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Abstract

While many pipelines for extracting informa-
tion from tables assume simple table structure,
tables in the financial domain frequently have
a complex, hierarchical structure. The primary
example would be parent-child relationships
between header cells. Most prior datasets of
tables annotated from images or pdf and most
models for extracting table structure concen-
trate on the problems of table boundaries, cell,
row, and column bounding box extraction. The
area of fine-grained table structure remains rela-
tively unexplored. This study presents a dataset
of 657 tables, manually labeled for cell types
and column hierarchy relations. The tables are
selected from IBM FinTabNet. The selection of
these 657 tables is performed using heuristics,
resulting in a much larger proportion, roughly
half, of the selected tables having a complex hi-
erarchical structure than a random sample from
FinTabNet. Further, we fine-tune models based
on LayoutLM on the cell-type classification
task and identify hierarchical relations among
column headers. We achieve F1 scores of 97%
and 73% on the respective tasks. Finally, we
use the trained model to create soft labels for
the entirety of FinTabNet.

1 Introduction

Most work on automatic information extraction
from tables assume that the table’s structure is ade-
quately represented by grouping of cells into simple
rows and columns, in exactly the same way that
the structure of a two-dimensional m X n array is
represented by assigning each entry to a pair of
integers (4,7) € [0,m — 1] x [0,n — 1]. In the
case of tables found on the web, as in Wikipedia
and related resources, for example, this assump-
tion is largely borne out by experience. However,
in some specialized domains, many of the tables
do not have such a simple structure. In particu-
lar, in finance and financial reporting, there is an
entrenched, culturally reinforced tendency to use

rather complex table structure to convey informa-
tion more concisely than a simple array-like table
can. While such structures are intuitive to a human
reader, they present an obstacle to the automation
of information extraction from financial tables.

Fortunately, some analysis shows that the vast
majority of deviations from simple table structure
occurs in one of two main directions. The first
is that the financial table has multiple layers of
row or column headers, and there is a hierarchical
tree-like structure to the row or column headers
of the table. The second is that the table has text
cells within the table that span multiple columns of
mainly numerical cells. In analogy with the usual
table captions which apply to the whole table, we
can think of these cells as a special type of captions
which apply only to a contiguous region of the table.
In both cases, certain aspects of the table’s structure
that are not adequately captured by row-column
assignments, can be represented by a directed tree
structure. The nodes are row/column header cells
(in the first case), or caption cells/content blocks (in
the second case), and the edges correspond to the
relation between two nodes that can be interpreted
as "parent cell modifies or governs meaning of
child cell". For example, in Figure 1, each of the
three of the “child” column header cells (“Target
Allocation”, “% of plan assets”) has its meaning
modified by the “parent” cell (“U.S”, “Non-U.S”).
The caption “December 31" provides a temporal
context to the information in table. In making these
definition, we are simply rephrasing an observation
made previously in, e.g., (Chen et al., 2017) and
(Xue et al., 2019).

The main contributions of this work are as fol-
lows.

* We decompose the task of understanding the
table structure, understood as identifying the
correct tree structure as just outlined, as two
simpler tasks. The first is a classification of
all the cells in the table into four semantic
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Figure 1: Financial table annotated with fine structure.

classes, with labels content, row header, col-
umn header, caption, where “caption” is un-
derstood in the extended sense above. The
second is a classification of all the potential
relationship edges, as identified from all pos-
sible edges by some simple heuristics, into
true/existing and false/non-existing relation-
ship edges.

* We address both problems within a unified
deep learning framework, namely the one pro-
vided by (Xu et al., 2020b), which allows us to
take advantage of the representations incorpo-
rating both semantic content of the cells and
their surroundings and visual cues from the
layout of the document.

* We produced and plan to release two datasets.
The first is manually labelled with almost
700 tables, roughly half of which have com-
plex structure. The second is a much larger
dataset of 100K financial tables which are
“soft-labeled" using a LayoutLM-based (Xu
et al., 2020b) model fine-tuned on the first
dataset.

Since row hierarchy structure tends to be more
subjective than column hierarchy structure, we la-
belled only column header hierarchy. We intend to
label row-header hierarchy in a future version. De-
spite this limitation, our manually labeled dataset
of almost 900 tables is much larger than the typical
dataset in this field (cf. (Chen et al., 2017) with 72
labeled examples, and no column hierarchy, only
row-hierarchy).

We leveraged the already publicly available IBM
FinTabNet dataset (Zheng et al., 2021), which has
more than 100K real tables from SEC filings al-
ready annotated with cell, row, and column bound-
aries, to create out datasets.

Data & Code: Anonymous version of
our manually annotated data is available at
https://doi.org/10.5281/zenodo.5855687

2 Related Work

At the highest level, we can draw a sharp distinction
between the problem of fine-grained table structure
considered in this work and the vast majority of
table-understanding literature, which focus on;

Upstream tasks. Detection of tables(Paliwal
et al., 2019; Prasad et al., 2020; Zheng et al., 2021;
Hashmi et al., 2021) in the context of a larger,
scanned document, and identification of the basic
table structures, namely cells, rows, and columns,
usually in the form of bounding boxes.

Downstream tasks. These tasks include Ques-
tion answering (Yin et al., 2020; Herzig et al., 2020,
2021; Zayats et al., 2021), Fact retrieval (Dong and
Smith, 2021), Table to text generation (Wang et al.,
2020; Parikh et al., 2020). For a comprehensive
survey of recent advances on this topic, see (Pujara
et al., 2021).

We now focus on the existing work which fo-
cuses on understanding the fine grained table struc-
ture.

Heuristic-based approach. One of the earli-
est works on fine-grained table structure is (Chen
et al., 2017). This work develops a heuristic ap-
proach, based on hand-crafted features, for eluci-
dating semantic relationships between row headers
only. (Wang et al., 2021) develops neural repre-
sentations of tables for use in downstream tasks,
but relies on heuristics to elucidate the hierarchical
structure as opposed to our approach to classify
cell types and identifying hierarchical relationships
without using any heuristics.

Hybrid approach. The approach taken in (Sun
et al., 2021) to reconstruct table structure uses pre-
trained networks to embed cells and rules enforced



via PSL. (Chi et al., 2019) also use hand crafted
features with graph neural networks for predicting
the horizontal and vertical relations between cells
while we fine-tune all weights of LayoutL.M.

Neural Approaches. While there are a few com-
pletely neural approaches for extracting the struc-
ture of complex tables from images, most, such as
(Xue et al., 2019) and (Qiao et al., 2021) rely on
visual features alone. An exception is (Zhang et al.,
2021), which relies on both visual and textual fea-
tures, but still differs in two important ways from
our approach. First, in contrast to LayoutL.M, their
model has pre-trained, separate visual and textual
embeddings of the cells. Second, since they inter-
pret the problem of table hierarchy elucidation as
one of drawing the cell boundaries correctly, they
put a limitation on the sorts of relations their system
can predict. For example, multi-level (beyond 2
layer) header hierarchies, as well as parent-child re-
lationships between cells which do not border one
another cannot be handled by their system, whereas
our framework handles such cases naturally.

3 Dataset Creation

This section discusses details of IBM Fintabnet, fol-
lowed by our annotation methodology and neural
model.

3.1 IBM Fintabnet

IBM FinTabNet (Zheng et al., 2021) contains
112,887 tables spread over 89,646 pages of
S&P500 companies earning reports. IBM’s tech-
nique for producing FinTabNet achieves 99.31 F1
scores of ICDAR2013 (Gobel et al., 2013) table
recognition benchmark, making it the sate-of-the-
art technique at the time of writing this paper.

3.2 Data Annotation

We annoated 657 tables sourced from IBM FinTab-
net (Zheng et al., 2021). Annotators labeled
both the cell types and the parent-children rela-
tionship present among the column header cells,
helping us capture the hierarchy structure of the
table. Allen Al open-source tool PAWLS (Neu-
mann et al., 2021) was used to perform annotations.
Table 1 provides label level information about our
annotated dataset.

3.3 Modeling and Soft Labels

We tried three baseline methods: 1) Heuristics 2)
BERT(Devlin et al., 2018) and 3) LayoutLM(Xu

Table 1: Details of manually annotated dataset.

# of table 657

# of table

with hierarchy 339

Cell Type 50th 75th 100th
Column Header 4 6 20
Row Header 7 12 63
Content 20 40 241

et al., 2020b). We detected the largest consecutive
group of numeric values for the heuristic model and
marked those as content cells. Cells above and left
of the content block are marked as column and row
headers. Keyword matching against a hand-curated
list is used to detect captions. First column headers
are sorted into different levels for heuristic-based
hierarchy detection based on the vertical positional
information. Then, each cell in level [V is assigned
a child to the closest cell in level N — 1.

In the case of neural models, we model the cell
label prediction task as a token classification task
(e.g, Named Entity Recognition). Input is passed to
the model at the token level, and cell embeddings
are created by performing average pooling over all
the tokens of a cell. A prediction is done for every
polled cell embedding. Column hierarchy predic-
tion is modeled as a binary classification task. Cell
embeddings are concatenated and passed onto a
non-linear classifier for all possible column header
pairs. All models are trained end-to-end.!

LayoutLLM achieves an F1 score of 96.9 and 72.4
on cell label prediction and relation prediction, re-
spectively. Table 2 shows the complete results for
both tasks. Finally, the model creates soft labels
for the entire IBM FinTabNet dataset.

4 Discussion

Data Description: In the distribution of four cell
type classes, we naturally see an imbalance with
the number of content cells as the majority class.
As shown in Table 1 the number of content cells
per table also varies highly, indicating a variety of
table sizes available in our data. Approximately
58% of tables have a caption cell.

About half of the tables in our dataset have col-
umn hierarchy present. Though most of these

"Models are validated on a randomly sampled test set of
20% size and are implemented in Keras and huggingface. Each
model is trained with a learning rate of 3¢~ °, early stopping
(patience 5) on a Nvidia RTX A6000 GPU.



Table 2: Baseline Results. H: Column header, R: Row header, C: Content Cell, Ca: Caption.

Accuracy Macro F1 Precision Recall F1

Cell label prediction H R C Ca | H R C Ca | H R C Ca
Heuristic 88.5 72.6 509 956 98.0 408 | 859 757 937 529|640 845 958 46.12
BERT 95.0 88.5 824 903 984 857 |86.1 867 989 795|842 885 987 825
LayoutLM 99.2 96.9 97.3 988 998 879|967 99.6 995 963 |97.0 992 99.7 919
Cell relation prediction True False True False True False
Heuristic 66.7 65.3 43.9 92.8 87.4 59.1 584 722
BERT 80.2 72.4 62.5 85.1 53.8 89.1 57.8 87.0
LayoutLM 81.8 724 71.3 83.8 46.6 93.6 56.3 88.5

H: Column header, R: Row header, C: Content Cell, Ca: Caption.

are 2 level hierarchies, about 10% of total tables
(n = 66) have 3 levels of column headers. The
maximum height of column hierarchy in our dataset
is 4, including complex examples of nested hierar-
chies as shown in Figure 1.

Challenges: Our heuristics perform well in de-
tecting row headers and content cells but struggle
with some column header and caption detection
aspects. Precision for column header detection is
low due to non-numeric tables. In the case of non-
numeric tables, many content cells get marked as
column headers leading to low precision. Poor per-
formance of caption detection can be attributed to
limitations of keywords list and false positives in-
herent to text matching. Simple rules assume that
every cell on level N must have a parent on level
N —1, which is not valid for complex tables. Hence
hierarchy detection using heuristics gives low pre-
cision for the positive class and low recall to the
negative category. Such effect is further boosted by
trickled down errors from cell label detection algo-
rithm. Though, these rules work well if a hierarchy
exists, as indicated by the high recall of positive
class.

BERT improves the performance of cell labeling
tasks, especially in the case of non-numeric tables.
The presence of textual context helps in differenti-
ating between headers and content cells. However,
the class level performance for hierarchy detection
suffers from the model being biased towards nega-
tive class due to class imbalance. This is expected
since BERT does not account for positional infor-
mation, essential for hierarchy prediction tasks.

Adopting a positionally and contextually aware
model like LayoutLLM improves cell labeling per-
formance. Our manual inspection revealed that
a few errors still present are caused by minority
tables in which differentiation between column
header, captions, and top row headers is done us-
ing changes in fonts rather than positions. Shift-

ing to a more visually aware architecture like Lay-
outLMv2 (Xu et al., 2020a) may help in improving
performance for such cases. LayoutLM perfor-
mance is much better than heuristics/BERT on hi-
erarchy detection tasks. However, significant room
for improvement is still available. It is common to
have textually same and positionally close hierar-
chy pairs in complex financial tables. We observed
in such cases the probability of LayoutLM pre-
dicting a false parent-child couple as true is high.
Further, since each possible pair of hierarchy is fed
independently to the model, at times, a single cell
is assigned multiple parents, which leads to poor
performance. These concerns can be addressed us-
ing rule-based post-processing and having models
aware of both global and relative positional context.

5 Conclusion and Future Work

By releasing a large public dataset (by augment-
ing the annotations in FinTabNet with further fine-
grained structure), and demonstrating performance
of some strong baselines, we hope to stimulate
work in the community on this still largely unsolved
problem. Among the next steps to be taken are fur-
ther expanding the annotations by increasing the
number and diversity of tables annotated manually
and also annotating the row hierarchy structure,
and caption-to-content block relationships. Fur-
ther, we plan to use the structure annotations pro-
duced by our model within a pipeline and show
their utility in improving the performance of down-
stream extractions. Additionally, we will use the
observations above concerning failure modes of
the current models to motivate improvements in
the structure-resolution models to improve on the
LayoutLM-based baseline.
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