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Abstract

Recent unsupervised topic modelling ap-001
proaches that use clustering techniques on002
word, token or document embeddings can ex-003
tract coherent topics. However, a common004
limitation of such approaches is that they re-005
veal nothing about inter-topic relationships006
which are essential in many real-world ap-007
plication domains. We present an unsuper-008
vised topic modelling method which harnesses009
Topological Data Analysis (TDA) to extract010
a topological skeleton of the manifold upon011
which contextualised word embeddings lie.012
We demonstrate that our approach, which per-013
forms on par with a recent baseline, is able to014
construct a network of coherent topics together015
with meaningful relationships between them.016

1 Introduction017

Unsupervised topic modelling is a standard tech-018

nique for making sense of document collections.019

While traditional approaches such as LDA (Blei020

et al., 2003) rely on probabilistic models, the field021

has recently moved towards clustering-based me-022

thods in which topic clusters are obtained via docu-023

ment, word or token embeddings (Thompson and024

Mimno, 2020; Silburt et al., 2021; Angelov, 2020).025

Even though clustering can yield interpretable to-026

pics, it typically discards information about rela-027

tionships between clusters, hence making it harder028

to interpret clusters in global contexts.029

In this work, we approach topic modelling as a030

task to find regions on a manifold of contextualised031

word embeddings which reflect a “topic”. To this032

end, we apply Mapper - an algorithm from the033

field of Topological Data Analysis (TDA). Map-034

per creates a graph whose topology reflects the035

shape of the underlying data set and whose nodes036

represent subsets of data points. In the case of037

contextualised word embeddings, we construct a038

graph where each node is a cluster of tokens (i.e.039

a “topic"), and where connections between them040

reflect the topology of the embedding manifold. 041

We use community detection techniques to demon- 042

strate that semantically related topics are connected 043

in the graph. 044

Our main contributions are the following: 045

1. We propose and evaluate a new method for 046

topic modelling which learns topics and re- 047

lationships between them without any re- 048

strictions on graph structure. To the best of our 049

knowledge, our work is the first application of 050

TDA Mapper to the task of topic modelling. 051

2. To the best of our knowledge, we are the 052

first to use stability analysis for Mapper on a 053

real-world data set and problem. Unlike prior 054

approaches which are computationally infea- 055

sible on large data sets, we propose a scalable 056

approach using separate stability scores for 057

both the graph topology and the clustering. 058

3. We define a new stability score via spectral 059

distance between Mapper graphs. 060

4. We use community detection techniques to 061

automatically identify regions of interest in 062

large Mapper graphs. 063

The paper is organised as follows. In Section 064

2, we review related work. Section 3 presents our 065

method, and summarises TDA Mapper and sta- 066

bility analysis. We describe our experimental set- 067

up, including the data set, baselines, and metrics 068

in Section 4. Our empirical results and further 069

qualitative analyses are presented in Section 5. 070

2 Related Work 071

The seminal work on unsupervised topic modelling 072

was Blei et al. (2003) who introduced Latent Dirich- 073

let Allocation (LDA), a Bayesian generative model 074

of documents which assumes that the tokens in a 075

document are drawn from a mixture model whose 076

mixture components are interpreted as topics. Of 077
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the many extensions to the classic LDA archetype078

that have since been proposed, most relevant to079

our present work are methods to model associ-080

ations and relationships between topics, and the081

use of neural representations in general and con-082

textualised representations in particular.083

Correlated topic models (Lafferty and Blei,084

2006; Blei and Lafferty, 2007) are LDA extensions085

that attempt to learn the structure of topic associ-086

ations within a document. The goal of hierarchical087

topic models (Griffiths et al., 2004; Wang and Blei,088

2009; Blei et al., 2010; Ghahramani et al., 2010;089

Zavitsanos et al., 2011; Ahmed et al., 2013; Paisley090

et al., 2014) is to learn a tree-structured graph of091

topics by incorporating hierarchical non-parametric092

Bayesian priors into traditional topic models.093

Several studies have combined topic modelling094

with neural representations with a view to learn095

better topics or representations. For example, amor-096

tised variational inference with neural variational097

posteriors (Kingma and Welling, 2014) has been098

investigated as a means to scale up inference on099

probabilistic topic models and relax the conjugacy100

assumptions which are required for tractable in-101

ference in traditional topic models (Srivastava and102

Sutton, 2017). Various variants of such models103

have focused on neural extensions of correlated104

(Xun et al., 2017; Liu et al., 2019) and hierarchical105

(Isonuma et al., 2020) topic models although they106

all use neural representations in the generative107

model or variational posterior.108

The prior work most closely related to our pro-109

posed method is the joint application of topic mo-110

delling and contextualised word embeddings by111

Thompson and Mimno (2020), Sia et al. (2020)112

and Angelov (2020) who induce topics via vector113

clustering over word or document embeddings.114

Our method differs from LDA and its extensions115

in that we use TDA rather than probabilistic gene-116

rative models to induce topics. Correlated topic117

models and their neural extensions learn a flat topic118

structure while adding scalar associations, whereas119

our method induces a topic graph. In contrast120

to hierarchical topics models and their neural ex-121

tensions which induce tree-structured topic graphs,122

our method induces an unrestricted graph. Unlike123

our method, previous work on inducing topics from124

contextualised word representations construct a flat125

topic structure rather than a graph.126

Also related to our work is TopoAct (Rathore127

et al., 2021) which applies Mapper to the analysis128

of BERT word embeddings. Our work differs from 129

ibid. in that we focus specifically on topic model- 130

ling, and we follow a systematic hyperparameter 131

selection process through stability analysis. 132

3 Proposed Method 133

The manifold hypothesis (Goodfellow et al., 2014) 134

states that real-world high-dimensional data lie on 135

a low-dimensional manifold embedded in a high- 136

dimensional space. Topic modelling can be re- 137

garded as an endeavour to identify topologically 138

meaningful regions of the word representation 139

manifold which contain homogeneous topics or 140

words. Traditionally, it has been approached as a 141

clustering problem in that the representation mani- 142

fold is assumed to be a disconnected union of 143

“topic” manifolds. However, such an assumption 144

is clearly limiting and not grounded theoretically. 145

One potential solution involves dimensionality re- 146

duction and direct manifold visualisation. Unfortu- 147

nately, most dimensionality reduction techniques 148

capture only topology within local neighbourhoods, 149

and cannot be relied upon for inference regarding 150

the global topology of the manifold. 151

Our method of choice to address this problem 152

is TDA Mapper introduced in (Singh et al., 2007) 153

(also referred to as topological data visualisation or 154

topological clustering), a method that yields an ap- 155

proximation of a Reeb graph of a manifold (Munch 156

and Wang, 2016) which captures the topology and 157

shape of the manifold. Reeb graphs are constructed 158

from a manifold in order to learn topological in- 159

variants and global structure. Even though they 160

lose some of the original topological structure of 161

the manifold, their low-dimensional invariants (e.g. 162

connected components) remain the same. 163

3.1 Overview of TDA Mapper 164

The TDA Mapper algorithm takes as input a set of 165

points and outputs a graph whose vertices are sub- 166

sets of points, and whose edges are defined between 167

vertices which have a non-empty intersection. The 168

following main steps are typically executed. 169

1. The data is projected to a lower dimension 170

using a “filter function” (or “lens”) f. This 171

can be any standard dimensionality reduction 172

function or even a domain-specific function 173

which captures some interesting property of 174

the data. 175

2. The projected space is covered with a set of 176

overlapping sets (Ui)i∈I . 177
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3. Each set Ui is “pulled back” into the origi-178

nal high-dimensional space by taking its pre-179

image f−1(Ui). The points in this “pull-back180

set” are broken into clusters using a clustering181

algorithm.182

4. A graph is constructed by using each cluster as183

a vertex and adding an edge between any two184

clusters that have a non-empty intersection.185

3.2 Hyperparameter Tuning for TDA186

Mapper187

Model selection in TDA Mapper is non-trivial, the188

main reason being the absence of ground truth la-189

bels, analogous to what other unsupervised learn-190

ing algorithms face. One model selection approach191

suitable for algorithms of this kind which has re-192

cently gained traction is stability analysis (see193

(Luxburg, 2010)). Rather than configuring cluster-194

ing parameters up front and then optimising an195

evaluation metric, stability analysis simply con-196

strains clustering to return structures that are stable197

under small perturbations of data. For example,198

letMθ(D) be a certain mathematical structure on199

a data set D with parameters θ whereMθ could200

be clustering, dimensionality reduction, TDA Map-201

per, or some other unsupervised learning algorithm.202

If there exists a distance measure to quantify the203

similarity of the structures d(M,M′), then we204

can define the instability ofM for the parameter205

choice θ as the expected distance betweenMθ(D)206

andMθ(D
′), where D and D′ are two data sam-207

ples obtained by the same data generation process.208

More precisely,209
210

S(Mθ, d) =211

2

n(n− 1)

n∑
i=0

n∑
j=i+1

d(Mθ(Di),Mθ(Dj)) (1)212

where S denotes the instability score, and Di are213

independent samples from the dataset D. Finally,214

the optimal set of parameters θ for structureM is215

chosen from the ones that have a low instability216

score S . Note that the instability score should only217

be used to rule out parameter choices that yield218

high instability scores; it alone cannot be used for219

parameter selection as some structures are stable220

but not necessarily correct. It is crucial to choose221

the distance function which best embodies the no-222

tion of similarity between mathematical structures223

M in order to obtain meaningful results from sta-224

bility analysis. One such distance function for TDA225

Mapper graphs was defined and studied in (Belchí 226

et al., 2020). Unfortunately, their numerical match- 227

ing distance algorithm is prohibitively slow in our 228

use case. We accordingly define two alternative 229

distance metrics to capture two salient properties 230

of Mapper graphs. One is designed to capture simi- 231

larity amongst graph structures while the other ac- 232

counts for vertex (or cluster) similarity. 233

These concepts are defined formally as follows. 234

Definition 1 LetMθ(D) be a TDA Mapper graph 235

with a vertex set V = {C1, . . . , Cm} where Ci ⊂ 236

D; and an edge set E = {(Ci, Cj) | if Ci ∩ Cj 6= 237

∅} where θ = (θ1, θ2, θ3) are three groups of pa- 238

rameters pertaining to a filter function, cover, and 239

clustering algorithm, respectively. 240

The stability of Mapper graphs is then assessed 241

with respect to different choices of parameters θ, 242

and the final parameter values are chosen from the 243

most stable regions of the landscape. 244

We further define two distance metrics on Map- 245

per graphs for stability analysis. 246

Definition 2 LetM andM′ be two TDA Mapper 247

graphs with vertices V = {C1, . . . , Cn}; V ′ = 248

{C ′1, . . . , C ′m}; and edges E and E′, respectively. 249

If m 6= n, then empty set padding is added to the 250

smaller vertex set so that m = n. The distance 251

dm(M,M′) = min
π

1

n

∑
| Ci4C ′πi | (2) 252

where π runs over all permutations of the set 253

{1, 2, . . . , n}, is called the matching distance and 254

quantifies the similarity of vertices between Map- 255

per graphs. 256

Definition 3 Let Λ = {λ1, λ2, . . . , λn}, Λ′ = 257

{λ′1, λ′2, . . . , λ′m} be eigenvalues of the normalised 258

Laplacian defined on Mapper graphs M = 259

G(V,E) andM′ = G(V ′, E′), respectively. The 260

spectral distance is defined within the distribu- 261

tion of the eigenvalues µ =
∑

λ∈Λ pλδλ and 262

ν =
∑

λ′∈Λ′ pλ′δλ′ as their 1-Wasserstein distance, 263

i.e. 264

ds(M,M′) =

∫ +∞

−∞
Fµ(t)− Fν(t)dt (3) 265

where Fµ and Fν are CDFs for µ and ν. 266

The spectral distance quantifies the similarity of 267

graph topologies amongst graphs (Gu et al., 2015). 268

Lastly, let Θ be the search space for parameters 269

θ: then the stable region of Θ with permissible 270
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parameter choices is271

ΘS = {θ ∈ Θ | S(Mθ, dm) < εm

and S(Mθ, ds) < εs},
(4)272

where εm and εs are thresholds for distances that273

are considered “large” and hence unstable.274

4 Experiments275

4.1 Data276

We evaluated the proposed model on the 20 News-277

groups data set1 which contains 18846 English278

language posts categorised into thematic news-279

groups. We use the standard train-test split.280

Table 1 summarises per-category document fre-281

quencies in the training set. We remove email282

addresses, headers, and subject lines. We ex-283

tract contextualised subword embeddings using284

bert-base-uncased2 (Devlin et al., 2019),285

and use the last layer embeddings. When a docu-286

ment exceeds 512 tokens (cf. the max length for287

BERT), we simply run the model on each block288

of 512 tokens. To obtain word embeddings, we289

take the mean of the subword components. The290

documents are tokenised using spaCy3, and BERT291

subword tokens are aligned to spaCy tokens with292

spacy-alignments4.293

Although pretrained language models can re-294

present them, we decided to remove rare words295

on the grounds of lighter compute requirements.296

Following Thompson and Mimno (2020), we re-297

move stopwords, skip punctuation and digits, and298

further remove any tokens which occur in fewer299

than 5 documents or more than 25% of the docu-300

ments. This yields a vocabulary with 14829 words.301

Note that we only remove these tokens after word302

embeddings have been obtained since they are im-303

portant for downstream representations.304

4.2 Methodology305

We apply the Mapper algorithm to the resultant306

data set of contextualised word representations.307

For our filter function, we use UMAP (Uniform308

Manifold Approximation and Projection) (McInnes309

1Via scikit-learn https://scikit-learn.
org/stable/datasets/real_world.html#
newsgroups-dataset

2https://huggingface.co/
bert-base-uncased

3core_web_lg v3.0.0 https://spacy.io
4https://pypi.org/project/

spacy-alignments

20 Newsgroups Category # Documents
alt.atheism 480
comp.graphics 584
comp.os.ms-windows.misc 591
comp.sys.ibm.pc.hardware 590
comp.sys.mac.hardware 578
comp.windows.x 593
misc.forsale 585
rec.autos 594
rec.motorcycles 598
rec.sport.baseball 597
rec.sport.hockey 600
sci.crypt 595
sci.electronics 591
sci.med 594
sci.space 593
soc.religion.christian 599
talk.politics.guns 546
talk.politics.mideast 564
talk.politics.misc 465
talk.religion.misc 377

Table 1: Summary of the 20 Newsgroups training set.

et al., 2020). We reduce the data down to two di- 310

mensions via the default parameters for UMAP’s 311

Python reference implementation5. 312

For clustering, we use HDBSCAN6, a density- 313

based clustering algorithm which automatically de- 314

termines the number of clusters in a set of points 315

(Campello et al., 2013). The main parameter for 316

HDBSCAN is min_cluster_size, the small- 317

est number of points that can constitute a cluster, 318

which we set to 15. 319

4.3 Parameter Selection 320

Aside from the clustering and filter function, Map- 321

per requires a “cover”. A standard choice is to 322

partition the co-domain of the filter function into 323

a number of equally sized, overlapping intervals 324

or hypercubes in higher dimensions (Chazal and 325

Michel, 2021). However, after applying UMAP, we 326

noticed that the data exhibited non-uniform density. 327

This caused some cover sets to have many more 328

data points, making the clustering step computa- 329

tionally unfeasible. To address this, we used the 330

5https://umap-learn.readthedocs.io/en/
latest

6https://hdbscan.readthedocs.io/en/
latest/index.html
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Figure 1: Matching Distance Scores for different pa-
rameter values.

“balanced” cover offered by the giotto-tda7 li-331

brary which adjusts the size of each bin so that each332

cover set contains a similar number of data points.333

This cover requires two additional parameters:334

(i) the number of intervals or bins and (ii) the per-335

centage overlap. We perform a stability analysis336

to rule out unstable parameter combinations whose337

topological features are more likely to be mere338

artefacts. We experiment with 5, 10, 20, and 50339

intervals and overlaps of 0.1, 0.15, 0.2, 0.25, and340

0.3. For computational reasons, we perform the341

stability analysis on a randomly selected subset of342

150K word embeddings. We further subdivide the343

subset into 3 samples, each with 100K word embed-344

dings whereby each pair of subsamples overlaps345

by 50%. We run Mapper on each sample subset to346

generate 3 graphs for each pair of parameters.347

We compute an instability score for each para-348

meter set as the average distance between all three349

graphs. We conduct the stability analysis twice350

using two separate metrics, namely 1) Matching351

Distance (see Definition 2) to measure clustering352

stability; and 2) Spectral Graph Distance (see Defi-353

nition 3) to measure stability in the graph structure.354

Our stability plots are shown in Figures 1 and 2.355

Looking at the regions that appear stable under356

both metrics, we are still left with multiple choices357

for stable parameters. We ultimately select a bin358

size of 20 and an overlap of 0.1 following an in-359

tuition that (i) larger overlaps lead to highly con-360

nected graphs with less interesting structure since361

the data is relatively dense; and (ii) extreme values362

for the number of bins should be avoided for they363

lead to excessively coarse or fine granularity.364

4.4 Community Detection for Subgraphs365

We noticed that the majority of the data points366

resided in the largest connected component of the367

7https://github.com/giotto-ai/
giotto-tda

Figure 2: Spectral Distance Scores for different param-
eter values.

graph. Moreover, there were a large number of 368

individual disconnected nodes, which contained 369

about 30% of the tokens. Since we are mainly 370

interested in exploring the connections output by 371

TDA, we simply discard these nodes and focus 372

the rest of our analysis on the largest connected 373

component. 374

Since the graph is large, exploring all areas of 375

it manually is cumbersome. Therefore, we used 376

a community detection algorithm to identify clus- 377

ters of nodes that are densely connected. We form 378

additional higher-level topics from these clusters 379

by taking the union of all tokens in the nodes in 380

scope. We report metrics at both the node- and at 381

the community-level. 382

For community detection, we use the label pro- 383

pagation algorithm described in (Raghavan et al., 384

2007) via iGraph8 which is adapted to consider 385

edge weights (Csárdi and Nepusz, 2006). 386

4.5 Baseline 387

As a baseline, we chose Top2Vec (Angelov, 2020), 388

a recent method based on document representa- 389

tions and clustering. Following ibid., we build a 390

Top2Vec model using Doc2Vec document embed- 391

dings which we train for 400 epochs with a window 392

size of 15. 393

4.6 Evaluation Metrics 394

We use three automated metrics to evaluate our 395

model with respect to topic coherence, diversity, 396

and specificity. It is important to note, however, 397

that automated evaluation of topic coherence is an 398

activate area of research, and that standard evalu- 399

ation metrics have well-known limitations: in par- 400

ticular, automated measures can detect differences 401

between topic models in cases where human judge- 402

ments do not (Hoyle et al., 2021). The primary 403

goal of our work is not to reach greater coherence 404

8https://igraph.org/
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per se but rather to arrange topics in a meaning-405

ful graph structure for which comparisons with406

baselines through automated measures suffice. In407

addition to reporting three standard automated eva-408

luation measures, we also inspect some of our top-409

ics within some newsgroup categories.410

Firstly, we estimate topic coherence by taking411

the average NPMI (Normalized Pointwise Mutual412

Information) (Aletras and Stevenson, 2013) be-413

tween all pairs of words (wi, wj) in a given topic:414

NPMI(wi, wj) =
PMI(wi, wj)

−log(p(wi, wj))
(5)415

We estimate word probabilities using wikitext-416

103-raw-v1 9 (Merity et al., 2017) as our reference417

corpus, with a sliding window of 10.418

Secondly, we report Mean Word Entropy (MWE)419

per topic as a measure of topic specificity represent-420

ing the conditional entropy of a word type given its421

topic, namely −
∑
Pr(wi|z)logPr(wi|z). There422

is no clear optimal value for specificity but overly423

specific topics will have few word types and a low424

conditional entropy (with a minimum value of 0);425

conversely, overly broad topics will exhibit high en-426

tropy (maximum log of the vocabulary size). Since427

Top2Vec does not directly output a distribution over428

words, we use the empirical unigram distribution429

for all documents assigned to a particular topic.430

Thirdly, since it is possible for a topic model to431

duplicate the same coherent topic many times, we432

also need a measure of topic diversity. We report433

the proportion of words that are unique to one topic,434

punique, accordingly.435

5 Results436

Table 2 summarises our coherence, diversity, and437

specificity results. We can see that we achieve438

slightly improved coherence over Top2Vec, and439

that including the community detection step signi-440

ficantly reduces the topic specificity, as expected.441

The strong coherence scores after community de-442

tection indicate that topics are still coherent even443

when merged with their neighbours. This demon-444

strates that the edges in the graph connect topics445

which are indeed related. For a full list of topics in446

our graph, see Supplementary Material.447

9https://huggingface.co/datasets/
wikitext

Figure 3: Percentage of tokens per newsgroup category.

5.1 Per-newsgroup Analysis 448

Figure 3 visualises the graph where each node is 449

coloured by the percentage of its tokens that came 450

from a given top-level newsgroup category. We 451

observe that there are regions in the graph which 452

correlate strongly with rec, sci, comp, and talk. At 453

the same time, misc, alt, and soc, which are ge- 454

nerally broad, are associated with some individual 455

nodes without clear regions in the graph which may 456

reflect the fact that these categories are the least 457

frequent ones in our data set. 458

5.2 Part-of-Speech Effects 459

We run spaCy on the entire data set to assign part- 460

of-speech tags to each token, revealing clear re- 461

gions of the graph corresponding to VERB, NOUN, 462

and ADJ tags (Figure 4). We do not plot other 463

word classes since they are relatively infrequent 464

in the data set (cf. filtering and pre-processing in 465

Section 4). We make no claim as to whether the 466

observed correlation with part-of-speech tags is 467

beneficial since the exact definition of what con- 468

stitutes a useful topic is highly task- and domain- 469

dependent. However, our word class clusters could 470

motivate the application of TDA to the recent field 471

of “BERTology” to interpret emergent linguistic 472

structure across transformer architectures (Rogers 473

et al., 2020; Manning et al., 2020). 474

5.3 General Qualitative Observations 475

Table 3 illustrates sample topic clusters for which 476

we provided a manual category label. The topics 477

in our graph are generally coherent, and exhibit 478

6

https://huggingface.co/datasets/wikitext
https://huggingface.co/datasets/wikitext


Model NPMI MEW punique Number of Topics
Top2Vec 0.0002 6.99 0.822 126
Mapper + BERT 0.059 1.651 0.552 931
Mapper + BERT + Community Detection 0.038 2.796 0.844 149

Table 2: Evaluation results.

Figure 4: Percentage of tokens per word class.

appropriate middle-level specificity (not too coarse,479

not too fine). Our graph discovered unambiguous480

top-level newsgroup categories, as expected. For481

example, rows 0-6 represent vanilla topics relevant482

to computers, space, sports, and religion. A vari-483

ety of subtler, more interesting clusters are note-484

worthy in that they capture a variety of broader,485

yet coherent lexical senses both para- and syn-486

tagmatically. Rows 7-10, for example, denote logic487

and argumentation, physical damage, law, possibi-488

lity, and evidence. Some of the topics discovered489

border on word sense disambiguation which goes490

beyond typical, predominantly nominal topics (as491

subject headings). Consider (i) the clear and ac-492

curate sense-level distinctions in rows 12-15; (ii)493

“program(s)” qua computer software (row 1) vs. ra-494

dio shows (row 24); and (iii) a non-trivial pattern in-495

volving clusters made of intra-sense antonyms sub-496

sumed under a relevant macrosense category (rows497

18-20). Interestingly, we also see higher, discourse-498

level phenomena such as interjectional (and other)499

discourse markers and particles (row 21), and ge-500

neral, extralinguistic text structures (rows 22-23).501

These patterns indicate that our method is sensi-502

tive enough to make non-trivial topic distinctions503

at multiple levels concurrently.504

5.4 Topic Subgraphs505

Topics extracted via community detection on the506

Mapper graph can be used to further probe and con-507

textualise any individual topic by examining the508

subgraph to which it corresponds. Figures 7, 5, and509

Figure 5: Topic subgraph: Space.

Figure 6: Topic subgraph: Computers.
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# Category Name Topic Words
0 computer software window, program, file, application, programs, toolkit, files, swap, system, software
1 computer hardware server, memory, drivers, hardware, system, binaries, disk, files, platforms, keyboard
2 data image, images, fonts, line, data, support, value, text, lines, colors
3 planets earth, mars, planet, planetary, jupiter, mercury, galaxy, pluto, venus, uranus
4 space lunar, surface, earth, moon, space, mars, propulsion, planetary, orbit, astronomy
5 sports rangers, bruins, wings, pens, leafs, cubs, devils, sox, flyers, hawks
6 religion beliefs, teachings, doctrines, convictions, religions
7 physical damage scratches, chips, cracks, cuts, crack
8 logic/argumentation fallacy, ergo, post, hoc
9 law court, legal, trial, lawyer, lawyers, supreme, legally, legalization, trials, attorney
10 possibility chance, chances, opportunity, odds, probability, likelihood, possibility, possibilities
11 evidentiality/factuality idea, evidence, obviously, based, test, opinion, opinions, apparently, research, advice
12 dependence depends, depend, hinges, rests
13 memory remember, recall, recalled
14 perception/copulas looks, like, look, looked, looking, feels, sounded, appear
15 persuasion convince, convinced, persuade
16 time periods years, year, months, days, week, weeks, month, day, hours, time
17 temporal order second, 2nd, 1st, secondly, coming, 3rd, fourth, firstly, 4th, later
18 public-private private, public, privately
19 agreement-disagreement agree, disagree, agreed, agreeing, agreement, agrees
20 substitution alternative, alternatives, conventional, alternate, substitutes, traditional
21 discourse particles yup, needless, oops, gosh, sheesh, darn, yea, geez, ahh, ditto
22 text/thread structure question, list, questions, answer, response, reply, answers, respond, responses, replies
23 text structure volume, page, vol, pages, ii, chapter, book, number
24 radio broadcasting radio, coverage, broadcast, station, kdka, shown, program, announcer, shows, broadcasts

Table 3: Example topics with category names.

6 show subgraphs with manually assigned category510

labels for the Middle East conflict, space, and com-511

puters. For example, Figure 7 visualises various512

typical aspects and dimensions of the Middle East513

conflict such as people, locations, and ethnicity514

alongside concomitant historical, racial, religious,515

geopolitical, and military themes. Note that sub-516

graphs only represent relatedness - we do attempt517

to capture interpretable relations of any other kind.518

These subgraphs demonstrate that neighbouring519

topics are related extrinsically beyond the under-520

lying topology itself since their joint interpretation521

as higher-level topics is similarly coherent.522

6 Conclusion523

We propose an unsupervised topic modelling524

method which leverages topological data analy-525

sis (TDA) to extract a semantic topic graph from a526

large unstructured document collection. Our exper-527

imental results demonstrate that our method is able528

to detect topics on par with a recent baseline while529

also exposing meaningful inter-topic relationships530

towards deeper topic interpretation. Our experi-531

ments to date motivate future work involving TDA532

to develop, for example, interactive visualisation533

tools for exploring rich relational topic graphs, and534

to study the interface between topological and lin-535

guistic properties of topics.536

Figure 7: Topic subgraph: Middle East conflict.
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