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Abstract

Recent unsupervised topic modelling ap-
proaches that use clustering techniques on
word, token or document embeddings can ex-
tract coherent topics. However, a common
limitation of such approaches is that they re-
veal nothing about inter-topic relationships
which are essential in many real-world ap-
plication domains. We present an unsuper-
vised topic modelling method which harnesses
Topological Data Analysis (TDA) to extract
a topological skeleton of the manifold upon
which contextualised word embeddings lie.
We demonstrate that our approach, which per-
forms on par with a recent baseline, is able to
construct a network of coherent topics together
with meaningful relationships between them.

1 Introduction

Unsupervised topic modelling is a standard tech-
nique for making sense of document collections.
While traditional approaches such as LDA (Blei
et al., 2003) rely on probabilistic models, the field
has recently moved towards clustering-based me-
thods in which topic clusters are obtained via docu-
ment, word or token embeddings (Thompson and
Mimno, 2020; Silburt et al., 2021; Angelov, 2020).
Even though clustering can yield interpretable to-
pics, it typically discards information about rela-
tionships between clusters, hence making it harder
to interpret clusters in global contexts.

In this work, we approach topic modelling as a
task to find regions on a manifold of contextualised
word embeddings which reflect a “topic”. To this
end, we apply Mapper - an algorithm from the
field of Topological Data Analysis (TDA). Map-
per creates a graph whose topology reflects the
shape of the underlying data set and whose nodes
represent subsets of data points. In the case of
contextualised word embeddings, we construct a
graph where each node is a cluster of tokens (i.e.
a “topic"), and where connections between them

reflect the topology of the embedding manifold.
We use community detection techniques to demon-
strate that semantically related topics are connected
in the graph.

Our main contributions are the following:

1. We propose and evaluate a new method for
topic modelling which learns topics and re-
lationships between them without any re-
strictions on graph structure. To the best of our
knowledge, our work is the first application of
TDA Mapper to the task of topic modelling.

2. To the best of our knowledge, we are the
first to use stability analysis for Mapper on a
real-world data set and problem. Unlike prior
approaches which are computationally infea-
sible on large data sets, we propose a scalable
approach using separate stability scores for
both the graph topology and the clustering.

3. We define a new stability score via spectral
distance between Mapper graphs.

4. We use community detection techniques to
automatically identify regions of interest in
large Mapper graphs.

The paper is organised as follows. In Section
2, we review related work. Section 3 presents our
method, and summarises TDA Mapper and sta-
bility analysis. We describe our experimental set-
up, including the data set, baselines, and metrics
in Section 4. Our empirical results and further
qualitative analyses are presented in Section 5.

2 Related Work

The seminal work on unsupervised topic modelling
was Blei et al. (2003) who introduced Latent Dirich-
let Allocation (LDA), a Bayesian generative model
of documents which assumes that the tokens in a
document are drawn from a mixture model whose
mixture components are interpreted as topics. Of



the many extensions to the classic LDA archetype
that have since been proposed, most relevant to
our present work are methods to model associ-
ations and relationships between topics, and the
use of neural representations in general and con-
textualised representations in particular.

Correlated topic models (Lafferty and Blei,
2006; Blei and Lafferty, 2007) are LDA extensions
that attempt to learn the structure of topic associ-
ations within a document. The goal of hierarchical
topic models (Griffiths et al., 2004; Wang and Blei,
2009; Blei et al., 2010; Ghahramani et al., 2010;
Zavitsanos et al., 2011; Ahmed et al., 2013; Paisley
et al., 2014) is to learn a tree-structured graph of
topics by incorporating hierarchical non-parametric
Bayesian priors into traditional topic models.

Several studies have combined topic modelling
with neural representations with a view to learn
better topics or representations. For example, amor-
tised variational inference with neural variational
posteriors (Kingma and Welling, 2014) has been
investigated as a means to scale up inference on
probabilistic topic models and relax the conjugacy
assumptions which are required for tractable in-
ference in traditional topic models (Srivastava and
Sutton, 2017). Various variants of such models
have focused on neural extensions of correlated
(Xun et al., 2017; Liu et al., 2019) and hierarchical
(Isonuma et al., 2020) topic models although they
all use neural representations in the generative
model or variational posterior.

The prior work most closely related to our pro-
posed method is the joint application of topic mo-
delling and contextualised word embeddings by
Thompson and Mimno (2020), Sia et al. (2020)
and Angelov (2020) who induce topics via vector
clustering over word or document embeddings.

Our method differs from LDA and its extensions
in that we use TDA rather than probabilistic gene-
rative models to induce topics. Correlated topic
models and their neural extensions learn a flat topic
structure while adding scalar associations, whereas
our method induces a topic graph. In contrast
to hierarchical topics models and their neural ex-
tensions which induce tree-structured topic graphs,
our method induces an unrestricted graph. Unlike
our method, previous work on inducing topics from
contextualised word representations construct a flat
topic structure rather than a graph.

Also related to our work is TopoAct (Rathore
et al., 2021) which applies Mapper to the analysis

of BERT word embeddings. Our work differs from
ibid. in that we focus specifically on topic model-
ling, and we follow a systematic hyperparameter
selection process through stability analysis.

3 Proposed Method

The manifold hypothesis (Goodfellow et al., 2014)
states that real-world high-dimensional data lie on
a low-dimensional manifold embedded in a high-
dimensional space. Topic modelling can be re-
garded as an endeavour to identify topologically
meaningful regions of the word representation
manifold which contain homogeneous topics or
words. Traditionally, it has been approached as a
clustering problem in that the representation mani-
fold is assumed to be a disconnected union of
“topic” manifolds. However, such an assumption
is clearly limiting and not grounded theoretically.
One potential solution involves dimensionality re-
duction and direct manifold visualisation. Unfortu-
nately, most dimensionality reduction techniques
capture only topology within local neighbourhoods,
and cannot be relied upon for inference regarding
the global topology of the manifold.

Our method of choice to address this problem
is TDA Mapper introduced in (Singh et al., 2007)
(also referred to as topological data visualisation or
topological clustering), a method that yields an ap-
proximation of a Reeb graph of a manifold (Munch
and Wang, 2016) which captures the topology and
shape of the manifold. Reeb graphs are constructed
from a manifold in order to learn topological in-
variants and global structure. Even though they
lose some of the original topological structure of
the manifold, their low-dimensional invariants (e.g.
connected components) remain the same.

3.1 Overview of TDA Mapper

The TDA Mapper algorithm takes as input a set of
points and outputs a graph whose vertices are sub-
sets of points, and whose edges are defined between
vertices which have a non-empty intersection. The
following main steps are typically executed.

1. The data is projected to a lower dimension
using a “filter function” (or “lens”) f. This
can be any standard dimensionality reduction
function or even a domain-specific function
which captures some interesting property of
the data.

2. The projected space is covered with a set of
overlapping sets (U;)icr-



3. Each set U; is “pulled back™ into the origi-
nal high-dimensional space by taking its pre-
image f~1(U;). The points in this “pull-back
set” are broken into clusters using a clustering
algorithm.

4. A graphis constructed by using each cluster as
a vertex and adding an edge between any two
clusters that have a non-empty intersection.

3.2 Hyperparameter Tuning for TDA
Mapper

Model selection in TDA Mapper is non-trivial, the
main reason being the absence of ground truth la-
bels, analogous to what other unsupervised learn-
ing algorithms face. One model selection approach
suitable for algorithms of this kind which has re-
cently gained traction is stability analysis (see
(Luxburg, 2010)). Rather than configuring cluster-
ing parameters up front and then optimising an
evaluation metric, stability analysis simply con-
strains clustering to return structures that are stable
under small perturbations of data. For example,
let My(D) be a certain mathematical structure on
a data set D with parameters 6 where My could
be clustering, dimensionality reduction, TDA Map-
per, or some other unsupervised learning algorithm.
If there exists a distance measure to quantify the
similarity of the structures d(M, M’), then we
can define the instability of M for the parameter
choice 6 as the expected distance between My(D)
and My(D’), where D and D’ are two data sam-
ples obtained by the same data generation process.
More precisely,

S(My,d) =

1minz§:%wmeMW(n
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where S denotes the instability score, and D; are
independent samples from the dataset D. Finally,
the optimal set of parameters 6 for structure M is
chosen from the ones that have a low instability
score S. Note that the instability score should only
be used to rule out parameter choices that yield
high instability scores; it alone cannot be used for
parameter selection as some structures are stable
but not necessarily correct. It is crucial to choose
the distance function which best embodies the no-
tion of similarity between mathematical structures
M in order to obtain meaningful results from sta-
bility analysis. One such distance function for TDA

Mapper graphs was defined and studied in (Belch{
et al., 2020). Unfortunately, their numerical match-
ing distance algorithm is prohibitively slow in our
use case. We accordingly define two alternative
distance metrics to capture two salient properties
of Mapper graphs. One is designed to capture simi-
larity amongst graph structures while the other ac-
counts for vertex (or cluster) similarity.

These concepts are defined formally as follows.

Definition 1 Let My(D) be a TDA Mapper graph
with a vertex set V = {C1,...,Cp,} where C; C
D; and an edge set E = {(C;,C;) | if C;NCj #
0} where 6 = (61,02, 03) are three groups of pa-
rameters pertaining to a filter function, cover, and
clustering algorithm, respectively.

The stability of Mapper graphs is then assessed
with respect to different choices of parameters 6,
and the final parameter values are chosen from the
most stable regions of the landscape.

We further define two distance metrics on Map-
per graphs for stability analysis.

Definition 2 Let M and M’ be two TDA Mapper
graphs with vertices V.= {Cy,...,Cp}; V' =
{C1,...,C!.}; and edges E and F', respectively.
If m # n, then empty set padding is added to the
smaller vertex set so that m = n. The distance

N 1 ) !
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where m runs over all permutations of the set
{1,2,...,n}, is called the matching distance and
quantifies the similarity of vertices between Map-
per graphs.

Definition 3 Let A = {\,\2,..., A}, A =
{NL AL, .o AL} be eigenvalues of the normalised
Laplacian defined on Mapper graphs M =
G(V,E) and M" = G(V', E"), respectively. The
spectral distance is defined within the distribu-
tion of the eigenvalues |1 = Y \.pPrOx and
v=> e POy as their 1-Wasserstein distance,
i.e.
+oo

MMJ&—/ Fu) = E,0dt O

—00
where I}, and I, are CDFs for pand v.

The spectral distance quantifies the similarity of
graph topologies amongst graphs (Gu et al., 2015).
Lastly, let © be the search space for parameters
0: then the stable region of © with permissible



parameter choices is

Os={0€0|SMp,dn) <em @
and S(My, ds) < g5},

where ¢,,, and ¢, are thresholds for distances that
are considered “large” and hence unstable.

4 Experiments

4.1 Data

We evaluated the proposed model on the 20 News-
groups data set! which contains 18846 English
language posts categorised into thematic news-
groups. We use the standard train-test split.
Table 1 summarises per-category document fre-
quencies in the training set. We remove email
addresses, headers, and subject lines. We ex-
tract contextualised subword embeddings using
bert-base-uncased? (Devlin et al., 2019),
and use the last layer embeddings. When a docu-
ment exceeds 512 tokens (cf. the max length for
BERT), we simply run the model on each block
of 512 tokens. To obtain word embeddings, we
take the mean of the subword components. The
documents are tokenised using spaCy?>, and BERT
subword tokens are aligned to spaCy tokens with
spacy—alignments4.

Although pretrained language models can re-
present them, we decided to remove rare words
on the grounds of lighter compute requirements.
Following Thompson and Mimno (2020), we re-
move stopwords, skip punctuation and digits, and
further remove any tokens which occur in fewer
than 5 documents or more than 25% of the docu-
ments. This yields a vocabulary with 14829 words.
Note that we only remove these tokens after word
embeddings have been obtained since they are im-
portant for downstream representations.

4.2 Methodology

We apply the Mapper algorithm to the resultant
data set of contextualised word representations.
For our filter function, we use UMAP (Uniform
Manifold Approximation and Projection) (McInnes

'Via scikit-learn https://scikit-learn.
org/stable/datasets/real_world.html#
newsgroups—dataset

https://huggingface.co/
bert-base-uncased

3core_web_lg v3.0.0https://spacy.io

*nttps://pypi.org/project/
spacy-alignments

20 Newsgroups Category | # Documents
alt.atheism 480
comp.graphics 584
comp.os.ms-windows.misc 591
comp.sys.ibm.pc.hardware 590
comp.sys.mac.hardware 578
comp.windows.x 593
misc.forsale 585
rec.autos 594
rec.motorcycles 598
rec.sport.baseball 597
rec.sport.hockey 600
sci.crypt 595
sci.electronics 591
sci.med 594
sci.space 593
soc.religion.christian 599
talk.politics.guns 546
talk.politics.mideast 564
talk.politics.misc 465
talk.religion.misc 377

Table 1: Summary of the 20 Newsgroups training set.

et al., 2020). We reduce the data down to two di-
mensions via the default parameters for UMAP’s
Python reference implementation”.

For clustering, we use HDBSCAN®, a density-
based clustering algorithm which automatically de-
termines the number of clusters in a set of points
(Campello et al., 2013). The main parameter for
HDBSCAN ismin_cluster_size, the small-
est number of points that can constitute a cluster,
which we set to 15.

4.3 Parameter Selection

Aside from the clustering and filter function, Map-
per requires a “‘cover”. A standard choice is to
partition the co-domain of the filter function into
a number of equally sized, overlapping intervals
or hypercubes in higher dimensions (Chazal and
Michel, 2021). However, after applying UMAP, we
noticed that the data exhibited non-uniform density.
This caused some cover sets to have many more
data points, making the clustering step computa-
tionally unfeasible. To address this, we used the

5https://umap—learn.readthedocs.io/en/
latest

®https://hdbscan.readthedocs.io/en/
latest/index.html


https://scikit-learn.org/stable/datasets/real_world.html#newsgroups-dataset
https://scikit-learn.org/stable/datasets/real_world.html#newsgroups-dataset
https://scikit-learn.org/stable/datasets/real_world.html#newsgroups-dataset
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://spacy.io
https://pypi.org/project/spacy-alignments
https://pypi.org/project/spacy-alignments
https://umap-learn.readthedocs.io/en/latest
https://umap-learn.readthedocs.io/en/latest
https://hdbscan.readthedocs.io/en/latest/index.html
https://hdbscan.readthedocs.io/en/latest/index.html

Average Matching Stability

30

Number of bins

Figure 1: Matching Distance Scores for different pa-
rameter values.

“balanced” cover offered by the giotto-tda’ li-
brary which adjusts the size of each bin so that each
cover set contains a similar number of data points.

This cover requires two additional parameters:
(1) the number of intervals or bins and (ii) the per-
centage overlap. We perform a stability analysis
to rule out unstable parameter combinations whose
topological features are more likely to be mere
artefacts. We experiment with 5, 10, 20, and 50
intervals and overlaps of 0.1, 0.15, 0.2, 0.25, and
0.3. For computational reasons, we perform the
stability analysis on a randomly selected subset of
150K word embeddings. We further subdivide the
subset into 3 samples, each with 100K word embed-
dings whereby each pair of subsamples overlaps
by 50%. We run Mapper on each sample subset to
generate 3 graphs for each pair of parameters.

We compute an instability score for each para-
meter set as the average distance between all three
graphs. We conduct the stability analysis twice
using two separate metrics, namely 1) Matching
Distance (see Definition 2) to measure clustering
stability; and 2) Spectral Graph Distance (see Defi-
nition 3) to measure stability in the graph structure.
Our stability plots are shown in Figures 1 and 2.

Looking at the regions that appear stable under
both metrics, we are still left with multiple choices
for stable parameters. We ultimately select a bin
size of 20 and an overlap of 0.1 following an in-
tuition that (i) larger overlaps lead to highly con-
nected graphs with less interesting structure since
the data is relatively dense; and (ii) extreme values
for the number of bins should be avoided for they
lead to excessively coarse or fine granularity.

4.4 Community Detection for Subgraphs

We noticed that the majority of the data points
resided in the largest connected component of the

"https://github.com/giotto-ai/
giotto-tda

Average Spectral Distance
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Figure 2: Spectral Distance Scores for different param-
eter values.

graph. Moreover, there were a large number of
individual disconnected nodes, which contained
about 30% of the tokens. Since we are mainly
interested in exploring the connections output by
TDA, we simply discard these nodes and focus
the rest of our analysis on the largest connected
component.

Since the graph is large, exploring all areas of
it manually is cumbersome. Therefore, we used
a community detection algorithm to identify clus-
ters of nodes that are densely connected. We form
additional higher-level topics from these clusters
by taking the union of all tokens in the nodes in
scope. We report metrics at both the node- and at
the community-level.

For community detection, we use the label pro-
pagation algorithm described in (Raghavan et al.,
2007) via iGraph® which is adapted to consider
edge weights (Csardi and Nepusz, 2006).

4.5 Baseline

As a baseline, we chose Top2Vec (Angelov, 2020),
a recent method based on document representa-
tions and clustering. Following ibid., we build a
Top2Vec model using Doc2Vec document embed-
dings which we train for 400 epochs with a window
size of 15.

4.6 Evaluation Metrics

We use three automated metrics to evaluate our
model with respect to topic coherence, diversity,
and specificity. It is important to note, however,
that automated evaluation of topic coherence is an
activate area of research, and that standard evalu-
ation metrics have well-known limitations: in par-
ticular, automated measures can detect differences
between topic models in cases where human judge-
ments do not (Hoyle et al., 2021). The primary
goal of our work is not to reach greater coherence

$https://igraph.org/
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per se but rather to arrange topics in a meaning-
ful graph structure for which comparisons with
baselines through automated measures suffice. In
addition to reporting three standard automated eva-
luation measures, we also inspect some of our top-
ics within some newsgroup categories.

Firstly, we estimate topic coherence by taking
the average NPMI (Normalized Pointwise Mutual
Information) (Aletras and Stevenson, 2013) be-
tween all pairs of words (w;, w;) in a given topic:

f)AJI(Uﬁ,Ug)

5
“logp(wiw;)) O

NPMI(wi,wj) =

We estimate word probabilities using wikitext-
103-raw-v1 ° (Merity et al., 2017) as our reference
corpus, with a sliding window of 10.

Secondly, we report Mean Word Entropy (MWE)
per topic as a measure of topic specificity represent-
ing the conditional entropy of a word type given its
topic, namely — Y P,(w;|z)logP-(w;|z). There
is no clear optimal value for specificity but overly
specific topics will have few word types and a low
conditional entropy (with a minimum value of 0);
conversely, overly broad topics will exhibit high en-
tropy (maximum log of the vocabulary size). Since
Top2Vec does not directly output a distribution over
words, we use the empirical unigram distribution
for all documents assigned to a particular topic.

Thirdly, since it is possible for a topic model to
duplicate the same coherent topic many times, we
also need a measure of topic diversity. We report
the proportion of words that are unique to one topic,
Dunique, accordingly.

5 Results

Table 2 summarises our coherence, diversity, and
specificity results. We can see that we achieve
slightly improved coherence over Top2Vec, and
that including the community detection step signi-
ficantly reduces the topic specificity, as expected.
The strong coherence scores after community de-
tection indicate that topics are still coherent even
when merged with their neighbours. This demon-
strates that the edges in the graph connect topics
which are indeed related. For a full list of topics in
our graph, see Supplementary Material.

‘https://huggingface.co/datasets/
wikitext

Figure 3: Percentage of tokens per newsgroup category.

5.1 Per-newsgroup Analysis

Figure 3 visualises the graph where each node is
coloured by the percentage of its tokens that came
from a given top-level newsgroup category. We
observe that there are regions in the graph which
correlate strongly with rec, sci, comp, and ralk. At
the same time, misc, alt, and soc, which are ge-
nerally broad, are associated with some individual
nodes without clear regions in the graph which may
reflect the fact that these categories are the least
frequent ones in our data set.

5.2 Part-of-Speech Effects

We run spaCy on the entire data set to assign part-
of-speech tags to each token, revealing clear re-
gions of the graph corresponding to VERB, NOUN,
and ADJ tags (Figure 4). We do not plot other
word classes since they are relatively infrequent
in the data set (cf. filtering and pre-processing in
Section 4). We make no claim as to whether the
observed correlation with part-of-speech tags is
beneficial since the exact definition of what con-
stitutes a useful topic is highly task- and domain-
dependent. However, our word class clusters could
motivate the application of TDA to the recent field
of “BERTology” to interpret emergent linguistic
structure across transformer architectures (Rogers
et al., 2020; Manning et al., 2020).

5.3 General Qualitative Observations

Table 3 illustrates sample topic clusters for which
we provided a manual category label. The topics
in our graph are generally coherent, and exhibit
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Model NPMI  MEW  punique Number of Topics
Top2Vec 0.0002  6.99 0.822 126
Mapper + BERT 0.059  1.651 0.552 931
Mapper + BERT + Community Detection | 0.038  2.796 0.844 149

Table 2: Evaluation results.

Figure 4: Percentage of tokens per word class.

appropriate middle-level specificity (not too coarse,
not too fine). Our graph discovered unambiguous
top-level newsgroup categories, as expected. For
example, rows 0-6 represent vanilla topics relevant
to computers, space, sports, and religion. A vari-
ety of subtler, more interesting clusters are note-
worthy in that they capture a variety of broader,
yet coherent lexical senses both para- and syn-
tagmatically. Rows 7-10, for example, denote logic
and argumentation, physical damage, law, possibi-
lity, and evidence. Some of the topics discovered
border on word sense disambiguation which goes
beyond typical, predominantly nominal topics (as
subject headings). Consider (i) the clear and ac-
curate sense-level distinctions in rows 12-15; (ii)
“program(s)” qua computer software (row 1) vs. ra-
dio shows (row 24); and (iii) a non-trivial pattern in-
volving clusters made of intra-sense antonyms sub-
sumed under a relevant macrosense category (rows
18-20). Interestingly, we also see higher, discourse-
level phenomena such as interjectional (and other)
discourse markers and particles (row 21), and ge-
neral, extralinguistic text structures (rows 22-23).

These patterns indicate that our method is sensi-
tive enough to make non-trivial topic distinctions
at multiple levels concurrently.

5.4 Topic Subgraphs

Topics extracted via community detection on the
Mapper graph can be used to further probe and con-
textualise any individual topic by examining the
subgraph to which it corresponds. Figures 7, 5, and

Topic Subgraph: lunar, surface, earth, moon, space, mars, propulsion, planetary, orbit, astronomy

data, request, information, medium
geophysical, mods internati

Figure 5: Topic subgraph: Space.

Topic Subgraph: window, program, file, application, programs, toolkit, files, swap, system, software

files.

toolkit, toolkits, compilers

window, system, manager

window, application, shell, program
build, script

swap) file

functions, language, library, programs.
routines

Figure 6: Topic subgraph: Computers.



# Category Name Topic Words

0 computer software window, program, file, application, programs, toolkit, files, swap, system, software

1 computer hardware server, memory, drivers, hardware, system, binaries, disk, files, platforms, keyboard
2 data image, images, fonts, line, data, support, value, text, lines, colors

3 planets earth, mars, planet, planetary, jupiter, mercury, galaxy, pluto, venus, uranus

4 space lunar, surface, earth, moon, space, mars, propulsion, planetary, orbit, astronomy

5 sports rangers, bruins, wings, pens, leafs, cubs, devils, sox, flyers, hawks

6 religion beliefs, teachings, doctrines, convictions, religions

7 physical damage scratches, chips, cracks, cuts, crack

8 logic/argumentation fallacy, ergo, post, hoc

9 law court, legal, trial, lawyer, lawyers, supreme, legally, legalization, trials, attorney

10 | possibility chance, chances, opportunity, odds, probability, likelihood, possibility, possibilities
11 | evidentiality/factuality idea, evidence, obviously, based, test, opinion, opinions, apparently, research, advice
12 | dependence depends, depend, hinges, rests

13 | memory remember, recall, recalled

14 | perception/copulas looks, like, look, looked, looking, feels, sounded, appear

15 | persuasion convince, convinced, persuade

16 | time periods years, year, months, days, week, weeks, month, day, hours, time

17 | temporal order second, 2nd, 1st, secondly, coming, 3rd, fourth, firstly, 4th, later

18 | public-private private, public, privately

19 | agreement-disagreement | agree, disagree, agreed, agreeing, agreement, agrees

20 | substitution alternative, alternatives, conventional, alternate, substitutes, traditional

21 | discourse particles yup, needless, oops, gosh, sheesh, darn, yea, geez, ahh, ditto

22 | text/thread structure question, list, questions, answer, response, reply, answers, respond, responses, replies
23 | text structure volume, page, vol, pages, ii, chapter, book, number

24 | radio broadcasting radio, coverage, broadcast, station, kdka, shown, program, announcer, shows, broadcasts

Table 3: Example topics with category names.

6 show subgraphs with manually assigned category
labels for the Middle East conflict, space, and com-
puters. For example, Figure 7 visualises various
typical aspects and dimensions of the Middle East
conflict such as people, locations, and ethnicity
alongside concomitant historical, racial, religious,
geopolitical, and military themes. Note that sub- =
graphs only represent relatedness - we do attempt
to capture interpretable relations of any other kind.
These subgraphs demonstrate that neighbouring
topics are related extrinsically beyond the under-
lying topology itself since their joint interpretation
as higher-level topics is similarly coherent.

Toplc Subgraph: few

6 Conclusion

We propose an unsupervised topic modelling
method which leverages topological data analy-
sis (TDA) to extract a semantic topic graph from a
large unstructured document collection. Our exper-
imental results demonstrate that our method is able
to detect topics on par with a recent baseline while
also exposing meaningful inter-topic relationships
towards deeper topic interpretation. Our experi-
ments to date motivate future work involving TDA
to develop, for example, interactive visualisation
tools for exploring rich relational topic graphs, and
to study the interface between topological and lin-
guistic properties of topics.

Figure 7: Topic subgraph: Middle East conflict.



References

Amr Ahmed, Liangjie Hong, and Alexander Smola.
2013. Nested Chinese Restaurant Franchise Process:
Applications to User Tracking and Document Mod-
eling. In 30th International Conference on Machine
Learning, volume 28, pages 1426—-1434. PMLR.

Nikolaos Aletras and Mark Stevenson. 2013. Evalu-
ating Topic Coherence Using Distributional Seman-
tics. In 10th International Conference on Computa-
tional Semantics (IWCS 2013) — Long Papers, pages
13-22. Association for Computational Linguistics.

Dimo Angelov. 2020. Top2Vec: Distributed represen-
tations of topics. arXiv:2008.09470.

Francisco Belchi, Jacek Brodzki, Matthew Burfitt, and
Mahesan Niranjan. 2020. A numerical measure of
the instability of Mapper-type algorithms. Journal
of Machine Learning Research, 21:1-45.

David M. Blei, Thomas L. Griffiths, and Michael 1. Jor-
dan. 2010. The nested Chinese restaurant process
and Bayesian nonparametric inference of topic hier-
archies. Journal of the ACM (JACM), 57(2):1-30.

David M. Blei and John D. Lafferty. 2007. A corre-
lated topic model of Science. The Annals of Applied
Statistics, 1(1):17-35.

David M. Blei, Andrew Y. Ng, and Michael 1. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research, 3:993-1022.

Ricardo J. G. B. Campello, Davoud Moulavi, and Jo-
erg Sander. 2013. Density-Based Clustering Based
on Hierarchical Density Estimates. In Advances in
Knowledge Discovery and Data Mining, pages 160—
172. Springer Berlin Heidelberg.

Frédéric Chazal and Bertrand Michel. 2021. An Intro-
duction to Topological Data Analysis: Fundamental
and Practical Aspects for Data Scientists. Frontiers
in Artificial Intelligence, 4.

Géabor Csardi and Tamds Nepusz. 2006. The Igraph
Software Package for Complex Network Research.
InterJournal, Complex Systems:1695.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv:1810.04805.

Zoubin Ghahramani, Michael Jordan, and Ryan P
Adams. 2010. Tree-Structured Stick Breaking for
Hierarchical Data. In Advances in Neural Informa-
tion Processing Systems, volume 23. Curran Asso-
ciates, Inc.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Advances in Neural Informa-
tion Processing Systems, volume 27. Curran Asso-
ciates, Inc.

Thomas Griffiths, Michael Jordan, Joshua Tenenbaum,
and David Blei. 2004. Hierarchical Topic Models
and the Nested Chinese Restaurant Process. In Ad-
vances in Neural Information Processing Systems,
volume 16. MIT Press.

Jiao Gu, Bobo Hua, and Shiping Liu. 2015. Spectral
distances on graphs. Discrete Applied Mathematics,
190-191:56-74.

Alexander Hoyle, Pranav Goel, Denis Peskov, An-
drew Hian-Cheong, Jordan Boyd-Graber, and Philip
Resnik. 2021. Is Automated Topic Model Eval-
uation Broken?: The Incoherence of Coherence.
arXiv:2107.02173.

Masaru Isonuma, Junichiro Mori, Danushka Bollegala,
and Ichiro Sakata. 2020. Tree-Structured Neural
Topic Model. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 800-806. Association for Computa-
tional Linguistics.

Diederik P. Kingma and Max Welling. 2014. Auto-
Encoding Variational Bayes. In 2nd International
Conference on Learning Representations.

John Lafferty and David Blei. 2006. Correlated Topic
Models. In Advances in Neural Information Pro-
cessing Systems, volume 18. MIT Press.

Luyang Liu, Heyan Huang, Yang Gao, Yongfeng
Zhang, and Xiaochi Wei. 2019. Neural Variational
Correlated Topic Modeling. In The World Wide Web
Conference, pages 1142—-1152. ACM.

Ulrike von Luxburg. 2010. Clustering Stability: An
Overview. now Publishers Inc.

Christopher D. Manning, Kevin Clark, John Hewitt,
Urvashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proceedings of the Na-
tional Academy of Sciences, 117(48):30046-30054.

Leland Mclnnes, John Healy, and James Melville.
2020. UMAP: Uniform Manifold Approxima-
tion and Projection for Dimension Reduction.
arXiv:1802.03426.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer Sentinel Mixture
Models. In 5th International Conference on Learn-
ing Representations. OpenReview.net.

Elizabeth Munch and Bei Wang. 2016.  Conver-
gence between Categorical Representations of Reeb
Space and Mapper. In 32nd International Sym-
posium on Computational Geometry (SoCG 2016),
volume 51, pages 53:1-53:16. Schloss Dagstuhl—
Leibniz-Zentrum fuer Informatik.

John Paisley, Chong Wang, David M. Blei, and
Michael I. Jordan. 2014. Nested Hierarchical Dirich-
let Processes. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 37(2):256-270.


https://proceedings.mlr.press/v28/ahmed13.html
https://proceedings.mlr.press/v28/ahmed13.html
https://proceedings.mlr.press/v28/ahmed13.html
https://proceedings.mlr.press/v28/ahmed13.html
https://proceedings.mlr.press/v28/ahmed13.html
https://aclanthology.org/W13-0102
https://aclanthology.org/W13-0102
https://aclanthology.org/W13-0102
https://aclanthology.org/W13-0102
https://aclanthology.org/W13-0102
http://arxiv.org/abs/2008.09470
http://arxiv.org/abs/2008.09470
http://arxiv.org/abs/2008.09470
https://eprints.soton.ac.uk/444403/
https://eprints.soton.ac.uk/444403/
https://eprints.soton.ac.uk/444403/
https://doi.org/10.1214/07-AOAS114
https://doi.org/10.1214/07-AOAS114
https://doi.org/10.1214/07-AOAS114
https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://link.springer.com/chapter/10.1007/978-3-642-37456-2_14
https://link.springer.com/chapter/10.1007/978-3-642-37456-2_14
https://link.springer.com/chapter/10.1007/978-3-642-37456-2_14
https://www.frontiersin.org/articles/10.3389/frai.2021.667963/full
https://www.frontiersin.org/articles/10.3389/frai.2021.667963/full
https://www.frontiersin.org/articles/10.3389/frai.2021.667963/full
https://www.frontiersin.org/articles/10.3389/frai.2021.667963/full
https://www.frontiersin.org/articles/10.3389/frai.2021.667963/full
https://igraph.org
https://igraph.org
https://igraph.org
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://proceedings.neurips.cc/paper/2010/file/a5e00132373a7031000fd987a3c9f87b-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/a5e00132373a7031000fd987a3c9f87b-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/a5e00132373a7031000fd987a3c9f87b-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/7b41bfa5085806dfa24b8c9de0ce567f-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/7b41bfa5085806dfa24b8c9de0ce567f-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/7b41bfa5085806dfa24b8c9de0ce567f-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.dam.2015.04.011
https://doi.org/https://doi.org/10.1016/j.dam.2015.04.011
https://doi.org/https://doi.org/10.1016/j.dam.2015.04.011
http://arxiv.org/abs/2107.02173
http://arxiv.org/abs/2107.02173
http://arxiv.org/abs/2107.02173
https://doi.org/10.18653/v1/2020.acl-main.73
https://doi.org/10.18653/v1/2020.acl-main.73
https://doi.org/10.18653/v1/2020.acl-main.73
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://proceedings.neurips.cc/paper/2005/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://doi.org/10.1145/3308558.3313561
https://doi.org/10.1145/3308558.3313561
https://doi.org/10.1145/3308558.3313561
http://dx.doi.org/10.1561/2200000008
http://dx.doi.org/10.1561/2200000008
http://dx.doi.org/10.1561/2200000008
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
http://drops.dagstuhl.de/opus/volltexte/2016/5945
http://drops.dagstuhl.de/opus/volltexte/2016/5945
http://drops.dagstuhl.de/opus/volltexte/2016/5945
http://drops.dagstuhl.de/opus/volltexte/2016/5945
http://drops.dagstuhl.de/opus/volltexte/2016/5945
https://ieeexplore.ieee.org/abstract/document/6802355
https://ieeexplore.ieee.org/abstract/document/6802355
https://ieeexplore.ieee.org/abstract/document/6802355

Usha Nandini Raghavan, Réka Albert, and Soundar Ku-
mara. 2007. Near linear time algorithm to detect
community structures in large-scale networks. Phys-
ical Review E, 76(3):036106.

Archit Rathore, Nithin Chalapathi, Sourabh Palande,
and Bei Wang. 2021. TopoAct: Visually Exploring
the Shape of Activations in Deep Learning. Com-
puter Graphics Forum, 40(1):382-397.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A Primer in BERTology: What We Know
About How BERT Works. Transactions of the Asso-
ciation for Computational Linguistics, 8:842—866.

Suzanna Sia, Ayush Dalmia, and Sabrina J. Mielke.
2020. Tired of Topic Models? Clusters of Pretrained
Word Embeddings Make for Fast and Good Topics
too! In 2020 Conference on Empirical Methods
in Natural Language Processing, pages 1728—1736.
Association for Computational Linguistics.

Ari Silburt, Anja Subasic, Evan Thompson, Carme-
line Dsilva, and Tarec Fares. 2021. FANATIC:
FAst Noise-Aware Toplc Clustering. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 650-663. Association for Com-
putational Linguistics.

Gurjeet Singh, Facundo Mémoli, and Gunnar Carlsson.
2007. Topological Methods for the Analysis of High
Dimensional Data Sets and 3D Object Recognition.
In Eurographics Symposium on Point-Based Graph-
ics, pages 91-100. The Eurographics Association.

Akash Srivastava and Charles Sutton. 2017. Autoen-
coding Variational Inference for Topic Models. In
Sth International Conference on Learning Represen-
tations.

Laure Thompson and David Mimno. 2020. Topic
Modeling with Contextualized Word Representation
Clusters. arXiv:2010.12626.

Chong Wang and David Blei. 2009. Variational Infer-
ence for the Nested Chinese Restaurant Process. In
Advances in Neural Information Processing Systems,
volume 22. Curran Associates, Inc.

Guangxu Xun, Yaliang Li, Wayne Xin Zhao, Jing
Gao, and Aidong Zhang. 2017. A Correlated Topic
Model Using Word Embeddings. In Twenty-Sixth
International Joint Conference on Artificial Intelli-
gence, Main track, pages 4207-4213.

Elias Zavitsanos, Georgios Paliouras, and George A.
Vouros. 2011. Non-Parametric Estimation of Topic
Hierarchies from Texts with Hierarchical Dirichlet
Processes. Journal of Machine Learning Research,
12(83):2749-2775.

10


https://link.aps.org/doi/10.1103/PhysRevE.76.036106
https://link.aps.org/doi/10.1103/PhysRevE.76.036106
https://link.aps.org/doi/10.1103/PhysRevE.76.036106
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14195
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14195
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14195
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.18653/v1/2020.emnlp-main.135
https://doi.org/10.18653/v1/2020.emnlp-main.135
https://doi.org/10.18653/v1/2020.emnlp-main.135
https://doi.org/10.18653/v1/2020.emnlp-main.135
https://doi.org/10.18653/v1/2020.emnlp-main.135
https://aclanthology.org/2021.findings-emnlp.57
https://aclanthology.org/2021.findings-emnlp.57
https://aclanthology.org/2021.findings-emnlp.57
http://dx.doi.org/10.2312/SPBG/SPBG07/091-100
http://dx.doi.org/10.2312/SPBG/SPBG07/091-100
http://dx.doi.org/10.2312/SPBG/SPBG07/091-100
https://openreview.net/forum?id=BybtVK9lg
https://openreview.net/forum?id=BybtVK9lg
https://openreview.net/forum?id=BybtVK9lg
http://arxiv.org/abs/2010.12626
http://arxiv.org/abs/2010.12626
http://arxiv.org/abs/2010.12626
http://arxiv.org/abs/2010.12626
http://arxiv.org/abs/2010.12626
https://proceedings.neurips.cc/paper/2009/file/ca46c1b9512a7a8315fa3c5a946e8265-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/ca46c1b9512a7a8315fa3c5a946e8265-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/ca46c1b9512a7a8315fa3c5a946e8265-Paper.pdf
https://www.ijcai.org/proceedings/2017/588
https://www.ijcai.org/proceedings/2017/588
https://www.ijcai.org/proceedings/2017/588
http://jmlr.org/papers/v12/zavitsanos11a.html
http://jmlr.org/papers/v12/zavitsanos11a.html
http://jmlr.org/papers/v12/zavitsanos11a.html
http://jmlr.org/papers/v12/zavitsanos11a.html
http://jmlr.org/papers/v12/zavitsanos11a.html

