80	30	25	80	60	40
Scheduler	RLrP	RLrP	RLrP	RLrP	RLrP	RLrP
Seed	0	0	0	0	0	0
Batch Size	64	64	64	64	64	64

A.4 TEXT-TO-IMAGE GENERATION (STABLE DIFFUSION MODELS)

Figure 5 and Figure 6 show more examples of a text-to-image stable diffusion model finetuned using EigenLoRAx. Note that not only there is no publicly available code for VeRA that allows its usage in complex text-to-image generation tasks, but our VeRA implementation also did not work well in this task.

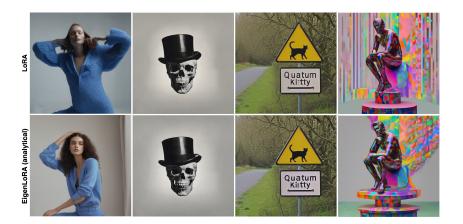


Figure 5: (Part 1) A single EigenLoRAx (identical components, varying loadings) was employed to produce these images utilizing the Stable Diffusion-XL Podell et al. (2023) model. A comparison between our results and those obtained from multiple LoRAs does not show a noticeable degradation in visual quality.

Figure 6: (Part 2) A single EigenLoRAx (identical components, varying loadings) was employed to produce these images utilizing the Stable Diffusion-XL Podell et al. (2023) model. A comparison between our results and those obtained from multiple LoRAs demonstrates no noticeable degradation in visual quality.

Figure 7: Analytical reconstruction of LoRAs using EigenLoRAx which shows no degradation in relative visual quality. See Appendix A.4 for more examples.

Figure 8: Comparison of generated images by LoRA and EigenLoRAx trained on Torino Aqua anime style images. For EigenLoRAx, we utilized 12 components with only trainable coefficients to finetune the base model.

Figure 9: Failure Case: EigenLoRAx may fail if an important component is missing from the initialized subspace i.e. the shared subspace is incomplete, which may happen due to inadequacy in the number of initial adapters or due to the majority of the adapters being of bad quality. E.g., the model may have lost the essential "mosaic" property when generating an image for the prompt: "mosaic picture of a dog."

A.5 ADDITIONAL EXPERIMENTS

Furthermore, we also performed a 3D object pose estimation (Angtian et al., 2021; Kaushik et al., 2024) finetuning experiment using a modified ResNet-101. The task of 3D object pose estimation involves the prediction of three rotation parameters (azimuth, elevation, in-plane rotation) of an object relative to the camera. The pose estimation error between the predicted rotation matrix and the ground truth rotation matrix is given as $\Delta(R_{pred}, R_{gt}) = \frac{||\log_b(R_{pred}^\intercal R_{gt})||_F}{\sqrt{2}}$ We show the results for the $\frac{\pi}{6}$ accuracy threshold for this experiment.

Table 12: 3D object pose estimation accuracy ($\frac{\pi}{6}$ threshold)

Method	Param	Airplane	Motorbike	Boat	Bottle	Bus	Car	Average
LoRA (r = 16)	215K	79.9	80.1	71.5	89.8	90.1	96.6	84.67
VeRA (r = 256)	40K	68.4	72.4	64.3	88.4	87.2	94.4	79.18
EigenLoRAx ($K=2$)	16K	81.4	80.0	71.4	90	92.3	97.5	85.43

B METHOD ANALYSIS AND ABLATION

Through a rigorous comparative analysis of EigenLoRAxs and their target LoRAs, we identified that the most pronounced reconstruction discrepancies manifest in the initial and terminal layers of the neural network, as depicted in Figure 10. Allowing the EigenLoRAx PCs in these layers to undergo fine-tuning along with the coefficients can alleviate failure scenarios, thereby alleviating the need for comprehensive model fine-tuning.

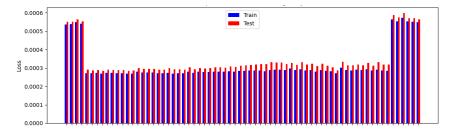
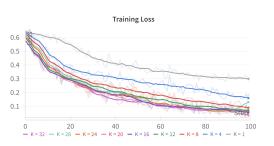


Figure 10: Average reconstruction error between EigenLoRAx and a set of LoRAs for all UNet layers in a stable diffusion model.

B.1 How to Choose K Principal Components and r for EigenLorax

We perform an ablation study on the selection of EigenLoRAx principal components (K). Our analysis concentrates on one experiment as shown in Figure 13, specifically pertaining to the MRPC task within the GLUE (Wang et al., 2019) benchmark. The analysis in Figure 11 shows the training loss in relation to increasing number of EigenLoRAx principal components K, as well as the explained variance of the LoRAs used to initialize the EigenLoRAx in Figure 12. We find, empirically, that choosing EigenLoRAx PCs for the explained variance of 50 - 80% of the LoRAs used to initialize EigenLoRAx is sufficient for a robust initialization. This is shown in Figure 12 where we choose K=8 which roughly corresponds to the explained variance of 55-60%. We further ablate this choice in Figure 11, where although substantial improvements are evident up to K=8, an increase in the number of K thereafter yields only marginal gains, demonstrating diminishing returns as the number of components increases. The parameter r in EigenLoRAx does not equate the rankparameter in LoRA and its variants. It reflects the dimensionality of the EigenLoRAx coefficients. Although r=1 works well, we observe slight performance improvements as we increase this value as shown in Figure 14. Increasing this value corresponds to a small amount of parameter increase. We observe no finetuning instability by changing this value and recommend that it can be set to anywhere between 1 and the rank of the LoRAs used to initialize EigenLoRAx.



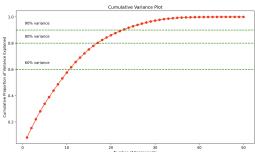


Figure 11: Training Loss convergence for different numbers of EigenLoRAx PCs

Figure 12: Explained Variance for increasing number of PCs

Figure 13: Ablation of Number of EigenLoRAx Principal Components

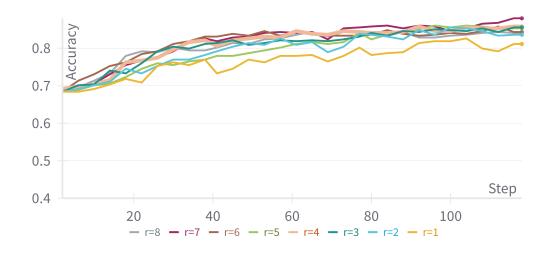


Figure 14: Ablation for the EigenLoRAx's r hyperparameter. This experiment was done for the MRPC task in the GLUE benchmark.

B.2 FAILURE CASES

Figure 9 illustrates a potential failure case of EigenLoRAx, where the incorrect number of principal components (PCs) was selected. In this instance, the "mosaic style" information was excluded from the principal subspace identified by EigenLoRAx due to an insufficient number of PCs. However, this issue can be resolved by selecting a larger number of PCs, as the extended principal subspace contains the necessary information for the task.

Another hypothetical failure scenario arises if the domain gap between the low-rank adapters used to initialize EigenLoRAx and the downstream task is significantly large. Although we do not observe such a case in our experiments, it is plausible that under such conditions, EigenLoRAx might underperform. This issue could potentially be mitigated by allowing only a subset of PCs to remain trainable, enabling the model to adapt more effectively to the target domain.

A further observed limitation of EigenLoRAx occurs in complex tasks like Text-to-Image generation, which may extend to other tasks as well. If the majority of LoRAs used to initialize EigenLoRAx encode biases (e.g., related to gender, race, or context), these biases tend to propagate into EigenLoRAx outputs. While such biases are a common issue in deep learning models trained using stochastic gradient descent or similar methods, addressing them remains a critical area of future work. We consider this an important avenue for improvement and discuss the broader implications in Appendix C.

B.3 IMPACT OF LORA ADAPTER QUALITY ON EIGENLORAX PC INITIALIZATION

To evaluate EigenLoRAx's robustness to adapter quality and its resistance to noise, we conducted an ablation study on a subset of tasks of the NLU experiment specified in Section 4.2. Specifically, we generated EigenLoRAx adapters using LoRA matrices with varying levels of random noise added. The results are shown in Table 13

Table 13: EigenLoRAx performance on subset of GLUE task using noisy LoRA adapters for initialization

Noise Level	CoLA	MRPC	RTE	STS-B	Avg
5%	60.51 57.53	85.45 83.09	74.73 72.92	89.9	77.65 75.86
15% 30%	55.23	83.09 76.47	72.92	89.9 89.8	73.34

The results show that EigenLoRAx exhibits only minor performance changes even as noise levels increase significantly, indicating some robustness to adapter quality. This suggests that EigenLoRAx can still perform effectively without high quality adapters. However, there is a limit to this robustness. If the signal-to-noise ratio (SNR) in the initial LoRA matrices becomes extremely low—where the LoRAs primarily encode noise rather than meaningful information—the effectiveness of EigenLoRAx diminishes. In such cases, the principal components (PCs) extracted by EigenLoRAx would correspond to random directions in the parameter space. Consequently, EigenLoRAx's performance would resemble that of random matrix methods, such as VeRA and NoLA. These methods rely on a large number of random components or bases to approximate meaningful results. While they can achieve reasonable performance, they require fine-tuning a substantially larger number of weights associated with these large number of random components, leading to less efficient learning compared to EigenLoRAx. This highlights an important consideration: for EigenLoRAx to maintain its efficiency and effectiveness, the initial LoRA matrices must contain at least a minimal level of meaningful signal. This requirement ensures that EigenLoRAx can leverage the structured information encoded in the LoRAs while avoiding the inefficiencies of purely random approaches.

B.4 FORWARD PASS AND BACKWARD PASS FLOPS

While it is obvious that EigenLoRAx utilized significantly less number of model parameters as the number of tasks in a domain increase, we show that even in terms of floating point operations on a single task, EigenLoRAx is more efficient than LoRA for our experiments. Even for a single task, the number of floating point operations or multiply-accumulate operations in a forward pass for

 EigenLoRAx is lower than LoRA for all our experiments. Here are the comparisons of the floating point operations (FLOPs) for the forward (fwd FLOPs) and including backward pass (fwd+bwd FLOPs) for each of the Image Classification and GLUE benchmark (batch size = 1) (MFLOPs - MegaFlops):

Table 14: Floating Point Operation calculations for GLUE Benchmark experiment

Method	Training Parameters	fwd FLOPs	fwd+bwd FLOPs
LoRA VeRA	1.2M 25K	97,930 MFLOPS 106,390 MFLOPS	293,800 MFLOPS 319,170 MFLOPS
EigenLoRAx	12K	97,030 MFLOPS	291,080 MFLOPS

Table 15: Floating Point Operation calculations for Image Classification experiment

Method	Training Parameters	fwd FLOPs	fwd+bwd FLOPs
LoRA	36K	33,773.8 MFLOPS	101,322 MFLOPS
VeRA	18K	33,744.8 MFLOPS	101.234 MFLOPS
EigenLoRAx	96	33,730.2 MFLOPS	101,191 MFLOPS

B.5 COMPARISON OF PARAMETER COUNT OF LORA AND EIGENLORAX

Table 16 shows the comparison of the number of trainable parameters for LoRA vs EigenLoRAx for RoBERTa_{base}. The values of K for EigenLoRAx and rank for LoRA range from 1 - 512. We can clearly observe that EigenLoRAx requires less parameters for values of K like 32 and 64 than a LoRA with rank = 1 requires.

Table 16: Parameter counts for LoRA and EigenLoRAx across different values of K and the LoRA rank.

Method	K, rank = 1	K, rank = 2	K, rank = 4	K, rank = 8	K, rank = 16	K, rank = 32	K, rank = 64	K, rank = 128	K, rank = 256	K, rank = 512
LoRA	37K	74K	147K	295K	590K	1.2M	2.4M	4.7M	9.4M	18.9M
EigenLoRAx $(r=1)$	48	96	192	384	768	1.5K	3K	6K	12K	25K
EigenLoRAx $(r=2)$	96	192	384	768	1.5K	3K	6K	12K	25K	49K
EigenLoRAx $(r=4)$	192	384	768	1.5K	3K	6K	12K	25K	49K	98K
EigenLoRAx $(r=8)$	384	768	1.5K	3K	6K	12K	25K	49K	98K	197K
EigenLoRAx (r=16)	768	1.5K	3K	6K	12K	25K	49K	98K	197K	393K
EigenLoRAx (r=32)	1.5K	3K	6K	12K	25K	49K	98K	197K	393K	786K

B.6 TIME REQUIRED TO CALCULATE PRINCIPAL COMPONENTS

To calculate the Principal Components, EigenLoRAx uses either SVD or PCA. There is no significant effect on the performance based on the choice of the algorithm. The calculation of the PCs is extremely efficient and can be done naively on a CPU. Table 17 shows the timing calculation for 192 sets of LoRA weights (A+B matrices) using approximately 17k MB of memory in total.

Table 17: Runtime comparison of SVD (low rank, with different iterations) and PCA (full rank, no iterations) across varying component sizes.

Method	16 components	32 components	64 components	128 components
SVD low rank (niter=10) SVD low rank (niter=50)	50s 140s	70s 212s 610s	94s 334s	168s 614s
PCA full rank	430s	0108	762s	940s

C BROADER IMPACT AND IMPLICATIONS

 This work presents a novel parameter-efficient method for deep learning methods utilizing open source, pretrained Low-Rank Adaptation (LoRA) models. By substantially reducing the computational and memory demands of training and inference, our approach creates a more sustainable and environmentally friendly deep learning paradigm. Our method democratizes accessibility to larger models, making them accessible to researchers and practitioners with limited resources. Furthermore, by harnessing pretrained models, our method can accelerate development and diminish the need for extensive data collection. However, we recognize the inherent risks associated with the use of pretrained models. These include potential biases (racial, gender, etc.), explicit content, since there is no guarantee of the data or method used in training the model, and the potential presence of malicious code. Appropriate caution is advised when using unverified, open-source models.