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ABSTRACT

In this paper, we aim to model 3D scene geometry, appearance, and physical infor-
mation just from dynamic multi-view videos in the absence of any human labels.
By leveraging physics-informed losses as soft constraints or integrating simple
physics models into neural networks, existing works often fail to learn complex
motion physics, or doing so requires additional labels such as object types or
masks. In this paper, we propose a new framework named GVFi to model the
motion physics of complex dynamic 3D scenes. The key novelty of our approach
is that, by formulating each 3D point as a rigid particle with size and orienta-
tion in space, we choose to directly learn a translation rotation dynamics system
for each particle, explicitly estimating a complete set of physical parameters to
govern the particle’s motion over time. Extensive experiments on three exist-
ing dynamic datasets and two newly created challenging synthetic and real-world
datasets demonstrate the extraordinary performance of our method over baselines
in the task of future frame extrapolation. A nice property of our framework is that
multiple objects or parts can be easily segmented just by clustering the learned
physical parameters. Our datasets and code will be released at https://github.com/.

1 INTRODUCTION

Regarding our daily dynamic 3D scenes such as falling balls, rotating fans, and folding chairs, pre-
cisely modeling their geometry, appearance, and physical properties, and further predicting their
future states are crucial for emerging applications in robotics, mixed reality, and embodied AI. With
the advancement of recent 3D representations such as NeRF (Mildenhall et al., 2020) and 3DGS
(Kerbl et al., 2023), a plethora of works (Pumarola et al., 2021; Yang et al., 2024; Wu et al., 2024)
have been proposed to model various dynamic 3D scenes, achieving excellent performance in inter-
polating novel views within the observed time. However, they often fail to extrapolate future frames,
fundamentally because they cannot learn the underlying physics priors of complex 3D scenes.

To learn physics priors, existing methods mainly consist of two categories: 1) physics-informed
neural network (PINN) based methods (Raissi et al., 2019) which integrate the governing partial
differential equations (PDEs) into loss functions to drive neural networks to learn physically plau-
sible dynamic 3D scenes such as floating smoke (Chu et al., 2022) and simple moving objects (Li
et al., 2023b). Although demonstrating promising results in modeling 3D geometry and physics
such as velocity and viscosity, these methods usually need boundary constraints such as accurate
object/foreground masks which may not always be available in practice. In addition, adding PINN
losses is not a free lunch, but significantly sacrificing the efficiency in training and accuracy at
boundary regions. 2) Physics model based methods (Jonathan et al., 2020; Zhong et al., 2024; Whit-
ney et al., 2024) which encode various physics systems into neural networks to model elastic objects,
fluids, etc.. Thanks to the explicit physics priors, these methods obtain impressive results in physical
properties learning and simulation. Nevertheless, they are often limited to specific types of objects,
materials, or motions due to the lack of generality of encoded physics priors, thus being unable to
predict future motions of complex dynamic 3D objects and scenes.

In this paper, we aim to introduce a new framework to model dynamic 3D scenes just from multi-
view RGB videos, without needing any additional human labels such as object types or masks,
ultimately being able to predict future frames viewing from arbitrary angles. Among various phys-
ical properties of a dynamic 3D scene, following the recent work NVFi (Li et al., 2023a), we also
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Figure 1: An illustration of the overall framework.

choose to learn a velocity field as it directly governs 3D scene movement. However, to accurately
learn the physical velocity from RGB videos is extremely challenging, essentially due to the lack of
sufficient physics constraints from raw color pixels. This problem is even harder when multiple ob-
jects or parts are undergoing rather different motion patterns. For example, regarding two adjacent
objects moving in opposite directions in 3D space, the velocity of neighboring 3D surface points at
the intersection region tends to have particularly distinct patterns. This means that the latent rep-
resentation of per-point dynamics in 3D space could be discrete in nature. Therefore, it is more
desirable to model per-point dynamics independently, thus every point having its unique motion.
For generality, we regard each 3D point in space as a rigid particle with its size and orientation. If
its size is zero, the rigid particle degenerates to a point.

With this insight, for each rigid particle in space, we propose to learn an independent dynamics
system that includes a complete set of physical parameters to govern its motion over time. According
to the laws of classical mechanics, for a specific rigid particle traversing 3D space over time, its
motion can always be regarded as a rotational movement about a rotation center which has its own
translation. Given this general foundation, we choose to learn a translation rotation dynamics system
for each rigid particle, allowing its future motion to be derived accordingly. Alongside learning the
core dynamics, we must also model the geometry and appearance of 3D scenes. In this paper,
we naturally choose the recent 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) as our scene
representation, thanks to its unprecedented fidelity in reconstruction and its particle (a Gaussian
kernel) based representation in nature, which shares the basic concept of our defined rigid particle.

As illustrated in Figure 1, our framework consists of two major components: 1) a 3D scene repre-
sentation module to learn dynamic scene geometry and appearance at a canonical timestamp, which
is implemented by a vanilla 3DGS (Kerbl et al., 2023), though other variants can be adopted as well;
2) a translation rotation dynamics system module to learn a full set of physical parameters for
each input rigid particle, which is just realized by multilayer perceptrons (MLPs). Based on these
system parameters, the rigid particle’s velocity is then derived according to the laws of classical
mechanics, without needing additional physics priors such as PINN (Raissi et al., 2019) in training.

The key to our framework is the second module which simply regards each 3D Gaussian kernel as
a rigid particle and takes it as input into MLPs. Nevertheless, we empirically find that it is hard to
optimize this module due to the inaccuracy and instability of Gaussian kernels regressed at early
training epochs. To tackle this issue, we simply train an auxiliary deformation field in parallel with
our second module using an existing work such as (Yang et al., 2024) and (Wu et al., 2024).

Different from current works for modeling dynamic scenes, including NeRF-based methods, e.g.,
D-NeRF(Pumarola et al., 2021)/TiNeuVox(Fang et al., 2022)/HexPlane(Cao & Johnson, 2023), and
3DGS-based methods such as DefGS (Yang et al., 2024), 4DGS (Wu et al., 2024), and E-D3DGS
(Bae et al., 2024), our core novelty is the introduced translation rotation dynamics system together
with its effective optimization strategy, which allows us to truly learn physical parameters, ultimately
achieving future frame extrapolation. By comparison, all those existing methods fail to do so, though
they perform well for past frame interpolation, as extensively verified in Tables 1&2.

Our method, named GVFi, leverages 3D Gaussians to model scene geometry and appearance, while
learning velocity fields via estimating translation rotation dynamics systems. Our contributions are:

• We introduce a new framework to model motion physics of complex dynamic 3D scenes, without
needing prior knowledge of object shapes, types, or masks.

• We propose to learn a translation rotation dynamics system for each 3D rigid particle, thus allow-
ing the velocity field to be derived without needing additional physics constraints in training.

• We demonstrate superior results in future frame extrapolation on three existing datasets, and two
newly collected synthetic and real-world datasets with extremely challenging dynamics.
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2 RELATED WORKS

3D Shape Representations: Static 3D objects and scenes are traditionally represented by voxels,
point clouds, meshes, etc., but they usually have limited representation capabilities due to the nature
of discretization. Recently, implicit representations have been developed in the literature, includ-
ing occupancy fields (OF) (Mescheder et al., 2019; Chen & Zhang, 2019), un/signed distance fields
(U/SDF) (Park et al., 2019; Chibane et al., 2020), and radiance fields (NeRF) (Mildenhall et al.,
2020). Although demonstrating excellent performance in novel view synthesis and shape recon-
struction, they are time-consuming to render 2D images or extract 3D shapes due to the integration
of their continuous coordinate-based representations. To tackle this issue, the very recent 3D Gaus-
sian Splatting (Kerbl et al., 2023) turns to represent a 3D shape as a set of explicit Gaussian ker-
nels with various properties, achieving real-time rendering speed. In our framework, we adopt this
particle-based representation, as it is amenable to our particle-based physics learning framework.

Dynamic 3D Reconstruction: Recent advances in dynamic 3D reconstruction primarily follow the
development of static 3D techniques such as SDF, NeRF, and Gaussian Splatting. To model the
temporal relationship, existing works (Tretschk et al., 2021; Li et al., 2021; Barron et al., 2021;
Gao et al., 2021; Tian et al., 2023; Liu et al., 2023; Cao & Johnson, 2023; Fridovich-Keil et al.,
2023; Cai et al., 2022; Fang et al., 2022; Li et al., 2022; Park et al., 2021; You & Hou, 2023; Du
et al., 2021; Park et al., 2023; Xian et al., 2021; Wang et al., 2021; Liu et al., 2024b) usually add
the time dimension into static 3D representations to learn a motion or deformation field for rigid or
deformable objects and scenes. Despite achieving excellent performance in novel view synthesis,
especially when integrating 3DGS as the backbone (Wu et al., 2024; Yang et al., 2024; Li et al.,
2024; Lei et al., 2024; Lin et al., 2024; Lu et al., 2024), these works can only interpolate 2D views
within the observed time, instead of predicting physically meaningful future frames. Basically, this
is because the commonly learned motion or deformation field does not encode physics priors in
nature, but just fits the correlation between pixels. In this paper, the key difference between these
works and us is that we separately learn translation rotation dynamics systems for 3D rigid particles,
thus enabling us to estimate physically meaningful future frames, whereas they cannot.

3D Physics Learning: To learn various physical properties for 3D objects and scenes, the recent
physics-informed neural networks (PINN) (Raissi et al., 2019; Mishra & Molinaro, 2023; Raissi
et al., 2020; Hao et al., 2023; Baieri et al., 2023; Chalapathi et al., 2024; Wang et al., 2024; Zhao
et al., 2024) are widely applied to convert PDEs into loss functions as soft constraints, driving neural
networks to learn physically meaningful targets. However, it is often inefficient to train PINNs due
to the large amount of data samples needed to regularize, and the soft constraints are usually not
sufficient to obtain satisfactory results. In this paper, we do not rely on such inefficient PINN losses
to incorporate physics priors to train neural networks. Another line of works (Qiao et al., 2022; Deng
et al., 2023; Xue et al., 2023; Franz et al., 2023; Whitney et al., 2024) integrate explicit physics
systems such as springs, graphs, etc., into the learning process to model elastic objects (Zhong et al.,
2024; Zhang et al., 2024; Liu et al., 2024a), fluids (Jonathan et al., 2020; Lienen et al., 2024), etc.,
achieving impressive results in physics learning and simulation. In this paper, we also opt to learn
physics systems. However, the core difference is that we learn a translation rotation dynamics system
which is applicable to common deformation and transformation dynamics, whereas existing works
often learn a spring or fluid system only applicable to elastic objects or fluids.

3 GVFI

Our framework mainly comprises two modules together with an auxiliary deformation field to model
3D geometry, appearance, and physics. Given dynamic multi-view RGB videos with known camera
poses and intrinsics, the 3D scene representation module aims to learn a set of 3D Gaussian kernels
to represent the 3D scene geometry and appearance in a canonical space. The auxiliary deformation
field is designed to predict the translation and distortion of each Gaussian kernel given the current
training time t. For these two components, we simply follow the design of existing works (Kerbl
et al., 2023; Yang et al., 2024) briefly elaborated in Section 3.1. Notably, the deformation field alone
cannot extrapolate frames beyond the training time. Our core module of the translation rotation
dynamics system aims to learn a set of physical parameters for each 3D rigid particle, governing its
motion dynamics over time, which is detailed in Section 3.2.
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3.1 PRELIMINARY

For the input multi-view RGB videos, T represents the greatest timestamp in training and N the total
number of cameras. For training stability, we first use all frames {I1

0 · · · In
0 · · · IN

0 } at time t = 0 to
train a reasonable static 3DGS model as an initialization of the 3D scene geometry and appearance,
and then use the remaining frames to jointly optimize our translation and rotation dynamics system
and the auxiliary deformation field.

Canonical 3D Gaussians: Following the vanilla 3DGS (Kerbl et al., 2023), we employ a set of
learnable 3D Gaussian kernels G0 to represent the canonical scene geometry and appearance at t =
0. Each kernel is parameterized by a 3D position x0, covariance matrix obtained from quaternion
r0, scaling s0, opacity σ, and color c computed from spherical harmonics (SH). Following prior
works (Yang et al., 2024; Wu et al., 2024), we assume the opacity σ and color c of each Gaussian
will not be updated, but constantly associated with the kernel and transported over time.

Given the N images at timestamp t = 0, we either initialize all canonical 3D Gaussian kernels
G0 randomly or based on sparse points created by SfM (Schonberger & Frahm, 2016). To train
all kernels, we exactly follow the process of 3DGS (Kerbl et al., 2023) by 1) projecting Gaussian
kernels into camera space, 2) rendering the projected kernels into image space, and 3) optimizing all
kernel parameters via ℓ1 and ℓssim losses used in 3DGS as follows.{

· · · (x0, r0, s0, σ, c) · · ·
}︸ ︷︷ ︸

G0

project+render
−−−−−−−−−−→←−−−−−−−−−−

ℓ1+ℓssim

{
I1
0 · · · In

0 · · · IN
0

}
(1)

Auxiliary Deformation Field: To aid the learning of our translation and rotation dynamics system,
we leverage an existing deformation field (Yang et al., 2024), but we are also amenable to other
deformable Gaussian methods such as 4DGS (Wu et al., 2024), as demonstrated in our experiments
in Section 4.1. In particular, the 3D position x0 of each canonical Gaussian kernel and the current
timestamp t are fed into an MLP-based deformation network, denoted as fdefo, directly predicting
the corresponding position displacement δx, and the change of quaternion δr and scaling δs from
timestamp 0 to t. All Gaussians Gt at time t can be easily computed as follows, where the operations
◦ and ⊙ follow (Yang et al., 2024).{
· ·
(
(xt = x0 + δx), (rt = r0 ◦ δr), (st = s0 ⊙ δs), σ, c

)
· ·
}︸ ︷︷ ︸

Gt

, (δx, δr, δs) = fdefo(x0, t) (2)

All these deformed Gaussians will be projected and optimized by visual images at timestamp t in
a later stage as clarified in Section 3.3, where the deformation net fdefo will be optimized from
scratch. All details are provided in Appendix A.1 and A.2.

3.2 TRANSLATION ROTATION DYNAMICS SYSTEM

This module aims to learn physical parameters that govern the motion of 3D scenes. However, the
dynamics of an entire space are extremely complex. Here, we simplify this problem and formulate it
into just learning per rigid particle dynamics, where we treat each (canonical or deformed) Gaussian
kernel as a rigid particle with size and orientation. According to the laws of classical mechanics, for
a specific rigid particle P ∈ R3, its motion in a 3D world coordinate system can be regarded as a
rotational movement about a rotation center which has its own translation. To this end, we aim to
learn the following two groups of physical parameters for each 3D rigid particle P :

• Group #1 - Rotation Center Parameters including: 1) the center’s position Pc ∈ R3, 2) the center’s
velocity vc ∈ R3, and 3) acceleration ac ∈ R3 in the world coordinate system.

• Group #2 - Rigid Particle Rotational Parameters including: 1) the rigid particle’s rotation vector
wp ∈ R3 with regard to its center Pc, and 2) the rigid particle’s angular acceleration ϵp.

As illustrated in Figure 2, our translation rotation dynamics system module, denoted as ftrd, takes
a rigid particle P as input, directly predicting the physical parameters of its rotation center and its
own rotational information. Then, this rigid particle will be naturally driven by its learned physical
parameters, forming its motion dynamics, as illustrated by the trajectory in Figure 2. This module
is implemented by simple MLPs:

{(Pc,vc,ac), (wp, ϵp)} = ftrd(P ) (3)
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Figure 2: The proposed translation rotation dynamics system for a specific rigid particle. The rigid
particle will be driven by its learned physical parameters over time, forming a trajectory in 3D space.

Notably, for an input rigid particle P , the elegance of this module ftrd is that it only needs to
learn this full translation rotation dynamics system at its canonical timestamp, i.e., t = 0, and that
particle’s future motion will be governed by the learned dynamics system when t > 0 according to
the laws of mechanics. We will now derive the rigid particle’s future motion as follows.

For a specific rigid particle P , now we have its estimated translation rotation dynamics parameters
{(Pc,vc,ac), (wp, ϵp)}. Given a future timestamp t, we now calculate its updated parameters for
both the rotation center and the particle itself as follows:

P t
c = Pc+vct+

1

2
act

2, vt
c = vc+act, at

c = ac, wt
p =

(
∥wp∥+ϵpt

) wp

∥wp∥
, ϵtp = ϵp (4)

Theoretically, our above updating scheme can be naturally extended to higher orders or reduced to
lower orders with regard to future time t. Intuitively, a higher order relationship from time 0 to t is
expected to capture extremely complex dynamics such as a rolling ball suddenly breaking up into
pieces due to unknown explosives inside, whereas a much lower order relationship tends to only
capture static or constant speed scenes, thus being oversimplified. In this paper, we opt to the above
second-order scheme to update dynamics parameters from time 0 to t for two primary reasons:

• In many applications such as robot manipulation, the need for future prediction usually involves
a relatively short interval, i.e., |t− 0| is rather small, e.g., in milliseconds. In this case, a second-
order relationship is usually sufficient to achieve decent approximations. In addition, a simple
sliding window based approach can be applied to continuously and incrementally predict future
frames given the newest visual observations from sensors.

• In our daily life, the majority of common physical movements such as rolling balls or moving cars
can be generally described by a second-order relationship. In fact, both Newton’s First and Second
Law of Motion can be captured. Notably, since the whole 3D scene comprises a large number of
rigid particles, each particle has up to second-order dynamics, i.e., with a constant acceleration be-
tween 0 ∼ t. Therefore, the compounded dynamics for the entire 3D scene can be rather complex,
including various deformations and transformations in our daily lives.

Nevertheless, it is still interesting yet non-trivial to learn much higher-order relationships and we
leave it for future exploration. More implementation details of this module are in Appendix A.3.

3.3 TRAINING

With our translation rotation dynamics module and the auxiliary deformation field, we now discuss
how to connect and train them together, such that physical parameters can be truly learned.

For two timestamps t′ and t, where t is usually sampled from the training set and ∆t = t − t′ is
predefined to be small enough, we can easily obtain Gaussians Gt′ from the deformation field fdefo.

Having our translation rotation dynamics module ftrd at hand, we naturally regard the transportation
of all kernels from t′ to t is governed by the corresponding physical parameters estimated by ftrd at
time t′. From Equations 4, at time t′, the physical parameters of a rigid particle P are:

{(P t′

c ,vt′

c ,a
t′

c ), (w
t′

p , ϵ
t′

p )}
t′←− {(Pc,vc,ac), (wp, ϵp)} = ftrd(P ) (5)

Now we can easily compute the kernel’s orientation change ∆r from rt′ to rt as follows:

∆r = (cos
∆θ

2
, sin

∆θ

2
· wp

∥wp∥
), where ∆θ = (∥wp∥+ ϵpt

′)(t− t′) (6)
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Table 1: Quantitative results of all methods for both future frame extrapolation and novel view
interpolation on Dynamic Object Dataset and Dynamic Indoor Scene Dataset.

Dynamic Object Dataset Dynamic Indoor Scene Dataset
Interpolation Extrapolation Interpolation Extrapolation

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
T-NeRF(Pumarola et al., 2021) 13.163 0.709 0.353 13.818 0.739 0.324 24.944 0.742 0.336 22.242 0.700 0.363
D-NeRF(Pumarola et al., 2021) 14.158 0.697 0.352 14.660 0.737 0.312 25.380 0.766 0.300 20.791 0.692 0.349

TiNeuVox(Fang et al., 2022) 27.988 0.960 0.063 19.612 0.940 0.073 29.982 0.864 0.213 21.029 0.770 0.281
T-NeRFPINN 15.286 0.794 0.293 16.189 0.835 0.230 16.250 0.441 0.638 17.290 0.477 0.618

HexPlanePINN 27.042 0.958 0.057 21.419 0.946 0.067 25.215 0.763 0.389 23.091 0.742 0.401
NSFF(Li et al., 2021) - - - - - - 29.365 0.829 0.278 24.163 0.795 0.289

NVFi(Li et al., 2023a) 29.027 0.970 0.039 27.594 0.972 0.036 30.675 0.877 0.211 29.745 0.876 0.204
DefGS(Yang et al., 2024) 37.865 0.994 0.007 19.849 0.949 0.045 29.926 0.916 0.130 21.380 0.819 0.188

DefGSnvfi 37.316 0.994 0.008 28.749 0.984 0.013 30.170 0.915 0.133 31.096 0.945 0.077
E-D3DGS(Bae et al., 2024) 28.075 0.963 0.049 18.526 0.923 0.087 29.267 0.874 0.222 20.374 0.772 0.307

4DGS(Wu et al., 2024) 37.285 0.986 0.020 20.354 0.950 0.052 29.381 0.889 0.212 21.107 0.793 0.274
GVFi4dgs (Ours) 35.961 0.985 0.021 28.316 0.978 0.023 27.932 0.860 0.252 31.590 0.909 0.194

GVFi (Ours) 38.788 0.995 0.006 28.758 0.982 0.011 32.202 0.928 0.089 34.556 0.964 0.046

Table 2: Quantitative results of all methods for future frame extrapolation optionally with novel view
interpolation on NVIDIA Dynamic Scene Dataset, Dynamic Multipart Dataset, and GoPro Dataset.

NVIDIA Dynamic Scene Dataset Dynamic Multipart Dataset GoPro Dataset
Interpolation Extrapolation Interpolation Extrapolation Extrapolation

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
T-NeRF(Pumarola et al., 2021) 23.078 0.684 0.355 21.120 0.707 0.358 9.833 0.567 0.550 10.064 0.576 0.537 - - -
D-NeRF(Pumarola et al., 2021) 22.827 0.711 0.309 20.633 0.709 0.327 13.279 0.747 0.378 13.344 0.767 0.340 - - -

TiNeuVox(Fang et al., 2022) 28.304 0.868 0.216 24.556 0.863 0.215 29.957 0.966 0.067 20.804 0.923 0.090 20.323 0.738 0.318
T-NeRFPINN 18.443 0.597 0.439 17.975 0.605 0.428 - - - - - - - - -

HexPlanePINN 24.971 0.818 0.281 24.473 0.818 0.279 - - - - - - - - -
NVFi(Li et al., 2023a) 27.138 0.844 0.231 28.462 0.876 0.214 27.516 0.960 0.052 25.235 0.955 0.046 19.879 0.736 0.415

DefGS(Yang et al., 2024) 26.662 0.893 0.127 24.240 0.895 0.140 34.635 0.990 0.019 20.664 0.930 0.067 21.193 0.842 0.185
DefGSnvfi 26.972 0.890 0.128 27.529 0.927 0.102 34.637 0.990 0.018 28.455 0.979 0.017 25.469 0.882 0.141

E-D3DGS(Bae et al., 2024) 20.848 0.541 0.532 20.301 0.565 0.522 26.180 0.955 0.062 18.615 0.904 0.114 - - -
4DGS(Wu et al., 2024) 19.411 0.462 0.532 22.510 0.703 0.408 37.021 0.992 0.014 20.564 0.935 0.067 - - -

GVFi4dgs (Ours) 18.995 0.448 0.544 22.706 0.714 0.400 36.542 0.991 0.015 30.801 0.983 0.016 - - -
GVFi (Ours) 26.943 0.891 0.102 29.388 0.938 0.067 34.807 0.991 0.011 30.721 0.986 0.012 26.276 0.890 0.131

Then, we compute the kernel’s position translation ∆x from xt′ to xt, which consists of two parts:
1) the translation of its rotation center, and 2) the displacement caused by the kernel’s rotation with
regard to its center. In particular, they are:

∆x =
[
vt′

c (t− t′) +
1

2
at′

c (t− t′)2
]
+

[
(∆R− I)(xt′ − P t′

c )
]

(7)

where ∆R is a 3× 3 rotation matrix converted from quaternion ∆r. Since the rotation change ∆r
will update both the orientation and position of a Gaussian kernel, so it is also used in Equation 7.

With the above relationships, we optimize all learnable parameters of canonical Gaussian kernels
G0, the deformation field fdefo and our translation rotation dynamics module ftrd as follows:

• Step #1: We sample two close timestamps t′ and t, where t is a timestamp appears in training
dataset and t′ can be greater or smaller than t, but ∆t = |t− t′| is appropriately small.

• Step #2: We get {(P t′

c ,vt′

c ,a
t′

c ,w
t′

p , ϵ
t′

p ), (Pc,vc,ac, wp, ϵp)} ← ftrd(P ), and then calculate
∆x and ∆r based on (xt′ , rt′ , st′ , σ, c)← fdefo(x0, t

′), according to Equations 6&7.
• Step #3: We obtain the kernel information at time t: (xt′ +∆x, rt′ ◦∆r, st′ , σ, c) which is trans-

ported by our physicals parameters from time t′, where ◦ represents quaternion multiplication.
• Step #4: Lastly, we render all the above kernels at time t to 2D image space following 3DGS,

comparing with the training images at time t. All parameters are supervised by ℓ1 and ℓssim:
(G0, fdefo, ftrd)←− (ℓ1 + ℓssim) (8)

4 EXPERIMENTS

Datasets: Our method is designed to learn meaningful physical information of 3D dynamic scenes,
aiming at accurately predicting future motions, instead of just fitting observed video frames. In this
regard, the closest work to us is the recent NVFi (Li et al., 2023a). Following NVFi, we primar-
ily evaluate our method on its three dynamic datasets: 1) Dynamic Object dataset. It consists of
6 dynamic objects. Each object displays a unique motion pattern belonging to either rigid or de-
formable movement. 2) Dynamic Indoor Scene dataset. It has 4 complex indoor scenes. Each
scene has multiple objects undergoing different rigid body motions. 3) NVIDIA Dynamic Scene
dataset (Yoon et al., 2020). It consists of two real-world dynamic 3D scenes.
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Upon a closer look at the above three datasets, we find that their dynamics captured are relatively
simple. In our daily life, the majority of objects and scenes consist of multiple parts undergoing
radically different motions over time, showing extremely challenging physical patterns to learn.
To further evaluate the effectiveness of our design, we collect a new synthetic dataset, named 4)
Dynamic Multipart dataset, and a new real-world dataset by 20 GoPros, named 5) GoPro dataset.

Our new synthetic dataset comprises 4 objects. Each has 2 to 5 distinct motion patterns on different
object parts. Following (Li et al., 2023a), for each object, we collect RGBs at 15 different viewing
angles over 1 (virtual) second after normalization, where each viewing angle has 60 frames captured.
We reserve the first 46 frames at randomly picked 12 viewing angles as the training split, i.e., 552
frames, while leaving the 46 frames at the remaining 3 viewing angles for testing interpolation
ability, i.e., 138 frames for novel view synthesis within the training time period, and keeping the last
14 frames at all 15 viewing angles for evaluating future frame extrapolation, i.e., 210 frames.

Our new real-world dataset captures 4 dynamic scenes with 20 GoPro cameras. For each dynamic
scene, we select 89 frames from each view, and resize images to be a resolution of 960× 540. We
reserve the first 67 frames at 17 picked viewing angles as the training split, i.e., 1139 frames, while
leaving the 67 frames at the remaining 3 viewing angles for evaluating novel view interpolation
within the training time period, i.e., 201 frames. We keep the last 22 frames at all 20 viewing angles
for evaluating future frame extrapolation, i.e., 440 frames in total. More details are in Appendix A.6.

Baselines: We select the following baselines: 1) NVFi (Li et al., 2023a): This is the closest work
to us, but differs from us in two folds. First, NVFi relies on PINN losses to learn physics priors, but
we directly learn physical parameters. Second, NVFi adopts NeRF as a backbone, being short in 3D
scene geometry and appearance modeling, but our method is amenable to and adopts the powerful
3DGS in nature. 2) T-NeRF (Pumarola et al., 2021). 3) D-NeRF (Pumarola et al., 2021). 4) NSFF
(Li et al., 2021). 5) TiNeuVox (Fang et al., 2022). The latter four methods are based on NeRF and
designed for novel view interpolation. Therefore they are expected to be rather weak for future frame
extrapolation. For a fair and extensive comparison, we also include the following two baselines. 6)
DefGS (Yang et al., 2024), 7) 4DGS (Wu et al., 2024), and 8) E-D3DGS (Bae et al., 2024). These
very recent deformable 3D Gaussians methods are particularly strong to model dynamic 3D scenes
for novel view synthesis using 3DGS as a backbone. 9) DefGSnvfi. We build this baseline by
combining DefGS with the velocity field proposed by NVFi. This baseline has the powerful 3DGS
as a backbone as well as the current state-of-the-art NVFi learning strategy. It is trained with exactly
the same settings as our method. To demonstrate the flexibility of our framework, we also adopt
4DGS as our auxiliary deformation field, denoted as GVFi4dgs.

Metrics: The standard metrics PSNR, SSIM, and LPIPS are reported for RGB view synthesis in
two tasks: interpolation and future frame extrapolation.

4.1 MAIN RESULTS OF FUTURE FRAME EXTRAPOLATION

All methods are trained in a scene-specific fashion. Since NSFF (Li et al., 2021) is not suitable for
white-background images, it is not compared on our new Dynamic Multipart dataset. When training
our method, we set ∆t to be 2 divided by the training set frame rate. The time t′ for our auxiliary
deformation field fdefo is set to be 0.7 in the extrapolation task, and target time t is chosen as the
frame time. The time difference ∆t is dynamically computed.

Our primary goal is to extrapolate meaningful future frames as a continuum of the last training obser-
vations. In our evaluation, we follow Steps #1∼#4 in Section 3.3 to extrapolate future frames from
the last timestamp of training frames. For benchmarking, we also compare novel view (past frame)
interpolation with baselines, but this is less important to us. Particularly, we also follow Steps #1∼#4
to render past frames. Though this can also be achieved by progressively querying our translation
rotation dynamics module ftrd, it is inferior due to accumulated errors as detailed in Appendix A.9.

Results & Analysis: Tables 1&2 compare all methods on the five datasets. It can be seen that:
• Compared with NeRF and 3DGS based dynamic scene modeling methods such as T-NeRF/ D-

NeRF/ TiNeuVox/ NSFF/ DefGS/ 4DGS/ E-D3DGS, both versions of our method achieve about
10 points higher on PSNR for future frame extrapolation. This means that, without explicitly

7
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Dynamic Object Dataset Dynamic Multipart Dataset Dynamic Indoor Scene Dataset
Figure 3: Qualitative results of clustering translation rotation physics parameters. Gaussian kernels
can be autonomously grouped into meaningful objects or parts according to their motion patterns.

learning physical information like us, these dynamic methods completely fail to predict the future,
highlighting the core value of our method.

• Compared with the closest and also strongest baselines NVFi/ DefGSnvfi, our method is still con-
stantly better than them on all datasets for future frame extrapolation. Notably, on the Dynamic
Indoor Scene dataset and our newly collected Dynamic Multipart dataset, there are much more
complex motion dynamics such as different objects or parts moving in distinct directions, but our
best results are constantly about 3 points higher on PSNR than them. Fundamentally, this is be-
cause both NVFi and DefGSnvfi rely on PINN losses as soft constraints to incorporate physics
priors, whereas we directly integrate hard physics by learning translation rotation dynamics system
parameters, thus being more effective in learning dynamics.

• Lastly, our framework is indeed amenable to existing deformation fields such as DefGS and 4DGS,
and both versions achieve good results for future frame extrapolation on most datasets.

Figure 4 shows qualitative results. More results of the total 5 datasets are in Appendix A.10 / A.11 /
A.12 / A.13/A.14. We also report the training/test time, memory cost, etc., in Appendix A.4.

4.2 ANALYSIS OF DYNAMICS PARAMETERS

Table 3: Quantitative results of motion segmentation re-
sults on Dynamic Indoor Scene dataset.

AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑
M2F(Cheng et al., 2022) 65.37 73.14 78.29 94.83 68.88 64.42

D-NeRF(Pumarola et al., 2021) 57.26 46.15 59.02 56.55 62.94 46.58
NVFi(Li et al., 2023a) 91.21 78.74 93.75 93.76 93.74 67.64

DefGS(Yang et al., 2024) 51.73 57.60 66.43 63.21 70.07 54.46
DefGSnvfi 55.26 62.75 69.83 69.39 72.91 56.82

GVFi (Ours) 95.82 93.28 97.90 96.21 99.86 79.55

Our core translation rotation dynam-
ics system module is designed to learn
per rigid particle’s physical parameters.
Ideally, for those rigid particles under-
going the same motion pattern such as
all surface points of a single rigid part,
they should have the same or similar
physical parameters. Given this, multi-
ple dynamic objects or parts with distinct motions can be automatically segmented based on the
similarity of learned physical parameters. By comparison, the prior work NVFi (Li et al., 2023a)
can hardly achieve this autonomous dynamic segmentation by its own design, unless an external mo-
tion grouping method is applied. To further evaluate this nice property of our method, we conduct
the following steps to analyze the learned dynamics parameters.

First, after training our method on the Dynamic Object dataset, Dynamic Multipart dataset, and
Dynamic Indoor Scene dataset, for each dynamic scene, we have a set of well-trained canonical 3D
Gaussians, an auxiliary deformation field, and our translation rotation dynamics parameters.

Then, we use the auxiliary deformation field fdefo to deform the canonical 3D Gaussians G0 to
time t = 0.7, which is the maximum time the deformation field can query in our training. At this
timestamp, the motions of different objects and parts normally achieve a steady state.

Lastly, we query all the physical parameters at this time, i.e., {(P t
c ,v

t
c,a

t
c), (w

t
p, ϵ

t
p)}. We choose

(∥vt
c∥,vt

c/∥vt
c∥, ∥wt

p∥,wt
p/∥wt

p∥) as the features to cluster Gaussian particles via a simple K-means
algorithm. As shown in Figure 3, all Gaussian particles can be grouped into physically meaningful
objects or parts according to their actual motion patterns. More results are in Appendix A.17.

We further quantitatively evaluate our motion grouping results on Dynamic Indoor Scene Dataset.
In particular, we follow Gaussian Grouping (Ye et al., 2024) to render 2D object segmentation
masks for all 30 views over 60 timestamps on all 4 scenes, i.e., 7200 images in total. We com-
pare with D-NeRF, NVFi, DefGS and DefGSnvfi. We follow NVFi to obtain segmentation results
of D-NeRF and NVFi. For the 3DGS-based baselines, we also adopt OGC (Song & Yang, 2022) to
segment Gaussians based on scene flows induced from their learned deformation fields. All imple-
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mentation details are in Appendix. Additionally, we include a strong image-based 2D object seg-
mentation method, Mask2Former (Cheng et al., 2022) pre-trained by human annotations on COCO
dataset (Lin et al., 2014) as a fully-supervised baseline.

As shown in Table 3, our method achieves almost perfect object segmentation results on all metrics,
significantly outperforming all baselines. This shows that our learned physical parameters correctly
model object physical motion patterns and can be easily leveraged to identify individual objects
according to their motions, without needing any human annotations.

4.3 ABLATION STUDY

Our framework mainly comprises 3DGS as the backbone and our core translation rotation dynamics
system module, together with an auxiliary deformation field. To verify different choices of our
method, we conduct the following three groups of ablation experiments.

(1) Different choices of time difference ∆t in training stage: Given the time interval between two
consecutive frames in the training set as δt, we compare three choices of the time difference ∆t in
training stage: {δt, 2δt, 3δt}. We choose ∆t = 2δt in our main experiments.

(2) Removing the auxiliary deformation field fdefo: In particular, we feed the Gaussian particles
at time t′ = 0 directly into ftrd, and use the output physical parameters to directly move particles to
a target future timestamp t. Note that, here ∆t is meaningless.

(3) Learning time-dependent physical parameters at t′: Instead of using Equation 4 to derive
physical parameters at time t′, we directly learn them by a 6-layer MLPs as: ftrd′(P , t′). Theoreti-
cally, such a complex function can learn higher order relationships to approximate arbitrary motions
than our second-order Equation 4. Nevertheless, it would be more challenging to learn and unable
to guarantee physical parameters of the same motion pattern to be consistent over time.

Table 4: Quantitative results of ablation
studies on Dynamic Multipart dataset.

Extrapolation
fdefo ftrd PSNR↑ SSIM↑ LPIPS↓

(1) δt ✓ ✓ 29.441 0.984 0.013
(1) 2δt ✓ ✓ 30.721 0.986 0.012
(1) 3δt ✓ ✓ 30.246 0.985 0.012
(2) - ✗ ✓ 27.081 0.981 0.018
(3) 2δt ✓ ✗ 29.986 0.985 0.012

Results & Analysis: Table 4 shows all ablation results
for future frame extrapolation on our new Dynamic Mul-
tipart dataset. It can be seen that: 1) The greatest im-
pact is caused by the removal of the deformation field
fdefo. Although this deformation field itself is unable to
learn physics, it significantly aids our core translation ro-
tation dynamics system module to learn physical parame-
ters given the motion information. 2) The choice of time
difference ∆t is also important. Once it is as small as the
interval between two consecutive frames, the performance
drops apparently, because the motion in short intervals is too subtle to be distinguished. For exam-
ple, a rotation may be learned as a translation. However, if ∆t is too large, the appearance fitting
could be sacrificed, so the performance is slightly weaker. 3) If physical parameters are learned but
not derived, the lack of physics consistency will influence motion learning.

Detailed ablation settings and results are in Appendix A.7. More ablations of ∆t on four datasets,
and more ablations of using 1st-/ 2nd-order relationships in Equation 4 are in Appendix A.8.

5 CONCLUSION

In this paper, we have demonstrated that complex motion dynamics can be explicitly learned just
from multi-view RGB videos without needing additional human labels such as object types and
masks. This is achieved by a new generic framework that simultaneously models 3D scene geome-
try, appearance and physics by extending the appealing 3D Gaussian Splatting technique. In contrast
to existing works which usually rely on PINN losses as soft constraints to learn physics priors, we
instead directly learn a complete set of physical parameters to govern the motion pattern of each 3D
rigid particle in space via our core translation rotation dynamics system module. Extensive experi-
ments on three public dynamic datasets and a newly created dynamic multipart dataset have shown
the extraordinary performance of our method in the challenging task of future frame extrapolation
over all baselines. In addition, the learned physical parameters can be directly used to segment
objects or parts according to the similarity of parameters.
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Figure 4: Qualitative results of RGB view synthesis for interpolation and extrapolation tasks.
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A APPENDIX

The appendix includes:

• Rendering equation and preliminary for vanilla 3DGS.

• Implementation details of Auxiliary Deformation Field.

• Implementation details of translation and rotation system.

• Training and evaluation resources for the model.

• Additional incremental learning experiments for self-propelled objects.

• Additional details of datasets.

• Additional quantitative results for ablation study in the main context.

• Additional ablation studies.

• Analysis of different ways for interpolation period.

• Additional quantitative results for GoPro dataset.

• Additional quantitative & qualitative results for future frame extrapolation.

• Additional qualitative results for motion segmentation.

• Additional qualitative results for extrapolation beyond dataset time span.

A.1 PRELIMINARY FOR VANILLA 3DGS

3D Gaussian Splatting (Kerbl et al., 2023) represents a 3D scene by a set of colored 3D Gaussian
kernels. Specifically, each Gaussian kernel is parameterized by a 3D position P ∈ R3, an orienta-
tion represented by a quaternion r, and a scaling s. By transforming the orientation r and scaling
s into the rotation matrix R and scaling matrix S, a 3D covariance matrix Σ can be composed as
Σ = RSSTRT . Then the Gaussian kernel can be evaluated at any location x ∈ R3 in the 3D space:

G(x) = e−
1
2 (x−P )TΣ−1(x−P ). (9)

Besides, each Gaussian kernel has an opacity σ indicating its influence in rendering, and a color c
computed from spherical harmonics (SH) for view-dependent appearance.

The rendering of Gaussian kernels on the image consists of two steps. Firstly, The Gaussian kernels
are projected onto the image plane, following the differentiable rasterization pipeline proposed in
(Zwicker et al., 2001). The 3D position P and covariance matrix Σ of each Gaussian kernel are
projected into 2D position P ′ = JWP and covariance matrix Σ′ = JWΣWTJT respectively,
where J denotes the Jacobian of the approximated projective transformation and W denotes the
transformation from the world to camera coordinates. Secondly, the color of a pixel µ on the image
can be rendered by α-blending as follows:

C(µ) =
∑
i

Tiαici, Ti =

i−1∏
j=1

(1− αj), (10)

where αi is obtained by evaluating the projection of the Gaussian kernel Gi on the pixel µ, i.e.,
αi = σie

− 1
2 (µ−P ′)TΣ′−1(µ−P ′). By adjusting the parameters of Gaussian kernels mentioned above

and adaptively controlling the Gaussian density, a high-fidelity representation of a 3D scene can be
obtained from multi-view images. We refer readers to (Kerbl et al., 2023) for more details.

A.2 IMPLEMENTATION DETAILS OF AUXILIARY DEFORMATION FIELD

We leverage an existing deformation field introduced in (Yang et al., 2024) as our auxiliary defor-
mation field. In particular, the 3D position x0 of each canonical Gaussian kernel and the current
timestamp t are fed into an MLP-based deformation network, denoted as fdefo. The implementa-
tion of this MLP is directly adapted from (Yang et al., 2024), i.e., an MLP with 8 layers in total
and 256 hidden sizes for each layer, plus a ResNet layer at layer 4. At the input layer, an 8-degree
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positional embedding is applied onto the 3D position x0 and a 5-degree positional embedding onto
time t.

Mathematically, the deformation field fdefo(x, t) : R4 → R10 is defined as

(δx, δr, δs) = fdefo(x0, t), (11)

where δx represents the translation of the center of Gaussian kernel, δr represents the rotation for
the pose of Gaussian kernel in quaternion representation, and δs is the difference of Gaussian sizes.
Note a Gaussian size vector is parametrized by z = log(s), so the difference can be defined as
δs = exp(δz).

After applying the deformation field onto Gaussian kernels, we can deform the Gaussian kernels
from canonical time to time t as:

xt = x0 + δx (12)
rt = δr ◦ r0 (13)
st = exp(z0 + δz) = s0 ⊙ δs, (14)

where ◦ is quaternion multiplication and ⊙ is element-wise multiplication.

A.3 IMPLEMENTATION DETAILS OF TRANSLATION AND ROTATION SYSTEM

As discussed in the main context, we learn the following two groups of physical parameters for each
3D particle P as function ftrd(x) : R3 → R13:

{(Pc,vc,ac), (wp, ϵp)} = ftrd(P ), (15)

where angular velocity is defined as ω = ∥wp∥2 around rotation axes direction k̂ = wc/ω following
right-hand rule.

This module is implemented by a simple 6× 128 MLPs with 6 layers in total and 128 hidden sizes
for each layer. In addition, a 5-degree positional embedding is applied onto the input 3D position x,
and relu is chosen as the activation functions.

A.4 TRAINING AND EVALUATION RESOURCES FOR THE MODEL

As the complexity of different scenes varies, the total number of Gaussians learned for each scene
varies from 40k to 1.6M. In general, our training time is 1.05 times longer than DefGS (or 4DGS
if built on it). For example, on the bat of Dynamic Object Dataset, DefGS/4DGS need 25 minutes,
while we need 27 minutes, with a slight training cost addition. Since our additional module is a tiny
MLPs, we only need 367.4kB larger storage. Our rendering speed is 0.85 times slower than DefGS
(or 0.8 times slower than 4DGS if built on it). For example, on the bat of Dynamic Object Dataset,
they achieve 40fps and ours 32fps. We train all our models on a single NVIDIA 3090 24G GPU.

A.5 INCREMENTAL LEARNING FOR SELF-PROPELLED OBJECTS

We include an additional incremental learning experiment to show that our framework can easily
adapt to new observations when internal forces change for self-propelled objects. We choose three
self-propelled objects from the Dynamic Object Dataset for this experiment. We keep the same
viewing angles in training and testing split, and incrementally train the network.

To be specific, we first feed time t = 0 ∼ 0.15 to train the network, and evaluate novel view
interpolation on t = 0 ∼ 0.15, future frame extrapolation on t = 0.15 ∼ 0.30. Next, we include
t = 0.15 ∼ 0.30 to train, and evaluate novel view interpolation on t = 0 ∼ 0.30, future frame
extrapolation on t = 0.30 ∼ 0.45. We keep adding a time interval of 0.15 till we train from
t = 0 ∼ 0.75, and extrapolate from t = 0.75 ∼ 0.9.
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We compare our performance with DefGS. Table 5 shows quantitative results. It can be seen that
DefGS suffers from overfitting the previous timestamps and results in a decrease in its interpolation
ability, while our model can stably adapt to new observations and achieve excellent past and future
frame predictions. This means that even though the internal forces are changing for self-propelled
objects, our model can easily adapt to new observations.

Table 5: Quantitative results (PSNR) of incremental learning.
Interpolation 0.15→ 0.30 0.30→ 0.45 0.45→ 0.60 0.60→ 0.75 0.75→ 0.90 Average

DefGS(Yang et al., 2024) 39.386 38.745 35.818 34.531 27.904 35.277
GVFi (Ours) 40.032 40.706 41.013 40.466 39.971 40.438
Extrapolation 0.15→ 0.30 0.30→ 0.45 0.45→ 0.60 0.60→ 0.75 0.75→ 0.90 Average

DefGS(Yang et al., 2024) 23.438 21.360 19.989 19.670 17.629 20.417
GVFi (Ours) 29.958 32.260 31.384 29.527 28.958 30.417

A.6 ADDITIONAL DETAILS OF NEW DATASETS

Dynamic Multipart dataset: This dataset comprises 4 distinct objects 1, including a variety of
challenging motions. Details of the 4 dynamic objects are:

• Foldingchair: A folingchair is given. This chair is composed of three parts. The whole
motion is unfolding this chair, so all three parts are undergoing different rotating motions.

• Hypoerbolic Slot: This is an extremely hard case, where a stick is rotating through a hy-
poerbolic slot. Note that, only the stick in this hyperbolic shape is dynamic, this introduces
more challenges in motion extrapolation.

• Satellite: This object is a satellite with two wing doors opening and one main door opening,
all rotating in different directions.

• Stove: A home stove is given. The motion is mainly closing its top cover plate.

GoPro Dataset: This dataset includes 4 challenging real-world dynamic scenes.

• Scene #1: Box. This scene contains a drawer-like box, and a person is trying to close it.
The difficulty lies in a tight combination of the moving part and the static part of the box,
especially in the future.

• Scene #2: Hammer. This scene contains a hammer moving on the topside of a box. The
difficulty lies in the direct contact of moving objects and static objects, which requires sharp
separation of diverse motion patterns in order to keep the right static/moving states in the
future.

• Scene #3: Collision. This scene contains a cube and a cup moving towards each other. The
difficulty is the different directions of two motions. It is hard to keep the shapes of these
two objects in the future.

• Scene #4: Wrist Rest. A person is trying to bend a wrist rest. The difficulty is that the
object is deformable and the motion is thus not rigid or part-wise rigid.

A.7 ADDITIONAL QUANTITATIVE RESULTS FOR ABLATION STUDY FOR THE MAIN CONTEXT

We first elaborate how we implement the ablation study (3). Our original design of the translation
and rotation dynamics system module ftrd(x) is only relevant to space, but not time. To obtain the
corresponding physics parameters at time t, we use Equation 4 to derive the queried physics pa-
rameters. In our ablation study (3), we aim to keep the physics parameters changing over time, thus
making it more complex in theory. Particularly, we use the same network architecture of ftrd, except
changing the input from ftrd(x) to ftrd(x, t), to force the change of physics parameters.

Here we show the total results for the ablation study in Table 6, both for interpolation and extrapo-
lation.

1All objects are purchased from SketchFab, licensed under the SketchFab Standard License:
https://sketchfab.com/licenses, and are all allowed for AI generation model usage
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Table 6: Quantitative results of ablation studies on Dynamic Multipart dataset.
Interpolation Extrapolation

fdefo ftrd PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
(1) δt ✓ ✓ 35.128 0.991 0.011 29.441 0.984 0.013
(1) 2δt ✓ ✓ 34.807 0.991 0.011 30.721 0.986 0.012
(1) 3δt ✓ ✓ 35.223 0.991 0.011 30.246 0.985 0.012
(2) - ✗ ✓ 32.266 0.987 0.016 27.081 0.981 0.018
(3) 2δt ✓ ✗ 35.225 0.991 0.011 29.986 0.985 0.012

A.8 ADDITIONAL ABLATION STUDIES

Since the range of motion between two consecutive frames is different across different datasets, we
conduct extensive ablations about different choices of ∆t on all 4 datasets, and the results are listed
in Table 7. We observe that 3δt works better in extrapolation on three datasets (Dynamic Object/ Dy-
namic Indoor Scene/ NVIDIA Dynamic Scenes). The basic rule to select an appropriate δt is based
on the motion range. If the motion changes fast, so the motion between two consecutive frames is
apparent enough, then a smaller δt is good enough. Otherwise, if the motion is rather slow, then a
larger δt is preferred.

Table 7: Quantitative results of ablation studies for δt on all four datasets.
Dynamic Multipart Dataset Dynamic Object Dataset

Interpolation Extrapolation Interpolation Extrapolation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

δt 35.128 0.991 0.011 29.441 0.984 0.013 38.929 0.995 0.005 28.506 0.981 0.013
2δt 34.807 0.991 0.011 30.721 0.986 0.012 38.788 0.995 0.006 28.758 0.982 0.011
3δt 35.223 0.991 0.011 30.246 0.985 0.012 38.693 0.995 0.006 29.414 0.983 0.012

Dynamic Indoor Scene Dataset NVIDIA Dynamic Scenes Dataset
Interpolation Extrapolation Interpolation Extrapolation

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
δt 32.179 0.929 0.089 34.387 0.964 0.046 26.823 0.891 0.101 28.781 0.934 0.070
2δt 32.202 0.928 0.089 34.556 0.964 0.046 26.943 0.891 0.102 29.388 0.938 0.067
3δt 32.296 0.928 0.089 35.242 0.967 0.045 27.099 0.890 0.103 29.440 0.938 0.067

The updating scheme of our translation rotation dynamics system is chosen as a second-order re-
lationship in Equation 4, i.e., each rigid particle can have a constant acceleration. We also evaluate
the third-order scheme (acceleration of acceleration) and first-order scheme (no acceleration) on
Dynamic Multipart Dataset and Dynamic Object Dataset. Table 8 shows the results. We can see
that, in Dynamic Object Dataset which has several self-propelled objects whose internal forces tend
to change over time, not surprisingly, the third-order variant performs better. Nevertheless, due to
the inherent over-parametrization, the third-order scheme tends to learn excessive rotation informa-
tion to represent simple acceleration motions, thus incurring inferior performance on the Dynamic
Multipart Dataset which does not have self-propelled objects.

Table 8: Quantitative results of ablation studies about 3 orders of Taylor expansion in Equation 4 on
Dynamic Multipart Dataset and Dynamic Object Dataset.

Dynamic Multipart Dataset Dynamic Object Dataset
Interpolation Extrapolation Interpolation Extrapolation

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
1st-order 34.776 0.990 0.013 26.729 0.976 0.018 38.892 0.995 0.005 28.536 0.983 0.012
2nd-order 34.807 0.991 0.011 30.721 0.986 0.012 38.788 0.995 0.006 28.758 0.982 0.011
3rd-order 35.268 0.991 0.012 30.503 0.985 0.013 39.164 0.995 0.005 29.378 0.983 0.011
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A.9 ANALYSIS OF DIFFERENT WAYS FOR INTERPOLATION PERIOD

Our method has three possible strategies for interpolation rendering: (1) directly using fdefo to pre-
dict the deformation at the given time t, (2) progressively calculating the Gaussian deformation at
the given time t from time 0 using the motion parameters predicted by ftrd, or (3) following the
steps described in Section 3.3. We choose the third one in our main experiments. Here, we evaluate
the other two strategies in Table 9. We can see that, the first and the third strategies are not strictly
consistent, but achieve very similar performance. However, for the second strategy, the performance
clearly decreases, we hypothesize that this is due to the accumulated errors in the autoregressive
process.

Table 9: Quantitative results of different interpolation strategies of our method on all four datasets.
Multipart Object Indoor NVIDIA

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
(1)fdefo 35.040 0.991 0.011 38.406 0.995 0.005 32.569 0.930 0.088 26.951 0.891 0.102
(2)ftrd 30.310 0.984 0.017 33.527 0.991 0.009 31.776 0.926 0.092 25.899 0.875 0.118
(3)fdefo + ftrd 34.807 0.991 0.011 38.788 0.995 0.006 32.202 0.928 0.089 26.943 0.891 0.102

A.10 ADDITIONAL QUANTITATIVE RESULTS ON DYNAMIC OBJECT DATASET

Here we show the total per-scene results on Dynamic Object Dataset in Table 10 and qualitative
results in Figures 8, 9&10, both for interpolation and extrapolation.

A.11 ADDITIONAL QUANTITATIVE RESULTS ON DYNAMIC INDOOR SCENE DATASET

Here we show the total per-scene results in Dynamic Indoor Scene Datasets in Table 11 and qualita-
tive results in Figures 10&11, both for interpolation and extrapolation.

A.12 ADDITIONAL QUANTITATIVE RESULTS ON NVIDIA DYNAMIC SCENE DATASET

Here we show the total per-scene results on NVIDIA Dynamic Scene Dataset in Table 12 and qual-
itative results in Figure 13, both for interpolation and extrapolation.

A.13 ADDITIONAL QUANTITATIVE RESULTS ON DYNAMIC MULTIPART DATASET

Here we show the total per-scene results on our Dynamic Multipart Dataset in Table 13 and qualita-
tive results in Figure 12, both for interpolation and extrapolation.

A.14 ADDITIONAL QUANTITATIVE & QUALITATIVE RESULTS FOR GOPRO DATASET

Here we show the total results on our GoPro Dataset in Table 14 and qualitative results in Figures
14,15,&16, both for interpolation and extrapolation.

A.15 ADDITIONAL QUALITATIVE RESULTS FOR EXTRAPOLATION BEYOND DATASET TIME
SPANS

We list some meaningful longer extrapolation results from each dataset here in Figure 21. In our
dataset, the training period lasts from t = 0 to t = 0.75 and the extrapolation period lasts from
t = 0.75 to t = 1.0. Here we show the qualitative results till t = 1.5, which is already twice the
training period. We can see that our method can still obtain physically meaningful future frame
prediction in particularly high quality.

A.16 ADDITIONAL QUALITATIVE RESULTS FOR OBJECT/PART SEGMENTATION

Figures 5, 6 and 7 show more qualitative results for the autonomous object or part segmentation
based on the learned physical parameters via the simple K-means clustering algorithm.
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Table 10: Per-scene quantitative results on Dynamic Object dataset.
Falling Ball Bat

Methods Interpolation Extrapolation Interpolation Extrapolation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

T-NeRF(Pumarola et al., 2021) 14.921 0.782 0.326 15.418 0.793 0.308 13.070 0.836 0.234 13.897 0.834 0.230
D-NeRF(Pumarola et al., 2021) 15.548 0.665 0.435 15.116 0.644 0.427 14.087 0.845 0.212 15.406 0.887 0.175

TiNeuVox(Fang et al., 2022) 35.458 0.974 0.052 20.242 0.959 0.067 16.080 0.908 0.108 16.952 0.930 0.115
T-NeRFPINN 17.687 0.775 0.368 17.857 0.829 0.265 16.412 0.903 0.197 18.983 0.930 0.132

HexPlanePINN 32.144 0.965 0.065 20.762 0.951 0.081 23.399 0.958 0.057 21.144 0.951 0.064
NVFi(Li et al., 2023a) 35.826 0.978 0.041 31.369 0.978 0.041 23.325 0.964 0.046 25.015 0.968 0.042

DefGS(Yang et al., 2024) 37.535 0.995 0.009 20.442 0.976 0.033 38.750 0.997 0.004 17.063 0.936 0.072
DefGSNV Fi 38.606 0.996 0.010 24.873 0.985 0.015 38.075 0.997 0.004 28.950 0.980 0.015

GVFi (Ours) 38.071 0.995 0.008 35.949 0.995 0.004 39.626 0.997 0.003 24.352 0.973 0.023
Fan Telescope

Methods Interpolation Extrapolation Interpolation Extrapolation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

T-NeRFPumarola et al. (2021) 8.001 0.308 0.646 8.494 0.392 0.593 13.031 0.615 0.472 13.892 0.670 0.417
D-NeRFPumarola et al. (2021) 7.915 0.262 0.690 8.624 0.370 0.623 13.295 0.609 0.469 14.967 0.700 0.385

TiNeuVoxFang et al. (2022) 24.088 0.930 0.104 20.932 0.935 0.078 31.666 0.982 0.041 20.456 0.921 0.067
T-NeRFPINN 9.233 0.541 0.508 9.828 0.606 0.443 14.293 0.739 0.366 15.752 0.804 0.298

HexPlanePINN 22.822 0.921 0.079 19.724 0.919 0.080 25.381 0.948 0.066 23.165 0.932 0.074
NVFiLi et al. (2023a) 25.213 0.948 0.049 27.172 0.963 0.037 26.487 0.959 0.048 27.101 0.963 0.046

DefGSYang et al. (2024) 35.858 0.985 0.017 20.932 0.948 0.038 37.502 0.996 0.003 20.684 0.927 0.048
DefGSNV Fi 35.217 0.984 0.019 26.648 0.972 0.023 37.568 0.996 0.003 34.096 0.994 0.005

GVFi (Ours) 35.577 0.986 0.013 29.533 0.979 0.012 40.614 0.998 0.002 29.744 0.983 0.007
Shark Whale

Methods Interpolation Extrapolation Interpolation Extrapolation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

T-NeRFPumarola et al. (2021) 13.813 0.853 0.223 15.325 0.882 0.193 16.141 0.860 0.212 15.880 0.860 0.203
D-NeRFPumarola et al. (2021) 17.727 0.903 0.150 19.078 0.936 0.092 16.373 0.898 0.154 14.771 0.883 0.171

TiNeuVoxFang et al. (2022) 23.178 0.971 0.059 19.463 0.950 0.050 37.455 0.994 0.016 19.624 0.943 0.063
T-NeRFPINN 17.315 0.878 0.177 18.739 0.921 0.115 16.778 0.927 0.141 15.974 0.919 0.127

HexPlanePINN 28.874 0.976 0.040 22.330 0.961 0.047 29.634 0.981 0.035 21.391 0.961 0.053
NVFiLi et al. (2023a) 32.072 0.984 0.024 28.874 0.982 0.021 31.240 0.986 0.025 26.032 0.978 0.029

DefGSYang et al. (2024) 37.802 0.994 0.006 19.924 0.957 0.034 39.740 0.997 0.004 20.048 0.951 0.046
DefGSNV Fi 37.327 0.994 0.006 29.240 0.987 0.007 37.101 0.996 0.005 28.686 0.986 0.012

GVFi (Ours) 40.464 0.997 0.004 26.680 0.979 0.009 38.376 0.997 0.003 26.288 0.982 0.013

Table 11: Per-scene quantitative results on Dynamic Indoor Scene dataset.
Gnome House Chessboard

Methods Interpolation Extrapolation Interpolation Extrapolation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

T-NeRF(Pumarola et al., 2021) 26.094 0.716 0.383 23.485 0.643 0.419 25.517 0.796 0.294 20.228 0.708 0.365
D-NeRF(Pumarola et al., 2021) 27.000 0.745 0.319 21.714 0.641 0.367 24.852 0.774 0.308 19.455 0.675 0.384

TiNeuVox(Fang et al., 2022) 30.646 0.831 0.253 21.418 0.699 0.326 33.001 0.917 0.177 19.718 0.765 0.310
T-NeRFPINN 15.008 0.375 0.668 16.200 0.409 0.651 16.549 0.457 0.621 17.197 0.472 0.618

HexPlanePINN 23.764 0.658 0.510 22.867 0.658 0.510 24.605 0.778 0.412 21.518 0.748 0.428
NSFF(Li et al., 2021) 31.418 0.821 0.294 25.892 0.750 0.327 32.514 0.810 0.201 21.501 0.805 0.282

NVFi(Li et al., 2023a) 30.667 0.824 0.277 30.408 0.826 0.273 30.394 0.888 0.215 27.840 0.872 0.219
DefGS(Yang et al., 2024) 32.041 0.918 0.132 21.703 0.775 0.207 27.355 0.912 0.147 20.032 0.808 0.218

DefGSNV Fi 32.881 0.919 0.132 33.630 0.953 0.077 26.200 0.907 0.156 26.730 0.917 0.110
GVFi (Ours) 32.698 0.921 0.101 36.578 0.962 0.055 35.138 0.960 0.060 33.685 0.966 0.042

Factory Dining Table
Methods Interpolation Extrapolation Interpolation Extrapolation

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
T-NeRFPumarola et al. (2021) 26.467 0.741 0.328 24.276 0.722 0.344 21.699 0.716 0.338 20.977 0.725 0.324
D-NeRFPumarola et al. (2021) 28.818 0.818 0.252 22.959 0.746 0.303 20.851 0.725 0.319 19.035 0.705 0.341

TiNeuVoxFang et al. (2022) 32.684 0.909 0.148 22.622 0.810 0.229 23.596 0.798 0.274 20.357 0.804 0.258
T-NeRFPINN 16.634 0.446 0.624 17.546 0.480 0.609 16.807 0.486 0.640 18.215 0.548 0.595

HexPlanePINN 27.200 0.826 0.283 24.998 0.792 0.312 25.291 0.788 0.350 22.979 0.771 0.355
NSFFLi et al. (2021) 33.975 0.919 0.152 26.647 0.855 0.196 19.552 0.665 0.464 22.612 0.770 0.351

NVFiLi et al. (2023a) 32.460 0.912 0.151 31.719 0.908 0.154 29.179 0.885 0.199 29.011 0.898 0.171
DefGSYang et al. (2024) 33.629 0.943 0.096 22.820 0.839 0.169 27.680 0.890 0.145 20.965 0.855 0.157

DefGSNV Fi 33.643 0.943 0.097 33.049 0.954 0.062 27.957 0.891 0.145 30.975 0.955 0.060
GVFi (Ours) 33.423 0.941 0.076 34.906 0.963 0.045 27.547 0.891 0.118 33.056 0.965 0.043

A.17 ADDITIONAL QUALITATIVE RESULTS FOR SEGMENTATION ON DYNAMIC INDOOR
SCENE DATASET

Figures 17, 18, 19, &20 shows qualitative results for the rendered mask on Dynamic Indoor Scene
dataset.
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Table 12: Quantitative results of our method and baselines on the NVIDIA Dynamic Scene dataset.
Truck Skating

Interpolation Extrapolation Interpolation Extrapolation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

T-NeRF(Pumarola et al., 2021) 18.673 0.548 0.447 18.176 0.567 0.447 27.483 0.820 0.263 24.063 0.846 0.269
D-NeRF(Pumarola et al., 2021) 17.660 0.554 0.431 16.905 0.544 0.445 27.994 0.869 0.187 24.361 0.873 0.208

TiNeuVox(Fang et al., 2022) 27.230 0.846 0.229 24.887 0.848 0.209 29.377 0.889 0.202 24.224 0.878 0.220
T-NeRFPINN 15.241 0.413 0.540 14.959 0.395 0.552 21.644 0.780 0.338 20.990 0.814 0.303

HexPlanePINN 25.494 0.768 0.337 24.991 0.768 0.325 24.447 0.867 0.225 23.955 0.868 0.232
NVFi(Li et al., 2023a) 27.276 0.840 0.235 28.269 0.855 0.220 26.999 0.848 0.227 28.654 0.896 0.208

DefGS(Yang et al., 2024) 28.327 0.885 0.115 24.947 0.875 0.131 24.997 0.900 0.138 23.532 0.914 0.148
DefGSnvfi 28.169 0.884 0.114 28.481 0.922 0.088 25.774 0.896 0.141 26.577 0.931 0.115

GVFi (Ours) 27.977 0.880 0.097 29.655 0.931 0.063 25.909 0.901 0.106 29.120 0.944 0.071

Table 13: Per-scene quantitative results on Dynamic Multipart dataset.
Folding Chair Hyperbolic Slot

Methods Interpolation Extrapolation Interpolation Extrapolation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

T-NeRF(Pumarola et al., 2021) 10.146 0.598 0.537 10.260 0.586 0.548 7.437 0.424 0.749 7.098 0.404 0.739
D-NeRF (Pumarola et al., 2021) 11.681 0.717 0.437 13.177 0.765 0.357 7.279 0.485 0.714 7.547 0.468 0.695

TiNeuVox(Fang et al., 2022) 34.160 0.984 0.039 13.391 0.808 0.199 28.637 0.955 0.083 25.436 0.973 0.040
NVFi(Li et al., 2023a) 27.748 0.962 0.049 23.433 0.940 0.063 25.487 0.944 0.057 25.757 0.956 0.039

DefGS(Yang et al., 2024) 37.319 0.995 0.009 13.682 0.820 0.169 31.780 0.983 0.030 25.631 0.981 0.020
DefGSNV Fi 37.269 0.994 0.009 25.404 0.962 0.022 32.506 0.985 0.025 29.351 0.988 0.012

GVFi (Ours) 37.910 0.995 0.005 27.869 0.978 0.015 31.740 0.985 0.018 34.185 0.993 0.007
Satellite Stove

Methods Interpolation Extrapolation Interpolation Extrapolation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

T-NeRF(Pumarola et al., 2021) 14.614 0.754 0.307 14.468 0.751 0.328 7.134 0.490 0.605 8.429 0.562 0.531
D-NeRF(Pumarola et al., 2021) 17.991 0.930 0.100 17.252 0.926 0.102 16.165 0.856 0.262 15.400 0.908 0.205

TiNeuVox(Fang et al., 2022) 33.061 0.983 0.035 28.627 0.978 0.032 23.969 0.943 0.109 15.760 0.934 0.087
NVFi(Li et al., 2023a) 29.644 0.973 0.029 30.075 0.975 0.027 27.186 0.959 0.072 21.675 0.950 0.054

DefGS(Yang et al., 2024) 36.832 0.993 0.007 27.622 0.979 0.016 32.607 0.989 0.029 15.721 0.941 0.063
DefGSNV Fi 36.640 0.993 0.007 34.282 0.990 0.007 21.134 0.988 0.029 24.781 0.977 0.027

GVFi (Ours) 36.687 0.994 0.006 31.383 0.987 0.009 32.892 0.990 0.016 29.446 0.985 0.017

Table 14: Quantitative results for both novel view interpolation and future frame extrapolation on
GoPro Dataset.

GoPro Dataset
Interpolation Extrapolation

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
TiNeuVox(Fang et al., 2022) 15.306 0.588 0.516 20.323 0.738 0.318

NVFi(Li et al., 2023a) 14.229 0.568 0.569 19.879 0.736 0.415
DefGS(Yang et al., 2024) 20.018 0.838 0.167 21.193 0.842 0.185

DefGSnvfi 20.254 0.838 0.167 25.469 0.882 0.141
GVFi (Ours) 20.124 0.834 0.168 26.276 0.890 0.131
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Figure 5: Qualitative results for Object/Part Segmentation on Dynamic Object dataset.
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Figure 6: Qualitative results for Object/Part Segmentation on Dynamic Multipart dataset.
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Figure 7: Qualitative results for Object/Part Segmentation on Dynamic Indoor Scene dataset.
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Figure 8: Qualitative results of RGB view synthesis for interpolation and extrapolation tasks on Dy-
namic Object dataset.
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Figure 9: Qualitative results of RGB view synthesis for interpolation and extrapolation tasks on Dy-
namic Object dataset.
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Figure 10: Qualitative results of RGB view synthesis for interpolation and extrapolation tasks on
Dynamic Object and Dynamic Indoor Scene datasets.
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Figure 11: Qualitative results of RGB view synthesis for interpolation and extrapolation tasks on
Dynamic Indoor Scene dataset.
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Figure 12: Qualitative results of RGB view synthesis for interpolation and extrapolation tasks on
Dynamic Multipart dataset.
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Figure 13: Qualitative results of RGB view synthesis for interpolation and extrapolation tasks on
“Skating” scene of NVIDIA Dynamic Scene dataset.
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Figure 14: Qualitative results of RGB view synthesis for interpolation and extrapolation tasks on
“Box” scene of GoPro dataset.
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Figure 15: Qualitative results of RGB view synthesis for interpolation and extrapolation tasks on
“Hammer” scene of GoPro dataset.
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Figure 16: Qualitative results of RGB view synthesis for interpolation and extrapolation tasks on
“Collision” scene of GoPro dataset.
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Figure 17: Qualitative results for object segmentation on “Chessboard” of Dynamic Indoor Scene
dataset.
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Figure 18: Qualitative results for object segmentation on “Gnome House” of Dynamic Indoor Scene
dataset.
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Figure 19: Qualitative results for object segmentation on “Dining Table” of Dynamic Indoor Scene
dataset.
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Figure 20: Qualitative results for object segmentation on “Factory” of Dynamic Indoor Scene
dataset.
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Figure 21: Qualitative results of RGB view synthesis for longer extrapolation from our method.
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