
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LSH TELLS YOU WHAT TO DISCARD: AN ADAPTIVE
LOCALITY-SENSITIVE STRATEGY FOR KV CACHE
COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based large language models (LLMs) use the key-value (KV) cache
to significantly accelerate inference by storing the key and value embeddings of
past tokens. However, this cache consumes significant GPU memory. In this work,
we introduce LSH-E, an algorithm that uses locality-sensitive hashing (LSH) to
compress the KV cache. LSH-E quickly locates tokens in the cache that are co-
sine dissimilar to the current query token. This is achieved by computing the Ham-
ming distance between binarized Gaussian projections of the current token query
and cached token keys, with a projection length much smaller than the embedding
dimension. We maintain a lightweight binary structure in GPU memory to facil-
itate these calculations. Unlike existing compression strategies that compute at-
tention to determine token retention, LSH-E makes these decisions pre-attention,
thereby reducing computational costs. Additionally, LSH-E is dynamic – at every
decoding step, the key and value of the current token replace the embeddings of a
token expected to produce the lowest attention score. We demonstrate that LSH-
E can compress the KV cache by 30%-70% while maintaining high performance
across reasoning, multiple-choice, long-context retrieval and summarization tasks.

1 INTRODUCTION

The advent of large language models (LLMs) has enabled sharp improvements over innumerable
downstream natural language processing (NLP) tasks, such as summarization and dialogue gener-
ation (Zhao et al., 2023; Wei et al., 2022). The hallmark feature of LLMs, the attention module
(Bahdanau, 2014; Luong, 2015; Vaswani, 2017), enables contextual processing over sequences of
tokens. To avoid repeated dot products over key and value embeddings of tokens, a key-value (KV)
cache is maintained in VRAM to maintain these calculations. This technique is particularly popular
with decoder LLMs.

However, the size of the KV cache scales quadratically with sequence length n and linearly with
the number of attention layers and heads. Assuming the size of the KV cache is n tokens, for
each new decoded token, n attention scores need to be added which requires a total of O(dn2)
computation, where d is the projection dimension, andO(n2) storage. For example, maintaining the
KV cache for a sequence of 4K tokens in half-precision (FP16) can require approximately ∼16GB
of memory for most models within the Llama 3 family (Dubey et al., 2024). These memory costs are
exacerbated with batched inference and result in high decoding latency (Fu, 2024). Consequently,
there is significant interest in compressing the size of the KV cache to enable longer context windows
and low-resource, on-device deployment.

An emerging strategy for reducing the size of the KV cache is token eviction. This approach drops
the key and value embeddings for past tokens in the cache, skipping future attention calculations
involving these tokens. Various token eviction/retention policies have been explored in recent liter-
ature, including the profiling of token type preferences (Ge et al., 2023), retention of heavy-hitter
tokens (Zhang et al., 2024b;a), and dropping tokens based on the high L2 norms of their key em-
beddings (Devoto et al., 2024). The latter approach (Devoto et al., 2024) is intriguing as eviction
decisions are performed pre-attention. However, this L2 dropout strategy in inclined towards long-
context retrieval tasks. It developed based on an empirical observation that smaller norm of key

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

embedding correlates with higher attention score. For long-context retrieval tasks, high-attention
score tokens are the most important tokens since the question’s text will overlap with the piece of
context that needs to be retrieved. Thus, it is specialized to retain only those tokens with the highest
attention, which we find unsuitable for free response reasoning tasks. Existing literature suggests
that retaining tokens with a diverse spectrum of attention scores (skewing high) is necessary (Guo
et al., 2024; Zhang et al., 2024b; Long et al., 2023).

Is there a non-attentive KV cache compression strategy that is performant over a wide variety of
tasks, including multiple-choice, summarization, long-context retrieval, and free response question-
answering? This work answers this question positively by introducing a novel strategy, LSH-E, that
dynamically determines token eviction pre-attention via locality-sensitive hashing (LSH) (Goemans
& Williamson, 1995; Charikar, 2002). LSH-E evicts a past token from the cache whose key em-
bedding is highly cosine dissimilar to the current query token embedding. The intuition behind this
strategy is that high cosine dissimilarity indicates a low dot-product attention score. To efficiently
scan for cosine (dis)similar tokens without performing attention, LSH-E leverages the SimHash
(Charikar, 2002; Goemans & Williamson, 1995) to instead compare Hamming distances between
c-length binary hashes of cached key embeddings and the current query embedding. We depict a
high-level visualization of this strategy in Figure 1.

LSH-E requires minimal overhead: for a total sequence length of ℓ tokens with embedding dimen-
sion d, LSH-E maintains a constant-size, low-cost binary array in GPU memory of size c×k bytes,
where c ≪ d is the hash dimension and k ≪ ℓ. Cached tokens with key embeddings that register
low Hamming similarity measurements to decoded query embeddings are gradually replaced.

(a) KV cache during decoding (b) LSH comparison at decoding step 4

Figure 1: An abstract visualization of LSH-E eviction strategy. Figure 1a depicts the strategy
for several decoding steps. The cache can only maintain 5 tokens due to memory constraints. At
each decoding step, LSH-E projects the query embedding of the current token i and all previous
key embeddings to binary hash codes. LSH-E then measures the negative of Hamming distances
between the query code of token i and key codes of all tokens j in the cache. Each step, LSH-E
evicts the key/values of the token with the lowest score (marked as red) from the cache. Figure 1b
depicts the LSH comparison for decoding step 4, marking the token “said” for removal, as its high
Hamming indicates low cosine similarity (and thus, low attention).

Our contributions are as follows:

• Novel Attention-Free Token Eviction We introduce a novel attention-free token eviction strat-
egy, LSH-E, that leverages locality-sensitive hashing (LSH) to quickly locate which token in the
cache is the least relevant to the current query. This ranking procedure consists entirely of cheap
Hamming distance calculations. The associated binary array for computing these similarities re-
quires minimal memory overhead. For a Llama 3 model, LSH-E can compress the KV cache by
30%-70% with minimal performance drop

• State-of-the-Art Performance LSH-E demonstrates high performance on reasoning tasks
(GSM8K Cobbe et al. (2021), MedQA Cobbe et al. (2021)), multiple-choice (GSM8K MC,
MedQA MC), long-context retrieval (Needle-in-a-Haystack, Common Word (Hsieh et al., 2024)),
and long-text summarization (MultiNews, GovReport Bai et al. (2023)). To the best of our knowl-
edge, LSH-E achieves state-of-the-art performance for attention-free eviction, outperforming

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the similar attention-free L2 method. Additionally, LSH-E outperforms attention-accumulation-
based methods on long text summarization tasks and achieves 1.5x speedup in the prefilling stage
and comparable speed in the decoding stage withoug low-level optimiations.

• Open-Source Implementation Upon public release of our manuscript, we will release an open-
source implementation of LSH-E through a fork of the popular cold-compress library (https:
//github.com/AnswerDotAI/cold-compress).

2 PRELIMINARIES

We aim to capture tokens whose query embeddings will form a large sum of dot products (i.e.,
attention scores) with other key embeddings, but without explicitly calculating attention. We will
leverage locality-sensitive hashing (LSH) to quickly determine cosine similarities since the angle
is equivalent to the dot product (for unit vectors). In this section, we review technical concepts
crucial to attention and locality-sensitive hashing. We assume some base level of similarity with
transformers, but we refer the reader to precise formalism (Phuong & Hutter, 2022).

Scaled Dot-Product Attention Consider a sequence of n tokens with e-dimensional real-valued
representations x1, x2, . . . , xn. Let Q = [q1 q2 · · · qn] ∈ Rn×d, K = [k1k2 · · · kn] ∈ Rd×n

where qi = Wqxi, ki = Wkxi and W,K ∈ Rd×e. The query and key projectors Wq and Wk are
pre-trained weight matrices. We also define a value matrix V = [v1 v2 v2 · · · vn] ∈ Rdout×n with
vi = Wvxi with trainable V ∈ Rdout×d, the scaled dot-product attention mechanism is given as

Attention(Q,K, V) = V · softmax
(Q⊤K√

d

)
. (1)

Typically, attention layers contain multiple heads {hi}Ji=1 each with distinct query, key, and value
projectors {W (hi)

q ,W
(hi)
k ,W

(hi)
v }Ji=1. In a multi-head setup, attention is computed in parallel across

all heads, and the outputs are concatenated together and then passed through a linear layer for pro-
cessing by the next transformer block.

As Q,K, V are updated with each new incoming token, to avoid significant re-computation, the
current state of Q⊤K, Q, and K are maintained in the KV cache. Our goal is to bypass attention
computation and caching for select tokens, i.e., sparsify the attention matrix Q⊤K, K, and V .

Locality-Sensitive Hashing We will now describe a family of locality-sensitive hashing (LSH)
functions able to efficiently approximate nearest neighbors (per cosine similarity) of key/query vec-
tors in high-dimensional Rd through comparison in a reduced c-dimensional space (per Hamming
distance) with c≪ d. Here, ”locality-sensitive” means points that are close together according to a
distance function distd(·, ·) in the ambient space remain close per another distance function distc(·, ·)
in the lower-dimensional space with high-probability. For a rigorous treatment of LSH functions,
see (Andoni et al., 2018; Charikar, 2002).

Formally for our setup, distd(x, y) ≜ cos θx,y = x⊤y
||x|| ||y|| and distc(p, q) ≜ dH(p, q) which denotes

the Hamming distance. We will project each vector from Rd into Zc
2, the space of c-bit binary strings

(which is often referred to as a binary hash code). To acquire a c-bit long hash code from an input
vector x ∈ Rd, we define a random projection matrix R ∈ Rc×d whose entries are independently
sampled from the standard normal distribution N (0, 1). We then define

h(x) = sgn(Rx), (2)
where sgn(·) (as an abuse of conventional notation) is the element-wise Heaviside step function:

sgn(x) :=
{
1, x ≥ 0

0, x < 0
.

For two unit vectors x, y ∈ Rd we have that,

1

c
· E[dH

(
h(x), h(y)

)
] =

θx,y
π

, (3)

3

https://github.com/AnswerDotAI/cold-compress
https://github.com/AnswerDotAI/cold-compress

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where θx,y = arccos(cos(θx,y)). We do not prove equation 3 in this work; see Theorem §3.1 in
(Goemans & Williamson, 1995, Theorem 3.1). In particular, if x and y are close in angle, the
Hamming distance between h(x) and h(x) is low in expectation. Increasing the hash dimension c
reduces variance.

The geometric intuition behind this LSH scheme is the following: each row R:,i of R defines a
random hyperplane in Rd. The Heaviside function sgn(·) indicates whether x is positively or nega-
tively oriented with respect to the hyperplane R:,i. Thus, the c hyperplanes divide the d dimensional
space into multiple partitions, and the resulting c-dimensional hash code is an index into one of the
partitions in which x is located. Therefore, vectors with the same or similar hash codes lie in the
same or close-by partitions and, therefore, are likely similar in angle. cwecwasdf

2.1 RELATED WORKS

KV Cache Compression Many popular compression strategies adopt an eviction approach, which
removes embeddings from the KV cache. H2O (Zhang et al., 2024b) and Scissorhands (Liu et al.,
2024b) calculate token importance by their accumulated attention scores and keep the “heavy hit-
ters” in the cache. FastGen (Ge et al., 2023) performs a profiling pass before the generation stage
that assigns to each head, according to the head’s attention patterns, a pruning policy which only
retains categories of tokens (punctuation, special, etc.) favored by the head. These eviction strate-
gies depend on the computation of attention scores for their policy. An attention-free L2 dropout
method (Devoto et al., 2024), which we compare ourselves to in this work, uses the observation
that high-attention tokens tend to have low L2 key norms to approximately keep important tokens
in cache. Other methods seek to merge KV caches across heads, such as grouped query attention
(GQA) (Ainslie et al., 2023; Dubey et al., 2024). KVMerger (Wang et al., 2024) and MiniCache
(Liu et al., 2024a), which searches for similarity between tokens in consecutive attention layers and
subsequently merges KV cache entries across these layers. While these consolidation approaches
prevent memory complexity associated with KV caches from scaling with depth or multi-head at-
tention, the size of any singular cache still tends to scale with sequence length.

LSH Based Attention Similar to our work, Reformer (Kitaev et al., 2020) employs LSH to find
similar tokens, but as a way to replace the softmax attention as opposed to token eviction. It creates
hash buckets of tokens that form local attention groups and only attends to tokens in the same and
neighboring buckets. However, this makes Reformer vulnerable to missing important tokens due
to hash collision or boundary issues, and therefore, it must use multiple hash tables to mitigate this
issue. In a similar vein, KDEFormer (Zandieh et al., 2023), HyperAttention (Han et al., 2023), and
Zandieh et al. (2024a), use LSH to stably approximate and compressing the attention module thus
accelerating the computation, but without token eviction. SubGen (Zandieh et al., 2024b) uses LSH
to cluster key embeddings and samples representatives from each cluster to reduce the size of the
KV Cache and consequently speed up attention, though it must initially view all queries and keys to
perform this clustering which could result in VRAM blowup, which our method avoids.

3 LSH-E: A LOCALITY-SENSITIVE EVICTION STRATEGY

We now formalize our eviction method reflected in Algorithm 1. We assume that the KV cache has a
limited and fixed budget and conceptually divide the KV cache management during LLM inference
into two stages: the initial Prompt Encoding Stage and then a Decoding Stage (i.e., generation).

Let C be a constant and fixed cache budget, K be the key cache, and V be the V cache in a K-V
attention head. We define our eviction policy as a function

Kt,Vt,Ht ← P (q,Kt−1,Vt−1,Ht−1) (4)

where Ht ∈ {0, 1}b×C is a hash table that contains hash codes of keys in K. We then define a
function Fscore to assign a score for each key inside the K cache. Fscore outputs an array which
contains the negative of hamming distances dH between the hash code of a query vector q and
columns ofH, which are hash codes of all non-evicted keys.

Fscore(q,K) = −dH(h(q),H) (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The eviction index et at any step t is selected as the index with the lowest score:

et ← argminFscore(qt−1,Ht−1) (6)

which points to the key that is most distant from the query vector at time step t. Entries at index et
from the K and V are evicted andH is updated (step 3-6 of Algorithm 1).

Algorithm 1 LSH-E (timestep t)

Require: query q, key k, value v, key cache K, value cache V , hash tableH
1: et ← argminFscore(qt,Ht−1) ▷ Determine eviction index et
2: del Ket

t−1, Vet
t−1,Het

t−1 ▷ Remove entries at index et from KV cache and hash table
3: Kt ← Kt−1 ∪ kt ▷ Update key cache
4: Vt ← Vt−1 ∪ vt ▷ Update value cache
5: Ht ← Ht−1 ∪ h(kt) ▷ Add hash of kt to the hash table
6: A← Attention(q,KT ,VT) ▷ Calculate attention

Prompt Encoding Stage During the prompt encoding stage, the model processes the prompt,
xprompt = [x1, ..., xN] ∈ RN×d. The KV cache and the hash table are first filled to full by the
first C tokens. K0 = {k1, ..., kC},V0 = {v1, ..., vC},H0 = h(K0) =

⋃
i∈[1,C] h(ki). We then set

t← C + 1, and begin Algorithm 1.

Decoding Stage Let xdecoding = [z1, ...zT] ∈ RT×d be the generated tokens during auto-
regressive decoding. In the decoding stage, we continue Algorithm 1 by setting t < −N + 1.
The generation completes at time step N + T .

Complexity Our strategy assumes a fixed memory budget, and therefore, uses constant memory.
The computation overhead per time step is also constant, because Fscore is calculated for a constant
C number of key vectors in the cache. The extra memory overhead that LSH-E introduces to each
attention head is the hash table H, which only uses C ∗ b bits of space and is independent of the
sequence length. The hash table is stored on GPU memory and does not introduce any latency
bottlenecks associated with CPU-to-GPU streaming (Strati et al., 2024).

4 EXPERIMENTS

Tasks We evaluated our LSH eviction strategy across various tasks to demonstrate its effectiveness
in reducing the memory cost of the KV cache while preserving the language quality of the generated
text. Our experiments are split into four main categories: free response question answering, multiple
choice, long-context retrieval and long-context summarization. Our long context retrieval tasks
include the multi-key needle-in-a-haystack task and the common words task from (Hsieh et al.,
2024). Question answering tasks include GSM8K (Cobbe et al., 2021) and MedQA (Jin et al.,
2021). Summarizaiton tasks include GovReport and MultiNews from Bai et al. (2023).

Metrics The question-answering tasks were evaluated using BERTScore (which includes preci-
sion, recall, and F1 scores), ROUGE (ROUGE-1, ROUGE-2 and ROUGE-L and ROUGE-Lsum),
and GPT4-Judge. GPT-4 was prompted to look at both the model prediction and the ground truth an-
swer, then provide a score from 1 - 5 on the coherence, faithfulness, and helpfulness of the answer in
addition to similarity between the prediction and ground truth (we named this metric GPT4-Rouge).
In this section, we report the average of these four scores. For details on individual scores, please
see Appendix B. For the system prompts given to GPT-4, refer to Appendix G.2. For multiple-
choice tasks, we use accuracy as our metric. The metric used to evaluate long context retrieval tasks
is the string matching score from Hsieh et al. (2024), whose definition is in Appendix G.1. For
summarization tasks, we use Rouge as the metric as per direction from Bai et al. (2023).

Configuration and Setup We conducted most experiments using Meta’s Llama3 8B-Instruct
model (Dubey et al., 2024) with the exception of long text summarization tasks which were tested
using the Llama3.1 8B-Instruct model. Our method is agnostic to grouped-query attention, so we
used the default group size of 4. The maximum sequence length was set to the sum of the maximum

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

prompt length and the maximum number of allowed generated tokens needed for each task. We con-
ducted experiments using cache budgets of 10%, 30%, 50%, 70%, and 90% of the full KV cache.
Based on insights from (Xiao et al., 2023; Child et al., 2019; Beltagy et al., 2020), we also keep
the most recent 10 tokens and the first 4 tokens of the prompt always in the KV cache. The sum-
marization tasks were performed on Nvidia H100 80GB graphics cards due to their long contexts.
All other experiments were conducted on the Google Cloud Platform G2 instances with Nvidia L4
24GB graphics cards.

Baseline Methods We chose the L2 norm-based eviction method (Devoto et al., 2024) as our main
baseline for comparison because it is also an attention-free KV cache eviction method. We also
included two attention-accumulation-based methods: H2O Zhang et al. (2024b) and Scissorhands
Liu et al. (2024b), as well as a hybrid method: Fastgen Ge et al. (2023).

4.1 FREE RESPONSE QUESTION ANSWERING

We tested our strategy against tasks that require generating accurate answers using multi-step rea-
soning. Specifically, we used the GSM8K and MedQA datasets to assess language quality for each
strategy, given a constrained KV cache budget. Both tasks are used to test the potential side effects
of compression on the LLM’s reasoning ability.

GSM8K GSM8K consists of grade-school-level math problems that typically require multiple
reasoning steps. As shown in Figure 2, our LSH eviction strategy consistently outperforms the L2

norm-based method across various cache sizes. Notably, even when the KV cache budget is set to
50% of the full capacity, the LSH eviction strategy maintains a high answer quality, with minimal
degradation in BERTScore F1, ROUGE-L, and GPT4-Judge scores. Additionally, LSH-E performs
on par with H2O and Scissorhands without accumulating attention scores.

(a) BERTScore F1 (b) Rouge L (c) GPT4-Judge

Figure 2: GSM8K Question Answering Performance. We measure BERTScore F1, Rouge-L, and
GPT4-Judge for different cache budgets on a grade school math task. LSH-E outperforms L2 for
all three metrics for every budget, with sharp differences for the 50% and 30% compression. LSH-E
performs similarly to H2O and Scissorhands except at 10% cache budget.

MedQA MedQA is a free response multiple choice question answering dataset collected from
professional medical board exams. We randomly sampled 100 questions from this dataset. Each
question has 5 choices and only one correct answer, along with ground truth explanations and rea-
soning steps. Figure 3 illustrates that LSH-E performs better than all baseline methods for all cache
budgets tested. For both datasets, LSH-E produced more coherent and helpful answers across all
cache budgets than the baselines per Table 8.

For detailed experiment results of both question anwering tasks, and for comparison with Fastgen at
various attention recovery ratios, please refer to Appendix B.

4.2 MULTIPLE CHOICE QUESTION ANSWERING

We evaluated our method on multiple-choice versions of GSM8K and MedQA. Multiple choice is a
more difficult test of a model’s reasoning capability under the constraint of cache compression, as it
takes away the ability to use intermediate results in the generated text. The model has to keep useful
tokens during prompt compression in order to pick the correct answer choice.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) BERTScore F1 (b) Rouge L (c) GPT4-Judge

Figure 3: MedQA Question Answering Performance. We measure BertScore F1, Rouge-L, and
GPT4-Judge for different cache budgets on a medical exam task. LSH outperforms L2 for all three
metrics for every budget, with a significantly higher performance for the 30% and 10% budgets.

GSM8K Multiple Choice For the GSM8K multiple choice experiments, LSH significantly out-
performs L2 for cache budgets of 30% and 50%. As shown in Figure 4a, the L2 method’s accuracy
drops significantly at smaller cache sizes, while the performance of LSH-E does not significantly
drop until the cache budget is set at 10%.

(a) Accuracy on the GSM8K Multiple Choice (b) Accuracy on the MedQA Multiple Choice

Figure 4: Multiple Choice Tasks Performance. On GSM8K, LSH-E outperforms the baseline full
cache on GSM8K at 70% and 50% cache budgets and significantly outperforms L2 at 70%, 50%,
and 30%. LSH-E performs on par with L2 overall on MedQA with higher performance at 90%
(near uncompressed performance) and 70% budget and slightly lower performance at 50% budget.

MedQA Multiple Choice Per Figure 4b, the MedQA multiple choice experiment, LSH offers
better performance than L2 eviction for all tested cache budgets except for 50%. Performance
between both methods is highly similar at lower budgets.

4.3 LONG-CONTEXT RETRIEVAL

To evaluate LSH-E’s ability to retain and retrieve important pieces of information from long con-
texts, we used the Needle-in-a-Haystack and Common Words tasks from Hsieh et al. (2024) with
4K context length. These tests benchmark the ability of a compression strategy to retain important
tokens inside the KV cache within a large, complext stream of context.

Needle-in-a-Haystack In the Needle-in-a-Haystack task, the model must extract specific informa-
tion buried within a large body of text. As illustrated in Figure 5b, LSH-E slightly outperforms L2

at every cache budget except for 90%, and both methods see a sharp drop in the ability to recall the
“needle” (a small, targeted piece of context) after the cache budget drops to 50% and lower. LSH-E
outperforms L2 for these smaller cache sizes.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Common Words In the Common Words task, the model must identify the most frequent words
from a long list. Figure 5a demonstrates that LSH-E performs on par with L2 eviction in general
and slightly better at 30%, 50%, and 90% cache budget. Both methods outperform the full cache
model at 90% cache size, indicating that some cache compression can actually increase performance.
Neither method experienced a significant drop in performance until the cache budget was reduced
to 30%.

(a) String Match Score on Common Words (b) String Match Score on Needle-in-a-Haystack

Figure 5: Long-Context Tasks. We measure string-matching scores for two long-context retrieval
tasks. LSH-E performs on par with L2 on the Common Words task with slightly higher perfor-
mance at a 30% cache budget and slightly lower performance at a 10% budget. For the Needle-in-
a-Haystack task, LSH-E performs on par with L2 with slightly higher performance at a 50% cache
budget.

4.4 LONG TEXT SUMMARIZATION

To evaluate LSH-E’s ability to handle exceptionally long context lengths, we incorporated the Multi-
News and GovReport summarizations tasks from LongBench Bai et al. (2023). We tested both tasks
using the Llama3.1-8B-Instruct model and used context size of 16K tokens.

(a) Rouge-L on MultiNews (b) Rouge-L on GovReport

Figure 6: LongBench Summarization Tasks We measure Rouge-L for two long text summarization
tasks. LSH-E outperforms all baseline methods on MultiNews at 30 - 70% cache budget. LSH-E
performs better than L2 on GovReport at 50% cache budget similarly at 30% and 70%.

MultiNews The MultiNews dataset contains clusters of 2-10 news articles discussing the same
event or topic. The model is asked to provide a one-page summary of the articles. LSH-E outper-
forms all baselines in the MultiNews summarization task at 30-70% cache budget. At 90% cache
budget, LSH-E still outperforms H2O and Scissorhands while being slighly lower thant L2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

GovReport The GovReport dataset contains reports spanning a wide variety of national policy
issues from the U.S. Government. The model is asked to produce a one-page summary of the reports.
LSH-E performs on par with and sometimes slightly better than L2 at 30-70% cache budget, while
not as well as H2O or Scissorhands.

4.5 THROUGHPUT

To evaluate the speed of LSH-E and baseline methods, we measured the decoding and prefilling
speed during the MultiNews evaluation. Because the length of answers generated by each eviction
strategy generates can be different, we report decoding and prefilling speed in tokens per second
instead of elapsed time.

Table 1: Throughput on LongBench MultiNews Summarization Task LSH-E method is as fast
as L2 and faster than other baselines at both prefilling and decoding, even without low-level opti-
mizations (i.e., expressing our hash tables in true binary bits). At the prefill stage, LSH-E is 1.5x as
fast as H2O and Scissorhands and 17x as fast compared to FastGen.

Cache Budget (%)
/ Fastgen Attn

Recovery Frac (%)
Strategy Rouge L Decode

Toks Per Sec
Prefill

Tokes Per Sec

30

LSH-E 0.180 22.880 20293.524
L2 0.165 23.981 20628.160

H2O 0.175 21.555 13025.776
Scissorhands 0.175 21.448 13004.254

50

LSH-E 0.186 22.846 20459.961
L2 0.174 16.013 15851.952

H2O 0.181 21.973 13969.985
Scissorhands 0.182 20.978 13549.967

70

LSH-E 0.187 22.914 21002.334
L2 0.187 24.305 21303.763

H2O 0.184 21.793 14050.521
Scissorhands 0.183 21.705 13954.693

90

LSH-E 0.185 22.873 21229.230
L2 0.186 24.010 21305.693

H2O 0.181 21.665 14007.697
Scissorhands 0.182 21.411 14025.440

100 Full 0.192 16.071 16573.492

70

Fastgen

0.129 12.752 1171.069
75 0.174 12.291 1157.987
80 0.184 11.850 1142.679
85 0.183 11.658 1164.689

4.6 MEMORY USAGE

Table 2 compares the memory usage of the KV cache and relevant data structures of L2 and LSH-E
on the GSM8K and MedQA question answering experiments. LSH-E maintains H, a binary hash
matrix of the attention keys in memory and, therefore, has slightly higher memory usage than L2

eviction. Our implementation uses 8 bits for binary values instead of 1 bit. Using 1-bit binary
numbers would reduce the memory overhead of LSH-E by a factor of 8 and narrow the difference
in memory usage between LSH-E and L2.

4.7 ABLATION ON LSH DIMENSION

To determine the effect of the LSH compression dimension, we conducted an ablation study using
the GSM8K free response dataset. Fixing the cache budget to 50%, we tested LSH dimensions of 4,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: GSM8K and MedQA Question Answering KV Cache Memory Usage. LSH-E main-
tains a binary hash matrix of attention keys in memory and, therefore, has slightly higher memory
usage than L2. Our implementation uses 8-bits for binary values instead of 1-bit. Using 1-bit binary
numbers will reduce the memory overhead of LSH-E by a factor of 8 and decrease the difference in
memory usage between LSH-E and L2.

GSM8K MedQA

Cache
Budget

(%)
Strategy Compression

Ratio

Cache
Memory

(GB)

Compression
Ratio

Cache
Memory

(GB)

10 L2 0.8355 0.7603 0.9289 2.5342
LSH-E 0.8380 0.8120 0.8812 2.6338

30 L2 0.6234 1.7740 0.6957 7.3492
LSH-E 0.6018 1.8531 0.6360 7.5786

50 L2 0.3968 2.7876 0.4175 12.1641
LSH-E 0.3716 2.8941 0.3901 12.5235

70 L2 0.1967 3.8013 0.1803 17.2325
LSH-E 0.1857 3.9351 0.1740 17.7285

90 L2 0.0859 4.8150 0.0498 22.0474
LSH-E 0.0823 4.9761 0.0483 22.6734

100 Full 0.0000 12.6934 0.0000 51.1181

8, 16, 32 and 64 bits. The choice of LSH dimension does not significantly impact performance. In
fact, 8 bits performed the best, but not noticeably better than higher dimensions. This demonstrates
that LSH-E does not require a high hashing dimension and can be executed with minimal storage
overhead. When using 8 bits, the storage overhead is 1 byte× cache size. For example, in a Llama3
70B-Instruct deployment with 80 layers, 8 KV-heads, sequence length of 8192, batch size of 8 and
50% cache budget, LSH dimension of 8-bits, we have that 16-bits and 32-bits only use an extra
20MB, 40MB, and 80MB respectively, which are significantly smaller than the KV cache size of
640GB. Detailed results can be found in Table 9 of Appendix C.

5 DISCUSSION & CONCLUSION

In this paper, we introduce LSH-E, a novel attention-free eviction strategy for KV cache compres-
sion in transformer-based LLMs. By leveraging locality-sensitive hashing (LSH) to approximate
cosine similarity, LSH-E dynamically determines which tokens to evict from the cache without
performing costly attention calculations. Our experiments demonstrate that LSH-E can achieve
30-70% compression of the KV cache while maintaining strong performance across various tasks,
including free-response Q&A, multiple-choice Q&A, and long-context retrieval.

The key advantage of LSH-E lies in its ability to efficiently compress the KV cache pre-attention,
enabling significant memory savings and faster inference times. Compared to traditional strategies
like L2 norm-based eviction (Devoto et al., 2024), LSH-E excels particularly in reasoning and
multiple-choice tasks, where maintaining a diverse set of tokens in the cache is crucial for generating
accurate and coherent responses.

There are several potential areas for future work. Investigating hybrid approaches that combine
LSH-based eviction with attention-based mechanisms such as (Zhang et al., 2024b; Ge et al., 2023)
could offer a middle ground between computational efficiency and retention of high-importance
tokens. Further, reducing the overhead associated with maintaining binary hash codes (e.g., by
optimizing bit precision) could further enhance the applicability of LSH-E to memory-constrained
environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search in high
dimensions. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro
2018, pp. 3287–3318. World Scientific, 2018.

Dzmitry Bahdanau. Neural machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pp. 380–388, 2002.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective l 2
norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analy-
sis. arXiv preprint arXiv:2405.08944, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):
1115–1145, 1995.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
importance indicator in kv cache reduction: Value also matters. arXiv preprint arXiv:2406.12335,
2024.

Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut, and Jonathan Berant. Memory-efficient
transformers via top-k attention. arXiv preprint arXiv:2106.06899, 2021.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. arXiv preprint arXiv:2310.05869,
2023.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What’s the real context size of your long-context language models? arXiv
preprint arXiv:2404.06654, 2024.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
ease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Mini-
cache: Kv cache compression in depth dimension for large language models. arXiv preprint
arXiv:2405.14366, 2024a.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024b.

Sifan Long, Zhen Zhao, Jimin Pi, Shengsheng Wang, and Jingdong Wang. Beyond attentive tokens:
Incorporating token importance and diversity for efficient vision transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10334–10343, 2023.

Minh-Thang Luong. Effective approaches to attention-based neural machine translation. arXiv
preprint arXiv:1508.04025, 2015.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv preprint
arXiv:2207.09238, 2022.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Foteini Strati, Sara Mcallister, Amar Phanishayee, Jakub Tarnawski, and Ana Klimovic.
D\’ej\avu: Kv-cache streaming for fast, fault-tolerant generative llm serving. arXiv preprint
arXiv:2403.01876, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In International Conference on Machine Learning, pp. 40605–
40623. PMLR, 2023.

Amir Zandieh, Majid Daliri, and Insu Han. Qjl: 1-bit quantized jl transform for kv cache quantiza-
tion with zero overhead. arXiv preprint arXiv:2406.03482, 2024a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Amir Zandieh, Insu Han, Vahab Mirrokni, and Amin Karbasi. Subgen: Token generation in sublin-
ear time and memory. arXiv preprint arXiv:2402.06082, 2024b.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and Atlas Wang. Q-hitter:
A better token oracle for efficient llm inference via sparse-quantized kv cache. Proceedings of
Machine Learning and Systems, 6:381–394, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024b.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A FURTHER RELATED WORKS

Memory Efficient Transformers Multi-Query Attention (Shazeer, 2019) and Grouped Query At-
tention (Ainslie et al., 2023) reduce the number of key-value matrices by sharing them across mul-
tiple query heads to save KV cache memory usage. However, they require re-training or up-training
the LLM. Cache quantization methods (Hooper et al., 2024; Sheng et al., 2023) reduce the KV cache
size by compressing the hidden dimension instead of along the sequence dimension but can result in
information loss. Linear Transformer (Katharopoulos et al., 2020) reduces memory usage by replac-
ing the softmax attention with linear kernels and, therefore, achieves constant memory requirement

B QUESTION ANSWERING GRANULAR EXPERIMENT RESULTS

Table 3: GSM8K and MedQA Question Answering BERTScore

GSM8K Medqa

Cache Budget /
Fastgen Attn

Recovery Frac (%)
Strategy Precision Recall F1 Precision Recall F1

10

LSH-E 0.859 0.806 0.831 0.857 0.808 0.832
L2 0.858 0.798 0.826 0.833 0.813 0.823

H2O 0.877 0.830 0.853 0.866 0.795 0.829
Scissorhands 0.873 0.825 0.848 0.867 0.795 0.829

30

LSH-E 0.893 0.854 0.873 0.867 0.834 0.850
L2 0.885 0.847 0.865 0.855 0.834 0.844

H2O 0.893 0.860 0.877 0.878 0.802 0.838
Scissorhands 0.893 0.858 0.875 0.877 0.802 0.838

50

LSH-E 0.897 0.865 0.880 0.869 0.842 0.855
L2 0.891 0.861 0.875 0.866 0.841 0.853

H2O 0.896 0.866 0.881 0.879 0.803 0.839
Scissorhands 0.896 0.864 0.879 0.878 0.804 0.839

70

LSH-E 0.896 0.866 0.881 0.869 0.843 0.855
L2 0.894 0.865 0.879 0.868 0.842 0.855

H2O 0.897 0.867 0.881 0.879 0.801 0.838
Scissorhands 0.896 0.864 0.880 0.879 0.803 0.839

90

LSH-E 0.897 0.867 0.881 0.868 0.843 0.855
L2 0.896 0.866 0.881 0.868 0.843 0.855

H2O 0.897 0.867 0.881 0.879 0.801 0.838
Scissorhands 0.896 0.864 0.880 0.880 0.802 0.839

50

Fastgen

0.811 0.770 0.789 0.816 0.763 0.788
60 0.827 0.778 0.801 0.806 0.766 0.785
70 0.837 0.788 0.811 0.811 0.766 0.787
80 0.874 0.840 0.857 0.866 0.793 0.828
90 0.896 0.864 0.879 0.876 0.800 0.836

100 Full 0.897 0.867 0.882 0.868 0.843 0.855

C RESULTS OF ABLATION ON LSH DIMENSION

Please see Table 9

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: GSM8K Question Answering Rouge

Cache Budget /
Fastgen Attn

Recovery Fra(%)
Strategy Rouge 1 Rouge 2 Rouge L Rouge Lsum

10

LSH-E 0.206 0.051 0.157 0.186
L2 0.196 0.050 0.151 0.179

H2O 0.300 0.090 0.227 0.263
Scissorhands 0.271 0.074 0.205 0.238

30

LSH-E 0.446 0.187 0.341 0.383
L2 0.392 0.149 0.288 0.337

H2O 0.481 0.208 0.364 0.410
Scissorhands 0.471 0.203 0.357 0.403

50

LSH-E 0.511 0.234 0.393 0.438
L2 0.476 0.205 0.355 0.409

H2O 0.517 0.238 0.398 0.442
Scissorhands 0.509 0.232 0.389 0.433

70

LSH-E 0.521 0.240 0.401 0.446
L2 0.509 0.230 0.386 0.435

H2O 0.523 0.243 0.404 0.446
Scissorhands 0.510 0.233 0.392 0.435

90

LSH-E 0.525 0.243 0.403 0.449
L2 0.522 0.241 0.400 0.446

H2O 0.523 0.243 0.406 0.446
Scissorhands 0.512 0.235 0.393 0.436

50

Fastgen

0.112 0.017 0.095 0.106
60 0.133 0.024 0.113 0.126
70 0.171 0.036 0.139 0.160
80 0.356 0.128 0.264 0.305
90 0.509 0.231 0.391 0.434

100 Full 0.526 0.244 0.403 0.449

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: GSM8K Question Answering GPT4-Judge

Cache Budget /
Fastgen Attn

Recovery Frac (%)
Strategy Similarity to GT Coherence Faithfulness Helpfulness

10

LSH-E 1.018 1.387 1.147 1.083
L2 1.005 1.293 1.098 1.033

H2O 1.172 2.304 1.566 1.630
Scissorhands 1.138 2.132 1.424 1.452

30

LSH-E 2.520 3.767 3.216 3.190
L2 1.356 2.428 1.895 1.841

H2O 3.014 4.252 3.706 3.860
Scissorhands 2.906 4.184 3.636 3.798

50

LSH-E 3.457 4.530 4.212 4.241
L2 2.190 3.494 3.035 3.027

H2O 3.798 4.712 4.434 4.534
Scissorhands 3.582 4.604 4.276 4.400

70

LSH-E 3.734 4.671 4.404 4.444
L2 2.934 4.184 3.817 3.820

H2O 3.940 4.774 4.576 4.656
Scissorhands 3.712 4.668 4.334 4.462

90

LSH-E 3.569 4.578 4.324 4.361
L2 3.837 4.722 4.468 4.525

H2O 3.970 4.814 4.596 4.688
Scissorhands 3.750 4.676 4.392 4.504

50

Fastgen

1.000 1.074 1.040 1.028
60 1.000 1.054 1.022 1.010
70 1.008 1.116 1.048 1.014
80 1.472 2.602 2.118 2.234
90 3.838 4.714 4.448 4.554

100 Full 3.845 4.716 4.499 4.545

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: MedQA Question Answering BERTScore

Cache Budget /
Fastgen Attn

Recovery Fra(%)
Strategy Precision Recall F1

10

LSH-E 0.857 0.808 0.832
L2 0.833 0.813 0.823

H2O 0.866 0.795 0.829
Scissorhands 0.867 0.795 0.829

30

LSH-E 0.867 0.834 0.850
L2 0.855 0.834 0.844

H2O 0.878 0.802 0.838
Scissorhands 0.877 0.802 0.838

50

LSH-E 0.869 0.842 0.855
L2 0.866 0.841 0.853

H2O 0.879 0.803 0.839
Scissorhands 0.878 0.804 0.839

70

LSH-E 0.869 0.843 0.855
L2 0.868 0.842 0.855

H2O 0.879 0.801 0.838
Scissorhands 0.879 0.803 0.839

90

LSH-E 0.868 0.843 0.855
L2 0.868 0.843 0.855

H2O 0.879 0.801 0.838
Scissorhands 0.880 0.802 0.839

50

Fastgen

0.816 0.763 0.788
60 0.806 0.766 0.785
70 0.811 0.766 0.787
80 0.866 0.793 0.828
90 0.876 0.800 0.836

100 Full 0.868 0.843 0.855

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: MedQA Question Answering Rouge

Cache Budget (%) Strategy Rouge 1 Rouge 2 Rouge L Rouge Lsum

10

LSH-E 0.346 0.110 0.171 0.324
L2 0.304 0.072 0.154 0.289

H2O 0.236 0.092 0.138 0.220
Scissorhands 0.237 0.091 0.139 0.221

30

LSH-E 0.449 0.170 0.227 0.426
L2 0.429 0.146 0.213 0.407

H2O 0.255 0.118 0.151 0.239
Scissorhands 0.252 0.116 0.151 0.236

50

LSH-E 0.481 0.194 0.245 0.455
L2 0.474 0.184 0.240 0.449

H2O 0.243 0.107 0.149 0.229
Scissorhands 0.244 0.110 0.150 0.230

70

LSH-E 0.487 0.197 0.249 0.461
L2 0.484 0.194 0.247 0.458

H2O 0.229 0.097 0.143 0.216
Scissorhands 0.234 0.103 0.147 0.219

90

LSH-E 0.487 0.197 0.249 0.461
L2 0.487 0.197 0.249 0.461

H2O 0.223 0.095 0.142 0.211
Scissorhands 0.228 0.099 0.145 0.214

50

Fastgen

0.068 0.013 0.052 0.066
60 0.079 0.014 0.061 0.077
70 0.103 0.020 0.074 0.099
80 0.208 0.069 0.126 0.192
90 0.220 0.092 0.140 0.207

100 Full 0.486 0.198 0.248 0.460

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: MedQA Question Answering GPT4-Judge

Cache Budget /
Fastgen Attn

Recovery Frac (%)
Strategy Similarity to GT Coherence Faithfulness Helpfulness

10

LSH-E 1.970 3.517 2.665 2.547
L2 1.103 1.695 1.639 1.283

H2O 2.138 3.206 2.594 2.416
Scissorhands 2.144 3.202 2.580 2.402

30

LSH-E 2.511 4.415 3.533 3.613
L2 1.939 3.633 2.942 2.843

H2O 3.428 3.818 3.608 3.276
Scissorhands 3.406 3.850 3.602 3.286

50

LSH-E 3.022 4.730 4.139 4.254
L2 2.850 4.511 3.797 3.950

H2O 2.938 3.632 3.280 2.762
Scissorhands 2.918 3.634 3.308 2.748

70

LSH-E 3.232 4.809 4.292 4.434
L2 3.194 4.755 4.235 4.385

H2O 2.414 3.396 2.958 2.178
Scissorhands 2.554 3.454 3.098 2.328

90

LSH-E 3.291 4.839 4.355 4.507
L2 3.265 4.818 4.318 4.458

H2O 2.400 3.232 2.830 2.016
Scissorhands 2.404 3.346 2.980 2.098

50

Fastgen

1.002 1.004 1.006 1.000
60 1.005 1.004 1.005 1.000
70 1.008 1.014 1.014 1.008
80 1.620 2.783 2.270 1.512
90 2.356 3.242 2.748 1.870

100 Full 3.337 4.817 4.342 4.500

Table 9: LSH Hash Dimension Ablation. We assesses GSM8K Question Answering performance
for different LSH dimensions. The cache budget is fixed at 50%. LSH dimension does not signifi-
cantly impact performance. Small LSH dimensions slightly outperform larger LSH dimensions.

LSH
Dim

BERTScore
F1 Rouge L GPT4

Judge
Compression

Ratio

Cache
Memory

(GB)

4 0.8807 0.3974 4.3833 0.3728 2.8062

8 0.8802 0.3975 4.4113 0.3734 2.8355

16 0.8807 0.3972 4.3753 0.3716 2.8941

24 0.8802 0.3951 4.3733 0.3711 2.9527

32 0.8796 0.3926 4.3220 0.3710 3.0113

64 0.8797 0.3900 4.2333 0.3702 3.2456

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D ATTENTION SCORES AND KEY NORMS VISUALIZATION

We further examine the method of our chief competitor, the L2 eviction method (Devoto et al., 2024).
In particular, in Figure 7 we examine the key-norm-attention correlation suggested by the authors.
Indeed, low key-norms, even across prompts, demonstrate a strong correlation with attention score.

Figure 7: Attention and Key Norms. Attention scores and corresponding L2 norms of key vectors
(excluding the first token) for a sample of heads (0,8,16,24,31) in the 8th layer for a sample input
sequence. Each subplot shows the attention heatmap (top) and the corresponding key norm values
(bottom) for a particular head, allowing for a direct comparison between attention patterns and key
norm values across different heads.

E ATTENTION LOSS RATIO ANALYSIS

We perform an attention loss ratio (ALR) analysis between LSH-based ranking and L2-based rank-
ing. Our implementation is an adaptation of the methodology described in Devoto et al. (2024). This
section explores how much of the uncompressed attention matrix is preserved between LSH-E and
the L2 eviction strategy in Devoto et al. (2024).

Compressing the KV cache entails dropping KV pairs. Per (Devoto et al., 2024), we can define
the attention loss caused by the compression as the sum of the attention scores associated with the
dropped KV pairs in layer l and head h via the equation Lm

l,h =
∑

p∈Dm
l,h

al,h,p, where al,h,p is the
average attention score at position p for layer l and head h, and Dm

l,h denotes the positions of the m

dropped KV pairs, with |Dm
l,h| = m. We process a selection of prompts and examine how proposed

evictions by the L2 eviction strategy and LSH-E would affect the sum of attention scores.

To quantify the additional attention loss introduced by using an alternative ranking method (such as
L2 norm or LSH-E’s Fscore) instead of the true attention-based ranking, we define the cumulative
attention loss difference as:

Yl,h =

n∑
m=1

(
Lm
l,h − Lm

l,h,ref

)
, (7)

where Lm
l,h,ref is the cumulative attention loss when dropping the KV pairs with the actual lowest

attention scores. The value Yl,h is non-negative, and a lower value indicates that the ranking method
closely approximates non-compressed attention. Figure 8 depicts the ALR for the L2 eviction rank-
ings and an LSH ranking.

It is important to note that LSH-E is not designed to produce a global ranking among the keys as
the L2 method is designed to do (via a low-to-high ordering of all L2 key norms). LSH-E ranks
the importance of past tokens with regards to the current token – and this ranking changes every
step. To simulate a comparison, we record the average Hamming distance between the key code of
token i and the query codes of all tokens j > i. We then sort tokens from lowest to highest average
Hamming distance. Figure 8a reflects the ALR according to this ranking system. The L2 ranking

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

exclusively prefers high-attention tokens, while the LSH ranking prefers medium-to-high-attention
tokens. Based on our empirical results in Section 4, the selection of tokens over a spectrum of
attention scores skewing towards high results in greater task versatility compared to the L2 eviction.

(a) ALR using LSH ranking (b) ALR using L2 ranking

Figure 8: Attention Loss Ratio (ALR). We compare how the eviction strategy of LSH-E and the
L2 method (Devoto et al., 2024) affects the ALR per equation 7. Our tested model is Llama3-
8B-Instruct, which contains 32 heads and 32 attention layers. Cell (i, j) depicts the ALR of head
i in attention layer j. A darker score indicates a lower ALR. The L2 method exhibits extremely
low ALR, thus indicating exclusive preference for high-attention tokens. LSH-E prefers to select
medium-to-high attention tokens.

F ANALYSIS OF THE RELATIONSHIP BETWEEN ATTENTION SCORES AND
LSH HAMMING DISTANCE

In this section, we follow up on our ALR in Appendix Section E. We analyze the relationship
between attention scores and average LSH Hamming distances using 50 randomly selected prompts
from GSM8K. We stress that this metric does not perfectly capture the ”ranking” system of LSH-E
(which cannot perform a global/full-sequence token-importance ranking like L2 eviction).

For each prompt, we performed the following:

1. Captured States: Extracted normalized key and query vectors from every layer and head
combination after applying rotary positional embeddings.

2. Applied Random Projections: Applied multiple random Gaussian projections, varying
the projection length (number of bits). We tested with projection lengths of 8, 16, 24, and
32.

3. Computed Hamming Distances: Computed the Hamming distances between the pro-
jected and binarized vectors and averaged this over multiple projections to mitigate the
randomness that LSH introduces and to obtain a more stable estimate of the Hamming
distances.

4. Computed Correlations: Calculated the Pearson correlation coefficient between the atten-
tion scores and the inverted average Hamming distance for each layer and head combination
and for each projection length.

F.1 RESULTS

The average Pearson correlation between the attention scores and the inverted average Hamming
distances is 0.2978 ± 0.1947. Table 10 and Figure 9a detail the average Pearson correlation per
projection length.

F.2 OBSERVATIONS

• Correlation with Projection Length: As shown in Figure 9a and Table 10 the average
Pearson correlation increases with projection length. This is likely due to the more detailed

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 10: Average Pearson correlation between attention scores and inverted average Hamming
distances per projection length, computed for 50 randomly selected prompts from GSM8k. Higher
projection lengths have stronger correlations.

Projection Length Mean Standard Deviation

8 0.2017 0.1890
16 0.2793 0.1852
24 0.3345 0.1806
32 0.3754 0.1792

vector representation in the projected space, allowing for finer-grained similarity compar-
isons.

• Layer-wise Trends: Figure 9b shows a slight decrease in the average Pearson correlation
for the later transformer layers. Earlier layers may be more focused on recognizing broader
patterns where the similarity LSH captures is more pronounced compared to the latter lay-
ers, which may focus on specifics not captured as effectively by Hamming distances.

• Head-wise Consistency: The correlation between attention scores and inverted average
Hamming distance is relatively consistent across different attention heads, with little vari-
ance as seen in Figure ‘9c. This uniform behavior indicates that the relationship between
attention scores and LSH-measured similarity is, to a large extent, independent of specific
head functions.

• LSH vs. L2 Norms: While L2 norms were more effective at identifying high-attention
tokes, LSH excelled at identifying tokens with moderate attention scores that are vital for
the generation of coherent language output. This aligns with the findings of Guo et al.
(2024), which suggests that tokens with low to medium attention scores are crucial for
high-quality language generation.

• LSH and Token Similarity: LSH tended to group tokens together that are similar across
dimensions, producing lower Hamming distances. Tokens with very high attention scores
may only have strong associations for a relatively small subset of dimensions, which may
not always be captured effectively by LSH.

F.3 ALR COMPUTATION METHODOLOGY

We compute the Attention Loss Ratio (ALR) for each layer l and head h as follows:

1. Data Capture During the model’s forward pass, we capture the necessary data for analysis:

• Attention Probabilities al,h ∈ Rn×n: The attention scores between queries and keys.
• Key Norms ∥kl,h,p∥2: The L2 norms of key vectors at each position p.
• Key and Query Vectors kl,h,p ∈ Rd and ql,h,p ∈ Rd: Used for LSH ranking.

2. Mean Attention Scores For each token position p, we compute the mean attention score
across all positions it attends to:

āl,h,p =
1

n

n∑
q=1

al,h,p,q. (8)

3. Ranking Methods
• Ideal Attention-Based Ranking Rank positions in ascending order of āl,h,p (from

lowest to highest attention score).
• L2 Norm Ranking Rank positions in descending order of the key norms ∥kl,h,p∥2.
• LSH Ranking Apply Locality-Sensitive Hashing (LSH) to key and query vectors us-

ing random projections, compute Hamming distances, and rank positions in ascending
order of the average Hamming distance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Correlations for varying LSH dimension. We
study the Pearson correlations between attention
scores and the inverted average Hamming distances,
computed over 50 randomly selected prompts from
GSM8K, as a function of projection length for Llama-
3-8B-Instruct. The tested projection lengths are 8,16,
24, and 32. The error bars indicate the standard de-
viation. Correlation strengthens as projection length
increases.

(b) Correlations by layer. We measure the Pearson
correlations between attention scores and the inverted
average Hamming distances for each transformer layer
in Llama-3-8B-Instruct computed over 50 randomly
selected prompts from GSM8K. Error bars indicate
standard deviation. The final three layers have the
weakest correlations.

(c) Correlations by head. We study the Pearson cor-
relation between attention scores and the inverted aver-
age Hamming distances for each head in Llama-3-8B-
Instruct computed over 50 randomly selected prompts
from GSM8K. Error bars indicate standard deviation.
There is minimal variation between heads.

(d) Correlation Heat Map. We examine the average
Pearson correlation between attention score and the
inverted average Hamming distances (LSH ranking)
across all layers and attention heads of Llama-3-8B-
Instruct. As attention mass tends to concentrate over
a few tokens (Gupta et al., 2021; Sheng et al., 2023),
the slightly-weak, but positive correlation indicates the
LSH ranking is selecting medium-to-high-attention to-
kens.

Figure 9: Correlations of Attention and Inverted Hamming Distances

4. ALR Calculation For each m from 1 to n, compute the cumulative attention losses: This
allows us to quantitatively compare how well different ranking methods (e.g., L2 norm and
LSH ranking) approximate the ideal scenario where the least important KV pairs (those
with the lowest attention scores) are dropped during cache compression.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Lm
l,h =

m∑
i=1

āl,h,π(i), (9)

Lm
l,h,ref =

m∑
i=1

āl,h,σ(i), (10)

where π(i) and σ(i) are the indices of the i-th position in the ranking method and the ideal
attention-based ranking, respectively. The ALR for each head and layer is then calculated
as Yl,h =

∑n
m=1

(
Lm
l,h − Lm

l,h,ref

)
.

A lower Yl,h indicates that the ranking method closely approximates the ideal attention-
based compression.

5. Aggregation We repeat the above steps for multiple prompts and average the ALR values
to obtain the final ALR matrix across layers and heads.

G METRICS AND PROMPTS

G.1 STRING MATCH SCORE

The string matching score is calculated as:

String Matching Score =
Number of correctly matched characters in predicted string

Total number of characters in GT
× 100

G.2 GPT-4-JUDGE PROMPT

For the GPT-4-Judge metric used in evaluating free response question answering tasks, we accessed
the GPT-4o model through OpenAI’s API.

For the GPT4-Rouge metric, the prompt given to the model is:

You are shown ground-truth answer(s) and asked to judge the quality of an
LLM-generated answer.

Assign it a score from 1-5 where 1 is the worst and 5 is the best based
on how similar it is to the ground truth(s).

Do NOT explain your choice. Simply return a number from 1-5.

====GROUND TRUTHS====
{labels}

====ANSWER====
{prediction}

For the other three GPT4-Judge based on criteria, the prompt given to the model is:

You are shown a prompt and asked to assess the quality of an LLM-
generated answer on the following dimensions:

===CRITERIA===
{criteria}

Respond with "criteria: score" for each criterion with a newline for each
criterion.

Assign a score from 1-5 where 1 is the worst and 5 is the best based on
how well the answer meets the criteria.

====PROMPT====
{prompt}

====ANSWER====
{prediction}

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The list of criteria is:

CRITERIA = {
"helpful": "The answer executes the action requested by the prompt

without extraneous detail.",
"coherent": "The answer is logically structured and coherent (ignore

the prompt).",
"faithful": "The answer is faithful to the prompt and does not contain

false information.",
}

25

	Introduction
	Preliminaries
	Related Works

	LSH-E: A Locality-Sensitive Eviction Strategy
	Experiments
	Free Response Question Answering
	Multiple Choice Question Answering
	Long-Context Retrieval
	Long Text Summarization
	Throughput
	Memory Usage
	Ablation on LSH Dimension

	Discussion & Conclusion
	Further Related Works
	Question Answering Granular Experiment Results
	Results of ablation on LSH Dimension
	Attention Scores and Key Norms Visualization
	Attention Loss Ratio Analysis
	Analysis of the Relationship between Attention Scores and LSH Hamming Distance
	Results
	Observations
	ALR Computation Methodology

	Metrics and Prompts
	String Match Score
	GPT-4-Judge Prompt

