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ABSTRACT

We present a novel strategy to generate learned learning rate schedules for any
optimizer using reinforcement learning (RL). Our approach trains a Proximal
Policy Optimization (PPO) agent to predict optimal learning rate schedules for
SGD, which we compare with other optimizer-scheduler combinations and full
grid search. Our experiments show that the agent learns to generate dynamic
schedules that result in stable, non-divergent loss histories, and can be more use-
ful in practice than equally-expensive Hyperparameter Optimization and fixed
optimizer-scheduler combinations.

1 INTRODUCTION

The optimization of Deep Neural Networks (DNNs) has been a long-standing challenge in the field
of machine learning. One of the critical hyperparameters is the learning rate schedule, which deter-
mines the step size for each iteration of the optimization process. A common approach for setting the
learning rate schedule is to use a fixed schedule, such as a step decay or a cosine decay (Loshchilov
& Hutter, 2016). However, these fixed schedules may not be optimal for all DNNs and tasks, and
they may require careful tuning to achieve good performance (Ruder, 2016).

Recently, there has been growing interest in learned optimization algorithms, which rely on a meta-
optimization process to learn an optimization algorithm from data (Wichrowska et al., 2017; Metz
et al., 2022). These algorithms have been shown to improve the stability and generalization perfor-
mance of DNNs compared to traditional optimization algorithms (Andrychowicz et al., 2016; Metz
et al., 2019). Additionally, learned optimization algorithms have the ability to adapt to different
tasks and architectures, making them a versatile tool for optimizing DNNs (Andrychowicz et al.,
2016). In recent years, several works have demonstrated the effectiveness of learned optimization
algorithms for training DNNs (Wichrowska et al., 2017; Metz et al., 2019). Reinforcement learning
(RL) has also been applied to learned optimization, with the goal of learning an optimal policy for
adjusting the optimization parameters during training (Bello et al., 2017; Metz et al., 2021; 2020). In
this paper, we develop a novel learned scheduler for SGD using RL. Our approach trains a Proximal
Policy Optimization (PPO) model to predict the optimal learning rate schedules for SGD by using
the training loss and other information that encapsulates the state of the training. Our results demon-
strate that the schedules generated by the RL agent result in more stable convergence and lower
validation loss compared to popular fixed learning rate schedules, and that the learned optimizer
can be used as a computationally efficient alternative to full grid search methods. Furthermore, our
approach is generally applicable to any optimizer.

2 LEARNED SCHEDULES USING RL

In this work, we develop a novel learned schedule for SGD. To this end, we train a RL agent to
predict the optimal learning rate of SGD at each iteration (the learning schedule). The agent observes
the following signals 1) validation loss from previous epoch, 2) distance to the end of training
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(epochmax − epoch) and 3) layer-wise gradient norms of the deep learning model. We device the
following simple reward function to encourage faster convergence and penalize loss divergence.

r = γ(best loss− val loss) + λ(epochmax − epoch), (1)

where λ, γ are hyperparameters and best loss is the lowest validation loss achieved so far. We also
penalize the agent when divergence is detected (NaN’s in weights or loss).

3 EXPERIMENTS AND RESULTS

Via deep learning 1 for the MNIST and CIFAR-100 dataset, we compare the results obtained by
the RL-learned schedule with SGD to that of SGD, Adadelta and Adam with a ConstantLR and
OneCycleLR (Smith & Topin, 2019) schedulers using grid search. Optimzers and schedulers used
are implementations that exist in PyTorch 2. Note that these experiments, even for small datasets are
expensive to run - we do a full grid search at 100 initial LRs for 100 epochs, repeat the experiment
with 4 different starting LRs (5e−4, 1e−3, 5e−3, 1e−2) for four different optimizers, and two base
schedulers noted above. When comparing grid search, optimizer-schedule, and agent training we
repeat trained agent runs 5 times with different seeds. We use the same computational budget (total
optimizer steps = 10000) for grid search vs. RL, and report the best and average loss along with
divergence statistics. Separately, we also tested the learned agent’s performance with a full line
search method (SLS from (Vaswani et al., 2019), see Appendix).

Across experiments, we observe that 1) the agent learns a fixed policy that produces dynamic sched-
ules that work for multiple initial seeds 2) the agent schedule results in more stable runs resulting
in the best possible final loss compared to other optimizer-scheduler combinations that may either
diverge, or result in a high final loss; and 3) in cases where the initial LR is too high, no scheduler
appears to converge including the trained agent, which again only provides a more stable schedule.

We include results from two runs below in Table 1 for MNIST and CIFAR-100 datasets. Once again
we note that the agent is rewarded for finding non-divergent, stable, and good performing schedules
which is more valuable in practice than sensitive optimizer-scheduler combinations that may diverge
(see below for higher loss value when a scheduler is added.)

Dataset Agent SGD Adadelta Adam SGD-Sch Adadelta-Sch Adam-Sch
MNIST 0.038 0.035 0.025 0.013 0.081 0.57 0.030

CIFAR 100 0.033 0.026 0.026 0.030 0.39 0.044 2.30

Table 1: Final Loss for optimizers with the MNIST and CIFAR100 datasets; ”Sch” is OneCycleLR

Additional observations. Further, we observe (see Figure 2 in the Appendix) that some optimizer-
scheduler combinations can lead to divergence or sub-optimal final loss values. This highlights the
advantage of our proposed RL strategy as it finds a stable schedule that works across several initial
LRs and seeds, without the need for the manual tuning trial and error effort. We also note that upon
investigating the RL action history, we find that the agent often finds a non-trivial schedule (see
Figures 3 to 5 in Appendix) where dramatic increases and decreases in the learning rate frequently
take place, alluding to the complexity of the alternative manual tuning task. Lastly we see that the
learned policies for the learning rate schedule are sensitive the RL agent hyperparameters, such as
PPO learning rate and number of iterations.

4 CONCLUSION

This paper presents a novel method for finding learned LR schedules for any optimizer using re-
inforcement learning as an alternative to standard Hyperparameter Optimization methods. Experi-
ments on image classification tasks showed that the schedules generated by the RL agent resulted in
stable convergence and lower validation loss compared to popular fixed learning rate schedules.

1Implementation from https://github.com/pytorch/examples/blob/main/mnist
2Pytorch optimizer class https://pytorch.org/docs/stable/optim.html
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A APPENDIX

A.1 POMDP FORMULATION

We assume that our problem is a Partially Observable Markov Decision Process (POMDP) with the
following properties:

1. State s is the set of model network weights, gradients, current loss value, current epoch

2. Observations o are the gradient norms, current loss value, and current epoch value

3. Actions a is the Learning rate LR for the upcoming epoch. This is a global LR, and not a
parameter specific, or parameter-group specific LR. We also conducted experiments where
the action space included other controllable parameters of the optimizer (such as weight
decay or momentum), but we do not include these results here

4. Reward r is a function of current loss value, the best loss so far and the number of remaining
epochs as shown in Eq. 3

The Agent at each step t observes o, a part of the environment’s state st ∈ s and it selects an
action (Learning rate) at ∈ a(s). Then, as a consequence of its action the agent receives a reward,
rt+1 ∈ r ∈ R. Finally the agent learns the following policy, which we treat as a the learned learning
rate schedule:

πt(s|a) (2)

That is the probability of select an action (here, the learning rate) at = a, if st = s.

A.2 ADDITIONAL DEEP LEARNING EXPERIMENTS

Note that for all experiments we penalize the agent with a large random number from 1000 to 2000
(i.e. 1000 + rand · 1000), and use λ = 1, γ = 10 in Eq. 3. We allow the PPO agent to explore
LRs from 1e − 6 to 1.0, and use a fixed batch size for the agent learning. The LR for the agent
matches the initial LR chosen for the experiment; we note that this is not necessary, and is considered
another hyperparameter to be carefully chosen. Our experiments show that a dynamic policy that
generates LR schedules can be more stable and useful for practical deep learning compared to fixed
HPOs that are equally-expensive. Given the large computational requirements for each one of these
experiments, we continue to work on testing more optimizer-scheduler combinations, more agent
architectures and datasets, along with a stronger theoretical foundation for RL policies for schedules
as an alternative to equally-expensive Hyperparameter Optimization.

A.3 CONSTANTLR COMPARISONS

Table 2: Scheduler - constantLR — Agent LR = 5e-4

Method Best Final Loss Avg Final Loss Divergent case exists
0 Agent 0.089957 0.089957 no
1 SGD 0.034583 0.189786 yes
2 Adadelta 0.030426 0.158178 yes
3 Adam 0.131676 2.348156 yes
4 SGD-Sch 0.060213 0.060213 no
5 Adadelta-Sch 0.105236 0.105236 no
6 Adam-Sch 0.064445 0.064445 no

A.4 ONECYCLELR COMPARISONS

The tables below show detailed results for optimizer-scheduler combinations, including best and
average final loss results.
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Table 3: Scheduler - constantLR — Agent LR = 1e-3

Method Best Final Loss Avg Final Loss Divergent case exists
0 Agent 0.041140 0.041140 no
1 SGD 0.030961 0.200702 yes
2 Adadelta 0.029443 0.157513 yes
3 Adam 0.137187 2.279212 yes
4 SGD-Sch 0.066977 0.066977 no
5 Adadelta-Sch 0.107489 0.107489 no
6 Adam-Sch 2.301556 2.301556 no

Table 4: Scheduler - constantLR — Agent LR = 5e-3

Method Best Final Loss Avg Final Loss Divergent case exists
0 Agent 0.041140 0.041140 no
1 SGD 0.030961 0.200702 yes
2 Adadelta 0.029443 0.157513 yes
3 Adam 0.137187 2.279212 yes
4 SGD-Sch 0.066977 0.066977 no
5 Adadelta-Sch 0.107489 0.107489 no
6 Adam-Sch 2.301556 2.301556 no

Table 5: Scheduler - constantLR — Agent LR = 1e-2

Method Best Final Loss Avg Final Loss Divergent case exists
0 Agent 0.038207 0.038207 no
1 SGD 0.032796 0.321682 yes
2 Adadelta 0.027578 0.155881 yes
3 Adam 0.111969 2.371107 yes
4 SGD-Sch 0.067073 0.067073 no
5 Adadelta-Sch 0.111244 0.111244 no
6 Adam-Sch 2.301887 2.301887 no

Table 6: Scheduler - OneCycleLR — Agent LR = 5e-4

Method Best Final Loss Avg Final Loss Divergent case exists
0 Agent 0.038413 0.038413 no
1 SGD 0.035030 0.213103 yes
2 Adadelta 0.025518 0.158193 yes
3 Adam 0.133940 2.305509 yes
4 SGD-Sch 0.081351 0.081351 no
5 Adadelta-Sch 0.566937 0.566937 no
6 Adam-Sch 0.030448 0.030448 no

Table 7: Scheduler - OneCycleLR — Agent LR = 1e-3

Method Best Final Loss Avg Final Loss Divergent case exists
0 Agent 0.033544 0.033544 no
1 SGD 0.031457 0.339102 yes
2 Adadelta 0.028417 0.159335 yes
3 Adam 0.126896 2.235273 yes
4 SGD-Sch 0.091012 0.091012 no
5 Adadelta-Sch 0.683922 0.683922 no
6 Adam-Sch 0.029626 0.029626 no
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Table 8: Scheduler - OneCycleLR — Agent LR = 5e-3

Method Best Final Loss Avg Final Loss Divergent case exists
0 Agent 0.036556 0.036556 no
1 SGD 0.033533 0.489764 yes
2 Adadelta 0.028980 0.157204 yes
3 Adam 0.133529 2.228178 yes
4 SGD-Sch 0.071715 0.071715 no
5 Adadelta-Sch 0.591062 0.591062 no
6 Adam-Sch 0.024535 0.024535 no

Table 9: Scheduler - OneCycleLR — Agent LR = 1e-2

Method Best Final Loss Avg Final Loss Divergent case exists
0 Agent 0.509641 0.509641 no
1 SGD 0.031223 0.322218 yes
2 Adadelta 0.030701 0.155962 yes
3 Adam 0.115674 2.234299 yes
4 SGD-Sch 0.088461 0.088461 no
5 Adadelta-Sch 0.685073 0.685073 no
6 Adam-Sch 0.027269 0.027269 no

A.5 EXAMPLES OF DIVERGENT SCHEDULES ACROSS OPTIMIZER SCHEDULER CHOICES

We also note the no-free-lunch theorem by Wolpert , where no algorithm (here, a combination of
optimizer-scheduler) can have a lower error overall, across all datasets and parameters. Hoewver,
we are motivated by results that show that at the very least, non-divergent schedules are found by
the agent. This overall stability is notewortthy and useful to study in a more theoretical setting,
motivated by these intial experimental results.

Table 10: Scheduler - OneCycleLR — Agent LR = 5e-3 for CIFAR100

Method Best Final Loss Avg Final Loss Divergent case exists
0 Agent 4.606702 4.606702 no
1 SGD 4.042578 4.788674 yes
2 Adadelta 3.161358 10.678298 yes
3 Adam 4.176720 4.678715 yes
4 SGD-Sch 3.436341 3.436341 no
5 Adadelta-Sch 4.553504 4.553504 no
6 Adam-Sch 4.869463 4.869463 yes
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A.6 SOME LOSS CURVES AND GENERATED SCHEDULES
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Figure 1: Training loss for LRs as part of grid search for SGD. Similar results were recorded for
Adam, Adadelta and Adagrad but are not included here for brevity. The key takeaway is that grid
search, and other HPO algorithms will discover both converging and diverging loss trajectories using
initial, fixed LRs; i.e. some initial LRs are bound to diverge, regardless of the schedule (see figure 2
below). A learned schedule can result in stable loss curves, even from a difficult initial point
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(a) RL agent (b) SGD with OneCycleLR

(c) Adadelta with OneCycleLR (d) Adam with OneCycleLR

Figure 2: Validation losses on CIFAR-100 image classification dataset for the proposed RL agent
along with popular optimizers with different learning rates. We see that the agent has a typical
looking loss hostory, but may not beat the best, highly tuned optimizer scheduler combination.
Others (like b) and d) can show erratic, divergent behavior, whereas the agent performs consistently,
and is more stable on average across multiple runs.

A.7 COMPARISON WITH FULL LINE-SEARCH METHODS.

Recently Vaswani et al. (2019) (called SLS) developed an optimizer for SGD that automatically
sets the step size of SGD by performing a line search at each iteration of training. Given that both
SLS and the RL agent have access to similar information at inference time, we wanted to evaluate
the performance of the agent with the SLS optimizer and compare their respective learning rate
schedules. In Figure 6 we compare SLS with our learned optimizer and observe that the loss curve
upper bounds that of SLS. However, we see no common discernible pattern in the step sizes proposed
by the two algorithms. We made the following observations from this experiment a) step sizes set by
the two optimizers were very different, despite having similar performances could suggest that there
can be several “good” learning schedules for a given task; b) it is not clear as to how to compare
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Figure 3: Validation loss and action histories of the proposed agent after 10K training iterations on
MNIST image classification task.

Figure 4: Validation loss and action histories of the proposed agent after 20K training iterations on
MNIST image classification task.

two learning schedules rigorously for stochastic optimizers. We delegate these questions for future
investigation.

A.8 ABLATION EXPERIMENTS

Impact of simplifying reward function. We first simplify the reward function and remove the
dependence on epochs (i.e., we set λ = 0):

r = γ(best loss− val loss) + λ(epochmax − epoch), (3)

We also disregard best loss and set γ = 1 as with our original experiments.
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Figure 5: Validation loss and action histories of the proposed agent after 50K training iterations on
MNIST image classification task.
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Figure 6: Our learned optimizer vs full line-search method of Vaswani et al. (2019) (SLS). (Left)
Comparison of validation losses (right) comparison of learning rates predicted by the optimizers.

Comparing SGD performance overall by running a grid search over lr in [0,1] range, with average
performance of learned agent runs trained over the same range of LRs, and with reward function
being directly validation loss yields interesting results:

1. Average min test loss for SGD across all LRs is 0.36, vs 0.02 for the agent. This is
consistent with our results for the full reward function; i.e., average performance for the
agent is an order of magnitude better than the average performance for the optimizer chosen

2. Loss curves for SGD as expected can be highly lr dependent (Fig. 7)

3. Loss curves for the agent were more consistent, but different (Fig. 8)

4. Interesting that the action (lr) curves start low and go high when the agent reward was just
loss, vs previous experiments with complex reward function (escape divergence + loss +
monotonic etc) where loss started higher and went to lower bound (Fig. 9)
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Figure 7: SGD grid search with a smaller range of LRs, compared to Fig. 1.

Impact of changing learning rate for the agent. We test three additional learning rates for the
agent - 0.01, 0.05, 0.1, with all other factors remaining constant. Change in the LR for the agent
(note, not the LR for actual model training, but for RL agent) impacts the final policy learned.

Action histories that A) start with a low LR and end higher seem to give better performance than the
ones that B) start high and snap to the lower bound of LR. Higher learning rates for the RL agent
end up in B, and performance gets worse as we increase the LR further.
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Figure 8: Agent loss histories (LR schedules) for the trained agent for 5 different seeds

Figure 9: Agent action histories (LR schedules) for the trained agent for 5 different seeds
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