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Abstract

While many pipelines for extracting informa-001
tion from tables assume simple table structure,002
tables in the financial domain frequently have003
a complex, hierarchical structure. The primary004
example would be parent-child relationships005
between header cells. Most prior datasets of006
tables annotated from images or pdf and most007
models for extracting table structure concen-008
trate on the problems of table boundaries, cell,009
row, and column bounding box extraction. The010
area of fine-grained table structure remains rela-011
tively unexplored. This study presents a dataset012
of 657 tables, manually labeled for cell types013
and column hierarchy relations. The tables are014
selected from IBM FinTabNet. The selection of015
these 657 tables is performed using heuristics,016
resulting in a much larger proportion, roughly017
half, of the selected tables having a complex hi-018
erarchical structure than a random sample from019
FinTabNet. Further, we fine-tune models based020
on LayoutLM on the cell-type classification021
task and identify hierarchical relations among022
column headers. We achieve F1 scores of 97%023
and 73% on the respective tasks. Finally, we024
use the trained model to create soft labels for025
the entirety of FinTabNet.026

1 Introduction027

Most work on automatic information extraction028

from tables assume that the table’s structure is ade-029

quately represented by grouping of cells into simple030

rows and columns, in exactly the same way that031

the structure of a two-dimensional m× n array is032

represented by assigning each entry to a pair of033

integers (i, j) ∈ [0,m − 1] × [0, n − 1]. In the034

case of tables found on the web, as in Wikipedia035

and related resources, for example, this assump-036

tion is largely borne out by experience. However,037

in some specialized domains, many of the tables038

do not have such a simple structure. In particu-039

lar, in finance and financial reporting, there is an040

entrenched, culturally reinforced tendency to use041

rather complex table structure to convey informa- 042

tion more concisely than a simple array-like table 043

can. While such structures are intuitive to a human 044

reader, they present an obstacle to the automation 045

of information extraction from financial tables. 046

Fortunately, some analysis shows that the vast 047

majority of deviations from simple table structure 048

occurs in one of two main directions. The first 049

is that the financial table has multiple layers of 050

row or column headers, and there is a hierarchical 051

tree-like structure to the row or column headers 052

of the table. The second is that the table has text 053

cells within the table that span multiple columns of 054

mainly numerical cells. In analogy with the usual 055

table captions which apply to the whole table, we 056

can think of these cells as a special type of captions 057

which apply only to a contiguous region of the table. 058

In both cases, certain aspects of the table’s structure 059

that are not adequately captured by row-column 060

assignments, can be represented by a directed tree 061

structure. The nodes are row/column header cells 062

(in the first case), or caption cells/content blocks (in 063

the second case), and the edges correspond to the 064

relation between two nodes that can be interpreted 065

as "parent cell modifies or governs meaning of 066

child cell". For example, in Figure 1, each of the 067

three of the “child” column header cells (“Target 068

Allocation”, “% of plan assets”) has its meaning 069

modified by the “parent” cell (“U.S”, “Non-U.S”). 070

The caption “December 31" provides a temporal 071

context to the information in table. In making these 072

definition, we are simply rephrasing an observation 073

made previously in, e.g., (Chen et al., 2017) and 074

(Xue et al., 2019). 075

The main contributions of this work are as fol- 076

lows. 077

• We decompose the task of understanding the 078

table structure, understood as identifying the 079

correct tree structure as just outlined, as two 080

simpler tasks. The first is a classification of 081

all the cells in the table into four semantic 082
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Figure 1: Financial table annotated with fine structure.

classes, with labels content, row header, col-083

umn header, caption, where “caption” is un-084

derstood in the extended sense above. The085

second is a classification of all the potential086

relationship edges, as identified from all pos-087

sible edges by some simple heuristics, into088

true/existing and false/non-existing relation-089

ship edges.090

• We address both problems within a unified091

deep learning framework, namely the one pro-092

vided by (Xu et al., 2020b), which allows us to093

take advantage of the representations incorpo-094

rating both semantic content of the cells and095

their surroundings and visual cues from the096

layout of the document.097

• We produced and plan to release two datasets.098

The first is manually labelled with almost099

700 tables, roughly half of which have com-100

plex structure. The second is a much larger101

dataset of 100K financial tables which are102

“soft-labeled" using a LayoutLM-based (Xu103

et al., 2020b) model fine-tuned on the first104

dataset.105

Since row hierarchy structure tends to be more106

subjective than column hierarchy structure, we la-107

belled only column header hierarchy. We intend to108

label row-header hierarchy in a future version. De-109

spite this limitation, our manually labeled dataset110

of almost 900 tables is much larger than the typical111

dataset in this field (cf. (Chen et al., 2017) with 72112

labeled examples, and no column hierarchy, only113

row-hierarchy).114

We leveraged the already publicly available IBM115

FinTabNet dataset (Zheng et al., 2021), which has116

more than 100K real tables from SEC filings al-117

ready annotated with cell, row, and column bound-118

aries, to create out datasets.119

Data & Code: Anonymous version of 120

our manually annotated data is available at 121

https://doi.org/10.5281/zenodo.5855687 122

2 Related Work 123

At the highest level, we can draw a sharp distinction 124

between the problem of fine-grained table structure 125

considered in this work and the vast majority of 126

table-understanding literature, which focus on; 127

Upstream tasks. Detection of tables(Paliwal 128

et al., 2019; Prasad et al., 2020; Zheng et al., 2021; 129

Hashmi et al., 2021) in the context of a larger, 130

scanned document, and identification of the basic 131

table structures, namely cells, rows, and columns, 132

usually in the form of bounding boxes. 133

Downstream tasks. These tasks include Ques- 134

tion answering (Yin et al., 2020; Herzig et al., 2020, 135

2021; Zayats et al., 2021), Fact retrieval (Dong and 136

Smith, 2021), Table to text generation (Wang et al., 137

2020; Parikh et al., 2020). For a comprehensive 138

survey of recent advances on this topic, see (Pujara 139

et al., 2021). 140

We now focus on the existing work which fo- 141

cuses on understanding the fine grained table struc- 142

ture. 143

Heuristic-based approach. One of the earli- 144

est works on fine-grained table structure is (Chen 145

et al., 2017). This work develops a heuristic ap- 146

proach, based on hand-crafted features, for eluci- 147

dating semantic relationships between row headers 148

only. (Wang et al., 2021) develops neural repre- 149

sentations of tables for use in downstream tasks, 150

but relies on heuristics to elucidate the hierarchical 151

structure as opposed to our approach to classify 152

cell types and identifying hierarchical relationships 153

without using any heuristics. 154

Hybrid approach. The approach taken in (Sun 155

et al., 2021) to reconstruct table structure uses pre- 156

trained networks to embed cells and rules enforced 157
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via PSL. (Chi et al., 2019) also use hand crafted158

features with graph neural networks for predicting159

the horizontal and vertical relations between cells160

while we fine-tune all weights of LayoutLM.161

Neural Approaches. While there are a few com-162

pletely neural approaches for extracting the struc-163

ture of complex tables from images, most, such as164

(Xue et al., 2019) and (Qiao et al., 2021) rely on165

visual features alone. An exception is (Zhang et al.,166

2021), which relies on both visual and textual fea-167

tures, but still differs in two important ways from168

our approach. First, in contrast to LayoutLM, their169

model has pre-trained, separate visual and textual170

embeddings of the cells. Second, since they inter-171

pret the problem of table hierarchy elucidation as172

one of drawing the cell boundaries correctly, they173

put a limitation on the sorts of relations their system174

can predict. For example, multi-level (beyond 2175

layer) header hierarchies, as well as parent-child re-176

lationships between cells which do not border one177

another cannot be handled by their system, whereas178

our framework handles such cases naturally.179

3 Dataset Creation180

This section discusses details of IBM Fintabnet, fol-181

lowed by our annotation methodology and neural182

model.183

3.1 IBM Fintabnet184

IBM FinTabNet (Zheng et al., 2021) contains185

112,887 tables spread over 89,646 pages of186

S&P500 companies earning reports. IBM’s tech-187

nique for producing FinTabNet achieves 99.31 F1188

scores of ICDAR2013 (Göbel et al., 2013) table189

recognition benchmark, making it the sate-of-the-190

art technique at the time of writing this paper.191

3.2 Data Annotation192

We annoated 657 tables sourced from IBM FinTab-193

net (Zheng et al., 2021). Annotators labeled194

both the cell types and the parent-children rela-195

tionship present among the column header cells,196

helping us capture the hierarchy structure of the197

table. Allen AI open-source tool PAWLS (Neu-198

mann et al., 2021) was used to perform annotations.199

Table 1 provides label level information about our200

annotated dataset.201

3.3 Modeling and Soft Labels202

We tried three baseline methods: 1) Heuristics 2)203

BERT(Devlin et al., 2018) and 3) LayoutLM(Xu204

Table 1: Details of manually annotated dataset.

# of table 657
# of table
with hierarchy 339
Cell Type 50th 75th 100th
Column Header 4 6 20
Row Header 7 12 63
Content 20 40 241

et al., 2020b). We detected the largest consecutive 205

group of numeric values for the heuristic model and 206

marked those as content cells. Cells above and left 207

of the content block are marked as column and row 208

headers. Keyword matching against a hand-curated 209

list is used to detect captions. First column headers 210

are sorted into different levels for heuristic-based 211

hierarchy detection based on the vertical positional 212

information. Then, each cell in level N is assigned 213

a child to the closest cell in level N − 1. 214

In the case of neural models, we model the cell 215

label prediction task as a token classification task 216

(e,g, Named Entity Recognition). Input is passed to 217

the model at the token level, and cell embeddings 218

are created by performing average pooling over all 219

the tokens of a cell. A prediction is done for every 220

polled cell embedding. Column hierarchy predic- 221

tion is modeled as a binary classification task. Cell 222

embeddings are concatenated and passed onto a 223

non-linear classifier for all possible column header 224

pairs. All models are trained end-to-end.1 225

LayoutLM achieves an F1 score of 96.9 and 72.4 226

on cell label prediction and relation prediction, re- 227

spectively. Table 2 shows the complete results for 228

both tasks. Finally, the model creates soft labels 229

for the entire IBM FinTabNet dataset. 230

4 Discussion 231

Data Description: In the distribution of four cell 232

type classes, we naturally see an imbalance with 233

the number of content cells as the majority class. 234

As shown in Table 1 the number of content cells 235

per table also varies highly, indicating a variety of 236

table sizes available in our data. Approximately 237

58% of tables have a caption cell. 238

About half of the tables in our dataset have col- 239

umn hierarchy present. Though most of these 240

1Models are validated on a randomly sampled test set of
20% size and are implemented in Keras and huggingface. Each
model is trained with a learning rate of 3e−5, early stopping
(patience 5) on a Nvidia RTX A6000 GPU.
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Table 2: Baseline Results. H: Column header, R: Row header, C: Content Cell, Ca: Caption.

Accuracy Macro F1 Precision Recall F1
Cell label prediction H R C Ca H R C Ca H R C Ca
Heuristic 88.5 72.6 50.9 95.6 98.0 40.8 85.9 75.7 93.7 52.9 64.0 84.5 95.8 46.12
BERT 95.0 88.5 82.4 90.3 98.4 85.7 86.1 86.7 98.9 79.5 84.2 88.5 98.7 82.5
LayoutLM 99.2 96.9 97.3 98.8 99.8 87.9 96.7 99.6 99.5 96.3 97.0 99.2 99.7 91.9
Cell relation prediction True False True False True False
Heuristic 66.7 65.3 43.9 92.8 87.4 59.1 58.4 72.2
BERT 80.2 72.4 62.5 85.1 53.8 89.1 57.8 87.0
LayoutLM 81.8 72.4 71.3 83.8 46.6 93.6 56.3 88.5

H: Column header, R: Row header, C: Content Cell, Ca: Caption.

are 2 level hierarchies, about 10% of total tables241

(n = 66) have 3 levels of column headers. The242

maximum height of column hierarchy in our dataset243

is 4, including complex examples of nested hierar-244

chies as shown in Figure 1.245

Challenges: Our heuristics perform well in de-246

tecting row headers and content cells but struggle247

with some column header and caption detection248

aspects. Precision for column header detection is249

low due to non-numeric tables. In the case of non-250

numeric tables, many content cells get marked as251

column headers leading to low precision. Poor per-252

formance of caption detection can be attributed to253

limitations of keywords list and false positives in-254

herent to text matching. Simple rules assume that255

every cell on level N must have a parent on level256

N−1, which is not valid for complex tables. Hence257

hierarchy detection using heuristics gives low pre-258

cision for the positive class and low recall to the259

negative category. Such effect is further boosted by260

trickled down errors from cell label detection algo-261

rithm. Though, these rules work well if a hierarchy262

exists, as indicated by the high recall of positive263

class.264

BERT improves the performance of cell labeling265

tasks, especially in the case of non-numeric tables.266

The presence of textual context helps in differenti-267

ating between headers and content cells. However,268

the class level performance for hierarchy detection269

suffers from the model being biased towards nega-270

tive class due to class imbalance. This is expected271

since BERT does not account for positional infor-272

mation, essential for hierarchy prediction tasks.273

Adopting a positionally and contextually aware274

model like LayoutLM improves cell labeling per-275

formance. Our manual inspection revealed that276

a few errors still present are caused by minority277

tables in which differentiation between column278

header, captions, and top row headers is done us-279

ing changes in fonts rather than positions. Shift-280

ing to a more visually aware architecture like Lay- 281

outLMv2 (Xu et al., 2020a) may help in improving 282

performance for such cases. LayoutLM perfor- 283

mance is much better than heuristics/BERT on hi- 284

erarchy detection tasks. However, significant room 285

for improvement is still available. It is common to 286

have textually same and positionally close hierar- 287

chy pairs in complex financial tables. We observed 288

in such cases the probability of LayoutLM pre- 289

dicting a false parent-child couple as true is high. 290

Further, since each possible pair of hierarchy is fed 291

independently to the model, at times, a single cell 292

is assigned multiple parents, which leads to poor 293

performance. These concerns can be addressed us- 294

ing rule-based post-processing and having models 295

aware of both global and relative positional context. 296

5 Conclusion and Future Work 297

By releasing a large public dataset (by augment- 298

ing the annotations in FinTabNet with further fine- 299

grained structure), and demonstrating performance 300

of some strong baselines, we hope to stimulate 301

work in the community on this still largely unsolved 302

problem. Among the next steps to be taken are fur- 303

ther expanding the annotations by increasing the 304

number and diversity of tables annotated manually 305

and also annotating the row hierarchy structure, 306

and caption-to-content block relationships. Fur- 307

ther, we plan to use the structure annotations pro- 308

duced by our model within a pipeline and show 309

their utility in improving the performance of down- 310

stream extractions. Additionally, we will use the 311

observations above concerning failure modes of 312

the current models to motivate improvements in 313

the structure-resolution models to improve on the 314

LayoutLM-based baseline. 315
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