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Abstract

We characterize the computational power of neural networks that follow the graph
neural network (GNN) architecture, not restricted to aggregate-combine GNNs
or other particular types. We establish an exact correspondence between the
expressivity of GNNs using diverse activation functions and arithmetic circuits
over real numbers. In our results the activation function of the network becomes a
gate type in the circuit. Our result holds for families of constant depth circuits and
networks, both uniformly and non-uniformly, for all common activation functions.

1 Introduction

Neural networks have recently received growing attention from a theoretical point of view in a number
of papers studying their computational properties. Relevant to this paper are examinations of the
computational power of neural networks after training, i.e., the training process is not taken into
account but instead the computational power of an optimally trained network is studied. Starting
already in the nineties, the expressive power of feed-forward neural networks (FNNs) has been
related to Boolean threshold circuits, see, e.g., [Maass et al., 1991, Siegelmann and Sontag, 1995,
Maass, 1997, He and Papakonstantinou, 2022]. Most importantly, Maass [1997] showed that when
restricting networks to Boolean inputs, a language can be decided by a family of (in a certain sense)
“polynomial-size” FNNs if and only if it belongs to the class TC0, i.e., the class of all languages
decidable by families of Boolean circuits of constant depth and polynomial size using negation gates
and unbounded fan-in AND, OR, and threshold gates.

In the last five years attention has shifted to the study of graph neural networks (GNNs) which is a
model for machine learning tasks on graph-structured inputs. Their expressive power can be closely
related to the Weisfeiler-Leman algorithm [Xu et al., 2019, Morris et al., 2019, 2021]. Originally
developed to solve the graph isomorphism problem, the WL algorithm is connected to fragments of
first-order logic; hence the logical expressiveness of GNNs was subsequently studied. Barceló et al.
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[2020] consider so-called logical classifiers—these are unary formulas of first-order (FO) predicate
logic that classify a node in a given graph according to whether the formula holds for this node.
Barceló et al. proved that all classifiers definable in a certain fragment GC (guarded first-order logic
with counting quantifiers) are computable by GNNs. The converse direction is a bit problematic; it is
only known to hold for unary queries definable in first-order logic. This result has been broadened
recently by [Benedikt et al., 2024] using logics with Presburger quantifiers. Barceló et al. then
consider an extension of GNNs by so-called global readout and show that these GNNs can compute
all queries from the logic FOC2 (first-order restricted to two variables, but extended with counting
quantifiers, a superclass of GC), but the converse is open.

Our motivation. Neural networks in general and GNNs specifically have mostly been studied
through the lens of Boolean functions. This does not necessarily reflect on the usage of machine
learning models in real-world applications. We want to shift this focus to real-valued computations
and hence, in this paper, we make real numbers first-class citizens. When networks are digitally
simulated in practical applications, of course only rational numbers are used as inputs, and the real
numbers that appear during their computation (e.g., via the sigmoid function) are approximated
by rationals. However, we are interested in principal statements about the computational power of
neural networks—hence we study networks as devices operating with real numbers. We do not solely
consider networks that are restricted to Boolean inputs or Boolean outputs (Boolean queries, logical
classifiers), as done in all the papers cited above. Instead, we consider GNNs as a model to compute
functions from (vectors of) real numbers to (vectors of) real numbers, or from labeled graphs (i.e.,
undirected graphs whose nodes are annotated with vectors of real numbers) to labeled graphs.

Instead of turning to logics, we focus on a computation model that has been used to capture the
expressivity of neural networks in the past: we use circuits, but since we turn away from the Boolean
computation model, we use arithmetic circuits over the reals, that is, circuits that take real numbers
as inputs and have nodes that compute real functions such as addition, multiplication, projection,
or a constant function. Why do we do that? It will turn out that in this way we obtain a close
correspondence between GNNs and arithmetic circuits. Arithmetic circuits can in a second step be
simulated by a Boolean computation model, but this does not say anything about the computational
power of the networks. Going directly from neural networks to Boolean circuits mixes up two
different issues and obscures statements about the power of GNNs. By separating the two aspects, we
do not only obtain an upper bound, or correspondence with respect to discrete classification tasks, but
an equivalence between GNNs and constant-depth arithmetic circuits over the real functions they
compute. In this way, we shed more light on the computational model behind GNNs. Our results
show very explicitly what the computational abilities of GNNs are and what elementary operations
they can perform.

We also want to make a general statement about scaling and complexity. A common narrative
nowadays seems to be that by making neural networks larger and larger, they can solve more complex
reasoning tasks. However, theoretical limitations as proven in this paper show that scaling is not all
we need. Our results show that to improve the expressivity of GNNs, more computationally complex
aggregation and combine functions are needed. More precisely, these functions need to come outside
of the class FAC0

R, which contains functions that can be computed by arithmetic circuits that are
bounded in size and depth, see Definition 2.11 for a precise definition. Another approach would be to
change the fixed depth framework of GNNs to one that includes recursion, for example.

Following a broad line of research outlined by Merrill [2022], in this paper, we aim at a general
statement about the computational power of neural networks following the GNN architecture, i.e.,
networks operating in layers where connections within layers and hence their communication capa-
bilities correspond to the given input graph. However, contrary to most predecessor papers [Morris
et al., 2019, Barceló et al., 2020], we do not only consider so-called AC-GNNs, i.e., GNNs where the
computation in each node of a layer of the network consists first of an aggregation step (collecting
information from the adjacent nodes of the graph—very often simply summation), followed by a com-
bine step (combining the aggregated information with the current information of the node—mostly a
linear function followed by a unary non-linear activation function such as sigmoid or ReLU). AC-
GNNs like these are just one example of a GNN architecture. We take a more general approach. The
GNN framework defines a continuous graph-based “message passing” [Gilmer et al., 2017, Morris
et al., 2019]. In our networks we keep the layout and message passing mechanisms of GNNs but
equip the nodes in each layer with constant-depth arithmetic circuits (taken from a previously fixed
basis of circuits), not limited to the usual aggregate-combine (AC) operations. We call these networks
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C-GNNs, circuit graph neural networks. AC-GNNs, whose aggregation function is computable by
a constant-depth circuit, can be simulated by C-GNNs (using the same activation function). The
computational upper bounds we obtain thus point out general computational limitations for networks
following the GNN message passing framework.

Main Results. The main contribution of our paper is an exact correspondence between C-GNNs and
arithmetic circuits. A function (from labeled graphs to labeled graphs) is computable by a C-GNN
with a constant number of layers if and only if it is computable by a constant-depth arithmetic circuit
over the real numbers. The activation function of the neural network will be a gate type in the
arithmetic circuit. Thus, the (set of) actual activation function(s) becomes a parameter in a general
statement equating the computational power of GNNs and arithmetic circuits.

A number of remarks are in order.

– Our result holds for all commonly used activation functions.
– Our result is uniform. If we start with a family of GNNs whose individual networks can be

generated via some algorithm, the resulting family of arithmetic circuits will be uniform in
the same way, and vice versa.

– Our result gives general limits for neural networks following the GNN message passing
framework, including but not restricted to the currently widely used AC-GNNs. This
means that in order to use a GNN to compute a function not computable by constant-depth
arithmetic circuits, scaling GNNs up or adding computational power in the individual nodes
will not help, but neural networks of a completely different architecture are needed.

This paper follows a modular approach. We stick to the GNN message passing framework, but allow
computations of arbitrary power in the individual nodes of the graph. Our approach is adaptable and
opens possibilities for many extensions; we point out a few in our conclusion section.

We would like to stress that theoretical insights like those presented in this paper have the potential to
guide practical development. We prove principal limits of networks following the GNN framework,
extending the current AC-GNNs. Our results enables the use of theoretical results regarding arithmetic
circuit complexity for arguing about the complexity of GNNs. For example findings for a complexity
hierarchy within the real valued FAC0

R will lead to corresponding statements about the power of
GNNs. They may also be used to design GNN architectures with provable expressivity bounds.

Organization. In the next section, we introduce the relevant notions about GNNs and arithmetic
circuits. Section 3 contains our results. In Subsection 3.1, we introduce Circuit-GNNs as a general-
ization of AC-GNNs. In Subsections 3.2 and 3.3, we show how to simulate C-GNNs by arithmetic
circuits, and vice versa. In Section 4, we point out a number of questions for further research.
Due to lack of space, we only provide proof sketches for some of the proofs and refer to the arXiv
version Barlag et al. [2024] for the full proofs.

Related Work. The first model of GNNs was introduced by Scarselli et al. [2009]. Since then, their
expressive power has been studied in numerous works and from various perspectives as discussed
above. As mentioned already, Barceló et al. [2020] established a close connection between classifiers
definable in guarded FOC2 and computable by AC-GNNs. It is worth to point out that a connection
very close to the aforementioned one can be obtained by connecting the results of Sato et al. [2019],
that relate graph neural networks with more general models of distributed computation, to the
results of Hella et al. [2015], that logically characterize expressivity of those models of distributed
computation with graded modal logics (known to be equivalent with guarded FOC2). Grohe [2023]
very recently extended these characterization results for GNNs, and furthermore connected GNNs
to Boolean circuits. He considers an FO-fragment GFO+C (guarded fragment of FO plus a more
general form of counting than used by Barceló et al.) and proves equivalence of this logic to GNNs
for unary queries, that is for Boolean functions (functions with Boolean output). However, his overall
result holds only in the non-uniform setting (that is, the sequence of GNNs for graphs of different
sizes is non-uniform in the sense that there is not necessarily an algorithm that, given a graph size,
computes that network from the sequence responsible for the given size), and the activation functions
have to be “rpl approximable” (i.e., rational piecewise linear approximable, i. e., the real functions
must in a certain way be a approximable by Boolean circuits or logic). This includes most of the
commonly used activation functions. Since queries expressible in this logic are known to be TC0

computable, he obtains a TC0 upper bound for the computational power of GNNs. For the converse
connection, an extension of GNNs is necessary, and it is shown that a unary query computable by a
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TC0 circuit is computable by a GNN with so-called random initialization. Another line of work that
focuses on real-valued computations includes [Geerts et al., 2022] where the logic MPLang operating
directly on real numbers was introduced to readily express GNN computations. The main goal of that
paper was to reason about GNNs using a logic, extended by real-number computations. However, the
converse connection, from MPLang to GNNs, is highly unclear. Other work addressing the precise
characterizations of expressivity issues of GNNs outside of the restriction to the Boolean setting
with GNNs using formal logic include [Cucala et al., 2023, Pfluger et al., 2024].To the best of our
knowledge, there are no other works considering real-valued computations and circuits or arithmetic
circuits. Another approach that leans more into comparing the expressivity when using different
functions for aggregation in the GNN can be found in Rosenbluth et al. [2023], where they compared
the expressivity of GNNs using sum as their aggregation with mean and max GNNs.

2 Preliminaries

Throughout this paper, the graphs we consider have an ordered set of vertices and are undirected
unless otherwise specified. We use overlined letters to denote tuples, write |x| to denote the length
of x (i.e., the number of elements of x), and use [n] to denote the first n nonzero natural numbers
{1, . . . , n}. For a k ∈ N we denote all possible n-tuples for every n of Rk with

(
Rk

)∗
. The notation

{{}} is used for multisets. A restriction of a function f to set S is written as f↾S .
Definition 2.1. Let k ∈ N, and let G = (V,E) be a graph with an ordered set of vertices V and a set
of undirected edges E on V . Let gV : V → Rk be a function which labels the vertices with attribute
vectors. We then call G = (V,E, gV ) a labeled graph of dimension k and denote by Graph the set
of all labeled graphs and by Graphk the set of all labeled graphs of dimension k.

For a node v ∈ V , the neighborhood of v is defined as NG(v) := {w ∈ V | {v, w} ∈ E}.

In order to compare standard graph neural networks and the circuit graph neural networks which
we will introduce later on, we fix the notion of a graph neural network first. Generally, GNNs can
classify either individual nodes or whole graphs. For the purpose of this paper, we will only introduce
node classification as graph classification works analogously. We focus on aggregate combine graph
neural networks that aggregate the information of every neighbor of a node and then combine this
information with the information of the node itself.

An aggregation function (of dimension k) is a permutation-invariant function AGG : Rk×· · ·×Rk →
Rk, a combine function (of dimension k) is a function COM : Rk × Rk → Rk and a classification
function (of dimension k) is a function CLS : Rk → {0, 1} that classifies a real vector as either true
or false. Finally, an activation function (of dimension k) is a componentwise function σ : Rk → Rk.
Definition 2.2 (AC-GNN, cf. [Barceló et al., 2020]). An L layer aggregate combine graph neu-
ral network (AC-GNN) is a tuple D = ({AGG(i)}Li=1, {COM(i)}Li=1, {σ(i)}Li=1,CLS), where
{AGG(i)}Li=1 and {COM(i)}Li=1 are sequences of aggregation and combine functions, {σ(i)}Li=1
is a sequence of activation functions and CLS is a classification function.

Given a labeled graph G = (V,E, gV ), the AC-GNN model computes vectors x(i)
v for every v ∈ V

in every layer 1 ≤ i ≤ L as follows: x(0)
v = gV (v) is the initial feature vector of v, and for i > 1

x(i)
v = σ(i)

(
COM(i)

(
x(i−1)
v , y

))
, where y = AGG(i)

({{
x(i−1)
u | u ∈ NG(v)

}})
.

The classification function CLS: Rk → {0, 1} is applied to the resulting feature vectors x(L)
v .

In this paper we focus on the real-valued computation part of GNNs and discard the classification
function. We consider the feature vectors x(L)

v after the computation of layer L as our output. While
we could also integrate CLS into our model, for our concerns this is not needed.

Next we define arithmetic circuits as a model of computation for computing real functions. Since we
will put them in the context of graph neural networks, which inherently operate on vectors of real
numbers rather than individual reals, we will accordingly define arithmetic circuits relative to Rk

rather than relative to R, as is done more commonly (cf. e.g. [Blum et al., 1997]).
Definition 2.3. Let k, n,m ∈ N. An Rk-arithmetic circuit with n inputs and m outputs is a simple
directed acyclic graph of labeled nodes, also called gates, such that
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• there are exactly n gates labeled input, which each have indegree 0,
• there are exactly m gates labeled output, which have indegree 1 and outdegree 0,
• there are gates labeled constant, which have indegree 0 and are labeled with a tuple c ∈ Rk,
• there are gates labeled projectioni,j for 1 ≤ i, j ≤ k, which have in- and outdegree 1,
• there are gates labeled addition and multiplication.

Additionally, both the input and the output gates are ordered.

An Rk-arithmetic circuit C with n inputs and m outputs computes the function fC : (Rk)n → (Rk)m

as follows: Initially, the input to the circuit is placed in the input gates. Afterwards, in each step,
each arithmetic gate whose predecessor gates all have a value, computes the respective function
it is labeled with, using the values of its predecessors as inputs. By addition and multiplication
we refer to the respective componentwise operations and the projection computes the function
proji,j : Rk → Rk, (x1, . . . , xi, . . . xk) 7→ (0, . . . , 0, xi

position j
, 0, . . . , 0). Analogously, each output

gate takes the value of its predecessor, once its predecessor has one. The output of fC is then the
tuple of values in the m output gates of C after the computation.

The depth of C (written depth(C)) is the length of the longest path from an input gate to an output
gate in C and the size of C (written size(C)) is the number of gates in C. For a gate g in C, we will
write depth(g) to denote the length of the longest path from an input gate to g in C.

Remark 2.4. In the context of the circuits over Rk that we have just defined, a circuit over R is just
a circuit over R1. Note that for circuits over R1, projection gates are just identity gates and can
therefore be omitted. It should also be noted that for any fixed k ∈ N, circuits over Rk and circuits
over R can easily simulate each other. For a detailed explanation see the arXiv version Barlag et al.
[2024].

Since an arithmetic circuit itself can only compute a function with a fixed number of arguments, we
extend this definition to families of arithmetic circuits in a natural way.

Definition 2.5. An Rk-arithmetic circuit family C is a sequence (Cn)n∈N of circuits, where each
circuit Cn has exactly n input gates. Its depth and size are functions mapping natural numbers n to
depth(Cn) and size(Cn), respectively.

An arithmetic circuit family C = (Cn)n∈N computes the function fC : (Rk)∗ → (Rk)∗ defined as
fC(x) := fC|x|(x).

Remark 2.6. Since a circuit family is an infinite sequence of circuits, one would be hard pressed to
consider such a family a (finite) algorithm. Such models of computation, where a different instance
is needed for any different input length, is called non-uniform. In order to deem a circuit family
(Cn)n∈N to be an algorithm, a frequent requirement is the existence of an algorithm which, when
given n as an input, outputs the circuit Cn. Circuit families, for which such an algorithm exists are
called uniform circuit families. For more details on circuit uniformity, see e.g. Vollmer [1999] and
for more on uniformity with respect to real computation, see Blum et al. [1997].

Definition 2.7. For any k ∈ N and any two functions s, d : N → N, FSIZE-DEPTHRk(s, d) is
the class of all functions (Rk)∗ → (Rk)∗ that are computable by arithmetic circuit families of
size in O(s) and depth in O(d). Let A be a set of functions of the form f : Rk → Rk. Then
FSIZE-DEPTHRk(s, d)[A] is the class of functions computable by arithmetic circuits with the same
constraints, but with additional gate types gf , with indegree and outdegree 1 that compute f , for each
f ∈ A.

We call all classes of the form FSIZE-DEPTHRk(s, d)[A] (and their subclasses) circuit function
classes. As usual in circuit complexity, an F-circuit family, where F is a class of functions, will
denote a circuit family that computes a function in F.

We restrict this work to versions of one specific circuit function class.

Definition 2.8. FAC0
Rk is the class of all functions f : (Rk)∗ → (Rk)∗ that can be computed

by arithmetic circuit families (Cn)n∈N of constant depth and polynomial size, i.e., FAC0
Rk =

FSIZE-DEPTHRk(nO(1), 1).

By Definition 2.7, FAC0
Rk [A]-circuit families are FAC0

Rk -circuit families where the circuits are
expanded by additional gate types for all functions in A.
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A node in a graph neural network aggregates the values of its neighbors in each step, irrespective of
their order, and then combines them with its own previous value. In order for our circuits to mimic
this behaviour, we impose a symmetry condition on them. We require the functions they compute to
be tail-symmetric, i.e., to only be able to single out their first argument.
Definition 2.9. A function f : (Rk)∗ → (Rk)∗ is tail-symmetric, if f(x1, . . . , xn) =
f(x1, π(x2, . . . , xn)) for all permutations π.
Remark 2.10. One way to construct a tail-symmetric function f is to take a binary function
g and a fully symmetric function h of arbitrary arity and compose them: f(x1, . . . , xn) :=
g(x1, h(x2, . . . , xn)). Note that this is precisely the notion required for the aggregate-combine
step in AC-GNNs as per Definition 2.2.

An arithmetic circuit C is tail-symmetric if fC is tail-symmetric. In the sequel, we will consider fami-
lies of tail-symmetric functions computed by some circuit family C. In this setting, the circuit family
computes one unique function fn for each arity n ∈ N. We will then write fC (x1, {{x2, . . . , xn}}) to
denote fn(x1, . . . , xn), when {{x2, . . . , xn}} is a multiset of cardinality n− 1.
Definition 2.11. Let F be a circuit function class. We denote by tF the class which contains all
functions of F that are tail-symmetric.

3 Graph Neural Networks using Circuits

We now define the main computation model of interest for this paper, namely circuit graph neural
networks (C-GNNs). C-GNNs work similarly to plain AC graph neural networks. Instead of using
the concept of a two-step aggregate and combine computation via which the new feature vector of
a node is computed, C-GNNs permit that this computation is done by an arithmetic circuit (with
particular resource bounds). This allows us to classify GNNs based on the complexity of their internal
computing functions.

3.1 Model of Computation

A basis of a C-GNN is a set of functions of a specific circuit function class along with a set of
activation functions. The respective networks will be based on these functions.
Definition 3.1. Let S be a non-empty set of functions from (Rk)∗ to (Rk)∗ and let A be a non-empty
set of activation functions of dimension k. Then we call the set S ×A a C-GNN-basis of dimension
k.

C-GNNs of a particular basis essentially consist of a fixed depth and a function assigning circuit
families and activation functions from its basis to its different layers.
Definition 3.2. Let B = S ×A be a C-GNN-basis of dimension k. A circuit graph neural network
(of dimension k) of depth d ∈ N is a function N : [d] → B. If all functions in S belong to a circuit
function class F, we also say that N is a (F,A)-GNN.
Definition 3.3. Let N be a C-GNN of depth d. The function fN : Graphk → Graphk computed by
N is defined as follows:

Let G = (V,E, gV ) be a labeled graph. The labeled graph G′ computed by fN (G) has the same
structure as G, however, its nodes have different feature vectors. That is fN (G) = G′, where
G′ = (V,E, hV ) and hV is defined inductively as follows:

h
(0)
V (w) := gV (w)

h
(i)
V (w) := σ(i)

(
fC(i)

(
h
(i−1)
V (w),M

))
, with M =

{{
h
(i−1)
V (u) | u ∈ NG(w)

}}
where N (i) =

(
C(i), σ(i)

)
. Finally hV (w) := h

(d)
V (w).

The C-GNN model that we have just defined computes functions from labeled graphs to labeled
graphs (with the same graph structure).

Our results are stated for C-GNNs using functions from versions of the function class FAC0
Rk as

defined in Definitions 2.8 and 2.11.
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Remark 3.4. We can relate our C-GNN model to the continuous computation of traditional AC-
GNNs. For any AC-GNN following Definition 2.2 with activation functions A and where the
aggregation functions are computable by FAC0

Rk -circuit families, there exists a (FAC0
Rk ,A)-GNN

with a constant number of layers which computes the same function, omitting only the functionality
of the classification function. This holds for the common aggregation functions like the sum, product
or mean.

3.2 Simulating C-GNNs with arithmetic circuits

Definition 3.5. Let G = (V,E, gV ) be a labeled graph, n := |V |, and M = adj(G) be the adjacency
matrix of (V,E), where the columns are ordered in accordance with the ordering of V . We write
⟨M⟩ to denote the encoding of M as the n2 matrix entries written using vectors (0, . . . , 0) and
(1, . . . , 1) in Rk, ordered in a row wise fashion. We denote them by mij encoding the matrix
entry mij . We write ⟨G⟩ to denote the encoding of G as a tuple of real valued vectors, such that
⟨G⟩ = (⟨M⟩, vec(G)) ∈ (Rk)n

2+n, which consists of the encoding of M followed by vec(G), the
feature vectors of G. The feature vectors vec(G) are gV (v) for all v ∈ V and ordered like V .

Theorem 3.6. Let N be a (tFAC0
Rk [A], {id})-GNN. Then there exists an FAC0

Rk [A]-circuit family
C, such that for all labeled graphs G the following holds: fN (G) = G′ iff C(⟨G⟩) = ⟨G′⟩, where
⟨G⟩ = (⟨adj(G)⟩, ⟨vec(G)⟩).

Proof. We essentially roll out the given (tFAC0
Rk [A], {id})-GNN N by using a circuit to simulate

each individual layer of N and concatenating these circuits to then simulate N . Since the computation
in each node of N can be performed by a circuit of an FAC0

Rk [A]-family, simulating this computation
can be done without an issue. Similarly, connecting the simulated nodes and layers can be done
relatively simply, and thus the resulting circuit family is an FAC0

Rk [A]-family. The full proof can be
found in the arXiv version Barlag et al. [2024].

Remark 3.7. Note that this proof preserves uniformity: if the sequence of C-GNNs is uniform, so
is the circuit family. Furthermore, for any set of activation functions A, (tFAC0

Rk [A], {id})-GNNs
are at least as powerful as (tFAC0

Rk , {id} ∪ A)-GNNs and (tFAC0
Rk , {id})-GNNs. The latter do not

have access to the functions of A at all and (tFAC0
Rk , {id} ∪A)-GNNs are more restricted in the use

of the functions than (tFAC0
Rk [A], {id})-GNNs.

3.3 Simulating arithmetic circuits with C-GNNs

In order to simulate FAC0
Rk -circuit families using C-GNNs, we utilize the following normal form.

Definition 3.8. A circuit C is in path-length normal form if every path from an input to an output
gate has the same length and every non-input and non-output gate has exactly one successor.

Lemma 3.9. Let C be an FAC0
Rk -circuit family. Then for every circuit C ∈ C there exists a circuit

C ′ of the same depth in path-length normal form such that fC′(x) = fC(x), for all x ∈ (Rk)∗.

Proof. We describe a procedure that transforms C to C ′. If a gate h in C has more than one successor,
the subgraph consisting of h and all paths from input gates to h are copied in C ′ for each successor
of h. These copies are then used as the respective input for those successors which results in every
gate in C ′ having only one successor. This is done iteratively, where in each step only gates in one
depth layer of the circuit are modified, starting with depth 1, the gates closest to the input gates. Each
step in this procedure incurs a polynomial overhead in size. Since C is of constant depth there are
only constantly many iteration steps and thus C ′ remains polynomial in size.

Let ℓmax = depth(C)(= depth(C ′)) be the length of the longest path from an input to an output
node in C. For every path of length ℓ which is shorter than ℓmax, we add to C ′ ℓmax − ℓ unary
addition gates directly after the input. The depth of the resulting circuit C ′ equals the one of C, as all
changes to path lengths are made with this upper bound in mind. Since all changes made preserve the
computed function and the produced C ′ is in path-length normal form, the claim follows.

Since C-GNNs get labeled graphs as their input, while arithmetic circuits typically work on vectors
over Rk, we show next how to represent a circuit as an input to a C-GNN.
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6 9 5

+nr(g+) = 1

×nr(g×) = 2

...

(a) Underlying circuit, to be simulated by the C-
GNN (nr(∗) denotes the unique number of the
gate).

vin1

v
(1)
in1

= 6

vin2

v
(1)
in2

= 9

vin3

v
(1)
in3

= 5

v+v
(1)
+ = 1

v×v
(1)
× = 2

...

(b) The labeled graph and initial feature vectors of
the C-GNN (v(i)g denotes the feature vector of a
gate at layer i).

Figure 1: Example illustrating the proof of Theorem 3.11. 3

Table 1: Example illustrating the proof of Theorem 3.11: The values of the feature vectors during the
computation of the C-GNN.

LAYER vin1 vin2 vin3 v+ v×

1 6 9 5 1 2
2 6 9 5 6 + 9 = 15 2
3 6 9 5 15 5× 15 = 75

Definition 3.10. If C is a circuit with input x whose gates are additionally numbered with unique
elements of R, let GC,x be the labeled graph (G, gV ), where G = (V,E) is the underlying graph of
the circuit and the function gV is defined as follows. The feature vector of a graph node corresponding
to an input gate is the corresponding input value. Each other node gets its own number according to
the gate numbering of the circuit as its feature vector.

The following theorems describe how C-GNNs are able to simulate arithmetic circuits. The proofs
are given for R circuits, but as mentioned in Remark 2.4 families of constant depth and polynomial
size Rk and R circuits can simulate each other with constant increase/decrease in size, so they also
hold for Rk circuits.

Theorem 3.11. Let C = (Cn)n∈N be an FAC0
R-circuit family. Then there exists a (tFAC0

R, {id})-
GNN N , such that for all n ∈ N and x ∈ Rn, the feature vectors of the nodes of fN (GCn,x)
corresponding to output gates in Cn are exactly the components of fCn(x) in the same order. The
number of layers in N is equal to the depth of C.

Proof. The general idea is to use the graphs of the circuits from C as input graphs for a C-GNN and
then simulate the gates layerwise. The gates of C are numbered and the numbering is represented in
the feature vectors for each node. In each layer circuits of the C-GNN use a lookup table to decide
which operation is applied to a feature vector. An example illustrating the proof idea is given in
Figure 1 and Table 1. For simplicity reasons an example omitting any special cases is chosen. The
full proof can be found in the arXiv version Barlag et al. [2024].

Since we have shown in Section 3.2 that C-GNNs can be simulated by FAC0
Rk [A]-circuit families we

now examine the converse direction: simulating these families with C-GNNs.

Theorem 3.12. Let C = (Cn)n∈N be an FAC0
R[A]-circuit family. Then there exists a

(tFAC0
R[A], {id})-GNN N , such that for all n ∈ N and x ∈ Rn, the feature vectors of the nodes of

fN (GCn,x) corresponding to output gates in Cn are exactly the components of fCn
(x) in the same

order. The number of layers in N is equal to the depth of C.
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6 9

σnr(gσ) = 1 σ nr(g′σ) = 2

+nr(g+) = 3

...

(a) Underlying circuit, to be simulated by the C-
GNN (nr(∗) denotes the unique number of the
gate).

vin1v
(1)
in1

= 6 vin2 v
(1)
in2

= 9

vσv
(1)
+ = 1 v′σ v

′(1)
+ = 2

v+v
(1)
+ = 3

...

(b) The labeled graph and initial feature vectors of
the C-GNN (v(i)g denotes the feature vector of a
gate at layer i).

Figure 2: Example illustrating the proof of Theorem 3.17. 3

Table 2: Example illustrating the proof of Theorem 3.17: The values of the feature vectors during the
computation of the C-GNN.

LAYER vin1 vin2 vσ v′σ v+

1 6 9 1 2 3
2 σ(6) σ(9) σ(1) σ(9) σ(σ−1(3)) = 3
3 σ(6) σ(9) σ(1) σ(9) σ(6) + σ(9)

Proof. The proof follows the same concept as the proof of Theorem 3.11. With the exception that the
internal circuits of the C-GNN now have access to the same set of functions A in the form of gates
that compute them. Those are then used to simulate gates from C that compute functions of A. The
full proof can be found in the arXiv version Barlag et al. [2024].

In the previous two theorems, we have shown that C-GNNs can simulate FAC0
R-circuit families as is

and that they can simulate FAC0
R[A]-circuit families if they have arbitrary access to the functions

in A. If we consider A to consist of activation functions, though, it would be more natural to only
permit them as such in our C-GNN model. In the following we will introduce a structural restriction
of circuits, which will allow us to capture a subset of FAC0

R[A] using C-GNNs that have access to A
only as activation functions.
Definition 3.13. A circuit C is said to be in function-layer form if it is in path-length normal form
and for each depth d ≤ depth(C) all gates of C at depth d have the same gate type.
Definition 3.14. Let F be a circuit function class. We denote by fF the class which contains all
functions of F that can be computed by circuit families where all circuits are in function-layer form.

We also need a small restriction on the functions we will permit as activation functions.
Definition 3.15. A computable function f : Rk → Rk is countably injective if there is a countably
infinite set S ⊆ Rk such that f↾S is injective. We also say that f is countably injective on S.
Remark 3.16. The commonly used activation functions ReLU(x) = max(0, x), σ(x) = 1

1+e−x and

tanh(x) = ex−e−x

ex+e−x are countably injective.

Theorem 3.17. Let A be a set of countably injective activation functions and let C = (Cn)n∈N be a
fFAC0

R[A]-circuit family. Then there exists a (tFAC0
R,A ∪ {id})-GNN N , such that for all n ∈ N

and x ∈ Rn, the feature vectors of the nodes of fN (GCn,x) corresponding to output gates in Cn are
exactly the components of fCn(x) in the same order. The number of layers in N is equal to the depth
of C.

Proof. Contrary to the proof of Theorem 3.12 the gates in C computing a function σ ∈ A are
simulated in the C-GNN by using the respective function as an activation function applied to all
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nodes. To distinguish between nodes where this function should and should not be applied we assign
σ−1 of the respective feature vectors of nodes where we do not want to change the value. This is
done prior to the application of the activation function. Therefore the function needs to be injective
on some countable set. An example illustrating the proof idea is given in Figure 2 and Table 2. As in
the proof of Theorem 3.17 an example omitting any special cases is chosen. The full proof can be
found in the arXiv version Barlag et al. [2024].

4 Conclusion

In this paper we showed a correspondence between arithmetic circuits and a generalization of
graph neural networks using circuits. However, some restrictions needed to be imposed on the
particular circuits used in our constructions. In particular, the circuits used in our C-GNNs need
to be tail symmetric, and in Theorem 3.17 the corresponding FAC0

R[A]-circuit family needs to be
in function-layer form as well. An interesting avenue for further research is the question, whether
those restrictions can be made “on both sides in our simulations”. This means, in particular, to ask if
(tFAC0

Rk , {id} ∪ A)-GNNs can be simulated by fFAC0
Rk [A] families and, if (tfFAC0

Rk , {id} ∪ A)-
GNNs and fFAC0

Rk [A] can simulate each other. Another direction of further work is to study whether
by relating our C-GNNs to variants of so-called VVc-GNNs of Sato et al. [2019], we may drop the
assumption of tail-symmetry.

We already mentioned the issue of uniformity. If the sequence of GNNs, one for each graph size, is
uniform in the sense that there is an algorithm that, given the size of the graph as an input, outputs the
GNN responsible for that size, then the sequence of arithmetic circuits will also be uniform, because
our simulation proof explicitly shows how to construct the circuit; and vice versa. In future work, this
should be made more precise. In the case of Boolean circuits, logtime-uniformity (UE∗-uniformity)
has become the standard requirement [Vollmer, 1999]. What is the corresponding precise uniformity
notion for GNNs?

In the introduction we mentioned the complexity of the problem of training neural networks. We
studied the expressiveness (or computational power) of neural networks. The higher the expressive-
ness of a network is, the more complicated the training process will be; however, the question to
decide if a trained network of given quality exists might become easier to decide. Can this be made
precise? Is there a formal result connecting complexity of training and network expressiveness?

Further investigations are required to obtain practical implications of our theoretical results. Once we
fix the architecture of our C-GNNs (i.e., a circuit function class for the GNN nodes), we obtain a
specific circuit class that characterizes the computational power of the C-GNN model which can be
then rigorously studied. The question of what can be computed by arithmetic circuits using activation
functions is related to the question of which functions can be computed using other functions, or in
other words, which functions are ”more complex” than others. We are only aware of very little work
in this area. Results include a PTIME upper bound (in the so-called BSS-model of computation) for
the arithmetic circuit complexity class NCR that uses the sign function Cucker [1992].

As it currently stands, there does not seem to be meaningful experiments that could be run for our
model of computation. The problem is that not much is known about the computational power of the
circuit classes we utilize. Further research into functions computable by practically implementable
arithmetic circuits of different sizes and depths would be required. This could e.g. be done by
investigating the Boolean parts of different complexity classes defined by families of arithmetic
circuits, i.e., the classes when restricted to Boolean inputs. This research would pinpoint properties
that would be provably outside of the capabilities of particular GNN models, whose learnability could
be then tested in practice. We believe that our results will motivate research for these circuit classes.

Merrill et al. [2022], Merrill and Sabharwal [2022] have studied transformer networks from a
computational complexity perspective and obtained a TC0 upper bound, similar to the result for
GNNs by Grohe [2023]. We think it is worthwhile to study the computational power of transformers
from the point of view of computation over the reals, similar to what we have done in this paper for
GNNs.

3For readability purposes the one-dimensional vectors in the C-GNN are written as real numbers.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we introduce the setting of our paper, describe
our main results on characterizations of GNNs in terms of arithmetic circuits and their
possible implications, e.g., concerning limitations of the computational power of GNNs. In
the main part of the paper, together with the appendix, we give rigorous proofs for all of our
claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The theoretical limitations for our results were discussed and mentioned before
the respective proofs. Experimental limitations do not apply to this theoretical paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each theoretical result the full set of assumptions is given by the definitions
in the preliminaries section as well as the formulation of the theorems itself. Proof sketches
are supplied, the full proofs can be found in the supplementary materials of the full arxiv
version of the paper Barlag et al. [2024].
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: [NA]
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• The answer NA means that the paper does not include experiments.
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Answer: [NA]

Justification: [NA]
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• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Answer: [NA]

Justification: [NA]
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eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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societal impacts of the work performed?

Answer: [NA]
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expressivity of neural network computation. The results do not have direct societal impact.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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