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ABSTRACT

Diffusion-based large language models (dLLMs) generate text by gradually fill-
ing in masked tokens. However, they’re still slow because they usually decode
only one or a few tokens per step. Parallel decoding, which unmasks multi-
ple tokens simultaneously, offers a promising way to accelerate generation, but
it often degrades output quality when too many tokens are predicted at once.
We identify the root cause: unnecessary dependencies between decoded tokens.
When multiple tokens are decoded together, the model may incorrectly condi-
tion predictions on each other rather than relying solely on the already-generated
context. This leads to reduced output quality. To address this, we propose Dis-
entangled Decoding, a training–inference framework that suppresses harmful
intra-step dependencies in dLLM parallel decoding. In training, we introduce
dependency-aware self-distillation. The model learns, in a single forward pass,
to reproduce what a sequential two-step decoding would produce. This encour-
ages the model to predict multiple tokens based solely on global context rather
than jointly decoded tokens. At inference, we introduce Slow-Fast Decoding, a
dynamic strategy that tailors parallelism to each token’s dependency on context.
We quantify this dependency using Jensen–Shannon Divergence (JSD). Tokens
that are highly dependent on the already-generated context are grouped for faster
parallel generation; Other tokens are decoded slowly. Together, these components
enable stable, high-quality generation of up to five tokens per step. Across four
benchmarks, our method achieves up to 3.3× speedup over vanilla greedy de-
coding, with minimal loss in generation quality. Please see our project page at
https://anonymous.4open.science/r/dsquare-dlm.

1 INTRODUCTION

Generative models for natural language have become thehe cornerstone of modern artificial intelli-
gence, enabling a vast array of applications. Among these, Masked Diffusion Models (MDMs) (Nie
et al., 2025b; Ye et al., 2025) have emerged as a powerful and promising paradigm. By iteratively
denoising a sequence from a fully masked state, MDMs offer a highly parallelizable framework
for generation. This inherent parallelism presents a significant advantage, holding the potential for
substantial improvements in generation speed and efficiency, a critical factor for the deployment of
large-scale language models in real-world scenarios.

In practice, however, this potential for speed remains underutilized because most MDMs decode
only a few tokens at each step. Typically, the sequence is divided into blocks, and within each block,
tokens are revealed incrementally over multiple steps. Confidence-aware parallel decoding (Wu et al.,
2025; Yu et al., 2025) accelerates this by unmasking all tokens whose predicted probability exceeds
a high threshold. Yet, pushing for greater speed, by lowering the threshold to decode more tokens
per step, invariably leads to a sharp drop in generation quality. This sharp speed–quality trade-off
suggests that current models are not truly ready for aggressive parallelism.

We identify the root cause: unnecessary dependencies between tokens decoded in the same step.
To analyze this, we introduce the perspective of viewing MDM decoding as an iterative token
grouping process, where the goal at each step is to identify the largest possible group of tokens
that can be predicted in parallel without sacrificing coherence. The performance degradation at
low confidence thresholds occurs when this grouping is suboptimal, forcing tokens with strong
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inter-dependencies to be decoded simultaneously, thereby violating the underlying conditional
independence assumption. Our central hypothesis is that standard training objectives cause models to
learn unnecessary dependencies—spurious or overly rigid correlations between tokens that are not
linguistically essential but create artificial computational bottlenecks.

To address this, we propose Disentangled Decoding, a unified framework that tackles the problem at
both training and inference time. Our goal is to eliminate harmful intra-step dependencies.

In training, we introduce Dependency-Aware Self-Distillation. Specifically, the model is re-trained to
reproduce, in one forward pass, what a careful model would generate over two sequential decoding
steps. This forces the model to predict multiple tokens based on global context alone without artificial
couplings while preserving linguistically meaningful structure.

At inference, we complement this with a Slow-Fast Decoding strategy that dynamically parti-
tions tokens based on their sensitivity to the already-generated context. We measure this using
Jensen–Shannon Divergence (JSD), which quantifies the difference between its predictive distribution
with and without access to the preceding block. Tokens with high JSD are strongly shaped by context
and can be safely decoded in parallel; those with low JSD are more ambiguous and decoded slower.
This way, we only group together tokens that are truly ready for parallel decoding, balancing speed
and quality naturally.

Our contributions are threefold and can be summarized as follows:

• We introduce a novel perspective that frames MDM decoding as an iterative token grouping
problem, and identify the learning of unnecessary dependencies as the key bottleneck
limiting parallel generation performance.

• We propose Dependency-Aware Self-Distillation, a training method that teaches the model
to generate high-quality outputs in one pass by mimicking a two-step sequential decoder,
reducing reliance on artificial local dependencies.

• We develop a Slow-Fast Decoding, an inference strategy that uses Jensen–Shannon Di-
vergence to group only those tokens that are truly ready for parallel decoding, preserving
quality while accelerating generation.

• Through extensive experiments, we demonstrate that our combined approach significantly
pushes the speed-performance frontier for MDMs, achieving substantial acceleration factors
with minimal to no loss in generation quality, thereby outperforming existing state-of-the-art
methods.

2 RELATED WORKS

Discrete Diffusion Language Models. Discrete diffusion langugage models (dLM) have recently
been a compelling paradigm for non-autoregressive text generation. Unlike previous left-to-right
generation in autoregressive models, these dLM models operate by iteratively refining a sequence
from a corrupted state, typically one filled with [MASK] tokens. Pioneering works Gong et al.
(2025); Nie et al. (2025a) established the scalability of the masked diffusion language models,
demonstrating that these models could effectively leverage large-scale data and parameter counts.
With the demonstrated scalability, a series of new powerful diffusion language models Nie et al.
(2025b); Ye et al. (2025); Song et al. (2025); Khanna et al. (2025); Zhu et al. (2025) have emerged.
Most notably, recent open-source large diffusion language models such as LLaDA Nie et al. (2025b)
and Dream Ye et al. (2025) have achieved performance that is highly competitive with autoregressive
counterparts of comparable model scales, underscoring their viability as a promising architecture for
generative language tasks. Our work builds upon these works, addressing the critical challenge of
inference latency that currently limits their practical deployment.

Acceleration of Masked Diffusion Models. Despite their strong performance, a primary challenge
for Masked Diffusion Models is their inference latency, which often trails that of highly optimized
autoregressive models. This latency stems from two factors. First, the non-autoregressive nature of
the decoding process precludes the use of standard KV-caching mechanisms. Several works have
proposed specialized caching variants to reduce redundant computations in this setting Ma et al.
(2025); Liu et al. (2025); Wu et al. (2025); Wang et al. (2025). Second, and more central to our work,
is the bottleneck within the iterative decoding process itself. Previous approaches Nie et al. (2025b);
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Ye et al. (2025) often employ a greedy decoding strategy, decoding only the single most confident
token per step, which is computationally inefficient. Confidence-aware parallel decoding Wu et al.
(2025) mitigates this by simultaneously unmasking all tokens whose predicted confidence exceeds
a high threshold. However, this approach is constrained by a sharp speed-performance trade-off:
lowering the threshold to increase parallelism and accelerate inference invariably leads to a significant
degradation in generation quality. Our work explores to tackle this challenge to enabling it to
confidently generate larger groups of tokens per step by reshaping its learned tokens dependencies
through self-distillation and grouping constrain.

3 MASKED DIFFUSION MODELS DECODING AS ITERATIVE TOKEN GROUPING

Masked Diffusion Models (MDMs) Nie et al. (2025b); Ye et al. (2025) have recently emerged as a
powerful class of generative models for natural language, demonstrating compelling performance on
a diverse range of tasks. MDMs operate via a forward noising process that incrementally corrupts an
input sequence x0 by replacing its tokens with a special [MASK] token. This process is governed by
a predefined noise schedule, and the distribution of a noisy sequence xt at time t ∈ [0, 1] conditioned
on the original sequence x0 is given by:

q(xt|x0) =

n∏
i=1

q(xi
t|xi

0) =

n∏
i=1

Cat
(
xi
t; (1− t)δxi

0
+ tδ[MASK]

)
. (1)

Here, t represents the continuous diffusion time (or noise level), controlling the interpolation between
the clean data distribution at t = 0 and a fully masked sequence at t = 1.

The reverse process, which generates a clean sequence from a fully masked input x1, is learned
by a model pθ. Decoding is typically performed in a semi-autoregressive manner. The sequence
is partitioned into N contiguous blocks, {B1, . . . , BN}. These blocks are generated sequentially.
Within each block Bi, the masked tokens are denoised over multiple steps. The generation of block
Bi is conditioned on the previously generated blocks {B1, . . . , Bi−1} and the still-masked future
blocks {Bi+1, . . . , BN}:

pθ(xBi
|xB<i

,xmasked
B>i

) =

Mi∏
k=1

pθ(xtk−1,Bi
|xtk,Bi

,xB<i
,xmasked

B>i
), (2)

where xB<i
denotes the set of fully denoised preceding blocks, xmasked

B>i
denotes the subsequent

masked blocks, 1 = tMi
> · · · > t1 > t0 = 0 is a discrete reverse timestep schedule, and Mi is

the number of denoising steps for block Bi. A standard greedy approach reveals one token with
the highest model confidence at each step, making the number of steps equal to the block length
(Mi = |Bi|). This sequential intra-block decoding is a significant computational bottleneck.

To mitigate this, confidence-aware parallel decoding strategies Wu et al. (2025); Yu et al. (2025)
have been proposed. At each step, all masked tokens with a predicted probability exceeding a certain
threshold τ are decoded simultaneously. If no token’s confidence surpasses τ , only the single most
confident token is decoded. As theoretically justified Wu et al. (2025), for a high threshold τ = 1− ϵ,
the predictions for selected tokens are approximately conditionally independent. This allows for
parallel decoding that closely approximates the greedy sequential process, achieving significant
speedups (e.g., 3×) with negligible performance degradation for high τ (e.g., τ = 0.9).

We argue that this confidence-aware decoding implicitly performs a dynamic token grouping. The
key to accelerating MDM decoding lies in minimizing the number of sequential steps, Mi, for each
block. This is equivalent to finding an optimal partition of the tokens within a block. Let the set
of token indices in block Bi be Ii. The decoding process partitions Ii into an ordered sequence of
disjoint groups Pi = (G1, G2, . . . , GMi), where Ii =

⋃Mi

k=1 Gk. The generation of the block can
then be expressed as:

pθ(xBi
|context) =

Mi∏
k=1

pθ(xGk
|xG<k

, context), (3)

where xGk
are the tokens corresponding to indices in group Gk, and xG<k

are all previously decoded
tokens in the block. The parallel decoding strategy makes a crucial conditional independence
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assumption within each group:

pθ(xGk
|xG<k

, context) ≈
∏
j∈Gk

pθ(xj |xG<k
, context). (4)

The number of sequential steps is thus Mi = |Pi|, the number of groups in the partition.

However, a fundamental tension exists. Lowering the confidence threshold τ reduces Mi by creating
larger, more inclusive groups, but it often leads to a sharp decline in generation quality. This
performance drop occurs because a lower threshold is more likely to group tokens with strong inter-
dependencies into the same step Gk. This violates the independence assumption in Eq. 4, causing the
model to generate inconsistent or incoherent text.

4 METHODOLOGY

We hypothesize that this trade-off is not inherent but is exacerbated by unnecessary dependencies
learned by current MDMs. To address this, we propose complementary solutions at both training and
inference time.

Training. First, in Sec. 4.1, we introduce a self-distillation method designed to regularize the model,
removing superfluous dependencies while preserving essential linguistic structures. This enables
more aggressive parallel decoding under lower confidence thresholds without sacrificing performance.

Inference. Second, we propose Slow-Fast Decoding in Sec 4.2, an inference strategy that dynamically
groups tokens based on their sensitivity to already-generated context. As formalized in Eq. 3, we
use Jensen–Shannon Divergence (JSD) to measure the dependency between a token’s predictive
distribution with and without access to the preceding block. Tokens with high JSD are context-stable
and decoded in parallel (“fast”); those with low JSD are ambiguous and decoded sequentially (“slow”).
This adaptive grouping ensures only compatible tokens are processed together, preserving generation
quality while enabling acceleration.

4.1 DEPENDENCY-AWARE SELF-DISTILLATION

A primary obstacle to aggressive parallel decoding in MDMs is not linguistic dependency itself, but
the model’s tendency to learn spurious or overly rigid correlations that create artificial computational
bottlenecks. For instance, consider completing the phrase: "The report detailed the company’s
growth and expansion." Plausible completions could be ("financial", "global"), ("rapid",
"market"), or ("steady", "international"). While the words in each pair are semantically related, they
are not strictly dependent; the surrounding context strongly supports both tokens independently.
However, a standard MDM might learn an overly sensitive conditional model where predicting
"global" is difficult until "financial" is revealed. This forces a sequential decoding step that is not
linguistically essential—an artifact of an unnecessary dependency.

Our goal is to regularize the model to disentangle these unnecessary correlations, encouraging it to
rely more on the global context rather than spurious local cues from other masked tokens. This can
be formalized by contrasting the probabilistic assumptions of sequential and parallel decoding. For a
group of tokens G to be decoded, a cautious teacher model θ adheres to the chain rule, representing a
dependent, sequential generation process:

pθ(xG|context) =
|G|∏
j=1

pθ(xgj |x{g1,...,gj−1}, context). (5)

Conversely, an ideal parallel student model θ+ would rely on a factorized distribution, assuming
conditional independence given the context:

pθ+(xG|context) =
|G|∏
j=1

pθ+(xgj |context). (6)

Our objective is to make the student’s parallel model (Eq. 6) a high-fidelity approximation of
the teacher’s more robust, sequential generation (Eq. 5), specifically for token groups where the
independence assumption is linguistically plausible.
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To achieve this, we introduce dependency-aware self-distillation. The process requires training
data that faithfully mirrors the semi-autoregressive inference setting. For a given sequence x0, we
create an input xt by randomly selecting a block Bi, leaving preceding blocks B<i clean, masking
subsequent blocks B>i, and applying noise at a random level t ∈ [0, 1] to the active block Bi.

The distillation process trains a student model θ+ using a frozen, identical teacher model θ. Given an
input xt with masked indicesMt, we derive a sophisticated target distribution from the teacher in a
two-step process.

Teacher’s Two-Step Target Generation. First, the teacher performs an initial pass to compute
logits z(1) = fθ(xt) and identifies a set of "independently plausible" tokens K = {k ∈ Mt |
maxv σ(z

(1))vk > τtr}, where σ is the softmax function. These tokens are decoded to form a more
clean sequence xs. Second, the teacher performs a refined pass fθ(xs) to obtain updated logits z(2)

for the remaining, more ambiguous and dependent tokens. The final target logits ẑ are a composite,
using the original predictions for the confident set and the refined predictions for the rest:

ẑk =

{
z
(1)
k if k ∈ K

z
(2)
k if k ∈Mt \ K

∀k ∈Mt. (7)

This target encapsulates the teacher’s belief after a careful, sequential reasoning step.

Student Training and Objective. The student model performs only a single forward pass on the
initial input xt to produce its logits z+ = fθ+(xt). We align the student with the teacher’s composite
target by minimizing the KL divergence between their output distributions over all initially masked
tokens. The loss is weighted by the inverse of the sequence-level noise ratio t̂ (the total fraction of
masked tokens in xt):

Ldistill =
1

t̂
Ext∼q(xt|x0)

[ ∑
k∈Mt

KL
(
σ(ẑk)

∥∥∥ σ(z+
k )

)]
. (8)

By minimizing this objective, the student learns to directly produce the teacher’s refined output in
one step. It is explicitly trained to co-predict the tokens in K in parallel, effectively pruning the
unnecessary dependencies that would have otherwise forced a sequential generation, while preserving
the necessary conditional reasoning for more complex tokens.

Algorithm 1: Dependency Aware Self Distillation
Input: Frozen teacher θ, student θ+, sequence x0, confidence threshold τtr
Output: Updated student parameters θ+
for each training iteration do

Sample an active block index i and a noise level t ∼ U(0, 1);
Construct xt by keeping B<i clean, masking B>i, and applying noise of level t to Bi;
LetMt be the set of masked indices and set t̂← |Mt|/|x0|;
Decode tokens set K ←

{
k ∈Mt

∣∣∣ maxv π
(1)
k

v > τtr

}
, where π(1) ← σ

(
z(1)

)
;

Form xs by decoding tokens at K with argmaxv π
(1)
k

v;
Sample one more step with the teacher model z(2) ← fθ(xs);
Composite teacher target for k ∈Mt do

ẑk ←

{
z
(1)
k , k ∈ K

z
(2)
k , k ∈Mt \ K

;

Forward student model with the input of xt, z+ ← fθ+(xt);

Employ the KLD loss on all masked tokens Ldistill ←
1

t̂

∑
k∈Mt

KL
(
σ(ẑk)

∥∥σ(z+
k

))
;

Update θ+ by one gradient step to minimize Ldistill;

4.2 SLOW-FAST DECODING BASED ON JSD

While our dependency-aware self-distillation method (Sec. 4.1) effectively prunes unnecessary
dependencies, the confidence score remains an imperfect proxy for the true conditional independence
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required for parallel decoding. Especially at lower confidence thresholds, tokens with strong, yet-
unresolved dependencies can be erroneously grouped together, leading to a degradation in generation
quality. To mitigate this risk, we introduce a complementary mechanism: a JSD-based constraint that
provides a more direct measure of contextual dependency to guide the token grouping process.

Our key insight is that within any given block Bi, the uncertainty of a masked token is influenced
by two primary sources: the already-generated context from previous blocks (xB<i), and the yet-
to-be-generated context from other masked tokens within the same block. Tokens whose resolution
is highly dependent on the previous blocks are critical "linchpin" tokens; their incorrect generation
can derail the entire sequence. Therefore, we can quantify context dependency of tokens using
the Jensen-Shannon Divergence (JSD), which measures the difference between a token’s predictive
distribution with and without access to the denoised previous block.

Formally, for each masked token j in the active block Bi, we compute its token-wise JSD as:

Jj = JSD
(
pθ(·|xB<i ,x

masked
Bi\{j}, . . . )

∥∥∥ pθ(·|xmasked
B<i

,xmasked
Bi\{j}, . . . )

)
, (9)

where pθ(·|context) is the model’s predicted probability distribution for token j. A high Jj indicates
that the model’s prediction for token j changes significantly once the prior context xB<i is revealed,
marking it as highly dependent on that context. Conversely, a low Jj suggests the token is relatively
stable and primarily constrained by the global structure of the sentence rather than the specific
preceding words.
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Figure 1: Blockwise relationship between JSD and decoding order. We aggregate tokens from blocks
1–7 (block 0 excluded) across all samples. Steps denotes the decoding iteration for a specific token in
one block. (a) Mean Spearman ρ(JSD,−steps) per block with 95% confidence interval (shaded).
Positive ρ indicates that higher-JSD tokens tend to be decoded earlier within the block. (b) Mean
Steps versus JSD quantile (0–1; rank-based bins), with 95% confidence interval. The decreasing
curve shows that tokens with larger JSD are decoded earlier relative to peer tokens in the same block.

As empirical statistics shown in Fig. 2, we analyze the block-wise relationship between JSD and
token decoding order. These results motivate the design of our decoding strategy by revealing that
tokens with higher JSD tend to be decoded earlier within a block.

Building on this observation, we leverage the JSD metric to implement a dynamic, hybrid decoding
strategy. Instead of using a single, low confidence threshold τlow, we partition the masked tokens in
block Bi into two sets based on their JSD scores. A fixed, absolute JSD threshold would be brittle and
context-agnostic. Therefore, we propose a more robust, adaptive threshold based on the distribution
of JSD scores within the block itself. Specifically, we define a "slow set" Sslow and a "fast set" Sfast:

Sslow = {j ∈ Bi | Jj > mean({Jk}k∈Bi
)}, Sfast = Bi \ Sslow. (10)

Tokens in the fast set (low JSD) are decoded using an aggressive low confidence threshold τlow,
permitting high parallelism. Tokens in the slow set (high JSD), being more critical and context-
dependent, are decoded using a conservative high threshold τhigh until all have been revealed. This
hybrid approach allows for rapid decoding of stable tokens while ensuring careful, sequential
treatment of pivotal ones.

The effectiveness of this JSD-based partitioning is not merely empirical; it is grounded in the goal
of minimizing the error introduced by the parallel decoding assumption. We formalize this in the
Appendix Sec. A.2.
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5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

Our experiments are conducted using the representative masked diffusion language model LLaDA-
8B-Instruct Nie et al. (2025b). For dependency-aware self distillation, the training data is generated
with LLaDA-8B-Instruct model on the GSM8K Cobbe et al. (2021) training split with a sequence
length of 1, 024 and block length of 128, resulting in a total of 7.3K paired training samples. All
sequences are pre-filtered and truncated to the maximum length of 1,024 to ensure consistency
across samples. o minimize distributional shift during fine-tuning, we employ Low-Rank Adaptation
(LoRA) with rank 32, scaling factor 32, and a dropout rate of 0.1. The confidence threshold for
selecting independent tokens in the teacher’s first decoding step is set to τtr = 0.98. Both training
and inference are performed with a fixed block size of 32 tokens to keep consistency..

For the JSD-based constraint applied during inference, we fix the confidence threshold for the “slow”
set at τhigh = 0.9, while the threshold for the “fast” set, denoted τlow, is adjustable depending on
the desired decoding speed. During full-sequence generation, decoding starts with τlow applied to
all tokens. The JSD-based partitioning is activated beginning from the second block, as it requires
computing the JSD between the preceding block Bi−1 and the current block Bi. Tokens in Bi are
dynamically assigned to either the “fast” or “slow” set based on their JSD scores. After more than
60% of the “fast” tokens in Bi have been decoded, the remaining tokens, including those in the “slow”
set, are also decoded using the lower threshold τlow to continue parallel generation efficiently.

5.2 MAIN RESULTS AND ANALYSIS

Evaluation Benchmarks. Following common evaluation protocols, we evaluate our method on four
representative benchmarks spanning mathematical reasoning and code generation: GSM8K Cobbe
et al. (2021), HumanEval Chen et al. (2021), MATH Lewkowycz et al. (2022), and MBPP Austin et al.
(2021). These benchmarks are widely adopted to assess both the reasoning capability and generation
accuracy of large language models.

Baseline Fast-dLLM Self-Distillation
Benchmark Greedy τ = 0.9 τ = 0.8 τ = 0.7 τ = 0.9 τ = 0.8 τ = 0.7

GSM8K (5-shot) 79.3 78.8 77.7 76.2 78.9 79.2 78.6
5.2 12.7 ( 2.5× ) 16.2 ( 3.1× ) 20.3 ( 3.9× ) 11.01 ( 2.1× ) 14.1 ( 2.7× ) 17.6 ( 3.4× )

MATH (4-shot) 33.5 33.6 33.1 31.8 33.5 32.7 31.9
7.0 9.1( 1.3× ) 9.8( 1.4× ) 11.90 ( 1.7× ) 12.7 ( 2.7× ) 15.9 ( 3.2× ) 19.4 ( 3.8× )

HumanEval (0-shot) 41.5 42.7 38.4 34.1 39.6 37.8 32.9
16.3 54.3 ( 3.3× ) 67.3 ( 4.1× ) 81.12 ( 5.0× ) 48.7 ( 3.0× ) 60.1 ( 3.7× ) 73.2 ( 4.5× )

MBPP (3-shot) 29.4 29.6 29.2 26.4 29.2 29.0 26.8
3.3 13.6 ( 4.1× ) 16.7 ( 5.1× ) 20.2 ( 6.1× ) 12.2 ( 3.7× ) 14.8 ( 4.5× ) 17.7 ( 5.4× )

Table 1: Benchmark results on LLaDA-8B-Instruct with self-distillation only. To compare with
Fast-dLLM Wu et al. (2025), we gradually lower confidence threshold in decoding from 0.9 to 0.7.

Baseline Fast-dLLM Self-Distillation with JSD constrain
Benchmark Greedy τ = 0.9 τ = 0.8 τ = 0.7 τ = 0.9 τ = 0.8 τ = 0.7

GSM8K (5-shot) 79.3 78.8 77.7 76.2 78.9 78.8 79.2
5.2 12.7 ( 2.5× ) 16.2 ( 3.1× ) 20.3 ( 3.9× ) 11.01 ( 2.1× ) 13.8 ( 2.7× ) 17.1 ( 3.3× )

HumanEval (0-shot) 41.5 42.7 38.4 34.1 39.6 37.2 33.0
16.3 54.3 ( 3.3× ) 67.3 ( 4.1× ) 81.12 ( 5.0× ) 48.7 ( 3.0× ) 59.6 ( 3.7× ) 72.1 ( 4.4× )

MBPP (3-shot) 29.4 29.6 29.2 26.4 29.2 29.2 26.9
3.3 13.6 ( 4.1× ) 16.7 ( 5.1× ) 20.2 ( 6.1× ) 12.2 ( 3.7× ) 14.7 ( 4.5× ) 17.3 ( 5.2× )

Table 2: Benchmark results on LLaDA-8B-Instruct with self-distillation and JSD-based constrain.

Comparison with Baselines. We compare our results against two baselines: greedy decoding from
LLaDA Nie et al. (2025b) and parallel decoding with a fixed threshold τ = 0.9 from Fast-dLLM Wu
et al. (2025). All evaluations and speed measurements are conducted on an NVIDIA A4500 GPU.
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We first present results using only our proposed self-distillation method in Table 1. The results
demonstrate that our method consistently achieves higher accuracy on GSM8K compared to Fast-
dLLM under equivalent confidence thresholds. Although performance on HumanEval and MBPP
shows a slight decline, this is primarily due to the self-distillation being conducted exclusively on
a mathematical reasoning dataset. To mitigate this limitation, we extend our distillation training to
other domains, and those results are reported in the Appendix.

Overall experimental results on GSM8K, HumanEval, and MBPP are summarized in Table 2. Our
model, enhanced with self-distillation and JSD-based decoding constraint, achieves an accuracy
of 79.2 on GSM8K with a 3.3× speedup relative to greedy decoding. Under the same confidence
threshold, our method consistently outperforms Fast-dLLM Wu et al. (2025) on GSM8K. Moreover,
on both MBPP and HumanEval benchmarks, our approach yields consistent accuracy improvements,
particularly in decoding with low threshold. When compared to Table 1, the integration of the JSD
constraint introduces only negligible computational overhead. Specifically, at τ = 0.7 on the GSM8K
benchmark, the decoding speed decreases only slightly from 17.6 to 17.1 tokens per second.
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Figure 2: Accuracy trends on GSM8K, MBPP, and HumanEval as the confidence threshold is lowered
from 0.9 to 0.5.

6 LIMITATION

While our proposed Disentangled Decoding framework significantly improves the speed-quality
trade-off in Masked Diffusion Models, it is not without limitations. First, our self-distillation ap-
proach relies on synthetic training data generated by teacher model, which may introduce domain
bias when generalizing to out-of-distribution tasks, such as code generation or open-domain dialogue.
Although our method demonstrates strong performance on mathematical reasoning benchmarks, its
transferability to broader domains may require additional task-specific distillation data. Second, the
computation of Jensen–Shannon Divergence (JSD) during inference introduces modest overhead,
especially in early decoding stages where accurate context modeling is most critical. While this
overhead is minimal relative to the performance gains, it may still pose a bottleneck in extremely
latency-sensitive deployment scenarios. Finally, our current design assumes a fixed block structure
and uniform token partitioning, which may not optimally align with the dynamic nature of linguis-
tic dependencies. Future work could explore adaptive block scheduling or hierarchical grouping
mechanisms to further enhance decoding flexibility.

7 CONCLUSION

This work presents Disentangled Decoding, a unified framework for improving the efficiency and
robustness of Masked Diffusion Models (MDMs) through targeted mitigation of unnecessary token
dependencies. By viewing parallel decoding as an iterative token grouping problem, we identify over-
learned intra-step dependencies as a key barrier to speed-quality trade-offs. Our proposed Dependency-
Aware Self-Distillation enables the model to internalize cleaner, context-based predictions during
training, while the JSD-based grouping constraint adaptively regulates token selection at inference
time. Extensive evaluations across mathematical reasoning and code generation tasks demonstrate
that our approach significantly enhances decoding speed—achieving up to 3.3× acceleration without
compromising generation quality. These results establish a promising direction for making MDMs
truly scalable in real-world applications requiring fast, high-quality language generation.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The research ideas and experimental design of this paper were conceived entirely by the authors
without the use of LLMs. During manuscript preparation, we used GPT to assist with grammar
checking and refinement of language for clarity and readability.

A.2 THEORETICAL JUSTIFICATION FOR THE JSD-BASED CONSTRAINT

Theorem 1. Let the decoding process for a block Bi be a partition into an ordered sequence of
groups Pi = (G1, . . . , GM ). The error incurred at step k due to the parallel decoding assumption is
given by the KL divergence between the true sequential joint and the factorized approximation:

EGk
= KL

pθ(xGk
|Ck)

∥∥∥∥∥∥
∏
j∈Gk

pθ(xj |Ck)

 , (11)

where Ck = (xB<i ,xG<k
, . . . ) is the full context available before decoding group Gk. The total

error for the block is Etotal =
∑M

k=1 EGk
.

The JSD score for a token j ∈ Bi, defined as Jj = JSD (pθ(·|C1) ∥ pθ(·|C0)), where C1 is the context
with the true past block xB<i

and C0 is the context with it masked, quantifies the token’s sensitivity
to past-block context. A decoding strategy that applies a more conservative grouping (i.e., smaller
group sizes) to tokens with higher Jj scores serves as a principled approach to minimizing the total
expected generation error Etotal.

Proof. The proof proceeds in three parts. First, we decompose the group error term EGk
to reveal its

dependence on intra-group conditional information. Second, we relate the JSD metric to information-
theoretic quantities that measure contextual sensitivity. Finally, we argue that high contextual
sensitivity, as measured by JSD, implies a higher expected contribution to the error term, justifying
the proposed constrained grouping strategy.

1. Decomposing the Parallelization Error. The error term EGk
quantifies the discrepancy in-

troduced by ignoring the dependencies among tokens within the group Gk. Using the chain rule
for probability on the true joint, pθ(xGk

|Ck) =
∏

j∈Gk
pθ(xj |xGk,<j , Ck), where < j denotes an

arbitrary but fixed ordering within the group. The KL divergence can be expanded as follows:

EGk
= ExGk

∼pθ(·|Ck)

log pθ(xGk
|Ck)− log

∏
j∈Gk

pθ(xj |Ck)

 (12)

= ExGk
∼pθ(·|Ck)

 ∑
j∈Gk

log pθ(xj |xGk,<j , Ck)−
∑
j∈Gk

log pθ(xj |Ck)

 (13)

=
∑
j∈Gk

ExGk,≤j∼pθ(·|Ck)

[
log

pθ(xj |xGk,<j , Ck)
pθ(xj |Ck)

]
(14)

=
∑
j∈Gk

ExGk,<j∼pθ(·|Ck) [KL (pθ(·|xGk,<j , Ck) ∥ pθ(·|Ck))] . (15)

This decomposition shows that the total error for a group is the sum of expected KL divergences.
Each term represents the information gained about a token xj from knowing the other tokens decoded
just before it within the same parallel step. The parallel decoding error is large if tokens within a
group strongly inform one another.

2. The JSD as a Measure of Contextual Sensitivity. The Jensen-Shannon Divergence between the
predictive distributions for token j under context C1 (past revealed) and C0 (past masked) is defined
as:

Jj =
1

2
KL(p1∥pM ) +

1

2
KL(p0∥pM ), (16)
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where p1 = pθ(·|C1), p0 = pθ(·|C0), and pM = 1
2 (p1 + p0) is the mixture distribution. The JSD

is the mutual information between the random variable for token identity Xj and a binary random
variable C representing the context choice (C = 0 for C0, C = 1 for C1). A high Jj signifies that
revealing the past context provides substantial information about the identity of token j, implying
that the token’s predictive distribution is highly sensitive to its surrounding context. Such tokens are
often linguistically pivotal, resolving significant ambiguity in the sequence.

3. Linking Contextual Sensitivity to Parallelization Error. The core of our argument rests on the
well-founded linguistic assumption that a token’s sensitivity to its context is a general property. A
token whose identity is highly uncertain without the preceding block’s context (high Jj) is also likely
to be one whose identity is highly uncertain without the context provided by its peer tokens within a
decoding group. This is because both contexts serve to resolve ambiguity.

Let us consider a token j with a high JSD score, Jj . This indicates that its predictive distribution
pθ(xj |·) is highly variable with respect to changes in the conditioning context. When such a token is
placed in a large parallel group Gk, it is plausible that the information provided by its peer tokens
xGk,<j would also cause a significant shift in its distribution. This leads to a large value for the
corresponding KL term in the error decomposition (Eq. 15).

ExGk,<j
[KL (pθ(· | xGk,<j , Ck) ∥ pθ(· | Ck))] is expected to be large if Jj is large. (17)

Consequently, including tokens with high JSD scores in large parallel groups is likely to contribute
disproportionately to the total generation error Etotal.

Our proposed strategy directly mitigates this risk. By partitioning tokens into a "slow set" Sslow
(high JSD) and a "fast set" Sfast (low JSD), we isolate the high-risk tokens. Applying a conservative
decoding strategy (e.g., high confidence threshold τhigh, leading to small or singleton groups) to Sslow
ensures that these sensitive tokens are decoded with more complete context, thereby minimizing
their contribution to the parallelization error. Conversely, for tokens in Sfast, their low JSD suggests
robustness to contextual variations, making the factorized approximation in Eq. 6 more accurate and
justifying an aggressive parallelization strategy. This hybrid approach thus provides a principled
method for managing the speed-quality trade-off by allocating computational caution where it is most
needed, thereby minimizing the total expected error.
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