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Abstract

We present TFF, which is a Transformer framework for the analysis of functional
Magnetic Resonance Imaging (fMRI) data. TFF employs a two-phase training approach.
First, self-supervised training is applied to a collection of fMRI scans, where the model
is trained to reconstruct 3D volume data. Second, the pre-trained model is fine-tuned on
specific tasks, utilizing ground truth labels. Our results show state-of-the-art performance
on a variety of fMRI tasks, including age and gender prediction, as well as schizophrenia
recognition. Our code for the training, network architecture, and results is attached as
supplementary material1.
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1. Introduction

Functional MRI (fMRI) captures the Blood Oxygen Level Dependent (BOLD) signal, which
has been shown to be predictive of the diagnosis and characterization of multiple neurological
diseases and psychiatric conditions (Zhan and Yu, 2015; Woodward and Cascio, 2015; Xia
et al., 2018). fMRI poses a challenge to machine learning, due to the massive amount of
signals acquired during a standard scan, which consists of a time series of 3D volumes, as
well as the amount of noise that exists in the measurement device, the tradeoff between
resolution and inherent noise caused by the patient’s motion, repeatability issues due to
inter-patient and intra-patient variability, relatively small datasets due to acquisition cost
and privacy concerns, and often noisy target labels, which pertain to conditions that are
often defined based on a group of symptoms (Kamitani and Tong, 2005).

Multiple advances in deep learning have been applied to fMRI classification, including
convolution-based models (Zou et al., 2017; Kawahara et al., 2017), recurrent neural networks
(RNN) (Dakka et al., 2017), and graph neural networks (Li et al., 2020). Many of these
techniques utilize well-known human brain atlases to parcellate the brain into regions. In
our work, we consider the entire, unparcellated volume and apply end-to-end training using
a hybrid network that is centered around a transformer (Vaswani et al., 2017) component.
Transformers have emerged as a powerful model, which employs multiple attention operations
on sequential data. It has become the dominant model in time series forecasting (Li et al.,
2019b), natural language understanding (Devlin et al., 2018), and, more recently, computer
vision (Dosovitskiy et al., 2020; Li et al., 2019a).

Our network architecture, named TFF, extracts vectors from the raw 3D-volume brain
fMRI samples, constructs the vectors as a unified sequence, and propagates them through
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a multi-layer transformer network. The transformer network in TFF allows our model
to process, extract and glean information across multiple fMRI frames of the scan. In
our research, we fine-tune TFF on multiple datasets, such as the dataset of the Human
Connectome Project (Van Essen et al., 2013) and the COBRE2 and CNP3 Schizophrenia
datasets. We focus on resting-state functional connectomes (van den Heuvel and Hulshoff Pol,
2010; Du et al., 2018) that are known to contain meaningful information in the premise of
schizophrenia research (Xia et al., 2018; Woodward and Cascio, 2015), as well as identifying
individual fingerprints (Cai et al., 2021).

Our contributions are: (1) we present TFF, which is a novel transformer-based framework
that enables transfer learning for fMRI tasks by pre-training on available data. (2) we evalu-
ate and compare our model with other alternatives, reporting state-of-the-art performance
for various tasks, including age and gender prediction, and diagnosing Schizophrenia. Impor-
tantly, our method operates on the entire fMRI volume and does not require parcellation,
which reduces the amount of available data.

Related Work Traditional approaches to fMRI data employ a pipeline that first applies
a parcellation process to the raw fMRI signal (Arslan et al., 2018). A parcellation procedure
aggregates spatially neighboring voxels into local clusters, which represent regions of interest
(ROIs). The voxels associated with the same ROIs are averaged and concatenated into
a vector, representing a single fMRI frame. Applied to the entire 4D fMRI scan, the
parcellation process retrieves multivariate time-series data. Next, given the parcellated data,
most techniques infer a functional connectivity (FC) matrix, which is a scalar function that
scores the temporal relation between two different regions in the brain. A common FC
measure is the Pearson correlation, also known as Static Functional Connectivity (van den
Heuvel and Hulshoff Pol, 2010). The FC matrix representing the brain activity, which is
also known as the “connectome”, has attracted significant interest as a sensitive biomarker
for diseases. Finally, supervised machine learning techniques are applied in order to obtain
predictions at the level of the individual.

Inspired by the above pipeline, data-driven approaches were applied to obtain a more
effective FC function and/or better representations for the parcellated data. Riaz et al.
(2020) use 1D convolutions to encode per-region time series, followed by a first multilayer
perceptron (MLP) to produce a pairwise similarity matrix and a second MLP to optimize
a classification objective. Gadgil et al. (2020) suggest applying Spatial-Temporal Graph
Convolutional Networks (ST-GCN) for learning from graph-structured time series data (Yu
et al., 2017) and predicting age and gender from parcellated fMRI data. In our work, we
evaluate TFF on the same tasks and datasets and obtain superior performance. In addition
to being a testbed for comparing multiple algorithms, age prediction is valuable for detecting
early signs of brain disease and trajectories of brain degeneration (Chen, 2019; Wang et al.,
2019; Churchwell and Yurgelun-Todd, 2013).

2. Method

The TFF framework utilizes both 3D convolutional layers and transformer layers, and
applies pre-training and a subsequent fine-tuning approach, see Fig. 1. The model utilizes a

2http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
3https://openneuro.org/datasets/ds000030/versions/00016
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Transformer Framework for fMRI

Figure 1: Illustration of the TFF architecture. During pre-training (top), a sequence of
fMRI frames are normalized and propagated through E , grouped into a unified
sequence and then propagated through the transformer network T . The output
sequence is decomposed and propagated through D, which reconstructs the input
data. During fine-tuning (bottom), the frames are propagated separately through
the pre-trained encoder network, aggregated as a sequence, and a special CLS
token is added. The entire sequence is then propagated through the transformer
model, which utilizes the embedding of the CLS token for making predictions.

convolution-based encoder E , which operates separately on acquired 3D fMRI frames (each
frame is a snapshot of the subject’s brain activity at time t), mapping each frame into a
vector. Next, the model proceeds by aggregating vectors of consecutive frames into a unified
sequence and propagating this sequence through a transformer network T .

During pre-training, the transformer output is propagated through a decoder D that
supports self-supervision through reconstructing the original input. During fine-tuning, D is
removed, and E and T are optimized directly for the given task, in an end-to-end manner.

Pre-Training TFF pre-training employs a two-step training procedure comprised of
(i) unsupervised pre-training on unlabeled fMRI scans, and (ii) fine-tuning for a specific
supervised task. The first step trains the 3D-convolutional encoder-decoder networks for
reconstruction (more details can be found in the architecture section). The auto-encoding
strategy with its reconstruction objective allows TFF to learn effective representations for
fMRI data.

Given an fMRI scan, with n frames, X := (x1, ..., xn), where each xi is a volumetric data

point representing the acquired pulses and echoes in a given interval, xi ∈ RW×H×D where
W,H,D are the width, height, and depth of the acquired data. We first map each frame
into two representations by applying two normalization techniques. The first technique
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applies global normalization, utilizing standard z-score normalization over the entire scan.
The second applies voxel normalization, which separately z-score normalizes the values of
each voxel over the time domain.

The global normalization, denoted by Xg, can be expressed as Xg := X−µ
σ where µ, σ

are the mean and standard deviation of the entire 4D volume X. By focusing on the qpk
dimension of a specific frame, the voxel normalization, denoted by Xv, can be expressed as

xiqpk =
xiqpk−µqpk

σqpk
where µqpk, σqpk are the mean and standard deviation of the voxel qpk,

across all frames in X.

Voxel normalization emphasizes the relative activation of a specific voxel in a given
interval, while suppressing structural information, see Fig. 4 in the supplementary materials.
We denote the concatenation on the channel dimension of the two normalized representations

of the entire scan as X̂ := (x̂1, ..., x̂n).

Next, given X̂, we extract a sub-sequence of frames x̂w with length w and aggregate the
frames on the batch dimension. The batches of frames are then propagated through the
encoder and the decoder, which outputs data of the same dimension as the input frames.
The model is trained to optimize two pixel-wise losses and a perceptual loss, as described
below, to reconstruct the global normalized data.

The encoder-decoder architecture imposes a bottleneck with a size of d, entailing that
each xi is represented by a single vector vi ∈ Rd. Notably, the encoder and decoder networks
operate on each frame separately, i.e., the convolutions are not applied on batches of frames,
and therefore, at this stage, the model cannot extract temporal information.

After the first pre-training stage, we insert the transformer model T between the
two convolution-based encoder and decoder networks and proceed with the same pre-
training procedure, using the same reconstruction loss. In this second stage, the transformer
architecture enables the model to obtain and process information from the time domain,
while training continues in order to optimize the same objective.

In TFF, we adopt a standard transformer architecture (Vaswani et al., 2017). The model
first aggregates the vectors provided by E into a unified sequence and adds a special CLS
token to its beginning. The sequence can be denoted by (CLS, vi, . . . , vi+w), where w is
a window hyperparameter dictating the length of input sequences. Next, the sequence is
propagated through the T and its output is propagated through the 3D CNN decoder D.

In both pre-training stages, we feed the model with the 2-norm data X̂, while training it to
only reconstruct globally normalized data.

The two-stage pre-training scheme, chosen over the alternative of a single pre-training
phase that optimizes the entire model, stems from the empirical observation that a single
training phase is unstable. Additional information can be found in the Experiments section.

The Pre-Training Losses During pre-training, we employ two pixel-wise losses and a
perceptual loss. The first loss, denoted by L1, is a standard L1 loss applied between the
decoder output and the globally normalized frames Xg.

The second loss is an intensity loss, denoted as Lb
1. This loss is based on an L1 applied

to a subset of the voxels associated with local intensity values, which are more likely to
represent a relevant BOLD signal. More specifically, given a full scan, (x1, . . . , xn), we
infer the voxel-normalization Xv. Then, for each voxel-normalized frame xvi ∈ Xv, we set

xvi qpk = 0 if |x̂vi qpk| < b and xvi qpk = x̂vi qpk otherwise, where b is a threshold value configured
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as the 80% quantile of the absolute of the voxel-normalized values, inside the anatomy and
across the sub-sequence. The motivation behind the elimination of the voxels associated
with the 80% of the values that are closer to 0 is that these values are typical across many
frames, and are therefore unlikely to represent a distinctive signal. An illustration of the
intensity loss is depicted in Fig. 5 in the supplementary appendix.

The third loss is a standard perceptual loss, denoted by Lp. Here, we use a pre-trained
VGG network (Simonyan and Zisserman, 2014), for which we minimize the L2 distance
between the feature maps of the first and second layers extracted from the reconstructed
data and input frames. Note that, unlike many perceptual loss terms that focus on high-level
features, we focus on low-level features, since our work is in a domain far removed from
ImageNet, making high-level features less relevant for this data. To adapt the perceptual
loss for 3D data, we construct two batches. The first is the concatenation of the slices of
the input data, and the second holds the slices of the reconstructed data. Each batch is
propagated separately through the VGG model. The perceptual loss is calculated over the
pairs of corresponding slices from each batch and mean-pooled across the pairs.

Finally, the total pre-training objective is: Lpre−training = L1 + Lb
1 + Lp.

Model Architecture Our model is composed of a 3D convolution-based encoder, followed
by a transformer network. During pre-training, an additional 3D convolutional decoder is
used to reconstruct the input data from the transformer output. For the convolution-based
encoder and decoder models, we build on the architecture introduced in (Myronenko, 2018).

The transformer architecture is composed of a two-layer multi-head transformer(Vaswani
et al., 2017). This network also utilizes a standard positional encoding layer, in which its
output is summed with the intermediate vectors (similar to standard language models such
as (Devlin et al., 2018)). More details about the network architecture can be found in the
supplementary appendix.

Fine-Tuning Fine-tuning involves the E and T networks. It optimizes the model
with supervision to perform the specific task at hand, by adding a standard classification
(regression) head on top of the embedding of the CLS token. The fine-tuning objective

is: Lfine−tuning = −Σm
i=1Lcce

(
yi, C

(
T [E (x̂wi )]0

))
where xwi is a sub-sequence of frames

with length w associated with the label yi ∈ [1...c] (c is the number of classes), C is the
classification (or regression) head, m is the number of sub-sequences in the train set, Lcce

is a softmax function followed by a standard categorical cross-entropy loss, and 0 is the
CLS index. For a binary classification task, we use the same loss, by defining c = 2. For
regression tasks we replace cross-entropy with a standard MSE.

Inference Given a scan X, we infer X̂ and extract all sub-sequences of length w and

stride s. The TFF inference can be written as follows: TFFI :=

∑m

i=0
C
(
T
[
E
(
(X̂)

si+w

si

)]
0

)
m

where m is the number of sub-sequences for the given stride s.

3. Experiments

We evaluate our model on four tasks and three datasets and compare its performance to
three baselines. While it is possible to pre-train our model on multiple datasets, this would
hinder our ability to compare it directly with previous work. Therefore, in this study, we
pre-train our models separately on each of the given datasets.
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Table 1: Gender prediction
results on the HCP
dataset.

Model BAC Acc. AUC

TFF 93.92 94.09 98.77
TFFvanilla 93.18 92.06 95.34
ST-GCN 82.0 79.81 81.36
Deep-FMRI 66.91 65.45 78.0

Table 2: Age prediction re-
sults on the HCP
dataset.

Model L1 L2 NMSE ×10

TFF 2.73 10.93 0.14
TFFvanilla 3.21 14.13 0.19
ST-GCN 3.16 13.53 0.18
Deep-fMRI 3.48 17.59 0.25

Table 3: Schizophrenia classifi-
cation results on the
COBRE dataset.

Model Accuracy AUC BAC

TFF 70.0 68.3 69.2
TFFvanilla 43.3 44.2 44.2
ST-GCN 57.2 64.3 58.6
Deep-fMRI 68.3 62.0 65.6

The Datasets The Human Connectome Project (HCP) is a collection of publicly available
functional MRI scans (Van Essen et al., 2013). The dataset contains 1095 scans of different
subjects, 595 females and 500 males. The age of the subjects ranges between 22 and 36.
Each scan includes 1200 fMRI frames, acquired while subjects were in a resting state. In our
study, we focus on predicting age (regression task) and gender (binary classification) from
fMRI scans. These tasks can help shed light on the relationship between brain activity, age,
and gender, especially in the context of neuropsychiatric research. The Center for Biomedical
Research Excellence (COBRE) is a dataset containing resting-state functional MRI data
of 75 healthy control patients along with 72 schizophrenia patients.Given the fMRI scans,
the task we consider is to predict whether a subject is healthy or should be diagnosed with
schizophrenia (binary classification). Consortium for Neuropsychiatric Phenomics (CNP) is
an fMRI dataset acquired as part of the UCLA Consortium for Neuropsychiatric Phenomics
LA5c Study(Gorgolewski et al., 2017)4. The dataset incorporates resting-state fMRI scans
of 130 healthy controls subjects and 50 subjects diagnosed with schizophrenia. Here, too,
the task we consider is binary schizophrenia classification based on the acquired fMRI scans.

The exact train-validation-test splits, and more information about all datasets can be
found in the supplementary appendix.

The Baselines Spatial-Temporal Graph Convolutional Networks (ST-GCN) is a computer
vision technique for learning from graph-structured time series data (Yu et al., 2017) that
was recently shown to produce state-of-the-art results for age and gender prediction from
fMRI scans (Gadgil et al., 2020). In this baseline, the fMRI data is parcellated, normalized
and fed into the ST-GCN model. Deep-fMRI is an end-to-end deep learning architecture
for classifying pathologies in fMRI data(Riaz et al., 2020). It receives parcellated fMRI
signals as input and outputs a diagnosis. The model is composed of three components. The
first component applies a convolution-based network to extract features from the input scan,
outputting a vector for each brain region. The second component is a network that operates
on all pairs of brain regions, by concatenating the vectors and propagating them through an
MLP regression layer. The network then predicts a correlation matrix for each region pair.
The last component is an MLP classification network, which makes predictions based on the
estimated correlation matrix. Riaz et al. (2020) report that Deep-fMRI outperforms other
alternatives, such as correlation-based functional connectivity, clustering-based technique,
as well as the FCNet model (Riaz et al., 2017), which is another convolution-based model.
TFFvanilla is the TFF model initialized from scratch, without the pre-training procedure.

4https://openneuro.org/datasets/ds000030/versions/00016
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Table 4: Schizophrenia classifica-
tion results on the CNP
dataset.

Model Accuracy AUC BAC

TFF 88.2 90.0 87.9
TFFvanilla 58.8 52.9 50.0
ST-GCN 82.3 87.1 82.8
Deep-fMRI 76.5 84.3 77.9

Table 5: Ablation study, see text for variants (i)–(v).

Age pred. Gender pred.

L1 L2 NMSE Acc. BAC AUC

(i) no intensity loss 2.96 11.71 0.16 93.77 92.95 96.06
(ii) no L1 loss 3.12 13.07 0.18 89.66 87.43 91.25
(iii) no perceptual loss 3.02 12.11 0.17 93.47 93.02 96.86
(iv) no 2-norm 3.09 12.65 0.17 93.07 92.96 93.37
(v) one-step pre-training 3.21 14.33 0.19 89.97 91.02 90.38
Full method 2.73 10.93 0.14 94.09 93.92 98.77

Metrics Accuracy, balanced accuracy (BAC), and Area Under the Receiver Operating
Characteristic curve (AUROC) were measured for classification. For the regression task,
we report the L1, L2, and the Normalized Mean Square Error (NMSE) metrics defined as

NMSE(ŷ, y) = MSE(ŷ,y)
MSE(y,0) , where ŷ, y are predicted and ground truth values, respectively.

Implementation details TFF utilizes the AdamW (Loshchilov and Hutter, 2017)
optimizer, with a weight decay of 0.01. The window size is set to w = 20, with a stride of
s = 10. The encoder architecture imposes an intermediate feature vector of size d = 2640.
In our experiments, all TFF pre-training and fine-tuning used a single GPU (either V100 or
Titan X), and each single-step training procedure ran for less than 24 hours, with a standard
early stopping strategy. In most cases, the cumulative time of the two-step pre-training is
less than 28 hours, and fine-tuning converges within 5-18 hours (depending on the task).

Results Tab. 1 presents the results of all models evaluated on the HCP dataset for the
gender prediction task. The TFF model was pre-trained on the HCP dataset, according to
our proposed training and objective. All models were fine-tuned with supervision, utilizing
the gender labels available for each subject in the HCP dataset. As can be be seen in the
table, TFF outperforms the alternatives by a sizeable margin. Specifically, compared to the
ST-GCN model, which was previously considered state-of-the-art for this task, our model
yields an improvement of more than 10% in BAC. Interestingly, we observe that the full
TFF method also outperforms the TFFvanilla baseline by ∼0.8, ∼2 and ∼3.4 points of BAC,
accuracy and AUC, respectively.

Table 2 depicts the performance of all models evaluated on the age prediction task
from the HCP dataset. This task is formulated as a regression task, where the models are
expected to predict the exact age of each subject. Each of the models in this evaluation
applies a standard regression head and optimizes an L1 loss w.r.t the ground truth age
labels. As can be seen in the table, TFF shows a clear advantage over the other techniques.
Compared to ST-GCN, the second best model in this evaluation, TFF yields an absolute
improvement of ∼0.4, ∼2.6 on L1 and L2 respectively, and a relative improvement of 23%
in NMSE. Interestingly, the gap in performance is even larger with respect to the TFFvanilla

baseline, for which TFF improves in absolute scores of ∼0.4, ∼3.2 for L1 and L2, and a
relative improvement of ∼26% in NMSE. This can be attributed to the importance of the
pre-training procedure, which allows TFF to learn an effective representation for 4D fMRI
data prior to the fine-tuning procedure. Statistical significance for the age prediction task
can be found in Appendix H.
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We further evaluate our models on two datasets for pathological classification. Tab. 3
presents the results for schizophrenia classification on the COBRE dataset. As can be seen in
the table, TFF outperforms the alternatives by a sizeable margin. Looking at the AUC score,
TFF outperforms ST-GCN and DeepfMRI by 4 and 8.3 points, respectively. Interestingly,
by neglecting the pre-training procedure, the TFFvanilla fails to converge on the task. This
can be attributed to (1) the relatively smaller number of samples, which hinders the ability
of the TFFvanilla model to generalize correctly in the case of unseen samples, and (2) to the
importance of the pre-training procedure for extracting valuable features in advance, which
is crucial to the convergence of the fine-tuning procedure.

Tab. 4 presents the evaluation results of the various models on the CNP dataset. As can
be seen, the TFF model greatly outperforms the alternatives. Specifically, TFF achieves a
BCA score of 87.9, an improvement of more than 5.1 and 10 absolute points, respectively,
over the ST-GCN and Deep-fMRI baselines. Looking at the TFFvanilla baseline, we observe
that the model suffers from poor performance.

Comparing the convergence of TFF and TFFvanilla during the shared fine-tuning stage
(appendix Fig. 7), it is evident that TFFvanilla struggles to converge, while the full model
produces better results across the entire course of training. We attribute the enhanced perfor-
mance of TFF to the effectiveness of the pre-training procedure. Appendix G presents further
empirical evidence in support of pre-training, in a different domain of MRI classification.

Variable Training Set Size We vary the amount of data available for training and
evaluate the performance of each model for schizophrenia classification on the CNP dataset.
The results, as shown in Fig. 8 in the appendix, indicate that the performance of all four
methods drops significantly when the amount of training data is reduced. It is also evident
that for all training set sizes the full TFF method is better than the baselines.

Ablation Study Table 5 presents an ablation study for TFF on the age prediction and
gender prediction tasks. The following variants are considered: (i) TFF without intensity
loss. (ii) TFF without L1 loss. (iii) no perceptual loss. (iv) training TFF solely on the global
normalization data (i.e. neglecting the voxel-normalization input). (v) TFF with one-step
pre-training, which trains all three networks E , T ,D in one phase. Different from the full
method, this model optimizes the transformer weights on top of a randomly initialized
encoder E . The results indicate that it is highly beneficial to employ all three losses during
the pre-training procedure, that voxel-normalization is crucial for model convergence, and
that two-step pre-training is a better alternative to a single step.

4. Conclusions

TFF is a novel framework for the analysis of fMRI data. It considers the entire 4D fMRI
volume data and applies end-to-end training, using a transformer-based architecture. TFF
training consists of two phases, a self-supervised pre-training procedure and subsequent
fine-tuning, which optimizes the model for a specific task. Importantly, the pre-training
procedure was found to be crucial for improved accuracy. Our experiments demonstrate
state-of-the-art performance on a variety of fMRI tasks, including age and gender prediction,
as well as schizophrenia recognition. One of the properties of TFF, which was not considered
in this work, is that it can be pre-trained on a large amount of unlabeled data, and fine-tuned
on relatively smaller datasets, which are common in the field of medical imaging.
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A. Garćıa de la Garza, S. N. Vandekar, Z. Cui, T. M. Moore, D. R. Roalf, K. Ruparel,
D. H. Wolf, C. Davatzikos, R. C. Gur, R. E. Gur, R. T. Shinohara, D. S. Bassett, and
T. D. Satterthwaite. Linked dimensions of psychopathology and connectivity in functional
brain networks. Nat Commun, 9(1):3003, 08 2018.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks:
A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

X. Zhan and R. Yu. A Window into the Brain: Advances in Psychiatric fMRI. Biomed Res
Int, 2015:542467, 2015.

Liang Zou, Jiannan Zheng, et al. 3D CNN based automatic diagnosis of attention deficit
hyperactivity disorder using functional and structural MRI. IEEE Access, 2017.

Supplementary Appendices

Appendix A. More Details About the Pre-Training

The voxel normalization emphasizes the temporal activations of specific voxels in a given
sequence and suppresses the structural information in the acquired scan. A representative
sample of the voxel normalization along with the global normalization of the same slice can
be seen in Fig. 2
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Figure 2: A representative 2D slice from an acquired 3D fMRI frame, applied through global
normalization (left) and voxel normalization (right). Global normalization applies
the same scaling and shifts to all voxels, yielding a volume that is visually similar
to the original volume. Voxel normalization scales and shifts each voxel separately,
by looking at its values across the entire scan. The resulting voxel-normalized
data suppresses structural information and emphasizes voxels associated with
values that are far from their mean value.

Figure 3: A representative sample of a slice (left) and its voxels that contribute to the
intensity loss (right). The intensity loss emphasizes the voxels that vary the most
in a given frame, by leveraging a “focused” L1 loss applied to those specific voxels.
To calculate this loss, we infer a binary mask for each of the slices (middle).

The intensity loss Lb
1 is based on an L1 loss applied to a subset of the temporally-intense

voxels, which are more likely to represent a relevant BOLD signal. The intensity loss
eliminates voxels associated with 80% of the values that are close to 0 were eliminated since
they are typical across many frames and are therefore unlikely to represent a distinct signal.
A representative slice and its voxels associated with the intensity loss can be seen in Fig. 3.

Fig. 5 presents two slices fron two representative fMRI scans (from the validation set)
that were encoded and decoded by the pre-trained TFF model. As can be seen, TFF is
able to preserve most of the information from the input, including the brighter areas which
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Figure 4: Three representative samples from the HCP test set, arbitrarily sliced at axial
coordinate z = 40, together with the ground truth and predicted age retrieved by
each model. For all models, except for the Deep-FMRI model, the average over
sub-sequences is presented together with it’s corresponding standard deviation.
Since Deep-FMRI opertaes on full scans, each subject corresponds to one sample
and a single prediction.

indicate a higher level of brain activity. This ability of the model to accurately reconstruct
the volumes is an important indication for the quality of the intermediate vectors, and the
sanity of the end-to-end training.

Fig.6 presents the loss values during the pre-training phase. As can be seen, the
performance on the validation and training sets is highly correlated, the values of all three
losses are mostly decreasing monotonically, and their values are within one order of magnitude
from each other.

Appendix B. More details about the TFF architecture

Our 3D convolutional encoder and decoder network architecture build upon the network
developed by Myronenko (2018) for the purpose of brain tumor segmentation from 3D MRI
data. Their architecture receives 3D MRI crops as its input, and utilizes a sequence of
convolutional blocks with skip connections. The encoder output is fed into two decoder
heads. The first is trained with supervision to predict segmentation. The second decoder
head is trained using self-supervision to reconstruct the input volume data by employing
a variational auto-encoder approach. In our work, we adopt the building blocks of the
architecture, omit the decoder head that performs segmentation and modify the head that
performs reconstruction by removing the variational auto-encoder mechanism. In order to
support 4D fMRI data and enable the model to obtain and process temporal information,
we add the transformer architecture between the encoder and the decoder.
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Figure 5: Two Representative slices taken from two different subjects, along with their
corresponding reconstruction created by the pre-trained TFF model. The slices
were arbitrarily chosen from each subject (at depths 48 and 51 respectively).

Figure 6: The loss values per training step, calculated during the pre-training phase.

Tab. 8 and Tab. 9 present the detailed architecture of the 3D encoder and decoder
networks, respectively. Specifically, the encoder is composed of a sequence of four blocks,
each block comprising a 3D convolutional layer, followed by a dropout layer (Srivastava
et al., 2014), group normalization layer (Wu and He, 2018), ReLU, convolutional layer,
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dataset name dataset size scan length w s number of samples

HCP 1095 1190 20 20 15000
CNP 261 118-142 20 10 2233
COBRE 146 67-150 20 10 1890

Table 6: More details about the datasets used in our experimental section. The last column
represents the number of samples during the second stage of the pre-training as
well as the fine-tuning procedure.

groupNorm layer, and another ReLU. Finally, a down-sample layer is applied by utilizing a
3D convolutional layer with a stride of two. The output of the last block is then flattened,
forming a 1D feature vector of size 2640. Notably, each of the elements in the flattened
vector corresponds to a receptive field of 8X8X8 in the original volumetric input.

The decoder architecture applies the same number of convolutional blocks, with similar
layers, except for the final down-sampling layer which is replaced by an up-sampling layer.

The implementation of the transformer architecture is based on the hugging face library5.
Our code is attached as an additional supplementary.

During the first pre-training step, only the 3D encoder and the decoder are trained. In
the second step, the transformer is integrated between the encoder and the decoder, and the
entire architecture is trained to optimize the pre-training objective.

During fine-tuning, we remove the decoder, and only the encoder-transformer networks
are trained, where the transformer operates on an additional CLS token that is concatenated
to the beginning of each sequence. The CLS embedding is then propagated through an MLP
to score a regression/classification objective.

During pre-training, the number of training samples in the first pre-training stage is
equal to the number of frames in the dataset since each sample is a single 3D fMRI frame. In
the second pre-training stage and during the fine-tunning, each sample is a sequence of 3D
fMRI frames, the sequences are of size w and are created by using a stride s. Therefore, the
number of samples during those stages depends on the length and the number of the scans.
In the HCP, CNP, and COBRE datasets, it iswould be 15000, 2233, and 1890, respectively.
More details can be found in Table 6.

Appendix C. More details about the HCP dataset and evaluations

The HCP dataset (Van Essen et al., 2013) originally incorporates 1200 subjects out of which
1096 are available at the ConnectomeDB website under the category - Resting State fMRI 1
Preprocessed. The scans were pre-processed by the HCP functional pipeline available from
the Connectome DB website6. In TFF, the HCP data is applied without any additional
pre-processing, beyond the pipeline used in the Connectome DB project. The pre-processing

5https://huggingface.co/transformers/_modules/transformers/models/bert/modeling_bert.

html#BertModel
6https://db.humanconnectome.org/app/template/Login.vm
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Model Accuracy BAC AUC Precision Recall F1

TFF 94.09 93.91 98.77 94.84 92.0 93.4
TFFno-pre-training 92.06 93.18 95.34 93.56 92.0 92.77
ST-GCN 79.81 82.0 81.36 82.13 77.0 79.48
Deep-FMRI 65.45 66.91 78.0 58.45 83.0 68.59

Table 7: Gender prediction results on the HCP dataset.

pipeline includes spatial artifact and distortion removal, surface generation, cross-modal
registration, and alignment to standard space.

From the available 1096 subjects, we removed 1 subject which produced an error during
the parcellation process. In our experiments, we split the data randomly into train, validation,
and test sets, with respective sizes of 765, 110 and 220.

At the ConnectomeDB website, all subjects are listed with a respective metadata file,
containing an age category (i.e. young/adult) and an associated ID number. The precise
age used in our work was retrieved from the GitHub page of (Gadgil et al., 2020), which
uploaded the data as a chart of subject IDs associated with accurate age.

C.1. HCP Gender Prediction Task

Tab. 7 depicts the performance of all models, evaluated on the gender prediction task. Here,
we report the accuracy, balanced accuracy, AUC, precision, recall and f1 scores for each of
the models.

C.2. HCP Age Prediction Task

Fig. 4 depicts three representative samples from the age prediction task. The figure presents
the age predictions of all models for three subjects from the HCP test set, along with the
ground truth and a representative slice from each of the scans.

Appendix D. More details about the baselines

In both the Deep-fMRI and ST-GCN baselines, we performed a grid search over two
parameters: the learning rate and the window size w. An early stopping protocol was
enforced with a patient of 30 epochs, entailing that the training stopped only if 30 epochs
have passed without any improvement on the validation set. In ST-GCN, we follow inference
proposed by the authors. We randomly sampled sub-sequences of size w from the full scan
and propagated the sub-sequences through the network. The final model prediction is based
on the cumulative predictions from each of the sub-sequences

Appendix E. More details about the COBRE dataset

The COBRE dataset contains resting-state functional MRI data of 75 healthy control patients
along with 72 schizophrenia patients diagnosed using the Structured Clinical Interview
for DSM Disorders (fourth edition). The dataset was obtained from the Neuroimaging
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name operations repeats output size

Input Batch of fMRI volumes. Global and voxel norm aggregated on the channel dim 1 (2x75x93x81)
Conv Block 1 Conv, Dropout 1 (4x75x93x81)
Regular Block 1 GroupNorm, LReLU, Conv , GroupNorm, LReLU, Conv 1 (4x75x93x81)
Down Block 1 Dropout, Conv (stride 2) 1 (5x8x38x47x41)
Regular Block 2 GroupNorm, LReLU, Conv, GroupNorm, LReLU, Conv 2 (5x8x38x47x41)
Down Block 2 Dropout, Conv (stride 2) 1 (5x16x19x24x21)
Regular Block 3 GroupNorm, LReLU, Conv, GroupNorm, LReLU, Conv 2 (5x16x19x24x21)
Down Block 3 Dropout, Conv (stride 2) 1 (5x32x10x12x11)
Regular Block 4 GroupNorm, LReLU, Conv, GroupNorm, LReLU, Conv 4 (5x32x10x12x11)
Reduce Block GroupNorm, LReLU, Conv 1 (5x2x10x12x11)
Flatten Flatten 1 (5x2640)

Table 8: The architecture of the 3D encoder network E . Unless mentioned otherwise, all
Convolution operations utilize a kernel of size 3, stride 1, and padding 1.

Informatics Tools and Resources Clearinghouse (NITRC) website and was published by the

Center of Biomedical Research Excellence7.

The pre-processing of this data is based on the the NIAK pipeline for rs-fMRI and includes
artifact/distortion removal, band pass filtering and registration to a standard space. Subjects
range by age from 18 to 65. The exclusion criteria were a history of neurological disorder,
mental retardation, severe head trauma with more than 5 minutes loss of consciousness,
or that of substance abuse or dependence within the last 12 months. The data were split
randomly into train, validation, and test sets, with respective sizes 102, 14, and 30.

Appendix F. More details and results for the CNP dataset

The CNP (Consortium for Neuropsychiatric Phenomics) dataset contains resting-state func-
tional MRI data of 138 healthy control subjects along with 58 schizophrenia, 49 bipolar
disorder, and 45 ADHD patients, all were assessed using the Structured Clinical Interview
for DSM Disorders (fourth edition). The dataset was obtained from the openneuro initia-
tive for shared fMRI data. Minimal preprocessing was conducted using the FMRIPREP
pipeline, including coregistration, normalization, unwarping, noise component extraction,
segmentation, skull stripping, etc.

All patients were assessed with the Structured Clinical Interview for the DSM (Fourth
Edition). We focus on distinguishing between schizophrenia and healthy subjects, and we
divided the data randomly into train, validation, and test sets, with sizes of 140, 20, and 20,
respectively.

The results for comparing the convergence of TFF and TFFvanilla during the shared fine-
tuning stage can be seen in Fig. 7. The results for the variable training set size experiment,
from the main text, can be seen in Fig. 8.

7http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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Figure 7: BAC vs training time. Figure 8: BAC vs. % of training set.

name operations repeats output size

Input output of the encoder / attention output sequences aggregated on batch dim 1 (5x2640)
Linear Block Linear 1 (5x2640)
Expand Dim UnFlatten, GroupNorm, LReLU, Conv 1 (5x32x10x12x11)
Up Block 1 Conv (kernel size 1), UpSample 1 (5x16x19x24x21)
Regular Block 1 GroupNorm, LReLU, Conv, GroupNorm, LReLU, Conv 1 (5x16x19x24x21)
Up Block 2 Conv (kernel size 1), UpSample 1 (5x8x38x47x41)
Regular Block 1 GroupNorm, LReLU, Conv3d , GroupNorm, LReLU, Conv 1 (5x8x38x47x41)
Up Block 3 Conv (kernel size 1), UpSample 1 (5x4x75x93x81)
Regular Block 1 GroupNorm, LReLU, Conv, GroupNorm, LReLU, Conv 1 (5x4x75x93x81)
Final Block Conv ,Conv (kernel size 1) 1 (5x1x75x93x81)

Table 9: The architecture of 3D the decoder network D.

Appendix G. Adopting the code for other modalities

Our code is available over GitHub8. It is modular and can be tweaked to support different
types of images and/or data. In the code, the volume data is a simple PyTorch tensor. The
data inside this tensor can be any volumetric data and can be pre-processed by various
pipelines. Additionally, by tweaking the architecture of the CNN encoder-decoder, one can
reshape the model to handle data of different dimensions.

In order to demonstrate the applicability of our method for other modalities, we have
trained TFF on a dataset of MRI scans (instead of fMRI). Since MRI scans do not have a
temporal component and are composed of single 3D volumetric data, this is an edge case for
TFF, in which it is applied on sequences with a length of 1. In this scenario, the transformer
model becomes a feed-forward network with a gating operator.

he OASIS-1 dataset9, which contains 416 MRI scans of different subjects, was employed.
A TFF model was pre-trained to reconstruct the acquired MRI volumes and fine-tuned to
predict the age of the subjects from the acquired MRI data.

The pre-training was applied on a random split of the OASIS-1 dataset, using a train-
validation-test split with 291, 62, 63 samples, respectively. Following TFF, the model was
initialized with a 3D CNN auto-encoder and was trained by the first pre-training stage to
reconstruct the entire MRI volumes. Each sample of the dataset is an MRI scan associated

8https://github.com/GonyRosenman/TFF
9https://www.oasis-brains.org/
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Model L1

TFF 18.25±2.85
TFFvanilla 21.12± 1.22

Table 10: Mean±SD over five runs for the age prediction task evaluated on the OASIS-1
dataset, which composed of 416 acquired MRI scans.

Model L1 L2 NMSE ×10

TFF 2.74±0.04 11.11±0.34 0.14±0.01
TFFvanilla 3.21±0.00 14.15±0.03 0.19±0.00
ST-GCN 3.21±0.08 14.06±0.10 0.19±0.05
Deep-fMRI 3.33±0.21 17.12±0.10 0.24±0.09

Table 11: Mean±SD over five runs for the age prediction task evaluated on the HCP dataset.
The p-value between TFF and the other three baselines is lower than 0.005.

with a different subject. The fine-tuning is initialized by the pre-trained 3D CNN encoder,
with a transformer model and a regression head on top. During fine-tuning, the model is
trained in an end-to-end manner, optimizing a standard regression loss to minimize the L2
distance between the model prediction and the age label of each subject.

To assess the validity of the pre-training procedure, we compared TFF to TFFvanilla,
which is the TFF baseline that does not benefit from the pre-training procedure. Importantly,
both models are composed of identical TFF models, where the only difference is that
TFFvanilla was not pre-trained to optimize a reconstruction objective.

As can be seen in Tab. 10, the proposed TFF model was able to produce a fairly good
performance, where the mean average error, across five different runs, is 18.25 while the
subjects’ ages vary between 18-90. Compared to the TFFvanilla, the full TFF method yields
an improvement of +2.87 of accuracy, which highlights the importance of the pre-training
procedure.

Appendix H. More results for the age prediction task

We further report the mean and standard deviation (STD) values of the L1, L2, and NMSE
metrics, calculated across five different runs of the age prediction task, for our method
and each of the three baselines described in Section 3. Overall, the results aggregate the
performance of 20 trials (5 experiments for each model). All models were trained on the
age prediction task, using the HCP dataset. As can be seen in Tab.11, TFF outperforms
the other alternatives by a sizeable margin (the error bars do not overlap) while producing
stable results over multiple runs (relatively low standard deviation). The p-value between
TFF and the other three baselines is lower than 0.005 in all cases.
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