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Abstract

Recent years have witnessed significant001
progress in large language models’ (LLMs)002
reasoning, which is largely due to the chain-003
of-thought (CoT) approaches, allowing mod-004
els to generate intermediate reasoning steps005
before reaching the final answer. Building006
on these advances, state-of-the-art LLMs are007
instruction-tuned to provide long and detailed008
CoT pathways when responding to reasoning-009
related questions. However, human beings are010
naturally cognitive misers and will prompt lan-011
guage models to give rather short responses,012
thus raising a significant conflict with CoT013
reasoning. In this paper, we delve into how014
LLMs’ reasoning performance changes when015
users provide short-path prompts. The results016
and analysis reveal that instruct models can rea-017
son effectively and robustly without explicit018
CoT prompts, while under short-path prompt-019
ing, LLM tend to guess the final answer and020
the reasoning ability becomes unstable, even021
on grade-school problems. Furthermore, we022
propose two approaches to explore whether023
the decision-making biases can be calibrated to024
prioritize reasoning accuracy, instead of over-025
whelming instruction following. Experimental026
results show that both methods could achieve027
high accuracy, providing insights into the trade-028
off between instruction following and reason-029
ing accuracy in current models.030

1 Introduction031

In recent years, large language models (LLMs)032

have made significant strides in solving reason-033

ing tasks, such as math word problems. This034

progress is largely due to the chain-of-thought035

(CoT) prompting approach (Wei et al., 2022a),036

which enhances accuracy by allowing models to037

generate intermediate reasoning steps before reach-038

ing the final answer. Prompts like "Let’s think step039

by step" (Kojima et al., 2022) encourage models to040

produce more detailed reasoning pathways, thereby041

improving performance by reflecting the reasoning 042

ability developed during pre-training. Building on 043

these advances, current instruction-tuned models 044

(Dubey et al., 2024) incorporate CoT explanation 045

data during the post-training, aiming to improve 046

reasoning ability even without explicit prompts. 047

As shown in the left panel of Figure 1, in typ- 048

ical reasoning scenarios, a user input a question 049

and obtain the answer from the output of the LLM. 050

The instruction-tuned language models respond to 051

the user’s question step by step, which is akin to 052

adding a hidden CoT prompt,"Let’s think step by 053

step", following the user’s question. However, in 054

practical situations, people generally prefer concise 055

answers, aligning with the cognitive miserliness 056

theory (Stanovich, 2018), and the user may add 057

an extra request such as "Please only provide the 058

final answer". Then, a conflict arises with the hid- 059

den CoT prompt, which restrains the model’s CoT 060

reasoning. And this preference naturally raises a 061

problem: How can language models provide accu- 062

rate answers when asked to respond directly? 063

In this paper, we term such requests as "short- 064

path prompts" and conduct an in-depth explo- 065

ration of how LLMs’ reasoning ability changes un- 066

der short-path prompting. We analyze how LLMs 067

perform on problems requiring varying reasoning 068

steps and their sensitivity to option position, both 069

under short-path prompting. The results demon- 070

strate that under short-path prompting, current ad- 071

vanced LLMs show effectiveness only in solv- 072

ing two-step reasoning problems, but their perfor- 073

mance sharply declines when handling problems 074

that need more steps to solve, even on grade school- 075

level math reasoning tasks. Moreover, when pre- 076

sented with multiple-choice questions, these mod- 077

els exhibit not only unstable reasoning ability but 078

also significant positional bias in their answers. 079

These phenomena indicate that when responding to 080

short-path prompts, the tendency to provide direct 081

answers is more likely random guessing rather than 082
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Input: 
Question: Mother Li has 12 candies. Li 
Ming gives her 12, and she gives Li Hong 
13. How many candies does Mother Li 
have left? 
A. 11 B. 12  C. 13 D. 14
The answer is option:
(Hidden Prompt): Let’s think step by 
step.

Response:

To find the number of candies Mother Li 
has left, we need to follow the sequence 
of events: 
1. Mother Li starts with 12 candies 
2. ……
Therefore, Mother Li has 11 candies left. 
The correct answer is option A.  ✅

A. Standard

Input: 
Question: Mother Li has 12 candies. Li 
Ming gives her 12, and she gives Li Hong 
13. How many candies does Mother Li 
have left? 
A. 11 B. 12  C. 13 D. 14
The answer is option:
(Hidden Prompt): Let’s think step by 
step
(SPP): Please only provide the final 
answer.

Response:
The answer is D. 14. ❌

B. Short-Path Prompt

Input: 
Question: Mother Li has 12 candies. Li 
Ming gives her 12, and she gives Li Hong 
13. How many candies does Mother Li 
have left? 
A. 11 B. 12  C. 13 D. 14
The answer is option:
(Hidden Prompt): Let’s think step by 
step.
(SPP): Please only provide the final 
answer. 

Response:
I’m sorry that I can’t give the correct 

answer directly due to limited thought 
steps. To determine how many candies 
Mother Li has left, we can follow these 

steps:……
The correct answer is A. 11 . ✅

C. RFFT

Figure 1: The vulnerability of LLM under short-path prompting and how calibrated bias solve this.

genuine reasoning.083

Building on the observed guessing behavior un-084

der short-path prompting, we investigate whether085

LLMs’ decision-making biases can be systemat-086

ically calibrated to prioritize reasoning accuracy.087

This exploration operates through two complemen-088

tary lenses: an instruction-guided method and a089

rule-based filter fine-tuning (RFFT) method. The090

core idea of the instruction-guided method is to re-091

solve the conflict between the hidden-CoT prompt092

and the explicit short-path prompt: We utilize the093

system role within the chat template to present the094

hidden-CoT prompt and the short-path prompt as095

options, guiding the LLM to disregard the short-096

path prompt and keep reasoning ability. More-097

over, we aim to enable the LLM to naturally recog-098

nize and resist short-path prompts through training,099

without relying on the system role for guidance.100

Specifically, given a reasoning question followed101

by a short-path prompt, we sample an LLM’s re-102

sponse using the instruction-guided method sev-103

eral times, and then use the same LLM to act as a104

judge to determine whether all pre-established rules105

are met. Responses that pass verification by the106

judge are then chosen to formulate the fine-tuning107

datasets. As a result, we introduce a calibrated bias108

embedded within the LLM to better balance accu-109

racy with adherence to instructions in response to110

short-path prompts.111

In a nutshell, our contributions can be summa-112

rized as follows:113

1. We highlight that the conflict between hidden-114

CoT prompt and explicit short-path prompt is115

the key reason for the decline in the model’s 116

reasoning ability under short-path prompting. 117

2. We conduct an in-depth analysis to explore 118

how LLMs’ reasoning ability changes under 119

short-path prompting. The experimental re- 120

sults demonstrate that LLMs tend to guess the 121

answers to meet the demand for direct answer, 122

rather than genuinely reasoning. 123

3. Our proposed two methods substantiate that 124

LLMs can be intrinsically calibrated to prior- 125

itize accuracy over instructional compliance 126

through bias intervention. This provides in- 127

sights into balancing instruction following and 128

reasoning accuracy in contemporary models. 129

2 Related Work 130

Reasoning through CoT: CoT techniques consti- 131

tute the cornerstone methodology for augmenting 132

language models’ reasoning capacities, primarily 133

involving two methodologies: prompt-based and 134

fine-tuning approaches. Prompt-based approaches 135

involves providing structured guidance through 136

prompt engineering to activate the model’s inher- 137

ent chain-of-thought capabilities. Zero-shot ap- 138

proaches employ triggers like "Let’s think step by 139

step" to initiate reasoning (Kojima et al., 2022), 140

while few-shot prompts incorporate exemplars to 141

establish reasoning patterns (Wei et al., 2022b; 142

Wang et al., 2022). Several works (Zhou et al., 143

2022; Wang et al., 2023) guide models to improve 144

reasoning performance through problem decompo- 145

sition and sub-problem resolution. In contrast, fine- 146

tuning approaches endow models with enhanced 147
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reasoning abilities by leveraging large-scale cor-148

pora containing CoT annotations. For instance,149

(Chung et al., 2024) and (Kim et al., 2023) use large150

CoT corpora in the instruction-tuning stage, (Zhang151

et al., 2024b) emphasize the selection of optimal152

CoT pathways for model training, and (Puerto et al.,153

2024) generates diverse reasoning CoT pathways to154

facilitate self-correction. Modern instruction-tuned155

models like (Yang et al., 2024; Dubey et al., 2024)156

systematically integrate CoT data, particularly for157

mathematical reasoning.158

Long-to-short in Reasoning Model: Unlike159

conventional instruct models, OpenAI-o1 (Ope-160

nAI, 2024) introduces a profound paradigm shift in161

LLMs through test-time scaling, termed as Reason-162

ing models (Li et al., 2025). Before reaching the163

final answer, the Reasoning model undergoes an164

extensive cognitive process distinct from standard165

reasoning patterns. This process involves iterative166

cycles of reflection, speculation, self-verification to167

improve performance. However, this phase also in-168

cludes significant computational redundancy (Chen169

et al., 2024), driving research on effectively com-170

pressing the model’s cognitive trajectory (Team171

et al., 2025). O1-pruner (Luo et al., 2025) employs172

reinforcement learning and fine-tuning to stream-173

line outputs, while methods like DAST (Shen et al.,174

2025) integrate difficulty metrics and length con-175

straints to reshape reward mechanisms.176

In this paper, we focus on conventional instruct177

models rather than reasoning models. We observe178

that during the Instruction-tuning phase, the exten-179

sive use of CoT corpora not only enhances models’180

CoT capabilities but also implicitly incorporates181

hidden-CoT prompts. However, these hidden-CoT182

prompts may conflict with short-path prompts, thus183

causing a significant decline in reasoning perfor-184

mance. Such critical phenomena remain insuffi-185

ciently investigated in current literature.186

3 Are LLMs guessing or reasoning under187

Short-path Prompting?188

In this section, we use grade-school-level math189

problems, GSM8K (Cobbe et al., 2021), as an ex-190

ample to deeply analyze how the reasoning abilities191

of an advanced language model change under short-192

path prompting. We aim to investigate whether the193

language model is merely guessing or genuinely194

reasoning under these conditions. Potential data195

contamination (Zhang et al., 2024a) may lead the196

model to generate answers based on memoriza-197
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Figure 2: LLMs performance on GSM8K-new dataset.
Bar chart (left y-axis) shows the score, while line plot
(right y-axis) displays response length.

tion rather than reasoning. To more effectively ex- 198

plore the genuine reasoning ability of models under 199

short-path prompting, we revise the GSM8K and 200

augment it into a multiple-choice format, named 201

GSM8K-new and GSM8K-new-choice, respec- 202

tively. These two versions represent the question- 203

and-answer and multiple-choice formats of reason- 204

ing problems. Details about dataset revision and 205

augmentation can be found in the Appendix B. 206

3.1 Performance on Question-and-answer 207

Problems 208

We evaluate two advanced open-source LLMs: 209

Qwen-2.5-72B-Instruct (Yang et al., 2024) and 210

Llama-3.3-70B-Instruct (Dubey et al., 2024), here- 211

after referred to Qwen and Llama for simplicity. 212

We evaluate LLMs’ performance on GSM8K- 213

new with three setups: (1) Raw: input the raw 214

math word problem. (2) CoT: add a zero-shot CoT 215

prompt "Let’s think step by step" after the prob- 216

lem. (3) SPP: add a short-path prompt "Please only 217

provide the final answer" after the problem. The 218

results are depicted in Figure 2. We can observe 219

that the score and response length do not change 220

significantly between Raw and CoT, verifying that 221

instruction-tuned LLMs already possess the ability 222

to perform CoT reasoning even without explicit 223

CoT prompt. However, under the SPP setting, the 224

score exhibits a substantial decrease alongside a 225

reduction in response length. This indicates that 226

short-path prompting conflicts with the model’s in- 227

herent CoT reasoning mechanism and significantly 228

impairs its reasoning capability. 229

Furthermore, We evaluate the reasoning ability 230

of two state-of-the-art commercial models, GPT-4o 231

and Deepseek-v3 1, under same setups. The results 232

are shown in Figure 2. From the results, we ob- 233

serve that the performance variations of GPT-4o are 234

similar to those of two open-source models, show- 235

1We use GPT-4o-1106 and Deepseek-v3-0324 here.
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Figure 3: Accuracy of LLMs on the GSM8K-new for
problems with different steps: short-path prompting,
raw input (left panel), and forced direct answering (right
panel). GSM8K-new doesn’t contains 1-step problem.

Short-path Prompts Qwen Llama
Score Length Score Length

Please only provide the final answer. 38.43 6.56 46.32 25.56
Just tell me the result. 38.44 6.56 39.58 29.67
Answer directly, no thinking required. 38.59 6.60 86.96 163.10

Answer in the briefest way you can. 38.67 6.82 93.10 103.17
Please respond as concisely as you can. 67.70 55.40 93.40 111.85
A simple answer will do. 93.25 198.42 94.69 200.95

Raw 94.69 277.59 94.99 240.36

Table 1: The performance of Qwen and Llama under
different short-path prompting on the GSM8K-new.

ing a significant accuracy drop under SPP. In con-236

trast, Deepseek-v3 shows only a slight reduction237

in performance in the same scenarios. Upon closer238

examination of Deepseek-v3’s outputs under SPP,239

we find that approximately 90% of the responses240

include directly generated CoT outputs. While this241

behavior contributes to slightly better robustness,242

we argue that it is still suboptimal because these243

responses fail to provide a meaningful explanation244

for their inability to give a direct answer.245

Step-granularity Analysis. Furthermore, we246

classify problems by solution step count and ana-247

lyze scores across categories, and the results are248

presented in the left panel of Figure 3. Due to the249

scarcity of 7 or 8 steps problems in the test set,250

these categories are not included here. First, we ob-251

serve that under the raw setting, the number of steps252

has minimal impact on accuracy. However, under253

SPP, models’ reasoning capability declines sharply254

as the problem-solving process requires more steps.255

When solving problems requiring two steps (in sce-256

narios where one reasoning step is skipped if the257

model directly outputs the answer), the accuracy258

of LLMs remains around 70%, while for six-step259

problems, the accuracy rate of Qwen drops even260

below 10%.261

Moreover, we find that Llama maintains rela-262

tively stable accuracy on problems requiring 4-6263

steps to solve. By analyzing model outputs, we264

observe that Llama occasionally bypasses short-265

path prompts and gives the step-by-step reasoning 266

process. To enforce direct answers, we append 267

"The answer is \boxed" to the assistant role in the 268

model’s chat template. As shown in the right panel 269

of Figure 3, Qwen and Llama both show a signifi- 270

cant accuracy drop when forced to directly output 271

the answer as the step count increases. Such empir- 272

ical observations demonstrate that the forced sup- 273

pression of Chain-of-Thought generation in instruct 274

models under short-path prompting substantially 275

impairs their problem-solving efficacy on tasks ne- 276

cessitating sequential cognitive operations. 277

Sensitivity to different SPP: We further evalu- 278

ate the impact of different types of SPP on model 279

performance to analyze the model’s sensitivity to 280

SPP, with results presented in Table 1. More re- 281

sults about different SPP can be found in the Ap- 282

pendix B.3. 283

Overall, we classify SPP into two categories: 284

"Direct," which indicates a preference for obtain- 285

ing the final answer immediately (see rows 1–3), 286

and "Simple," which requires the response to be 287

as concise as possible (see rows 4–6). We observe 288

that Qwen’s reasoning ability is more susceptible 289

to the influence of short-path prompts compared to 290

that of Llama. Specifically, Qwen’s scores do not 291

exceed 40 under the Direct type, and two prompts 292

in the Simple type also significantly affect its per- 293

formance. While Llama’s performance is also in- 294

consistent under the first type, it still manages to 295

provide accurate answers in the second type. 296

Conclusion. In this subsection, our experimen- 297

tal results suggest that intermediate reasoning steps 298

are crucial for solving problems accurately, regard- 299

less of their apparent simplicity. Even state-of- 300

the-art models are highly susceptible to short-path 301

prompts and fail to reliably solve elementary-level 302

problems through direct answer. 303

3.2 Robustness on Multiple-choice Problems 304

To analyze the robustness of LLMs’ reasoning 305

under SPP, we transform the GSM8K-new into 306

multiple-choice questions, where each incorrect op- 307

tion is derived from an error introduced at a specific 308

step in the correct solution process. We augment 309

each multiple-choice question by permuting the 310

options and answers in all 24 (4! = 24) possible 311

arrangements. Then, we evaluate the LLMs’ accu- 312

racy when the correct answer appears in different 313

option positions, and analyze the overall percent- 314

age of each option selected by the LLMs. Since the 315

problem-solving process is independent of the op- 316
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Figure 4: Accuracy of LLMs on GSM8K-new-choice when the ground truth is among different options, and the
overall percentage of the options selected by the LLMs. These four panels share the same legend.
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Figure 5: Score and percentage of confident reasoning across different threshold.

tions, we believe that shuffling the options should317

not affect the model’s accuracy on the multiple-318

choice questions if the model is capable of genuine319

reasoning. The results are presented in Figure 4.320

The results reveal significant instability in the321

reasoning ability of LLMs under SPP. Accuracy322

shows significant fluctuations depending on the po-323

sition of correct answers among options, revealing324

a pronounced positional bias in LLMs. Both Qwen325

and Llama exhibit disproportionately higher selec-326

tion probabilities for option "B" compared to other327

options. Particularly concerning is the severe ac-328

curacy degradation observed when correct answers329

reside in options "A" or "D". In contrast, Raw330

input demonstrates stable performance across all331

answer positions, maintaining consistent accuracy332

regardless of correct option placement and exhibit-333

ing uniform answer distribution without positional334

bias.335

Threshold-based Evaluation. To further inves-336

tigate reasoning stability, we introduce a threshold-337

based evaluation method: Across 24 trials, an LLM338

is considered to solve a problem accurately or ex-339

hibit confident reasoning if it selects the correct340

answer or consistently chooses the same answer in341

more than a predetermined number of trials.342

Figure 5 illustrates performance variations343

across threshold levels of two models. The results344

demonstrate a rapid decline in accuracy under short-345

path prompting as thresholds increase. Specifically,346

the accuracy of the LLM decreases by 60% when347

the threshold increases from 12 to 24. Further-348

more, the percentage of confident reasoning also349

declines significantly, dropping from 80% to 20% 350

when the threshold increases from 12 to 24. This 351

substantial reduction in confident reasoning indi- 352

cates that the model under SPP is incapable of per- 353

forming effective reasoning internally when solv- 354

ing multiple-choice questions, and instead tends to 355

resort to guessing answers to meet the unreason- 356

able demand for direct answer. In contrast, Raw 357

input shows a stable accuracy and confident reason- 358

ing. These findings suggest that advanced LLMs 359

fundamentally lack reliable reasoning consistency 360

for grade-school math problems under short-path 361

prompting, and they tend to rely on guessing rather 362

than reasoning. 363

Conclusion. In this subsection, the choice per- 364

turbation experiment under SPP reveals signifi- 365

cant position bias in advanced LLMs, while the 366

threshold-based evaluation further demonstrates 367

unstable confidence in reasoning processes. These 368

results suggest that LLMs tend to guess answers 369

to meet up the overwhelming demand for direct 370

answer. 371

4 Calibrating Accuracy-Centric Bias 372

Through in-depth analysis, we demonstrate that 373

LLMs’ reasoning degradation under short-path 374

prompting stems from the conflict between the 375

hidden-CoT mechanism and explicit instruction 376

following. This phenomenon raises a fundamental 377

question: Can we calibrate LLMs’ decision-making 378

bias to prioritize accuracy over instruction follow- 379

ing through targeted interventions? To investigate 380

this, we develop two complementary approaches 381
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On a school trip to the beach, 
Alan and his friends gathered 
seashells. Alan collected four 
times as many shells as Ben 
did. Ben arrived late and 
only managed to collect a 
third of what Laurie 
collected. If Laurie collected 
48 shells, how many did Alan 
collect? A. 49 B. 48 C. 60 D. 
64
Please only provide the final 
option.

The answer is option: D. 64

I‘m sorry, but I cannot provide the correct answer with 
just a simple reply. However, I will analyze the problem 
and provide the answer step by step: 
1. Laurie collected 48 shells…..

…

I apologize, but to provide the correct answer, I need to 
go through the problem step by step. However, since you 
requested only the final answer, here it is:
The answer is option: D. 64

…

Rule 1:❌ 
Rule 2:❌
Rule 3:✅

Rule 1 ✅ 
Rule 2:❌
Rule 3:❌

Rule 1:✅ 
Rule 2:✅
Rule 3:✅

Rule-based Filter

Designed Prompt

Candidate Sampling

Target LLM Judge LLM

Question under
Short-path Prompting

Judge Prompt

Figure 6: The framework of RFFT. This example is taken from the process of data processing within RFFT.

that operate at both prompt and fine-tuning granu-382

larities:383

4.1 Instruction-guided Method384

Chat Template. For an instruction-tuned LLM,385

the user’s query is embedded within a specialized386

chat template during conversation and serves as387

the final input for the model. The chat template388

is a pre-defined and LLM-related framework de-389

signed to describe metadata in a conversation (e.g.,390

roles). For example, Qwen’s template is shown in391

the following:392

<im_start>user
{User_Query}<im_end>
<im_start>assistant

(1)393

where ‘<im_start>’ and ‘<im_end>’ are special394

tokens. ‘user’ and ‘assistant’ represent the roles395

in the chat template. ‘User_Query’ represent the396

placeholder for the user query.397

As previously discussed, the conflict between398

hidden-CoT prompts and explicit short-path399

prompts suppresses the expression of reasoning pat-400

terns, ultimately degrading the model’s inferential401

capabilities. Rather than forcibly overriding short-402

path prompts, the instruction-guided method ad-403

dresses this through conflict resolution via a higher-404

level instruction design: we use the system role in405

the chat template to insert an instructional system406

prompt. This prompt treats the hidden-CoT prompt407

and short-path prompt as distinct options, guiding408

the LLM to select the former, instead of having the409

LLM resolve conflicting patterns on its own.410

We propose that model responses should adhere411

to this structure: When unable to satisfy users’412

short-path requests for direct answers, the model413

should first acknowledge this limitation with con-414

textualized explanations, then provide systematic415

reasoning processes to ensure answer reliability.416

Guided by these principles, we design the follow-417

ing prompt:418

Designed Prompt: When a user presents a log- 419

ical problem and asks for a simple response or 420

restricts your thinking, please first apologize to 421

the user, explaining that a correct answer cannot 422

be provided with a simple reply. Then, proceed 423

to analyze and answer the user’s question step by 424

step. 425

4.2 Rule-based Filter Fine-tuning 426

However, an LLM that is not specifically optimized 427

struggles to fully handle the conflict even using 428

instruction-guided method, especially on multi- 429

choice questions. More importantly, we aim to 430

enable LLMs to recognize and resist short-path 431

prompts without relying on system prompts, equip- 432

ping them with intrinsic capabilities to become 433

robust reasoners. To achieve this, we propose a 434

rule-based filter fine-tuning (RFFT) method that 435

adjusts the model without requiring human annota- 436

tion. The main framework of RFFT is illustrated in 437

Figure 6, which primarily includes the following 438

components: 439

Candidate Sampling. Given a reasoning prob- 440

lem, we first randomly choose a short-path prompt 441

from a pre-defined short-path prompt set (see Ap- 442

pendix B.3) and append the short-path prompt after 443

the problem. Then, we sample the candidate re- 444

sponses from the target LLM k times with temper- 445

ature decoding and the instruction-guided method. 446

Rule-based Filter. As previously mentioned, 447

an LLM that is not specifically optimized may 448

not fully reject short-path prompts even by us- 449

ing instruction-guided method. In such cases, the 450

model’s output logic can become chaotic, as LLM 451

hesitates between conflicting instructions. (e.g., “I 452

apologize, but a simple answer might not fully ad- 453

dress the nuances of these statements. However, 454

to comply with your request: So the answer is op- 455

tion: (D)"). Therefore, we employ an LLM as the 456

judge to determine whether the candidate response 457
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Llama-3.3-70B-Instruct Qwen-2.5-72B-Instruct Llama-3.1-8B-Instruct Qwen-2.5-7B-Instruct
Prompt Method GSM8K MATH BBHM MMLUS GSM8K MATH BBHM MMLUS GSM8K MATH BBHM MMLUS GSM8K MATH BBHM MMLUS

SPP
None 47.00 43.62 64.64 72.83 41.69 39.42 67.20 79.85 6.37 16.26 48.2 57.71 23.43 25.88 50.68 67.01
IG 91.13 67.88 75.04 79.26 95.38 78.18 82.90 85.86 58.76 22.76 50.28 58.17 88.4 72.12 52.47 69.21
RFFT 95.75 71.98 87.86 85.19 95.22 77.94 85.49 88.46 72.40 30.08 48.44 58.88 89.61 68.88 55.70 73.33

Raw 96.36 72.84 86.76 84.26 95.53 81.28 85.76 88.66 68.76 51.92 64.89 68.90 91.43 73.34 66.76 75.55
CoT 95.60 74.86 87.97 85.11 95.67 80.58 89.17 88.41 87.11 51.86 56.09 59.31 92.49 73.34 74.11 78.3

Table 2: Overall performance of our methods. ‘IG’ represents the instruction-guided method. The best results under
short-path prompting is highlighted in bold.

satisfies all designed rules: (Rule 1): whether the458

response apologizes for failing to provide a direct459

answer; (Rule 2): presence of CoT reasoning steps460

before reaching the final answer; (Rule 3): absence461

of logical discontinuities or contradictions in the462

response. And then, compliant responses are re-463

tained for fine-tuning corpus, while non-compliant464

ones are discarded.465

Fine-tuning. In the end, we fine-tune the LLM466

using the rule-filtered data. To align with our objec-467

tive of developing intrinsic capabilities for recog-468

nizing and resisting short-path prompts, we avoid469

reliance on instruction-based guidance and instead470

remove the prepend prompt within the system role.471

In this process, we incorporate reasoning problems472

without short-path prompting into the training set.473

This ensures the calibrated bias is only applied to474

short-path prompts. During the training, we label-475

mask the query within the user role and only the476

response is used for calculating loss:477

ℓ = −
N∑

n=1

logP (t̂n = tn|Q, t0..n) (2)478

where N represents the length of response, tn rep-479

resents the n-th ground-truth token in the response,480

t̂n represents the predicted token at position n by481

the LLM, Q represents the user query.482

5 Calibrating Experiment483

5.1 Settings484

Models and data. We use two sizes (around 8B485

and 70B) of advanced open-source models from486

two different series (Qwen and Llama) to validate487

the effectiveness of two methods, and the overall488

training data consists of 8,000 examples. We use489

four reasoning-related benchmarks to evaluate our490

methods: GSM8K, BBHM, MATH and MMLUS.491

Moreover, We use Qwen-2.5-72B-Instruct as the492

target LLM and judge LLM in our RFFT frame-493

work. Due to the page limitation, more details494

about training, data and evaluation could be found495

in Appendix A.496

5.2 Overall Performance 497

Table 2 reports the performance of our two methods 498

across all datasets. Here, we have the following 499

observations: First, consistent with our analysis 500

in Section 3, the reasoning ability of the LLMs 501

significantly declines under short-path prompting. 502

This trend is observed across four reasoning-related 503

datasets for both 8B and 70B LLMs. 504

As for our methods, the instruction-guided 505

method greatly enhances the LLMs’ resistance to 506

short-path prompts. Specifically, all models recover 507

over 80% of the score dropped on the GSM8K and 508

MATH datasets on average, and recover 50% on 509

the BBHM and MMLUS on large size models. 510

Furthermore, the fine-tuned LLMs naturally ex- 511

hibit resistance to short-path prompts and achieve 512

higher scores than the instruction-guided method, 513

particularly on multiple-choice questions like 514

BBHM and MMLUS. We hypothesize that this may 515

be due to the relative scarcity of multiple-choice 516

questions in CoT format within the post-training 517

corpus, making it more challenging to trigger CoT 518

under short-path prompting. 519

5.3 Instruction-guided Robustness 520

We evaluate the robustness of the instruction- 521

guided method against different system prompt 522

designs under short-path prompting. Table 3 sum- 523

marizes the performance of five distinct system 524

prompt variations. According to our core idea 525

in prompt design, we categorize the prompts into 526

two types: conflict-resolving prompts (see last two 527

rows) and conflict-agnostic prompts (see rows 2- 528

4). Conflict-resolving prompts describe short-path 529

prompts briefly and guide the LLM to neglect short- 530

path prompts and keep thinking, while conflict- 531

agnostic prompts are concise zero-shot instructive 532

prompts that encourage the reasoning process with- 533

out handling the conflict (e.g., "Let’s think step by 534

step."). The results indicate that the performance 535

is significantly recovered if the system prompt be- 536

longs to the conflict-resolving category. However, 537
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Llama-3.3-70B-Instruct Qwen-2.5-72B-Instruct
System Prompt GSM8K MATH BBHM MMLUS GSM8K MATH BBHM MMLUS

None 47.00 43.62 64.64 72.83 41.69 39.42 67.20 79.85

Let’s think step by step. 50.27 46.48 64.95 75.72 42.46 39.52 67.16 79.96
Solve user’s problem by splitting it into steps. 64.22 56.74 65.4 76.19 42.00 41.82 67.43 79.57
Think thoroughly to answer the user’s problem. 52.69 49.66 64.96 75.68 43.21 39.46 67.73 80.32

Conflict-resolving prompt-1 91.13 67.88 75.04 79.26 95.38 78.18 82.90 85.86
Conflict-resolving prompt-2 82.41 62.08 81.41 80.62 92.42 72.32 82.57 82.29

Table 3: Instruction-guided method robustness. Conflict-resolving prompt-1 refers to the designed prompt in
Section 4.1 and Conflict-resolving prompt-2 is detailed in Section 5.3. The best results is highlighted in bold.

MATH

MMLU_S

GSM8K

BBH_M

20 40 60 80

Skip the analysis and give the final result.

MATH

MMLU_S

GSM8K

BBH_M

20 40 60 80

I just need the answer alone.

Llama-RFFT Qwen-RFFT Llama Qwen

Figure 7: RFFT generalization evaluation. Qwen refers
to Qwen-2.5-72B-Instruct and Llama refers to Llama-
3.3-70B-Instruct.

the difference in accuracy depends sensitively on538

the prompt. In contrast, conflict-agnostic prompts539

fail to recover the performance because the con-540

flict still exists, and the LLMs choose to follow the541

short-path prompts.542

Conflict-resolving prompt-2: If someone asks543

for a quick answer to a logic puzzle, first apologize544

that you can’t provide it and explain that steps are545

necessary to achieve the correct answer. Then walk546

them through your thinking step by step.547

5.4 RFFT Generalization548

During the candidate response generation of RFFT,549

we sample short-path prompts from a pre-defined550

set to ensure diversity, though exhaustive cover-551

age of all potential short-path prompt variations re-552

mains impractical. This limitation necessitates eval-553

uating the generalization of RFFT-trained LLMs in554

resisting unseen short-path prompts. Thus, we con-555

struct supplementary short-path prompts that differ556

from those in the training set, and then compare557

the performance between seen and unseen short-558

path prompts, as shown in Figure 7. The results559

indicate that the fine-tuned LLMs exhibit robust-560

ness against short-path prompts not included in the561

training data.562

MMLU MMLU_Pro IFEval20

30

40

50

60

70

80

90

100

Sc
or

e

Qwen Qwen-RFFT Llama Llama-RFFT

Figure 8: Evaluation of knowledge and instruction-
following benchmarks. Qwen refers to Qwen-2.5-72B-
Instruct and Llama refers to Llama-3.3-70B-Instruct.

5.5 Impact on Other Tasks 563

A concern is whether RFFT leads to knowledge for- 564

getting or cause a decline in the instruction-follow 565

ability. Thus, we use MMLU, MMLU_Pro (Wang 566

et al., 2024), and IFEval (Zhou et al., 2023) to eval- 567

uate changes in the model’s performance regarding 568

the two capabilities mentioned above. The first two 569

benchmarks focus on knowledge, while the third 570

assesses instruction-following. The results, shown 571

in Figure 8, indicate that RFFT-trained model ex- 572

hibit only minor differences compared to their orig- 573

inal versions. This suggests that limited data does 574

not lead to knowledge forgetting or a decline in 575

instruction-following ability. 576

6 Conclusion 577

In this paper, we identify the conflict be- 578

tween hidden-CoT prompts and explicit short-path 579

prompts as the key factor in the decline of LLMs’ 580

reasoning ability. Our analysis indicates that ad- 581

vanced models struggle with reasoning tasks and 582

exhibit positional biases in multiple-choice ques- 583

tions under short-path prompting. The LLMs tend 584

to guessing instead of reasoning to meet up the 585

demand for direct answer. Moreover, we propose 586

a prompt-based method and a fine-tuning-based 587

method to demonstrate that LLMs’ decision mak- 588

ing biases can be calibrate prioritize accuracy. This 589

provide an other view into balancing instruction 590

following and accuracy in contemporary models. 591
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Limitations592

The main limitations of this paper can be summa-593

rized in two aspects: First, in the analysis of model594

performance under short-path prompting, we only595

select the grade-school math dataset (GSM8K) as a596

representative case for in-depth analysis. Although597

the final results show similar conclusions on the598

MATH, MMLU, and BBH datasets, this limitation599

should still be acknowledged. Second, in Section 4,600

both methods calibrate the decision-making biases601

to prioritize accuracy over instruction-following.602

This assumption implies that users are not fully603

aware that the strong reasoning capabilities of lan-604

guage models stem from chain-of-thought reason-605

ing. In our future work, we will explore how to606

enable LLM s to make decisions that prioritize ei-607

ther instruction-following or accuracy depending608

on the specific problem.609
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A Experiment Settings 753

A.1 Training Settings 754

Hyperparameters: The peak learning rate is set to 755

3× 10−6, and the batch size is set to 32. AdamW 756

is employed as the optimizer. A packing strategy 757

is adopted to accelerate the training process. The 758

model is trained for 3 epochs with a maximum se- 759

quence length of 4096, resulting in approximately 760

70 total training steps, and we evaluate the results 761

on the final epoch. We train the models on 32 762

NVIDIA A100 GPUs, and the training time is ap- 763

proximately one hour. We use the cosine learning 764

rate scheduler with 10 warmup steps. 765

Data: In RFFT, we set the sample hyperparame- 766

ters k to 8 and the temperature to 0.7. After filter- 767

ing, 3,200 unique problem instances are generated 768

from the MATH training set using RFFT. Addition- 769

ally, 4,816 unique problem instances are produced 770

from the GSM8K training set, from which 3,200 771

are randomly selected. Subsequently, 1,600 stan- 772

dard CoT data without short-path prompting are 773

incorporated into the dataset. The final training 774

dataset comprises a total of 8,000 instances. 775

A.2 Evaluation Details 776

Benchmarks. We use four reasoning-related 777

benchmarks to evaluate our methods: 778

• (1) GSM8K (Cobbe et al., 2021), a dataset of 779

grade-school math word problems requiring 780

multi-step reasoning; 781

• (2) BigBench-Hard (BBH) (Suzgun et al., 782

2023), a challenging subset of tasks from the 783

BIG-Bench benchmark focusing on complex 784

reasoning and domain generalization. We 785

choose the multiple choice tasks in BBH, 786

named BBHM; 787

• (3) MATH (Hendrycks et al., 2021), a dataset 788

of high-school-level competition mathematics 789

problems with hierarchical difficulty levels; 790

We use Opencompass (Contributors, 2023) as 791

our evaluation Framework. For all benchmarks, 792

we restrict the response format in the instructions 793

to facilitate answer extraction, with all questions 794

presented in a zero-shot format. A example of 795

GSM8K in shown in Table 4. The format restriction 796

is in bold and the prompt is in red. 797

The multi-choice subset in the BBH (Suzgun 798

et al., 2023) comprises the following categories: 799
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Prompt Example

Raw Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder
at the farmers’ market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?
Put your answer within \boxed{}.

CoT Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder
at the farmers’ market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?
Put your answer within \boxed{}. Let’s think step by step.

Short-path Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder
at the farmers’ market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?
Put your answer within \boxed{}. Please only provide the final answer.

Table 4: GSM8K benchmark under different prompts. The format restriction is in bold and the prompt is in red.

temporal sequences, disambiguation QA, date un-800

derstanding, tracking shuffled objects (three ob-801

jects), penguins in a table, geometric shapes,802

snarks, ruin names, tracking shuffled objects (seven803

objects), tracking shuffled objects (five objects),804

logical deduction (three objects), hyperbaton, log-805

ical deduction (five objects), logical deduction806

(seven objects), movie recommendation, salient807

translation error detection, and reasoning about col-808

ored objects.809

The STEM subset in the MMLU (Hendrycks810

et al., 2020) comprises the following categories:811

abstract algebra, anatomy, astronomy, college biol-812

ogy, college chemistry, college computer science,813

college mathematics, college physics, computer se-814

curity, conceptual physics, electrical engineering,815

elementary mathematics, high school biology, high816

school chemistry, high school computer science,817

high school mathematics, high school physics, high818

school statistics and machine learning.819

B GSM8K Revision820

GSM8K is a widely-adopted benchmark for821

multi-step mathematical reasoning, provides well-822

structured problems with human-annotation de-823

tailed solutions. However, its prevalence in model824

training introduces data contamination risks that825

conflate memorization with true reasoning capa-826

bilities. This issue becomes particularly acute in827

evaluation settings where models are not permitted828

to utilize CoT, since non-CoT evaluation bypasses829

the reasoning process demonstration, memorized830

solutions could artificially inflate performance met- 831

rics. To address this, we reconstruct its problem 832

space through three contamination-resistant adap- 833

tations, and to minimize the risk of contamination, 834

we use the GPT-4o-0806 as the rewrite model 2. 835

Table 5 shows an example of our revision. 836

B.1 Revision Steps 837

Step-1. Numerical Value Substitution: In order 838

to maintain consistency in difficulty with GSM8K, 839

we only allow modifications to the numerical val- 840

ues in this step. This ensures that the complexity of 841

the generated problems remains unchanged. More- 842

over, we utilize the golden answer from GSM8K 843

as a one-shot prompt to guide the GPT-4o and 844

another open-source LLM in solving the gener- 845

ated problems, requiring the answers from both 846

LLMs to be consistent. Given that the original 847

answers include precise and detailed CoT steps, 848

this approach ensures the accuracy of the answers 849

obtained for the generated questions. And then, 850

GPT-4o is employed to perform self-correction on 851

potentially problematic decimal calculations, with 852

final answers constrained to integer values match- 853

ing GSM8K’s difficulty level. 854

Step-2. Context Substitution: Building upon 855

the numerically-altered problems, we implement 856

context substitution. While maintaining numerical 857

values from Step-1, the application contexts are 858

systematically rephrased by GPT-4o that preserves 859

mathematical structure equivalence. The generated 860

2https://platform.openai.com/docs/models#gpt-4o
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Steps Example
GSM8K Judy teaches 5 dance classes, every day, on the weekdays and 8 classes on Saturday. If each class has

15 students and she charges $15.00 per student, how much money does she make in 1 week?
Step-1 Judy teaches 6 dance classes every day on the weekdays and 9 classes on Saturday. If each class has 12

students and she charges $20.00 per student, how much money does she make in 1 week?
Step-2 A chef prepares 6 gourmet meals every day on the weekdays and 9 meals on Saturday. If each meal

serves 12 guests and the chef charges $20.00 per guest, how much money does the chef earn in 1 week?
Step-3 A chef prepares 6 gourmet meals every day on the weekdays and 9 meals on Saturday. If each meal

serves 12 guests and the chef charges $20.00 per guest, how much money does the chef earn in 1 week?
A.10560 B.9120 C.8892 D.9360

Table 5: Data revision process of GSM8K-new and augmentation process of GSM8K-new-choice.

Judy teaches 5 dance 
classes, every day, on the 
weekdays and 8 classes on 
Saturday.  If each class has 
15 students and she 
charges $15.00 per 
student, how much money 
does she make in 1 week?

Judy teaches 6 dance 
classes, every day, on the 
weekdays and 9 classes on 
Saturday.  If each class has 
12 students and she 
charges $20.00 per 
student, how much money 
does she make in 1 week?

Numerical value 
substitution

Difficult check

A chef prepares 6 gourmet 
meals every day on the 
weekdays and 9 meals on 
Saturday. If each meal serves 
12 guests and the chef 
charges $20.00 per guest, 
how much money does the 
chef earn in 1 week?

If not
equal

Context substitution

If not
equal

A chef prepares 6 gourmet 
meals every day on the 
weekdays and 9 meals on 
Saturday. If each meal serves 
12 guests and the chef charges 
$20.00 per guest, how much 
money does the chef earn in 1 
week?
A.10560 B.9120 C.8892 D.9360

Format 
transformation

Figure 9: Framework of the GSM8K revision.

question requires the to be evaluated LLM to com-861

prehend the new context in order to reason through862

them. And then, we use the GPT-4o to solve the863

generated questions and compare the results with864

those from the first step, only revised versions that865

yield the same results will be retained, thus en-866

suring the difficulty level remains unchanged after867

modifying the application context. These answers868

are then established as the gold reference.869

Step-3. Format Transformation: Through the870

preceding steps, we develop a distinguished eval-871

uation set akin to GSM8K reduced contamination.872

To assess the robustness of LLMs’ inference capa-873

bilities under short-path prompting, we transform874

the revised dataset into a multiple-choice format.875

For each sample with a correct CoT path, we intro-876

duce a controlled modification by altering one step877

in the CoT process. This generates an incorrect,878

yet logically related, solution as a distractor in the879

multiple-choice question.880

For those questions that are not amenable to881

rewriting through the aforementioned steps, the882

authors manually review to rewrite the questions883

and annotate the answers, thereby ensuring the pre-884

cision of the augmentation. The overall framework885

is shown in Figure 9.886

B.2 Performance of LLMs on GSM8K and887

GSM8K-new888

We compare the performance of LLMs on889

GSM8K and GSM8K-new, as shown in Figure 10.890

On Qwen-2.5-72B-Instruct and Llama-3.1-70B- 891

Instruct, there is a significant performance gap 892

between the GSM8K and GSM8K-new datasets 893

under SPP, but no such gap is observed under Raw 894

or CoT. We hypothesize that the performance gap 895

under SPP is due to dataset contamination, under 896

short-path prompting, the performance enhance- 897

ment caused by data leakage and memorization 898

is less generalizable. In contrast, the absence of 899

such a gap under CoT/Raw may be attributed to 900

the robust capabilities of advanced LLMs, enabling 901

them to generalize to similar problems in grade- 902

school-level questions. This finding underscores 903

the necessity of our revision. 904

B.3 Impact of Different Short-path Prompts 905

on GSM8K-new. 906

The short-path prompts set we use in RFFT and the 907

impact of different short-path prompts is shown in 908

Table 6. 909

C Judge Prompt Used in the RFFT 910

The judge prompt we use in the RFFT is shown in 911

Figure 11. "{question}" and "{solution}" are place- 912

holders for the reasoning problem under short-path 913

prompting and the target LLM’s response, respec- 914

tively. 915
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Short-path Prompt Qwen Llama
Ignore the process, just state the result. 0.38 0.34
Skip the steps and provide the answer. 0.39 0.33
Answer only, no reasoning allowed. 0.39 0.33
Only the outcome, no process. 0.39 0.33
Please provide the answer without any thought process. 0.39 0.33
Don’t reason, just give the answer. 0.39 0.33
Skip the explanation and provide the answer. 0.39 0.35
Answer without any reasoning. 0.39 0.35
Please cut out the details and give the answer. 0.38 0.36
Please avoid any reasoning and just reply. 0.39 0.35
Respond with the answer only. 0.38 0.38
No details needed, just the answer. 0.38 0.38
Answer concisely without any reasoning. 0.39 0.37
Do not justify, just respond with the answer. 0.38 0.39
Just tell me the result. 0.38 0.4
Just give me the final answer. 0.38 0.41
Do not think, just reply with the answer. 0.38 0.41
Please skip the thinking and just answer. 0.38 0.42
Give the answer straight away. 0.39 0.43
Do not elaborate, just answer. 0.39 0.47
Only the key point, no additional information. 0.38 0.48
Provide the answer without any context. 0.39 0.54
No need to explain, just tell me the answer. 0.39 0.56
Cut to the chase and give the answer. 0.39 0.58
Only the answer, no extra words. 0.39 0.61
Just the answer, nothing else. 0.39 0.62
Only the final result, nothing else. 0.39 0.7
Don’t analyze, just tell me directly. 0.38 0.71
Answer in one sentence. 0.4 0.7
Please respond with just the solution. 0.39 0.78
Only the core answer, no extras. 0.38 0.81
Answer with as few words as possible. 0.38 0.81
No context needed, just the answer. 0.39 0.81
Provide the answer in one word/sentence. 0.36 0.9
Answer directly, no thinking required. 0.39 0.87
Just the facts, no elaboration. 0.38 0.9
Give me the answer in the shortest way possible. 0.39 0.9
Only the essential response, no fluff. 0.38 0.92
Keep it short, no need to elaborate. 0.39 0.91
Answer purely and directly. 0.39 0.92
No need to expand, just get to the point. 0.38 0.93
Answer in a single word or phrase if possible. 0.37 0.95
Answer in the briefest way you can. 0.39 0.93
No need to explain too much. 0.39 0.95
Don’t overthink it, just say it directly. 0.4 0.94
Please respond as concisely as you can. 0.68 0.93
Answer in the most straightforward way possible. 0.85 0.95
Give me the solution immediately. 0.9 0.95
A simple answer will do. 0.93 0.95
Give me the answer in its simplest form. 0.95 0.94

Table 6: The impact of different short-path prompts on the GSM8K-new dataset. Qwen represents the Qwen-2.5-
72B-Instruct and Llama represents the Llama-3.3-70B-Instruct
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Figure 10: LLMs performance on the GSM8K and the GSM8K-new dastsets.

D Model Licensing Compliance916

In this study, we use Qwen-2.5 and Llama-3 se-917

ries models, all of which are employed in strict918

compliance with their respective licensing agree-919

ments. We carefully adhere to the terms and con-920

ditions outlined in their licenses to ensure proper921

and lawful use. It is important to note that these922

models are used solely for scientific research pur-923

poses, aiming to exploring and validating relevant924

academic hypotheses, exclude any commercial or925

non-research-related applications.926
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# Task:
Given a mathematical problem and its' solution, step-by-step analysis if the
solution to the following mathematical problem meets all of the given criteria:

# Criteria:
1. This solution includes an apology for not being able to provide a direct answer.
2. This solution contains a complete step-by-step chain-of-thought reasoning
process before reaching the final answer.
3. This solution has no logical breaks or contradictions.

# Output format:
1. Make the final decision; if the solution meet all criteria, it is True;
otherwise, it is False.
2. Put your final decision within \\boxed{{}}.

# Question
{question}

# Solution
{solution}

Let's think step by step.

Figure 11: Judge prompt used in the RFFT.
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