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ABSTRACT
With the development of LLMs as agents, there is a growing interest in connecting
agents into multi-agent systems to solve tasks concurrently, focusing on their role
in task assignment and coordination. This paper explores how LLMs can allocate
computational tasks among agent networks, considering factors such as cost, effi-
ciency, and performance. We address key questions, including the effectiveness
of LLMs as orchestrators and planners, comparing their effectiveness in task as-
signment and coordination. Our experiments show that LLMs can achieve high
validity and accuracy in resource allocation tasks. We find that the planner method
outperforms the orchestrator method in handling concurrent actions, resulting in
improved efficiency and better utilization of agents. Furthermore, we show that
providing explicit information about worker capabilities improves the allocation
strategies of planners, particularly when dealing with suboptimal workers.

1 INTRODUCTION

Large Language Models (LLMs) have become popular for various tasks beyond just generating text.
They can act as agents that interact with their environment (Xi et al., 2025a) and use tools effectively.
This has led to the development of more versatile systems that can operate a computer like a human
(Agashe et al., 2024; Wu et al., 2024), serve as research assistants (Schmidgall et al., 2025), or even
automate tasks in a lab (M. Bran et al., 2024).

As agents are used for more tasks and in more scenarios, they need to interact with other agents. This
can happen by design in Multi-Agent Systems (MAS) or through more spontaneous interactions.
As a result, frameworks like AutoGen (Wu et al., 2023) and Camel-AI (Li et al., 2023a) have been
developed to leverage the capabilities of MAS. The creation of these multi-agent systems opens up
new possibilities and challenges to explore (Han et al., 2024; Guo et al., 2024a; Agashe et al., 2023),
such as their organizational structures, shared memory, efficiency, and coordination capabilities.

In particular, we focus on how these agents coordinate to assign tasks and achieve their goals. Inspired
by Marvin Minsky’s idea that intelligence emerges from computational modules working together
to accomplish goals that none could achieve alone Minsky (1988), we aim to analyze how LLMs
allocate tasks to agents. Our goal is to optimize the allocation of resources and tasks by LLMs
themselves. Thus, our underlying research question is: How does a network of LLM-based agents
optimize their task allocation?

We conduct a series of experiments to understand how LLMs allocate tasks to agents within multi-
agent systems. First, we evaluate how one LLM can generate the correct task allocation, assigning
actions to each agent for a problem with a known solution provided by the Hungarian Algorithm.
Second, we examine two methods illustrated in Figure 1—Orchestrator and Planner—using the
CuisineWorld benchmark (Gong et al., 2023), detailed in Section 5.2. The Orchestrator uses one
LLM to generate all the actions to be executed, while the Planner creates a plan that is then given to
executor LLM agents, who generate their actions independently. The plan is re-evaluated when a
relevant event occurs. Lastly, we evaluate the Planner allocation based on the agent’s abilities.

From the experiments, we concluded interesting findings: First, LLMs achieve higher validity
and accuracy in resource allocation tasks as their parameter size increases, but at a significant
computational and monetary cost. Second, the planner method outperforms the orchestrator method
in handling concurrent actions, resulting in improved efficiency in multi-agent task execution. The
planner method achieves better utilization of agents, with fewer idle actions. Finally, we see
that LLMs are sensitive to worker capabilities and struggle to infer them dynamically. Providing
explicit information about worker capabilities improves planner’s allocation strategies, especially
with suboptimal workers.
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Figure 1: MultiAgents Systems on CuisineWorld (Gong et al., 2023) over 3 methods analyzed: (1)
Individual: Decentralized, (2) Orchestrator: Centralized, (3) Planner: A balanced combination. It
generates a plan every few steps which is then given to worker agents to generate their actions.

We highlight the following key contributions from this paper:

• An evaluation of LLMs as effective orchestrators for optimizing task allocation in multi-agent
systems by comparing their task allocations against the Hungarian Algorithm optimal solution.

• We demonstrate the differences between the orchestrator and the planner methods when handling
concurrent actions, highlighting the efficiency gains achieved by the planner.

• An analysis of how the Planner allocates tasks based on agents’ abilities within the system,
demonstrating that providing explicit information about worker capabilities enhances allocation
strategies, particularly when dealing with suboptimal workers.

As multi-agent systems evolve, optimizing task allocation will be critical for enhancing efficiency and
performance across applications. This work addresses current challenges in LLM-based frameworks
and paves the way for advancements in autonomous and collaborative AI systems.

2 RELATED WORK

Agent Interaction and Collaboration As more agents are deployed in real-world settings, studying
their interactions becomes increasingly relevant. These agents need to communicate not only with
each other but also with humans (Jiang et al., 2025; Liu et al., 2023a). Agents can choose to
cooperate, compete, or do a mix of both (Tran et al., 2025). Since these models use natural language
for communication, recent studies have explored the concept of ”Theory of Mind,” which involves
understanding and attributing mental states to oneself and others (Strachan et al., 2024; Street, 2024).
Some works apply Game Theory to analyze these interactions (Hua et al., 2024). Several studies
measure the coordination abilities of LLMs, such as the LLM-Coordination Benchmark (Agashe
et al., 2023) and MindAgent (Gong et al., 2023), Gamma(γ)-Bench (Huang et al., 2024). Other works
focus on improving the abilities of LLMs to interact and coordinate (Li et al., 2023b; Zhang et al.,
2024a; 2023b; Cross et al., 2024; Zhang et al., 2023a; Guo et al., 2024b).

LLM-based Multi-Agent Systems Extending single-agent systems to multi-agent systems has
led to increased computational efficiency during inference, with shorter execution times. Multi-
agent systems offer several benefits, including modularity, specialization, collaborative learning,
and improved decision-making. These systems provide better scalability and flexibility, making
them more effective at solving problems that a single model might struggle with. The development
of multi-agent systems has led to the creation of various frameworks focused on MAS, such as
AutoGen (Wu et al., 2023), Camel-AI (Li et al., 2023a), or MetaGPT (Hong et al., 2024). These
frameworks have enabled the creation of systems with better scalability and flexibility, enhancing
problem-solving capabilities. For example, the Chain of Agents (Zhang et al., 2024b) can process
long contexts effectively, FilmAgent (Xu et al., 2024) generate coherent long-sequence videos ,
Chemrow (M. Bran et al., 2024) support new chemistry research, and Smart-LLM to control multiple
robots simultaneously (Kannan et al., 2024).
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Learning to optimize resources When developing multi-agent systems, a crucial question arises:
What is the optimal architecture? This is explored in Zhuge et al. (2024); Liu et al. (2023b). Once
the architecture is defined, how do these systems utilize it effectively? First, selecting the right
model for specific queries can optimize performance by ensuring high-quality answers, as explored
in RouteLLM (Ong et al., 2025) Hybrid-LLM (Ding et al., 2024), and the corresponding benchmark
RouterEval (Huang et al., 2025). In Mindstorms (Zhuge et al., 2023), the authors theorize how LLMs
can lead to systems that self-manage resources based on a monetary system, optimizing resources
and maximizing rewards to create an ”Economy of Minds” (EOM). Models can also learn to optimize
their communication, as demonstrated in Agora (Marro et al., 2024). Self-organized MASs can
reduce the burden on developers while achieving better results, such as in code generation (Ishibashi
& Nishimura, 2024) or leveraging scale in multi-agent reward-based learning (Slumbers et al., 2023;
Ma et al., 2024; Tekin et al., 2025).

3 PROBLEM DEFINITION

Large language models are increasingly deployed as agents within multi-agent systems, where they
must coordinate to assign and execute tasks. Our focus is on how these agents organize themselves to
optimize task allocation under two key criteria: cost and performance. Cost is measured in terms of
token usage and model size, while performance reflects the accuracy and efficiency of completing
the tasks. Formally, given a task T and a set of agents A = {a1, . . . , aN}, we aim to identify an
organizational strategy Ω that balances these objectives:

Ω∗ = argmax
Ω

Performance(T,Ω)− λ · Cost(T,Ω), (1)

where λ is a tradeoff parameter between performance and cost.

Agents Each agent ai ∈ A is defined by:

• Cost (ci): computational expense of using the agent, based on token usage and parameter
size.

• Capability (ϕi): the proficiency of the agent in performing tasks of varying difficulty.

Tasks A task tj ∈ T may vary in complexity and can be decomposed into subtasks. Different agents
may perform differently depending on the subtask assigned, both in terms of cost and performance.

Organizational Strategies We study three approaches to structuring multi-agent LLM systems:

1. Decentralized: All agents act independently without central coordination.
2. Centralized Orchestrator: A central agent assigns concrete actions to simpler executor

agents.
3. Centralized Planner: A central agent decomposes the task into subtasks, while executor

agents reason independently about how to achieve their assigned subtask.

4 PROBLEM DEFINITION

In real-world settings, resource allocation in multi-agent systems can often be seen as a multi-agent
resource allocation problem. This involves distributing computational tasks among multiple model
instances to optimize criteria such as cost, efficiency, and performance. This challenge becomes
especially relevant as AI systems gain autonomy and need to make resource allocation decisions with
incomplete information. We formalize the problem to provide a foundation for analyzing how LLMs
can perform self-resource allocation under multiple constraints and objectives.

In a multi-agent system with N agents and P different tasks, each task can be decomposed into
a sequence of Mp subtasks. Each agent incurs different costs for different tasks due to variations
in capability. The objective is to maximize overall utility while respecting time and assignment
constraints.

3
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Agents Let A = {a1, a2, . . . , an} represent a set of agents, where agent is characterized by

1. Operational Cost (ci): It represents the computational expense.
2. Capability Measure (ϕi): It reflects the model proficiency in performing tasks.

Tasks T = {t1, t2, . . . , tp} denote a set of tasks to be allocated. A task tj ∈ T is defined by:

1. Difficulty level (dj): It indicates the task complexity
2. Sub-tasks (mj): It refers to the subtask that a main task can be decomposed into.
3. Workload requirement (wj): Representing computational demand
4. Reward (rj): A potential reward, which may not be available in all scenarios.

Utility Function Combine utility function for a subtask{
qpim − cpim, if agent i can execute subtask m for task p

−∞, otherwise
(2)

where qpim and cpim: Quality and cost, respectively, for allocating agent i to work on subtask m for
task p.

The assignment of subtask m to agent i:

vpim =

{
1, agent i is assigned to subtask m for task p

0, otherwise
(3)

Optimization Problem The goal is to maximize the utility under a time constraint Tmax:

argmax
v

P∑
p=1

N∑
i=1

Mp∑
m=1

upimvpim (4)

Subject to: ∑
p

∑
i

∑
m

τpimvpim ≤ Tmax (5)

∑
i

vpim ≤ 1 ∀m ∈ Mp, ∀p ∈ P (6)

vpim ∈ {0, 1} ∀i ∈ N , ∀m ∈ Mp, ∀p ∈ P (7)

As noted by Korsah et al. (2013); Gong et al. (2023), this problem cannot be solved in polynomial
time. In our work, we aim to tackle this problem with LLMs.

Assignment problem For the basic assignment problem in Experiment 1, we can simplify the
notation. We set N = P , indicating that the number of agents equals the number of tasks. Each task
consists of a single subtask, represented by Mp = 1. The cost matrix A ∈ Rn×n represents the costs,
with cpi1 = Aij . We focus solely on minimizing costs, setting qpi1 = 0. Each assignment takes one
unit of time, denoted by τpi1 = 1. Finally, we set Tmax = N , ensuring that the time constraint allows
each agent to be assigned exactly one task.

argmin
v

N∑
i=1

N∑
j=1

Aijvij (8)

s.t.
∑N

i=1 vij = 1; ∀j, ;
∑N

j=1 vij = 1∀i, ensuring each agent is assigned to one task
vij ∈ 0, 1; ∀i, j ∈ 1, . . . , N specifying the assignment variable is binary.

This formulation allows us to evaluate how effectively LLM orchestrators can allocate resources
when costs are explicitly defined, as in the Hungarian algorithm comparison.

4
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5 EXPERIMENTAL FRAMEWORK

Table 1: Comparison of the three experimental scenarios

Experiment 1 Experiment 2 Experiment 3

Objective Minimize total cost Maximize completed tasks Maximize completed tasks

Environment Static assignment problem Dynamic CuisineWorld Dynamic CuisineWorld with
varying agent capabilities

Reward Structure Explicit costs Delayed rewards Delayed rewards

Agent Capabilities Uniform Uniform Varied

Decision Making Centralized Centralized (Orchestrator) vs.
Semi-Decentralized (Planner)

Semi-Decentralized (Planner)
with capability awareness

Evaluation Metric Accuracy and Validity rate Task Completion Rate and Ef-
ficiency

Task Completion Rate and Ef-
ficiency

5.1 EXPERIMENT 1:
BASIC RESOURCE ALLOCATION

T1 T2 T3

Age
nt1

Age
nt2

Age
nt3

4 5 1

2

3

63

6 3
Cost Matrix

Orchestrator

Agent1 – Task3, 
Agent2 – Task2, 
Agent3 - Task1,
Total cost is 1+3+3=7

Environment
Complete tasks

Update 

Figure 2: A multi-agent system with an LLM-
based orchestrator. At each step, the orchestrator
assigns multiple tasks to agents and minimizes the
total cost. After agents complete their tasks, the en-
vironment updates with new tasks and a new cost
matrix, continuing the process iteratively.

Problem Statement Orchestrator agent is
widely adopted in multi-agent systems. We start
with evaluating how effectively LLM orchestra-
tor can allocate resources in the most simple
setting where both costs and rewards are explic-
itly defined.

Consider a multi-agent system with a long-
horizon task that can be broken down into a
sequence of fundamental sub-tasks or actions
executable by agents. In this system, the LLM-
based orchestrator assigns tasks to agents based
on their associated costs. Each agent incurs different costs for different tasks due to variations in
capability or access to resources. Once an assignment is made and agents complete their tasks, the
environment updates accordingly, leading to a new set of tasks for the next turn, as is shown in
Figure 2. Here, we focus on evaluating the orchestrator LLM in a single turn, aligning with the
standard assignment problem.

The objective of the assignment problem is to determine the optimal assignment of n agents to n tasks.
Each instance of the problem is defined by a cost matrix A ∈ Rn×n, where each entry represents
the cost associated with assigning a particular agent to a task. As a fundamental combinatorial
optimization problem, the assignment problem can be solved in polynomial time using the Hungarian
algorithm, which has a complexity of O(n3), where n is the number of tasks and agents. Here, we
aim to evaluate whether LLMs can effectively minimize the assignment cost out of the box.

Experiment Details To evaluate the LLM performance on assignment problems, we first created
an evaluation set by generating a multiple cost matrix with random numbers filled in. After that, we
utilize the Hungarian algorithm to get the ground truth for each answer. All LLM orchestrators are
evaluated using greedy decoding with a maximum sequence length of 2048.

Evaluation We evaluate the performance of self-resource allocation across LLMs of varying model
sizes. Specifically, we consider GPT-4o-mini(∼28B), Mistral-Small-3.1(24B), Qwen2.5-32B-Instruct,
Llama-3.1-70B-Instruct, GPT-4o(∼200B), and Llama3.1-405B-Instruct-FP8. Two evaluation metrics,
accuracy and validity rate, are used. ❶ Accuracy measures how many of the LLM-generated
assignment solutions are optimal. A solution is considered as correct only when it is exactly the
same as the ground truth optimal assignment given by the Hungarian algorithm. Here we use the
LLM judge based on GPT-4o to examine each model response. ❷ Validity rate tests how many of
the LLM-generated assignment solutions are valid, which can be not optimal. Invalid assignments
include assigning one agent to more than one task, leaving some tasks not assigned with agents, and
making up an incorrect lower cost of the agent.

5
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5.2 EXPERIMENT 2: CONCURRENT ALLOCATION
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Figure 3: In CuisineWorld, the agents are pre-
sented with a set of dishes to complete in certain.
Agents execute tasks until dishes are completed or
the order expires.

Problem Statement In this experiment, we
introduce additional complexity by incorporat-
ing delayed rewards, as outlined in Table 1. The
reward is only provided after the completion
of a number of actions. Rewards In real-world
scenarios, agents often need to execute actions
without immediate knowledge of whether those
actions will ultimately.

We use CuisineWorld (Gong et al., 2023) as the
benchmark, inspired by Overcooked! (Carroll
et al., 2019). Agents must complete dish orders
by collecting and cooking ingredients, then de-
livering them within a time frame. The goal is
to maximize completed tasks. The benchmark features 10 locations, 27 ingredient types, and 33
dishes, categorized by difficulty and cooking tools required, resulting in 12 game levels. Figure 3
represents this game setting. We refer to Appendix B for more information.

As originally described, the agent decision process can be formulated as a Markov Decision Process
(S,A, T ,M,G) with state space S , action space A, (indicating all the possible schedules that can be
made at a single time step), transition dynamics T , reward function R and task instruction space G.

•State Space S: The environment consists of two main entities: locations and agents. Locations can
be storage areas, serving tables, or cooking tools like pans and blenders. Each location’s description
includes the items it contains and whether it is currently occupied. Agents are described by their
current location, the items they are holding, and whether they are using a tool.

•Actions: Actions in CuisineWorld involve dispatching commands to agents, such as moving to a
location, obtaining or placing items, activating tools, or performing no operation. The list of actions
include goto (agent, location), get (agent, location, item), put (agent, location), activate
(agent, location) and the idle action.

•Tasks: The tasks involve completing dish orders, which range from simple to complex recipes. New
tasks are introduced at regular intervals, and each task has a limited time frame within which it must
be completed, otherwise it fails.

Experiment Details The goal of this experiment is to evaluate the effectiveness of planning in
a multi-agent LLMs compared to the use of an orchestrator. We follow the definition of an agent
provided in React (Yao et al., 2023) and (Xi et al., 2025b), where agents are defined as: environment
→ reasoning → action. We compare three methods, represented in Figure 1 from n = 1, ..., 6 agents:

1. Individual: Every agent is controlled by a different LLM, and generates its own action indepen-
dently.

2. Orchestrator: One LLM controls all the agents in the game and generates actions for all of them.
3. Planner: Generates a general plan whenever a relevant event occurs in the game, such as when a

dish is introduced, completed, or removed. This plan is then provided to the LLM agents, which
produce their independent actions.

Evaluation We evaluate the performance of the previous methods in producing the correct allocation
and maximizing the number of orders completed. We aim to study how individual, independent weak
models (decentralized) can benefit from planning by a larger model. For this purpose, we use Llama
70B-Instruct, Qwen 32B-Instruct, and GPT4o-mini as executor models, while GPT-4o and Claude
3.7 Sonnet are used for the Orchestrator (centralized). The Planner method is then evaluated using
a combination of these models, where GPT-4o and Claude 3.7 generate the plans, and open-source
models generate the actions. To evaluate the results, we use the following metrics: ❶ #Completed
Orders: the number of orders the agents are able to complete; ❷ Execution Cost: the cost of
LLM calls at current prices, detailed in Table 6, which closely represents their running cost; and ❸

Efficiency=#complted orders
$cost : the ratio of completed orders to cost, representing the work done per

dollar spent.
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5.3 EXPERIMENT 3: CAPABILITY-AWARE ALLOCATION

Problem Statement. In the third experiment, we want to evaluate the capability of LLMs to
allocate tasks based on the ability of the worker agents. We fix the Planner model and evaluate its
ability to allocate plans to a heterogeneous mix of worker agents, each with a different backbone
model. Moreover, each of these backbone models has varying levels of intelligence and parameter
sizes, allowing us to evaluate the task distribution of LLMs to Worker LLMs of varying intelligence
capabilities. We use the same CuisineWorld environment Gong et al. (2023) - with similar settings as
Experiment 2 (Section 5.2).

Experiment Details We run two experimental settings to evaluate the Capability-Aware Allocation
abilities of LLMs as Planners. In the first setting, On-the-fly Allocation, the planner agent is not
provided any information about its workers and needs to infer their capabilities dynamically during
execution. In the second setting, Informed Allocation, we want the Planner to have knowledge about
the capabilities of the worker agents (ϕi). We indicate the capabilities of underlying worker models.
For this, we use the action success rates of the individual models on CuisineWorld as a proxy measure
of their intelligence.

Evaluation: For the evaluation we use the Claude-3.7-sonnet model as the planner, as it shows
to have the best planning capabilities. We vary the heterogenous worker models from the pool of:
Llama-3.1-70B-Instruct, Qwen2.5-32B-Instruct, and GPT-4o-mini. We run a total of 7 experiments
with varying combinations of these models for n = 1, 2, 3 worker agents. To evaluate the results, we
use ❶ Efficiency (= #complted orders

$cost ) to measure the effectiveness of the task allocation strategies
in terms of the number of orders completed relative to the cost incurred.

6 RESULTS

LLMs address the assignment problem, with performance scaling alongside model size and cost.
As shown in the Figure 4, larger models generally achieve higher validity and accuracy in resource
allocation tasks, indicating that orchestration performance improves with model capacity. However,
these gains come at a significant computational and monetary cost: the most capable models are also
the most expensive to deploy. Consequently, while an advanced LLM offers superior orchestration
abilities, thus raising the need for an alternative more efficient solution for the resource allocation in
multi-agent systems.

Error Analysis Looking at the results, we identify that invalid assignments arise from two main
sources: (1) Invalid cost calculation: the reported solution cost is lower than the minimum feasible
cost (e.g., the orchestrator provides a valid assignment but incorrectly reports a lower total cost, or
makes up a lower cost of assigning a specific agent to a task). (2) Invalid assignment: an agent is
assigned to multiple tasks, or a single task is assigned to multiple agents. We record the number
of invalid assignments for every model under each cause in Figure 5 and include an example in
Appendix A. These observations suggest that improving the reliability of cost estimation and enforcing
assignment constraints are key directions for reducing error rates in future systems.
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Table 2: Results from Experiment 2 (Section 5.2): Concurrent Allocation in CuisineWorld the number
of completed orders and associated costs for different models and methods

Completed Orders Cost ($)

Models #Agents #Agents

Plan./Orch. Worker 1 2 3 4 5 6 1 2 3 4 5 6

Individual

✗ GPT-4o-mini 1 3 3 3 4 5 0.8 1.6 2.6 3.6 4.6 5.7
✗ Llama-70B 14 25 22 34 33 40 3.7 7.7 12.0 16.4 21.1 26.0
✗ Qwen-32B 9 20 20 19 20 26 2.0 4.3 6.7 9.0 11.5 12.0
✗ GPT-4o 24 29 37 44 48 51 11.6 24.3 37.5 51.2 65.5 80.1
✗ Claude-3.7 23 40 46 54 59 59 16.4 35.2 57.2 79.8 104.4 126.6

Orchestrator

GPT-4o ✗ 20 37 33 48 34 40 11.6 12.6 13.6 14.2 15.0 15.8
Claude 3.7 ✗ 26 49 66 85 85 98 17.5 21.0 22.7 24.1 25.9 27.1

Planner

GPT-4o
GPT-4o-mini 9 11 12 13 12 11 2.3 2.8 2.7 2.6 2.2 2.1

Llama70B 21 27 41 40 48 42 4.4 6.5 8.6 10.5 12.8 15.0
Qwen32B 11 22 22 24 24 22 3.8 4.7 5.7 6.9 7.8 9.0

Claude-3.7
GPT-4o-mini 3 9 17 20 22 30 1.5 4.4 5.0 5.5 6.3 6.8
Llama-70B 21 44 57 68 72 77 5.1 7.2 9.4 11.4 13.7 15.9
Qwen32B 16 30 42 43 50 50 4.7 5.5 6.7 7.8 9.1 10.1

2

4

6

Ef
fic

ie
nc

y Individual

1 2 3 4 5 6
# Agents

2

4

6

Ef
fic

ie
nc

y
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GPT-4o-mini

Figure 9: Efficiency for Planner, Orchestrator and Individual methods. Top (blue) plots use GPT-4o
as orchestrator/planner. Bottom plots (brown) use Clause-3.7 as orchestrator/planner. The results
demonstrate the planner method is more efficient than their centralized or decentralized counterparts.

The Planner method achieves better efficiency. The results are presented in Table 2, where we see
that central planning completes the highest number of orders, given that these are the strongest models.
These results are expected. However, we want to measure the efficiency of the MAS, specifically
what is more efficient given the cost and the number of orders. In Figure 9, we plot the efficiency
results for all models. This shows how the Planner method becomes the most cost-efficient for the
results obtained.

Furthermore, in Figure 10, we see how the Planner method achieves better utilization of the agents,
with a lower percentage of idle actions generated. As the agents are given more independence to
generate their actions, they tend to produce fewer idle steps than when centrally organized.

LLMs struggle to infer worker capabilities but improve when given explicit hints. Figure
11 compares On-the-fly Allocation to Informed Allocation. In On-the-fly allocation, without any
prior indication of each worker LLM’s strengths, planners struggle to identify the best allocations
dynamically, especially when worker performance varies widely. However, simply providing subtle
cues about worker capabilities (action success rate from On-the-fly allocation performance) in
Informed Allocation leads to a marked increase in overall efficiency—particularly when planners
must work with suboptimal models. These cues reduce non-productive actions, helping LLM-based
planners better match tasks to models when aware of worker differences.
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Figure 10: Percentage of actions executed by action type in Experiment 2 (Orchestrator = GPT-
4o; Planner = GPT4o+Llama70B-Instruct). The results indicate that planners maintain a higher
percentage of active (non-idle) actions compared to a centralized orchestrator.

Table 3: Ablation Study. Paraphrased prompts preserve overall efficiency trends, with higher
variability in the Planner case.

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6 Avg.

Orchestrator (Claude-3.7) +0.06 +0.04 +0.56 –0.11 +0.13 –0.33 +0.21
Planner (→ GPT-4o-mini) +0.38 +2.43 +1.07 +1.50 –0.03 –1.09 +1.07

LLMs are highly sensitive to worker capabilities. We find the performance of a multi-agent
system is significantly influenced by the specific capabilities of each worker LLM and how these
capabilities are combined. In a homogeneous setting, Llama-70B-Instruct and Qwen32B consistently
outperform GPT-4o-mini when used as worker models. Mixing models of varying strengths generally
reduces average efficiency. However, including at least one stronger model in a heterogeneous team
improves efficiency. For instance, combining Qwen with GPT-4o-mini yields an efficiency of 4.04,
compared to 2.79 for two GPT-4o-mini models from experiment 2. In the heterogenous case, we
observe that a smaller team of more capable LLMs can outperform a larger team with uneven skills,
as seen with the Llama–Qwen pairing outperforming the combination of all three.

g4mini

llama70B
qwen32B

g4mini

+llama70B g4mini

+qwen32B
llama70B

+qwen32Bg4mini

+llama70B

+qwen32B
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y

1.36

4.44

3.05 2.75 2.56

5.44

2.73

1.67

4.47

3.33 3.54
4.04

5.32

4.11

On-the-Fly
Informed

Figure 11: Efficiency comparison of On-the-fly Allo-
cation and Informed Allocation for Capability-Aware
Task Allocation with LLMs as Planners.

Ablation Study: The effect of the
prompts. We have run an ablation study
on the relevance of the prompt. To
quantify how sensitive our conclusions
are to wording choices, we generated
three semantically-equivalent paraphrases
of each template block. We then reran our
strongest model setting (Claude-3.7) on Or-
chestrator and Planner experiments and ob-
served that the main efficiency results still
hold, with larger variability in the Planner
case, due to the use of GPt-4o-mini.

7 CONCLUSIONS

This work explores the capabilities of LLMs to optimize task allocations in multi-agents systems.
Experiments show that LLMs can function as orchestrators, with relative performance to that of
established algorithms like the Hungarian Algorithm. However, using a planner method instead
of an orchestrator improves efficiency in handling concurrent actions. These findings suggest that
leveraging LLMs can create more efficient and cost-effective multi-agent frameworks, dynamically
allocating resources based on real-time needs, enhancing performance and cost-effectiveness.
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ETHICS STATEMENT

This paper aims to automate processes using AI systems, focusing on developing efficient and
intelligent multi-agent frameworks for applications like research assistance and task management.
We acknowledge the societal implications of our work and emphasize the need for further analysis
to understand LLM outputs, especially in real-world applications. We advocate for transparent
algorithmic processes that allow individuals to comprehend AI-driven decisions. Our experiments
are conducted in a controlled gaming environment to ensure safety and prevent unintended impacts
on other systems.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our results. The problem formulation and
optimization setup are detailed in Section 3. The three experimental settings—including the assign-
ment problem, the CuisineWorld concurrent allocation, and the capability-aware allocation—are
described in Section 4, with further details of the CuisineWorld environment in Appendix B. Model
configurations, costs, and training/evaluation protocols are reported in Section 5, with pricing and
ablation studies given in Appendices C–E. All prompts used for orchestration, planning, execution,
and ablations are provided in Appendices F–I to enable replication of our experiments. Additionally,
we commit to make code and results publicly available and contribute to the open-source community.
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ishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann, Kazuki Irie, et al.
Mindstorms in natural language-based societies of mind. arXiv preprint arXiv:2305.17066, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A EXPERIMENT 1: EXAMPLE INVALID COST CALCULATION

In this section, we present an example of an invalid cost calculation from the models.

Example: Invalid Cost Calculation in an Assignment Problem

User instruction: You are an AI assistant who helps to solve assignment problems. You are
given an assignment problem in which there is a bipartite graph. The left set (e.g., A, B, C. . . )
might represent agents (drivers, employees, etc.), and the right set (e.g., #101, #102, etc.) might
represent tasks (packages, jobs, etc.). Each edge weight is the cost or time of assigning that
agent to that task. Your task:

1. Read the input bipartite graph (in JSON format).
2. Compute a minimum-cost combination to assign each task to one agent. Each agent

can only be assigned to one task.
3. Return the result in a specific JSON output format.

Input bipartite graph (JSON):� �
1 {"A": {"101": 2, "102": 6, "103": 5}, "B": {"101": 7, "102": 4,

"103": 2}, "C": {"101": 3, "102": 3, "103": 4}}
2� �

Orchestrator output:� �
1 Assignment: [["A","101",2], ["B","103",2], ["C","103",3]]
2 Final cost: 7
3� �
Why invalid. From the input, the edge cost is w(C, 103) = 4 (not 3), so the corrected total is
2 + 2 + 4 = 8 ̸= 7. (Additionally, task 103 is assigned twice while task 102 is unassigned, violating
the one-to-one constraint.)

B CUISINEWORLD

CuisineWorld (Gong et al., 2023) is a benchmark designed to evaluate the planning and coordination
capabilities of multi-agent systems. It simulates a virtual kitchen environment where multiple agents
need to collaborate to complete various cooking tasks. actions that can be taken by the LLMs are
described in 4. Recipes provide a step-by-step guide for preparing different dishes. They list the
required ingredients for each part of the process, the tools you’ll need, and what the final dish should
look like once it’s cooked. The recipes are grouped into 13 levels, with different range of difficulty
depending on the number of cooking tools involved, the number of ingredients, and the number of
steps required to complete the dish. Figure 12 shows the distribution of these factors over these
groups. Data provided from the environment is given to the agents in text form, as shown in Table 5.
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Table 4: Action space in CuisineWorld.

Type Arguments Description

goto
agent Move agent

location to location

get
agent agent obtain
location

item from location(item)

put
agent agent put everything

location it holds to location

activate
agent agent turn on

location location

noop
agent not dispatching

location agent
Figure 12: Dish distribution over the
number of tools and ingredients (ings.)
involved, cooking steps, and maximum
mixture size as in the recipe.

Table 5: Example of Game State returned from the environment and provided to the agents.

Game Configuration

Current Game Level level 1
Current Dishes

Name salmonMeatcake
Lifetime 10

Current Game Step 10
Maximum Game Steps 60

Agent State

at(agent0, servingtable0)
hold(agent0, None)
at(agent1, servingtable0)
hold(agent1, None)

Kitchen State

inside(storage0, None)
inside(servingtable0, None)
inside(blender0, None)
inside(blender1, None)

Accomplished Tasks

salmonMeatcake

C PROMPT ARCHIVE

C.1 MAIN PROMPTS

ORCHESTRATOR� �
In this game, there are {total_num_agents} agents available, so ...ould

generate the actions for all the {total_num_agents} agents.

When asked for reasoning, you will explain your thought process ...the
current state, what needs to be done by each agent, and why.

When asked for actions, you will provide the actions for all {
total_num_agents} agents, one action per line.

Possible action types include:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

- goto_agent[id]_[location]
- get_agent[id]_[item]_[location]
- put_agent[id]_[location]
- activate_agent[id]_[appliance]
- noop_agent[id]

Follow the formats exactly as shown in the examples, as your responses
will be automatically parsed.� �

PLANNER� �
You are a strategic planner for a multi-agent kitchen environment. Your

job is to produce a clear, step-by-step high-level plan that
coordinates all {total_num_agents} agents to complete all dishes
efficiently. You must reason about tasks, dependencies, appliances,
and item locations, and update the plan as the environment changes.

Your output must contain two parts: (1) reasoning and (2) plan. The plan
should list tasks per agent and specify when to use each appliance or
tool. The plan must be actionable by executor agents.

You will be provided with the current goal(s), the partial progress, and
a summary of the kitchen environment:

- The layout of the kitchen and the positions of items
- The statuses of appliances (on/off, in-use)
- Any constraints or bottlenecks

Be concise but complete. Do not invent objects or locations that are not
in the provided environment summary.� �

EXECUTOR� �
You are an executor agent (Agent {agent_id}) in a kitchen environment.

You will be given a high-level plan that describes how all agents
should work together, as well as the current local observations and
your inventory.

Your job is to choose the next low-level action for Agent {agent_id} that
best advances the plan. Consider collisions, current appliance

states, and item availability. If you cannot make progress, choose a
safe noop and explain why.

Output two parts:
1) reasoning_agent{agent_id}: <your short reasoning>
2) action_agent{agent_id}: <one atomic action>

Valid action types include:
- goto_agent{agent_id}_[location]
- get_agent{agent_id}_[item]_[location]
- put_agent{agent_id}_[location]
- activate_agent{agent_id}_[appliance]
- noop_agent{agent_id}

Follow the exact output format and only produce the next action in the
format: action_agent{agent_id}_parameters� �

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D EXAMPLES (SHORTENED)

E EXAMPLES

AGENT EXAMPLE� �
User:
----- START OF EXAMPLE -----
2 agents available. You are controlling agent0.
Goal: Make a salmonMeatcake.

-game state:
current dishes: salmonMeatcake (lifetime 10)
agent0 at servingtable0, holding None
agent1 at servingtable0, holding None

Assistant:
I need to make a salmonMeatcake. I’m at servingtable0 holding nothing.
Step 1: Go to storage0 to get salmon, the main ingredient.� �
ORCHESTRATOR EXAMPLE� �
User:
----- START OF EXAMPLE -----
2 agents available. Both start at servingtable0.

-game state:
current dishes: salmonMeatcake (lifetime 10)
agents not holding anything

Assistant:
Both agents must work together. Agent0 should get salmon from storage0.
Agent1 should get flour from storage0. This prepares both ingredients in

parallel.� �
PLANNER EXAMPLE� �
User:
----- START OF EXAMPLE -----
2 agents available. Goal: Make tunaSashimi.

-game state:
current dishes: tunaSashimi (lifetime 10)
agents at servingtable0, holding nothing

Assistant:
Agent0 retrieves raw tuna from storage and brings it to the chopboard.
Agent1 moves to the chopboard, chops the tuna, and delivers sashimi to

servingtable.� �
F PROMPTS USED IN ABLATIONS

We report here the distinct prompts used for the ablation conditions. Where 3 prompts different to the
main prompts are generated.

ABLATION: ORCHESTRATOR
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� �
This game involves {total_num_agents} agents. Your task is to generate

actions for all {total_num_agents} agents.

If prompted for reasoning, clearly describe your thought process,
including the current situation, each agent’s responsibilities, and
the rationale behind the plan.

If prompted for actions, list one action per agent, with each on a
separate line.

Permitted action types are:
- goto_agent[id]_[location]
- get_agent[id]_[item]_[location]
- put_agent[id]_[location]
- activate_agent[id]_[appliance]
- noop_agent[id]

Be precise. Match the formatting shown in the examples exactly, as
responses are parsed automatically.� �� �

You are participating in a scenario involving {total_num_agents} agents.
You are responsible for generating an action for each of the {
total_num_agents} agents.

When reasoning is requested, outline your analysis of the current context,
what tasks are needed, which agents should perform them, and your

justification.

When actions are requested, return one action per agent, formatted as one
action per line.

Supported action types are:
- goto_agent[id]_[location]
- get_agent[id]_[item]_[location]
- put_agent[id]_[location]
- activate_agent[id]_[appliance]
- noop_agent[id]

Adhere strictly to the formats provided above responses are
programmatically parsed� �� �

There are {total_num_agents} agents in this game. You must output actions
for each of the {total_num_agents} agents.

If prompted for reasoning, explain the current situation, the goal for
each agent, and your decision-making process.

If prompted for actions, return exactly one action per agent, listed on
separate lines.

The allowed action formats are:
- goto_agent[id]_[location]
- get_agent[id]_[item]_[location]
- put_agent[id]_[location]
- activate_agent[id]_[appliance]
- noop_agent[id]

Do not deviate from these formats responses will be parsed by a system
expecting this exact structure.� �

ABLATION: PLANNER
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� �
You are the strategic planner for a kitchen staffed by {total_num_agents}

agents.
Your goal is to generate a high-level plan that enables agents to fulfill

dish orders efficiently.

You have access to:
- The full kitchen layout, including agents, ingredients, and appliances
- Details on all active orders, including deadlines and required steps
- The progress status of any ongoing dishes
- Notifications about completed or canceled dishes

Write a single, clear paragraph that assigns roles and actions to each
agent.

Your plan should optimize time by prioritizing urgent orders and
minimizing movement overlap.

This planning routine is activated at the start and whenever an order is
updated, completed, or canceled.� �� �

As the strategic planner in a kitchen with {total_num_agents} agents,
your job is to design an efficient high-level plan to complete all
active dish orders.

You are provided with:
- The spatial layout of the kitchen, including agents, tools, and

ingredient locations
- A list of current orders, their components, and any timing constraints
- The current state of dishes being prepared
- A record of recently completed or canceled dishes

Compose a concise paragraph outlining how to allocate tasks and
coordinate agents to complete the orders efficiently.

Your plan should account for timing, minimize idle time, and assign roles
to avoid conflicts.

This planning step will run at initialization and every time there is a
change to the set of orders.� �� �

You are a high-level planner for a kitchen with {total_num_agents} agents.

Your role is to generate a brief paragraph describing how agents should
cooperate to complete dish orders efficiently.

You will receive:
- A detailed map of the kitchen, including all agent and item locations
- A list of active dish orders with deadlines and required steps
- The progress status of any ongoing preparations
- Updates about completed or canceled dishes

Create a clear, task-oriented plan that assigns responsibilities to
agents, prioritizes dishes by urgency, and avoids agent overlap.

This planning is executed when the kitchen starts and whenever dish
orders change.� �

G MODEL PRICES

In Table 6, we present the models’ prices selected at current rates from their official APIs. OpenAI
API price website: openai.com/api/pricing/, Anthropic API pricing: anthropic.com/pricing. For the
case of Open-weights, we take the values from Llama-API provider: llama-api.com/pricing. All
websites have been checked at date 25 March 2025.
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Table 6: Model Prices from providers.

Model Company Open Input Cost Output Cost
Weights ($/M tokens) ($/M tokens)

claude-3.7 Anthropic ✗ 3.00 15.00

gpt-4o-v2 OpenAI ✗ 2.50 10.00

gpt-4o-mini OpenAI ✗ 0.15 0.60

Llama-3.1-70B-Instruct Meta ✓ 0.80 2.80

Qwen2.5-32B-Instruct Alibaba ✓ 0.40 1.40

H TOKENS

Table 7: Input token usage (in millions) across coordination strategies. For Planner rows, values
denote Planner/Executor token counts.

Input Tokens (Millions)

Models # Agents

Planner/Orch. Worker 1 2 3 4 5 6

Individual

✗ GPT-4o-mini 5.03 10.19 16.06 22.12 28.32 34.88
✗ Llama-70B-Inst 4.28 8.87 13.78 18.83 24.29 29.89
✗ Qwen32B 4.82 10.19 15.85 21.34 27.37 33.00
✗ GPT-4o 4.47 9.30 14.37 19.62 25.16 30.80
✗ Claude-3.7 5.21 11.07 17.71 24.64 32.08 39.05

Orchestrator

GPT-4o ✗ 4.48 4.79 5.12 5.33 5.57 5.82
Claude-3.7 ✗ 5.49 6.31 6.74 7.09 7.54 7.86

Planner (Planner / Executor)

GPT-4o
GPT-4o-mini 0.73/2.01 0.94/4.06 0.99/6.46 0.53/4.35 0.88/8.98 1.17/14.73
Llama-70B-Inst 0.93/2.19 0.98/4.52 1.05/6.92 1.07/9.35 1.11/11.90 1.15/14.56
Qwen32B 1.01/2.20 0.99/4.57 1.01/6.89 1.07/9.53 1.03/12.03 1.10/14.68

Claude-3.7
GPT-4o-mini 0.99/2.07 1.10/4.28 1.17/6.60 1.21/9.08 1.32/11.54 1.44/14.01
Llama-70B-Inst 1.02/2.09 1.08/4.34 1.16/6.67 1.21/9.04 1.25/11.61 1.32/14.13
Qwen32B 1.16/2.09 1.09/4.34 1.17/6.71 1.20/9.13 1.29/11.61 1.27/14.19

Table 8: Output token usage (in thousands) across coordination strategies. For Planner rows,
values denote Planner/Executor output token counts.

Output Tokens (Thousands)

Models # Agents

Planner/Orch. Worker 1 2 3 4 5 6

Individual

✗ GPT-4o-mini 104.39 196.84 342.79 482.47 618.59 757.30
✗ Llama-70B-Inst 106.90 221.84 344.54 470.69 607.18 747.13
✗ Qwen32B 67.92 168.10 268.78 333.73 412.26 498.35
✗ GPT-4o 46.21 102.06 157.49 209.74 264.39 308.89
✗ Claude-3.7 51.47 134.65 269.48 394.71 546.42 627.65

Orchestrator

GPT-4o ✗ 40.19 59.43 81.68 92.08 107.47 120.67
Claude-3.7 ✗ 72.21 139.28 166.77 186.14 215.75 233.41

Planner (Planner / Executor)

GPT-4o
GPT-4o-mini 35.65/5.49 46.93/10.67 57.34/15.92 22.10/10.22 32.76/19.65 43.38/29.09
Llama-70B-Inst 32.31/6.70 35.26/12.67 37.30/18.33 36.21/23.49 36.89/29.01 36.97/33.31
Qwen32B 33.81/6.80 36.47/12.85 33.44/19.10 38.26/24.78 34.97/29.75 36.76/34.35

Claude-3.7
GPT-4o-mini 25.66/5.80 29.82/10.74 32.65/15.15 35.29/19.60 37.23/23.66 38.47/27.35
Llama-70B-Inst 25.08/6.55 30.17/12.67 32.65/18.10 33.27/23.29 36.11/28.25 36.68/36.68
Qwen32B 25.54/6.61 29.81/13.01 33.02/18.97 33.70/24.98 34.66/29.80 34.46/35.77
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I ABLATION STUDY

Results of the ablation study presented in Section 6. In this section, we present in Table 9 the results
from the prompt ablations required to generate Table 3 presented in the paper.

Table 9: Results from Ablation Study: Concurrent Allocation in CuisineWorld showing the number
of completed orders and associated costs for different models and methods.

Completed Orders Cost ($)

Models #Agents #Agents

Plan./Orch. Worker 1 2 3 4 5 6 1 2 3 4 5 6

Orchestrator

Claude-3.7 ✗ 26 46 76 80 87 82 16.8 19.4 21.9 23.4 25.4 24.9

Planner

Claude-3.7 GPT-4o-mini 1 6 5 14 17 23 0.4 1.3 1.1 2.7 4.9 7.0
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