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Abstract

Recent years have witnessed significant
progress in large language models’ (LLMs)
reasoning, which is largely due to the chain-
of-thought (CoT) approaches, allowing mod-
els to generate intermediate reasoning steps
before reaching the final answer. Building
on these advances, state-of-the-art LLMs are
instruction-tuned to provide long and detailed
CoT pathways when responding to reasoning-
related questions. However, human beings are
naturally cognitive misers and will prompt lan-
guage models to give rather short responses,
thus raising a significant conflict with CoT
reasoning. In this paper, we delve into how
LLMs’ reasoning performance changes when
users provide short-path prompts. The results
and analysis reveal that instruct models can rea-
son effectively and robustly without explicit
CoT prompts, while under short-path prompt-
ing, LLM tend to guess the final answer and
the reasoning ability becomes unstable, even
on grade-school problems. Furthermore, we
propose two approaches to explore whether
the decision-making biases can be calibrated to
prioritize reasoning accuracy, instead of over-
whelming instruction following. Experimental
results show that both methods could achieve
high accuracy, providing insights into the trade-
off between instruction following and reason-
ing accuracy in current models.

1 Introduction

In recent years, large language models (LLMs)
have made significant strides in solving reason-
ing tasks, such as math word problems. This
progress is largely due to the chain-of-thought
(CoT) prompting approach (Wei et al., 2022a),
which enhances accuracy by allowing models to
generate intermediate reasoning steps before reach-
ing the final answer. Prompts like "Let’s think step
by step” (Kojima et al., 2022) encourage models to
produce more detailed reasoning pathways, thereby

improving performance by reflecting the reasoning
ability developed during pre-training. Building on
these advances, current instruction-tuned models
(Dubey et al., 2024) incorporate CoT explanation
data during the post-training, aiming to improve
reasoning ability even without explicit prompts.

As shown in the left panel of Figure 1, in typ-
ical reasoning scenarios, a user input a question
and obtain the answer from the output of the LLM.
The instruction-tuned language models respond to
the user’s question step by step, which is akin to
adding a hidden CoT prompt,"Let’s think step by
step", following the user’s question. However, in
practical situations, people generally prefer concise
answers, aligning with the cognitive miserliness
theory (Stanovich, 2018), and the user may add
an extra request such as "Please only provide the
final answer". Then, a conflict arises with the hid-
den CoT prompt, which restrains the model’s CoT
reasoning. And this preference naturally raises a
problem: How can language models provide accu-
rate answers when asked to respond directly?

In this paper, we term such requests as ''short-
path prompts'' and conduct an in-depth explo-
ration of how LLMSs’ reasoning ability changes un-
der short-path prompting. We analyze how LLMs
perform on problems requiring varying reasoning
steps and their sensitivity to option position, both
under short-path prompting. The results demon-
strate that under short-path prompting, current ad-
vanced LLMs show effectiveness only in solv-
ing two-step reasoning problems, but their perfor-
mance sharply declines when handling problems
that need more steps to solve, even on grade school-
level math reasoning tasks. Moreover, when pre-
sented with multiple-choice questions, these mod-
els exhibit not only unstable reasoning ability but
also significant positional bias in their answers.
These phenomena indicate that when responding to
short-path prompts, the tendency to provide direct
answers is more likely random guessing rather than
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Response:

To find the number of candies Mother Li
has left, we need to follow the sequence
of events:

1. Mother Li starts with 12 candies Response:

20 The answer is D. 14. X

Therefore, Mother Li has 11 candies left.
The correct answer is option A.

Please only provide the final

Please only providel,the final
answer. i

Response:

I’'m sorry that | can’t give the correct
answer directly due to limited thought
steps. To determine how many candies
Mother Li has left, we can follow these

The correct answer is A. 11.

[ B. Short-Path Prompt ]

C. RFFT

Figure 1: The vulnerability of LLM under short-path prompting and how calibrated bias solve this.

genuine reasoning.

Building on the observed guessing behavior un-
der short-path prompting, we investigate whether
LLMs’ decision-making biases can be systemat-
ically calibrated to prioritize reasoning accuracy.
This exploration operates through two complemen-
tary lenses: an instruction-guided method and a
rule-based filter fine-tuning (RFFT) method. The
core idea of the instruction-guided method is to re-
solve the conflict between the hidden-CoT prompt
and the explicit short-path prompt: We utilize the
system role within the chat template to present the
hidden-CoT prompt and the short-path prompt as
options, guiding the LLM to disregard the short-
path prompt and keep reasoning ability. More-
over, we aim to enable the LLM to naturally recog-
nize and resist short-path prompts through training,
without relying on the system role for guidance.
Specifically, given a reasoning question followed
by a short-path prompt, we sample an LLM’s re-
sponse using the instruction-guided method sev-
eral times, and then use the same LLM to act as a
judge to determine whether all pre-established rules
are met. Responses that pass verification by the
judge are then chosen to formulate the fine-tuning
datasets. As a result, we introduce a calibrated bias
embedded within the LLM to better balance accu-
racy with adherence to instructions in response to
short-path prompts.

In a nutshell, our contributions can be summa-
rized as follows:

1. We highlight that the conflict between hidden-

CoT prompt and explicit short-path prompt is

the key reason for the decline in the model’s
reasoning ability under short-path prompting.

2. We conduct an in-depth analysis to explore
how LLMs’ reasoning ability changes under
short-path prompting. The experimental re-
sults demonstrate that LLMs tend to guess the
answers to meet the demand for direct answer,
rather than genuinely reasoning.

3. Our proposed two methods substantiate that
LLM:s can be intrinsically calibrated to prior-
itize accuracy over instructional compliance
through bias intervention. This provides in-
sights into balancing instruction following and
reasoning accuracy in contemporary models.

2 Related Work

Reasoning through CoT: CoT techniques consti-
tute the cornerstone methodology for augmenting
language models’ reasoning capacities, primarily
involving two methodologies: prompt-based and
fine-tuning approaches. Prompt-based approaches
involves providing structured guidance through
prompt engineering to activate the model’s inher-
ent chain-of-thought capabilities. Zero-shot ap-
proaches employ triggers like "Let’s think step by
step” to initiate reasoning (Kojima et al., 2022),
while few-shot prompts incorporate exemplars to
establish reasoning patterns (Wei et al., 2022b;
Wang et al., 2022). Several works (Zhou et al.,
2022; Wang et al., 2023) guide models to improve
reasoning performance through problem decompo-
sition and sub-problem resolution. In contrast, fine-
tuning approaches endow models with enhanced



reasoning abilities by leveraging large-scale cor-
pora containing CoT annotations. For instance,
(Chung et al., 2024) and (Kim et al., 2023) use large
CoT corpora in the instruction-tuning stage, (Zhang
et al., 2024b) emphasize the selection of optimal
CoT pathways for model training, and (Puerto et al.,
2024) generates diverse reasoning CoT pathways to
facilitate self-correction. Modern instruction-tuned
models like (Yang et al., 2024; Dubey et al., 2024)
systematically integrate CoT data, particularly for
mathematical reasoning.

Long-to-short in Reasoning Model: Unlike
conventional instruct models, OpenAl-ol (Ope-
nAl, 2024) introduces a profound paradigm shift in
LLM:s through test-time scaling, termed as Reason-
ing models (Li et al., 2025). Before reaching the
final answer, the Reasoning model undergoes an
extensive cognitive process distinct from standard
reasoning patterns. This process involves iterative
cycles of reflection, speculation, self-verification to
improve performance. However, this phase also in-
cludes significant computational redundancy (Chen
et al., 2024), driving research on effectively com-
pressing the model’s cognitive trajectory (Team
et al., 2025). Ol-pruner (Luo et al., 2025) employs
reinforcement learning and fine-tuning to stream-
line outputs, while methods like DAST (Shen et al.,
2025) integrate difficulty metrics and length con-
straints to reshape reward mechanisms.

In this paper, we focus on conventional instruct
models rather than reasoning models. We observe
that during the Instruction-tuning phase, the exten-
sive use of CoT corpora not only enhances models’
CoT capabilities but also implicitly incorporates
hidden-CoT prompts. However, these hidden-CoT
prompts may conflict with short-path prompts, thus
causing a significant decline in reasoning perfor-
mance. Such critical phenomena remain insuffi-
ciently investigated in current literature.

3 Are LLMs guessing or reasoning under
Short-path Prompting?

In this section, we use grade-school-level math
problems, GSM8K (Cobbe et al., 2021), as an ex-
ample to deeply analyze how the reasoning abilities
of an advanced language model change under short-
path prompting. We aim to investigate whether the
language model is merely guessing or genuinely
reasoning under these conditions. Potential data
contamination (Zhang et al., 2024a) may lead the
model to generate answers based on memoriza-
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Figure 2: LLMs performance on GSM8K-new dataset.
Bar chart (left y-axis) shows the score, while line plot
(right y-axis) displays response length.

tion rather than reasoning. To more effectively ex-
plore the genuine reasoning ability of models under
short-path prompting, we revise the GSM8K and
augment it into a multiple-choice format, named
GSMS8K-new and GSM8K-new-choice, respec-
tively. These two versions represent the question-
and-answer and multiple-choice formats of reason-
ing problems. Details about dataset revision and
augmentation can be found in the Appendix B.

3.1 Performance on Question-and-answer
Problems

We evaluate two advanced open-source LLMs:
Qwen-2.5-72B-Instruct (Yang et al., 2024) and
Llama-3.3-70B-Instruct (Dubey et al., 2024), here-
after referred to Qwen and Llama for simplicity.

We evaluate LLMs’ performance on GSM8K-
new with three setups: (1) Raw: input the raw
math word problem. (2) CoT: add a zero-shot CoT
prompt "Let’s think step by step” after the prob-
lem. (3) SPP: add a short-path prompt "Please only
provide the final answer" after the problem. The
results are depicted in Figure 2. We can observe
that the score and response length do not change
significantly between Raw and CoT, verifying that
instruction-tuned LLMs already possess the ability
to perform CoT reasoning even without explicit
CoT prompt. However, under the SPP setting, the
score exhibits a substantial decrease alongside a
reduction in response length. This indicates that
short-path prompting conflicts with the model’s in-
herent CoT reasoning mechanism and significantly
impairs its reasoning capability.

Furthermore, We evaluate the reasoning ability
of two state-of-the-art commercial models, GPT-40
and Deepseek-v3 !, under same setups. The results
are shown in Figure 2. From the results, we ob-
serve that the performance variations of GPT-40 are
similar to those of two open-source models, show-

'We use GPT-40-1106 and Deepseek-v3-0324 here.
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Figure 3: Accuracy of LLMs on the GSM8K-new for
problems with different steps: short-path prompting,
raw input (left panel), and forced direct answering (right
panel). GSM8K-new doesn’t contains 1-step problem.

Qwen Llama

Short-path Prompts
Score Length Score Length

Please only provide the final answer. 3843 6.56 46.32 2556
Just tell me the result. 38.44 6.56 39.58 29.67
Answer directly, no thinking required.  38.59 6.60 86.96 163.10

Answer in the briefest way you can. 38.67 6.82 93.10 103.17
Please respond as concisely as you can. 67.70 5540 93.40 111.85
A simple answer will do. 93.25 198.42 94.69 200.95

Raw 94.69 277.59 94.99 240.36

Table 1: The performance of Qwen and Llama under
different short-path prompting on the GSM8K-new.

ing a significant accuracy drop under SPP. In con-
trast, Deepseek-v3 shows only a slight reduction
in performance in the same scenarios. Upon closer
examination of Deepseek-v3’s outputs under SPP,
we find that approximately 90% of the responses
include directly generated CoT outputs. While this
behavior contributes to slightly better robustness,
we argue that it is still suboptimal because these
responses fail to provide a meaningful explanation
for their inability to give a direct answer.

Step-granularity Analysis. Furthermore, we
classify problems by solution step count and ana-
lyze scores across categories, and the results are
presented in the left panel of Figure 3. Due to the
scarcity of 7 or 8 steps problems in the test set,
these categories are not included here. First, we ob-
serve that under the raw setting, the number of steps
has minimal impact on accuracy. However, under
SPP, models’ reasoning capability declines sharply
as the problem-solving process requires more steps.
When solving problems requiring two steps (in sce-
narios where one reasoning step is skipped if the
model directly outputs the answer), the accuracy
of LLMs remains around 70%, while for six-step
problems, the accuracy rate of Qwen drops even
below 10%.

Moreover, we find that LLlama maintains rela-
tively stable accuracy on problems requiring 4-6
steps to solve. By analyzing model outputs, we
observe that Llama occasionally bypasses short-

path prompts and gives the step-by-step reasoning
process. To enforce direct answers, we append
"The answer is \boxed" to the assistant role in the
model’s chat template. As shown in the right panel
of Figure 3, Qwen and Llama both show a signifi-
cant accuracy drop when forced to directly output
the answer as the step count increases. Such empir-
ical observations demonstrate that the forced sup-
pression of Chain-of-Thought generation in instruct
models under short-path prompting substantially
impairs their problem-solving efficacy on tasks ne-
cessitating sequential cognitive operations.

Sensitivity to different SPP: We further evalu-
ate the impact of different types of SPP on model
performance to analyze the model’s sensitivity to
SPP, with results presented in Table 1. More re-
sults about different SPP can be found in the Ap-
pendix B.3.

Overall, we classify SPP into two categories:
"Direct," which indicates a preference for obtain-
ing the final answer immediately (see rows 1-3),
and "Simple," which requires the response to be
as concise as possible (see rows 4-6). We observe
that Qwen’s reasoning ability is more susceptible
to the influence of short-path prompts compared to
that of Llama. Specifically, Qwen’s scores do not
exceed 40 under the Direct type, and two prompts
in the Simple type also significantly affect its per-
formance. While Llama’s performance is also in-
consistent under the first type, it still manages to
provide accurate answers in the second type.

Conclusion. In this subsection, our experimen-
tal results suggest that intermediate reasoning steps
are crucial for solving problems accurately, regard-
less of their apparent simplicity. Even state-of-
the-art models are highly susceptible to short-path
prompts and fail to reliably solve elementary-level
problems through direct answer.

3.2 Robustness on Multiple-choice Problems

To analyze the robustness of LLMs’ reasoning
under SPP, we transform the GSM8K-new into
multiple-choice questions, where each incorrect op-
tion is derived from an error introduced at a specific
step in the correct solution process. We augment
each multiple-choice question by permuting the
options and answers in all 24 (4! = 24) possible
arrangements. Then, we evaluate the LLMs’ accu-
racy when the correct answer appears in different
option positions, and analyze the overall percent-
age of each option selected by the LLMs. Since the
problem-solving process is independent of the op-
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Figure 5: Score and percentage of confident reasoning across different threshold.

tions, we believe that shuffling the options should
not affect the model’s accuracy on the multiple-
choice questions if the model is capable of genuine
reasoning. The results are presented in Figure 4.

The results reveal significant instability in the
reasoning ability of LLMs under SPP. Accuracy
shows significant fluctuations depending on the po-
sition of correct answers among options, revealing
a pronounced positional bias in LLMs. Both Qwen
and Llama exhibit disproportionately higher selec-
tion probabilities for option "B" compared to other
options. Particularly concerning is the severe ac-
curacy degradation observed when correct answers
reside in options "A" or "D". In contrast, Raw
input demonstrates stable performance across all
answer positions, maintaining consistent accuracy
regardless of correct option placement and exhibit-
ing uniform answer distribution without positional
bias.

Threshold-based Evaluation. To further inves-
tigate reasoning stability, we introduce a threshold-
based evaluation method: Across 24 trials, an LLM
is considered to solve a problem accurately or ex-
hibit confident reasoning if it selects the correct
answer or consistently chooses the same answer in
more than a predetermined number of trials.

Figure 5 illustrates performance variations
across threshold levels of two models. The results
demonstrate a rapid decline in accuracy under short-
path prompting as thresholds increase. Specifically,
the accuracy of the LLM decreases by 60% when
the threshold increases from 12 to 24. Further-
more, the percentage of confident reasoning also

declines significantly, dropping from 80% to 20%
when the threshold increases from 12 to 24. This
substantial reduction in confident reasoning indi-
cates that the model under SPP is incapable of per-
forming effective reasoning internally when solv-
ing multiple-choice questions, and instead tends to
resort to guessing answers to meet the unreason-
able demand for direct answer. In contrast, Raw
input shows a stable accuracy and confident reason-
ing. These findings suggest that advanced LLMs
fundamentally lack reliable reasoning consistency
for grade-school math problems under short-path
prompting, and they tend to rely on guessing rather
than reasoning.

Conclusion. In this subsection, the choice per-
turbation experiment under SPP reveals signifi-
cant position bias in advanced LLMs, while the
threshold-based evaluation further demonstrates
unstable confidence in reasoning processes. These
results suggest that LLMs tend to guess answers
to meet up the overwhelming demand for direct
answer.

4 Calibrating Accuracy-Centric Bias

Through in-depth analysis, we demonstrate that
LLMs’ reasoning degradation under short-path
prompting stems from the conflict between the
hidden-CoT mechanism and explicit instruction
following. This phenomenon raises a fundamental
question: Can we calibrate LLMs’ decision-making
bias to prioritize accuracy over instruction follow-
ing through targeted interventions? To investigate
this, we develop two complementary approaches
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that operate at both prompt and fine-tuning granu-
larities:

4.1 Instruction-guided Method

Chat Template. For an instruction-tuned LLM,
the user’s query is embedded within a specialized
chat template during conversation and serves as
the final input for the model. The chat template
is a pre-defined and LLM-related framework de-
signed to describe metadata in a conversation (e.g.,
roles). For example, Qwen’s template is shown in
the following:

<im_start>user
{User_Query }<im_end>
<im_start>assistant

(1

where ‘<im_start>" and ‘<im_end>" are special
tokens. ‘user’ and ‘assistant’ represent the roles
in the chat template. ‘User_Query’ represent the
placeholder for the user query.

As previously discussed, the conflict between
hidden-CoT prompts and explicit short-path
prompts suppresses the expression of reasoning pat-
terns, ultimately degrading the model’s inferential
capabilities. Rather than forcibly overriding short-
path prompts, the instruction-guided method ad-
dresses this through conflict resolution via a higher-
level instruction design: we use the system role in
the chat template to insert an instructional system
prompt. This prompt treats the hidden-CoT prompt
and short-path prompt as distinct options, guiding
the LLM to select the former, instead of having the
LLM resolve conflicting patterns on its own.

We propose that model responses should adhere
to this structure: When unable to satisfy users’
short-path requests for direct answers, the model
should first acknowledge this limitation with con-
textualized explanations, then provide systematic
reasoning processes to ensure answer reliability.
Guided by these principles, we design the follow-
ing prompt:

Designed Prompt: When a user presents a log-
ical problem and asks for a simple response or
restricts your thinking, please first apologize to
the user, explaining that a correct answer cannot
be provided with a simple reply. Then, proceed
to analyze and answer the user’s question step by
step.

4.2 Rule-based Filter Fine-tuning

However, an LLM that is not specifically optimized
struggles to fully handle the conflict even using
instruction-guided method, especially on multi-
choice questions. More importantly, we aim to
enable LLMs to recognize and resist short-path
prompts without relying on system prompts, equip-
ping them with intrinsic capabilities to become
robust reasoners. To achieve this, we propose a
rule-based filter fine-tuning (RFFT) method that
adjusts the model without requiring human annota-
tion. The main framework of RFFT is illustrated in
Figure 6, which primarily includes the following
components:

Candidate Sampling. Given a reasoning prob-
lem, we first randomly choose a short-path prompt
from a pre-defined short-path prompt set (see Ap-
pendix B.3) and append the short-path prompt after
the problem. Then, we sample the candidate re-
sponses from the target LLM k times with temper-
ature decoding and the instruction-guided method.

Rule-based Filter. As previously mentioned,
an LLM that is not specifically optimized may
not fully reject short-path prompts even by us-
ing instruction-guided method. In such cases, the
model’s output logic can become chaotic, as LLM
hesitates between conflicting instructions. (e.g., “I
apologize, but a simple answer might not fully ad-
dress the nuances of these statements. However,
to comply with your request: So the answer is op-
tion: (D)"). Therefore, we employ an LLM as the
judge to determine whether the candidate response
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Table 2: Overall performance of our methods. ‘IG’ represents the instruction-guided method. The best results under

short-path prompting is highlighted in bold.

satisfies all designed rules: (Rule 1): whether the
response apologizes for failing to provide a direct
answer; (Rule 2): presence of CoT reasoning steps
before reaching the final answer; (Rule 3): absence
of logical discontinuities or contradictions in the
response. And then, compliant responses are re-
tained for fine-tuning corpus, while non-compliant
ones are discarded.

Fine-tuning. In the end, we fine-tune the LLM
using the rule-filtered data. To align with our objec-
tive of developing intrinsic capabilities for recog-
nizing and resisting short-path prompts, we avoid
reliance on instruction-based guidance and instead
remove the prepend prompt within the system role.
In this process, we incorporate reasoning problems
without short-path prompting into the training set.
This ensures the calibrated bias is only applied to
short-path prompts. During the training, we label-
mask the query within the user role and only the
response is used for calculating loss:

N
(== "logP(ty =ta|Q.t0.n) (2
n=1
where IV represents the length of response, t,, rep-
resents the n-th ground-truth token in the response,
t,, represents the predicted token at position n by

the LLM, () represents the user query.

5 Calibrating Experiment
5.1 Settings

Models and data. We use two sizes (around 8B
and 70B) of advanced open-source models from
two different series (Qwen and Llama) to validate
the effectiveness of two methods, and the overall
training data consists of 8,000 examples. We use
four reasoning-related benchmarks to evaluate our
methods: GSM8K, BBHy, MATH and MMLUs.
Moreover, We use Qwen-2.5-72B-Instruct as the
target LLM and judge LLM in our RFFT frame-
work. Due to the page limitation, more details
about training, data and evaluation could be found
in Appendix A.

5.2 Overall Performance

Table 2 reports the performance of our two methods
across all datasets. Here, we have the following
observations: First, consistent with our analysis
in Section 3, the reasoning ability of the LLMs
significantly declines under short-path prompting.
This trend is observed across four reasoning-related
datasets for both 8B and 70B LLMs.

As for our methods, the instruction-guided
method greatly enhances the LLMs’ resistance to
short-path prompts. Specifically, all models recover
over 80% of the score dropped on the GSM8K and
MATH datasets on average, and recover 50% on
the BBHy and MMLU s on large size models.

Furthermore, the fine-tuned LLMs naturally ex-
hibit resistance to short-path prompts and achieve
higher scores than the instruction-guided method,
particularly on multiple-choice questions like
BBHy and MMLUs. We hypothesize that this may
be due to the relative scarcity of multiple-choice
questions in CoT format within the post-training
corpus, making it more challenging to trigger CoT
under short-path prompting.

5.3 Instruction-guided Robustness

We evaluate the robustness of the instruction-
guided method against different system prompt
designs under short-path prompting. Table 3 sum-
marizes the performance of five distinct system
prompt variations. According to our core idea
in prompt design, we categorize the prompts into
two types: conflict-resolving prompts (see last two
rows) and conflict-agnostic prompts (see rows 2-
4). Conflict-resolving prompts describe short-path
prompts briefly and guide the LLM to neglect short-
path prompts and keep thinking, while conflict-
agnostic prompts are concise zero-shot instructive
prompts that encourage the reasoning process with-
out handling the conflict (e.g., "Let’s think step by
step."). The results indicate that the performance
is significantly recovered if the system prompt be-
longs to the conflict-resolving category. However,



Llama-3.3-70B-Instruct

Qwen-2.5-72B-Instruct

System Prompt GSM8K MATH BBHw MMLUs |GSM8K MATH BBHym MMLUg
None 47.00 43.62 64.64 72.83 | 41.69 3942 6720 79.85
Let’s think step by step. 50.27 4648 6495 7572 | 4246 39.52 67.16 79.96
Solve user’s problem by splitting it into steps. | 64.22 56.74 654  76.19 | 42.00 41.82 6743 79.57
Think thoroughly to answer the user’s problem.| 52.69 49.66 64.96 75.68 | 4321 39.46 67.73 80.32
Conflict-resolving prompt-1 91.13 67.88 75.04 79.26 | 9538 78.18 8290 85.86
Conflict-resolving prompt-2 8241 62.08 81.41 80.62 | 9242 7232 8257 8229

Table 3: Instruction-guided method robustness. Conflict-resolving prompt-1 refers to the designed prompt in
Section 4.1 and Conflict-resolving prompt-2 is detailed in Section 5.3. The best results is highlighted in bold.

Skip the analysis and give the final result.
MMLU_S

| just need the answer alone.
MMLU_S

GSMR

BBH_M

BBH_M

—— Llama-RFFT Qwen-RFFT Llama Qwen

Figure 7: RFFT generalization evaluation. Qwen refers
to Qwen-2.5-72B-Instruct and Llama refers to Llama-
3.3-70B-Instruct.

the difference in accuracy depends sensitively on
the prompt. In contrast, conflict-agnostic prompts
fail to recover the performance because the con-
flict still exists, and the LLMs choose to follow the
short-path prompts.

Conlflict-resolving prompt-2: If someone asks
for a quick answer to a logic puzzle, first apologize
that you can’t provide it and explain that steps are
necessary to achieve the correct answer. Then walk
them through your thinking step by step.

5.4 RFFT Generalization

During the candidate response generation of RFFT,
we sample short-path prompts from a pre-defined
set to ensure diversity, though exhaustive cover-
age of all potential short-path prompt variations re-
mains impractical. This limitation necessitates eval-
uating the generalization of RFFT-trained LLMs in
resisting unseen short-path prompts. Thus, we con-
struct supplementary short-path prompts that differ
from those in the training set, and then compare
the performance between seen and unseen short-
path prompts, as shown in Figure 7. The results
indicate that the fine-tuned LL.Ms exhibit robust-
ness against short-path prompts not included in the
training data.

[0 Qwen B Qwen-RFFT [ Llama 3 Llama-RFFT

80
70
50
40
30
20 MMLU MMLU_Pro IFEval

Figure 8: Evaluation of knowledge and instruction-
following benchmarks. Qwen refers to Qwen-2.5-72B-
Instruct and Llama refers to Llama-3.3-70B-Instruct.

Score
o
3

5.5 Impact on Other Tasks

A concern is whether RFFT leads to knowledge for-
getting or cause a decline in the instruction-follow
ability. Thus, we use MMLU, MMLU_Pro (Wang
et al., 2024), and IFEval (Zhou et al., 2023) to eval-
uate changes in the model’s performance regarding
the two capabilities mentioned above. The first two
benchmarks focus on knowledge, while the third
assesses instruction-following. The results, shown
in Figure 8, indicate that RFFT-trained model ex-
hibit only minor differences compared to their orig-
inal versions. This suggests that limited data does
not lead to knowledge forgetting or a decline in
instruction-following ability.

6 Conclusion

In this paper, we identify the conflict be-
tween hidden-CoT prompts and explicit short-path
prompts as the key factor in the decline of LLMs’
reasoning ability. Our analysis indicates that ad-
vanced models struggle with reasoning tasks and
exhibit positional biases in multiple-choice ques-
tions under short-path prompting. The LLMs tend
to guessing instead of reasoning to meet up the
demand for direct answer. Moreover, we propose
a prompt-based method and a fine-tuning-based
method to demonstrate that LLMs’ decision mak-
ing biases can be calibrate prioritize accuracy. This
provide an other view into balancing instruction
following and accuracy in contemporary models.



Limitations

The main limitations of this paper can be summa-
rized in two aspects: First, in the analysis of model
performance under short-path prompting, we only
select the grade-school math dataset (GSMS8K) as a
representative case for in-depth analysis. Although
the final results show similar conclusions on the
MATH, MMLU, and BBH datasets, this limitation
should still be acknowledged. Second, in Section 4,
both methods calibrate the decision-making biases
to prioritize accuracy over instruction-following.
This assumption implies that users are not fully
aware that the strong reasoning capabilities of lan-
guage models stem from chain-of-thought reason-
ing. In our future work, we will explore how to
enable LLM s to make decisions that prioritize ei-
ther instruction-following or accuracy depending
on the specific problem.
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A Experiment Settings
A.1 Training Settings

Hyperparameters: The peak learning rate is set to
3 x 1079, and the batch size is set to 32. AdamW
is employed as the optimizer. A packing strategy
is adopted to accelerate the training process. The
model is trained for 3 epochs with a maximum se-
quence length of 4096, resulting in approximately
70 total training steps, and we evaluate the results
on the final epoch. We train the models on 32
NVIDIA A100 GPUs, and the training time is ap-
proximately one hour. We use the cosine learning
rate scheduler with 10 warmup steps.

Data: In RFFT, we set the sample hyperparame-
ters k to 8 and the temperature to 0.7. After filter-
ing, 3,200 unique problem instances are generated
from the MATH training set using RFFT. Addition-
ally, 4,816 unique problem instances are produced
from the GSMB8K training set, from which 3,200
are randomly selected. Subsequently, 1,600 stan-
dard CoT data without short-path prompting are
incorporated into the dataset. The final training
dataset comprises a total of 8,000 instances.

A.2 Evaluation Details

Benchmarks. We use four reasoning-related
benchmarks to evaluate our methods:

* (1) GSM8K (Cobbe et al., 2021), a dataset of
grade-school math word problems requiring
multi-step reasoning;

(2) BigBench-Hard (BBH) (Suzgun et al.,
2023), a challenging subset of tasks from the
BIG-Bench benchmark focusing on complex
reasoning and domain generalization. We
choose the multiple choice tasks in BBH,
named BBHyy;

(3) MATH (Hendrycks et al., 2021), a dataset
of high-school-level competition mathematics
problems with hierarchical difficulty levels;

We use Opencompass (Contributors, 2023) as
our evaluation Framework. For all benchmarks,
we restrict the response format in the instructions
to facilitate answer extraction, with all questions
presented in a zero-shot format. A example of
GSMB8K in shown in Table 4. The format restriction
is in bold and the prompt is in red.

The multi-choice subset in the BBH (Suzgun
et al., 2023) comprises the following categories:



Prompt

Example

Raw

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder
at the farmers’ market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?

Put your answer within \boxed{}.

CoT

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder
at the farmers’ market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?

Put your answer within \boxed{}. Let’s think step by step.

Short-path

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder
at the farmers’ market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?

Put your answer within \boxed{}. Please only provide the final answer.

Table 4: GSM8K benchmark under different prompts. The format restriction is in bold and the prompt is in red.

temporal sequences, disambiguation QA, date un-
derstanding, tracking shuffled objects (three ob-
jects), penguins in a table, geometric shapes,
snarks, ruin names, tracking shuffled objects (seven
objects), tracking shuffled objects (five objects),
logical deduction (three objects), hyperbaton, log-
ical deduction (five objects), logical deduction
(seven objects), movie recommendation, salient
translation error detection, and reasoning about col-
ored objects.

The STEM subset in the MMLU (Hendrycks
et al., 2020) comprises the following categories:
abstract algebra, anatomy, astronomy, college biol-
ogy, college chemistry, college computer science,
college mathematics, college physics, computer se-
curity, conceptual physics, electrical engineering,
elementary mathematics, high school biology, high
school chemistry, high school computer science,
high school mathematics, high school physics, high
school statistics and machine learning.

B GSMSK Revision

GSMS8K is a widely-adopted benchmark for
multi-step mathematical reasoning, provides well-
structured problems with human-annotation de-
tailed solutions. However, its prevalence in model
training introduces data contamination risks that
conflate memorization with true reasoning capa-
bilities. This issue becomes particularly acute in
evaluation settings where models are not permitted
to utilize CoT, since non-CoT evaluation bypasses
the reasoning process demonstration, memorized
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solutions could artificially inflate performance met-
rics. To address this, we reconstruct its problem
space through three contamination-resistant adap-
tations, and to minimize the risk of contamination,
we use the GPT-40-0806 as the rewrite model .
Table 5 shows an example of our revision.

B.1 Revision Steps

Step-1. Numerical Value Substitution: In order
to maintain consistency in difficulty with GSM8K,
we only allow modifications to the numerical val-
ues in this step. This ensures that the complexity of
the generated problems remains unchanged. More-
over, we utilize the golden answer from GSM8K
as a one-shot prompt to guide the GPT-40 and
another open-source LLM in solving the gener-
ated problems, requiring the answers from both
LLMs to be consistent. Given that the original
answers include precise and detailed CoT steps,
this approach ensures the accuracy of the answers
obtained for the generated questions. And then,
GPT-40 is employed to perform self-correction on
potentially problematic decimal calculations, with
final answers constrained to integer values match-
ing GSM8K’s difficulty level.

Step-2. Context Substitution: Building upon
the numerically-altered problems, we implement
context substitution. While maintaining numerical
values from Step-1, the application contexts are
systematically rephrased by GPT-4o that preserves
mathematical structure equivalence. The generated

Zhttps://platform.openai.com/docs/models#gpt-4o



Steps Example

Judy teaches 5 dance classes, every day, on the weekdays and 8 classes on Saturday. If each class has

15 students and she charges $15.00 per student, how much money does she make in 1 week?

Judy teaches 6 dance classes every day on the weekdays and 9 classes on Saturday. If each class has 12

students and she charges $20.00 per student, how much money does she make in 1 week?

GSMSK
Step-1
Step-2 6
12 $20.00
Step-3 6
12 $20.00

A.10560 B.9120 C.8892 D.9360

9

9

Table 5: Data revision process of GSM8K-new and augmentation process of GSM8K-new-choice.

Difficult check

) G

(Judy teaches 5 dance \‘ (Judy teaches 6 dance

‘ classes, every day, on the \ ‘ classes, every day, on the \
weekdays and 8 classes on | | weekdays and 9 classes on |

| | Saturday. If each class has | | Saturday. If each class has |

‘ 15 students and she ( ‘ 12 students and she (
) charges $15.00 per ‘\ ) charges $20.00 per |
| student, how much money Numerical value
1 does she make in 1 week? ‘ substitution

If not
Equa\

| student, how much money | Context subsmut\on |
does she make in 1 week? \ 4

If not
equal

| | ) |
e@ SCRE |
| $20.00 { \‘ $20.00

Format

[ transformation | |
| | A.10560 B.9120 C.8892 D.9360 |

Figure 9: Framework of the GSM8K revision.

question requires the to be evaluated LLM to com-
prehend the new context in order to reason through
them. And then, we use the GPT-40 to solve the
generated questions and compare the results with
those from the first step, only revised versions that
yield the same results will be retained, thus en-
suring the difficulty level remains unchanged after
modifying the application context. These answers
are then established as the gold reference.

Step-3. Format Transformation: Through the
preceding steps, we develop a distinguished eval-
uation set akin to GSM8K reduced contamination.
To assess the robustness of LLMs’ inference capa-
bilities under short-path prompting, we transform
the revised dataset into a multiple-choice format.
For each sample with a correct CoT path, we intro-
duce a controlled modification by altering one step
in the CoT process. This generates an incorrect,
yet logically related, solution as a distractor in the
multiple-choice question.

For those questions that are not amenable to
rewriting through the aforementioned steps, the
authors manually review to rewrite the questions
and annotate the answers, thereby ensuring the pre-
cision of the augmentation. The overall framework
is shown in Figure 9.

B.2 Performance of LLMs on GSMS8K and
GSMS8K-new

We compare the performance of LLMs on
GSMB8K and GSM8K-new, as shown in Figure 10.
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On Qwen-2.5-72B-Instruct and Llama-3.1-70B-
Instruct, there is a significant performance gap
between the GSM8K and GSM8K-new datasets
under SPP, but no such gap is observed under Raw
or CoT. We hypothesize that the performance gap
under SPP is due to dataset contamination, under
short-path prompting, the performance enhance-
ment caused by data leakage and memorization
is less generalizable. In contrast, the absence of
such a gap under CoT/Raw may be attributed to
the robust capabilities of advanced LLMs, enabling
them to generalize to similar problems in grade-
school-level questions. This finding underscores
the necessity of our revision.

B.3 Impact of Different Short-path Prompts
on GSM8K-new.

The short-path prompts set we use in RFFT and the
impact of different short-path prompts is shown in
Table 6.

C Judge Prompt Used in the RFFT

The judge prompt we use in the RFFT is shown in
Figure 11. "{question}" and "{solution}" are place-
holders for the reasoning problem under short-path
prompting and the target LLM’s response, respec-
tively.



Short-path Prompt Qwen Llama
Ignore the process, just state the result. 0.38 0.34
Skip the steps and provide the answer. 0.39 0.33
Answer only, no reasoning allowed. 0.39 0.33
Only the outcome, no process. 0.39 0.33
Please provide the answer without any thought process. 0.39 0.33
Don’t reason, just give the answer. 0.39 0.33
Skip the explanation and provide the answer. 0.39 0.35
Answer without any reasoning. 0.39 0.35
Please cut out the details and give the answer. 0.38 0.36
Please avoid any reasoning and just reply. 0.39 0.35
Respond with the answer only. 0.38 0.38
No details needed, just the answer. 0.38 0.38
Answer concisely without any reasoning. 0.39 0.37
Do not justify, just respond with the answer. 0.38 0.39
Just tell me the result. 0.38 0.4
Just give me the final answer. 0.38 0.41
Do not think, just reply with the answer. 0.38 0.41
Please skip the thinking and just answer. 0.38 0.42
Give the answer straight away. 0.39 0.43
Do not elaborate, just answer. 0.39 0.47
Only the key point, no additional information. 0.38 0.48
Provide the answer without any context. 0.39 0.54
No need to explain, just tell me the answer. 0.39 0.56
Cut to the chase and give the answer. 0.39 0.58
Only the answer, no extra words. 0.39 0.61
Just the answer, nothing else. 0.39 0.62
Only the final result, nothing else. 0.39 0.7
Don’t analyze, just tell me directly. 0.38 0.71
Answer in one sentence. 0.4 0.7
Please respond with just the solution. 0.39 0.78
Only the core answer, no extras. 0.38 0.81
Answer with as few words as possible. 0.38 0.81
No context needed, just the answer. 0.39 0.81
Provide the answer in one word/sentence. 0.36 0.9
Answer directly, no thinking required. 0.39 0.87
Just the facts, no elaboration. 0.38 0.9
Give me the answer in the shortest way possible. 0.39 0.9
Only the essential response, no fluff. 0.38 0.92
Keep it short, no need to elaborate. 0.39 0.91
Answer purely and directly. 0.39 0.92
No need to expand, just get to the point. 0.38 0.93
Answer in a single word or phrase if possible. 0.37 0.95
Answer in the briefest way you can. 0.39 0.93
No need to explain too much. 0.39 0.95
Don’t overthink it, just say it directly. 0.4 0.94
Please respond as concisely as you can. 0.68 0.93
Answer in the most straightforward way possible. 0.85 0.95
Give me the solution immediately. 0.9 0.95
A simple answer will do. 0.93 0.95
Give me the answer in its simplest form. 0.95 0.94

Table 6: The impact of different short-path prompts on the GSM8K-new dataset. Qwen represents the Qwen-2.5-
72B-Instruct and Llama represents the Llama-3.3-70B-Instruct
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Qwen-2.5-72B-Instruct Llama-3.3-70B-Instruct
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Figure 10: LLMs performance on the GSM8K and the GSM8K-new dastsets.

D Model Licensing Compliance

In this study, we use Qwen-2.5 and Llama-3 se-
ries models, all of which are employed in strict
compliance with their respective licensing agree-
ments. We carefully adhere to the terms and con-
ditions outlined in their licenses to ensure proper
and lawful use. It is important to note that these
models are used solely for scientific research pur-
poses, aiming to exploring and validating relevant
academic hypotheses, exclude any commercial or
non-research-related applications.
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( # Task:

Given a mathematical problem and its' solution, step-by-step analysis if the
solution to the following mathematical problem meets all of the given criteria:

# Criteria:

1. This solution includes an apology for not being able to provide a direct answer.
2. This solution contains a complete step-by-step chain-of-thought reasoning
process before reaching the final answer.

3. This solution has no logical breaks or contradictions.

# Output format:

1. Make the final decision; if the solution meet all criteria, it is True;
otherwise, it is False.

2. Put your final decision within \\boxed{{}}.

# Question
{question}

# Solution
{solution}

Let's think step by step.

Figure 11: Judge prompt used in the RFFT.
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