
More Than Just Functional:
LLM-as-a-Critique for Efficient Code Generation

Derui Zhu1∗ Dingfan Chen2∗ Jinfu Chen3

Jens Grossklags1 Alexander Pretschner1 Weiyi Shang4

1Technical University of Munich 2Max Planck Institute for Intelligent Systems
3Wuhan University 4University of Waterloo

Abstract

Large language models (LLMs) have demonstrated remarkable progress in generat-
ing functional code, leading to numerous AI-based coding assistant tools. However,
their reliance on the perplexity objective during both training and inference primar-
ily emphasizes functionality, often at the expense of efficiency—an essential con-
sideration for real-world coding tasks. Interestingly, we observed that well-trained
LLMs inherently possess knowledge about code efficiency, but this potential re-
mains underutilized with standard decoding approaches. To address this, we design
strategic prompts to activate the model’s embedded efficiency understanding, effec-
tively using LLMs as efficiency critiques to guide code generation toward higher
efficiency without sacrificing—and sometimes even improving—functionality,
all without the need for costly real code execution. Extensive experiments on
benchmark datasets (EffiBench, HumanEval+, COFFE, Mercury) across multiple
representative code models demonstrate up to a 70.6% reduction in average exe-
cution time and a 13.6% decrease in maximum memory usage, highlighting the
computational efficiency and practicality of our approach compared to existing
alternatives.

1 Introduction

Over recent years, large language models (LLMs) have made significant advances in understanding
and generating programming code. These models have enabled a wide range of practical applications,
including code generation from natural language descriptions, code completion to assist in real-time
development, code translation between programming languages, and code analysis and debugging for
identifying and resolving issues in software. Numerous models, such as GPT-4 [1], Claude-3 [2],
StarCoder [28, 34], CodeLlama [19], DeepSeek-Coder [20], and Opencoder [24], have showcased
strong capabilities in code understanding. These models have become integral components of popular
integrated development environments (IDEs), significantly enhancing developer productivity by
providing intelligent, context-aware code suggestions. Most existing research and development efforts
have predominantly focused on ensuring the correctness of the generated code, often emphasizing
functional accuracy (ensuring the generated code meets the intended behavior) and syntactical validity
(ensuring adherence to language-specific syntax rules) [21, 27, 40, 31, 32, 9].

In contrast, efficiency—a crucial yet underexplored factor—plays a pivotal role in determining the
practicality and sustainability of generated code, as inefficiency can lead to significantly higher
computational costs, increased latency, elevated energy consumption, and failures to meet the
demands of real-world software development. However, standard LLM training and inference
processes lack explicit supervision signals for efficiency, often resulting in generated code that,
while functionally correct, lags in execution time and memory usage compared to human-written

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

* Equal contribution

solutions [43, 37, 22]. For instance, recent results from the EffiBench leaderboard [23] reveal that,
on average, LLM-generated code requires 2.59–3.44 times the execution time of human-written
solutions, with worst-case execution times up to ~68 times longer. These findings underscore the
urgent need for approaches that prioritize efficiency alongside functionality in LLM-generated code.

To fill this gap, a natural solution is to explicitly incorporate knowledge of code execution time and
memory complexity into LLM generation and training process. Existing methods include leveraging
execution overhead profiles for refinement during inference [22, 9, 38] or fine-tuning models with
datasets enriched by performance-improving edits from human programmers [44]. While these
techniques have shown promise, they come with inherent limitations: generating execution overhead
profiles requires running code in controlled environments, which can be resource-intensive, and
obtaining sufficient human-curated data for fine-tuning is challenging.

In response, we propose enhancing the default inference process of code-generating LLMs by
explicitly incorporating awareness of code efficiency. Specifically, we introduce a strategically
prompted secondary LLM as an efficiency critique, which evaluates the static structure of the abstract
syntax tree (AST) of generated code snippets and assigns efficiency-based scores to guide the
generation towards producing more efficient outcomes. Unlike existing methods, our approach
eliminates the need for additional efficiency-annotated datasets, execution environments, or actual
code execution. This makes our solution highly practical, lightweight, and easy to implement.

Despite its simplicity, our proposed method demonstrates significant improvements over existing state-
of-the-art approaches. Through extensive experiments on standard code generation benchmarks [23,
7], leveraging various representative language models and diverse metrics, we comprehensively
evaluate time and memory efficiency from multiple perspectives. For example, our method achieves
an average execution speedup of approximately 17× and a ~19% reduction in normalized execution
time compared to existing state-of-the-art results [22].

2 Related Work

LLMs for Code Generation & Refactoring. The increasing availability of open-source code
repositories and advances in training techniques for language models have fueled the rapid growth of
code-generating LLMs. Progress in this field spans from models designed specifically for coding
tasks, such as AlphaCode [29], CodeGen [36], StarCoder [28, 34], CodeT5 [49], Opencoder [24],
DeepSeek-Coder [20], and Qwen2.5-Coder [25], to general-purpose foundation models with code
understanding capabilities, such as GPT-4 [1] and Claude-3 [2]. These LLMs have supported various
code-related applications, including code generation from description, program repair, automated
testing, code translation, type inference, and code summarization. Among these tasks, code generation
from natural-language description has emerged as a key area for evaluating these models. Although
LLMs have achieved notable success on benchmarks such as HumanEval [7] and MBPP [3], their
efficiency in terms of execution time and memory usage has received comparatively less attention.
Recent studies [43, 37, 22] have revealed that LLM-generated code often lags behind human-written
solutions in efficiency, underlining the need for further development. To address this, our work
presents a practical approach that significantly enhances the efficiency of LLM-generated code,
achieving superior performance and broader applicability compared to existing methods. This focus
complements LLM-driven refactoring systems, which primarily optimize internal code quality (e.g.,
readability, modularity, and structural maintainability measured by coupling, cohesion, modularity,
and cyclomatic complexity [13, 11, 12]) while restricting algorithm or data-structure changes. In
contrast, our setting permits functionality-preserving algorithmic changes and optimizes for measured
runtime and memory usage.

Inference-time Scaling. Inference-time scaling can effectively enhance LLM performance by
strategically allocating computational resources during test time [4, 42, 15, 35, 45, 52]. A variety of
methods leverage this principle, which can be broadly categorized into structured reasoning, diverse
candidate exploration, and iterative refinement approaches. Structured reasoning techniques, such as
chain-of-thought [50] and tree-of-thought [52, 33] prompting, guide models to articulate intermediate
steps, enhancing logical reasoning and interpretability. Similarly, lookahead search [17, 53] explores
future outcomes to guide current decisions, improving planning and anticipatory capabilities. Diverse
candidate exploration methods, such as best-of-N [10, 48], produce multiple independent outputs
and select the best one, offering a simple and effective strategy for improving performance. Beam-

2

search [16] also fits into this category, maintaining a fixed number of promising candidates at each
step to balance exploration and efficiency. Iterative refinement focuses on incrementally improving
initial outputs, as in refinement-based approaches [35, 9], which make localized adjustments to
achieve better results, particularly for tasks that require step-by-step corrections. In our work, we
focus on diverse candidate exploration for its simplicity, efficiency, and alignment with our objective
of maintaining a large exploration space that encompasses diverse potential solutions.

Code Efficiency & Performance Analysis. Performance analysis aims to evaluate the efficiency of
the code under various conditions to ensure the code meets the specified performance requirements in
real-world applications. Traditionally, performance analysis is categorized into static and dynamic
approaches. Static performance analysis detects inefficiencies without executing code by analyzing its
structure using techniques such as AST analysis to identify performance anti-patterns [8]. Dynamic
performance analysis, on the other hand, measures actual runtime behavior by executing the code,
using unit tests [41, 6] and profiling techniques [51] to assess actual runtime behavior and memory
usage. Our work mainly leverages LLMs to act as a code performance critique, which eliminates the
need for actual execution while providing more expressive and insightful analysis than conventional
static methods.

3 Method

Notation. Let fθ denote the target code-generating language model parameterized by θ. We
consider a standard code-generation task where the goal is to generate a sequence of code tokens
y=(y1, y2, ..., yL) given a task description x. The model is trained on a large dataset of code
and descriptions by maximizing the conditional likelihood: fθ(y|x) =

∏L
l=1 fθ(yl|y<l,x), where

fθ(yl|y<l,x) predicts the token probabilities given the previous ones and the task description.
During standard inference, the model iteratively samples new tokens with ŷl ∼ fθ(yl|y<l,x). To
enable controlled diversity, the model’s output logits are scaled using a temperature parameter T ,
transitioning the standard likelihood fθ(yl|y<l,x) to a temperature-scaled probability distribution

fT
θ (yl|y<l,x) =

fθ(yl|y<l,x)
1/T∑

y′∈V fθ(y′|y<l,x)1/T
, where V is the vocabulary. Starting with the initial token y1,

the model feeds each newly sampled token ŷl back into itself to generate the subsequent token ŷl+1,
continuing this process until a predetermined stopping criterion is met.

3.1 Efficiency-Aware Critique for Decoding

While the standard maximum likelihood objective effectively enables models to fit the distribution of
real-world program data, allowing LLMs to mimic human-written code given specific descriptions,
it does not explicitly address code efficiency. Although training datasets often include abundant
unsupervised or weakly paired examples supporting functional correctness and descriptive alignment,
explicit supervision for efficiency is rare. This lack of efficiency-focused signals during training
results in limited emphasis on computational or algorithmic optimization. As a result, standard
code-generating LLMs frequently underperform in producing efficient code.

To address this limitation, we propose incorporating an efficiency-guided critique into the generation
process via a reward function r :

⋃∞
l=1 V l →R. This function evaluates the efficiency of a generated

code segment of length l from vocabulary V and outputs a scalar value reflecting its efficiency.
Integrating this reward function allows the model to prioritize not just functional correctness but
also computational efficiency. In the following, we define multiple reward functions, each providing
a relatively accurate approximation of code segment efficiency, enabling performance evaluation
without the need for time- and resource-intensive code execution.

Static AST Pattern Matching. We leverage practical performance-improvement insights at the
AST level to define our reward function, explicitly identifying 12 common performance-related pat-
terns from existing software engineering literature [5, 18, 26]. These patterns include “nested loops”,
“redundant function calls (inside loops)”, “redundant function calls (memorization)”, “inefficient
use of data structures”, “excessive function calls in loops”, “unnecessary recursion”, “deeply nested
conditional statements”, “inefficient string concatenation”, “inefficient file/database operations”,
“large functions”, “inefficient loop terminology”, and “potential syntax errors” (see Appendix B for
details). To compute the reward for a code segment y≤l, we first parse the segment into an AST and

3

apply pattern matching to detect the presence of these inefficiencies, applying a predefined penalty
for each matched pattern. The final score is then normalized within [0, 1] as follows,

rAST(y≤l) = 1−

∑
p∈P δp · 1

[
p ∈ AST(y≤l)

]
∑

p∈P δp
(1)

where δp represents the penalty associated with pattern p and 1 is the indicator function that equals 1
if pattern p is present in the AST of the code segment, and 0 otherwise. This penalization mechanism
encourages the model to avoid these common performance pitfalls and guides the decoding search
toward more efficient code.

Prompting LLMs as an Efficiency Critique. While AST pattern matching as a reward effectively
improves generated code efficiency compared to the vanilla LLM baseline (see Table 4), it is limited
by its inherent reliance on static feature engineering. As a more scalable alternative, we propose
using trained LLMs (themselves) as efficiency critics, leveraging their embedded knowledge of
code understanding. Although these models may not autonomously generate desired efficient code
without supervision, evaluating the efficiency of code segments and providing critique signals
during inference is a comparatively simpler task that they can handle effectively. Specifically, we
strategically prompt the model to output a scalar value quantifying the efficiency of a given code
segment. We ask the critique LLM to assess factors such as time complexity, space complexity,
runtime performance, memory usage efficiency, syntax correctness, and optionally AST analysis and
perplexity (see Appendix A). Formally, the reward is defined as:

rLLM(y≤l, q) = fθcritique(y≤l, q) (2)

where fθcritique denotes the critique LLM, which directly outputs the scalar reward rLLM, and q
represents the efficiency-focused prompt.

General Formulation. Building upon our consideration of various possible reward functions, we
define a general formulation that enhances expressiveness through a linear combination of reward
signals:

r(y≤l, q) = α · rAST(y≤l) + β · rLLM(y≤l, q)− γ · PP(y≤l|fθ)
where PP(y≤l|fθ) denotes the perplexity (exponentiated average negative log-likelihood) of code
sequence y≤l given the model fθ, and α, β, γ are hyperparameters that modulate the contribution of
different reward components. Notably, this formulation flexibly integrates diverse evaluative criteria,
enabling the incorporation of future insights into code efficiency for further improvement.

3.2 Diverse Candidate Exploration

For decoding search, we adopt widely used inference-time scaling methods that prioritize diverse
candidate exploration. This aligns with our objective of generating code that is not only probable
but also efficient, as discovering the most optimal solution requires navigating a sufficiently large
output space that might otherwise be restricted or biased by a standard perplexity-driven objective.
Specifically, we perform perplexity-based ancestral sampling at the token level until encountering
a line break symbol (e.g., \n, \r), which marks the end of a code statement. We then evaluate the
reward of each segment at the statement level and apply beam search (with beam width >1) and
greedy search (i.e., beam search with beam width =1) to expand the search space, following common
practice [10, 47, 30, 46, 52]. Finally, we repeat the sampling process multiple times to generate a
diverse set of candidates and select the final program by choosing the highest-rewarded one from the
candidate set C, formally expressed as: y∗ = argmaxŷ(i)∈C r(ŷ(i), q).

4 Experiments

4.1 Setup

Datasets, Models, and Hardware. We conduct experiments on four recent standard code bench-
mark datasets: EffiBench [23], a benchmark comprising 1,000 efficiency-critical LeetCode coding
problems paired with human-written canonical solutions, filtered to 988 samples with verified correct
test cases; HumanEval+ [31], an extension of HumanEval [7] with 164 human-written Python

4

programming tasks with expanded test coverage for rigorous functional correctness evaluation;
Mercury [14], a dataset of 1,889 Python tasks with test case generators and difficulty annotations
derived from solution runtimes; and COFFE [39], a code generation benchmark with 398 and 358
problems for function-level and file-level code generation, respectively. Our evaluation includes the
following recent open-source code-generating large language models (LLMs) with varying sizes and
configurations: OpenCoder [24] (the OpenCoder-8b checkpoint1), DeepSeekCoder [20] (i.e., the
DeepSeek-6.7b2 and DeepSeekCoder-v2-16b3 checkpoints), StarCoder [28] (i.e., StarCoder2-15b
checkpoint4), and Qwen2.5-Coder [25] (i.e., the Qwen2.5-Coder-32B-Instruct5 checkpoint). To
measure performance, we profile execution time and memory usage using Line Profiler6 and Memory
Profiler7. The code generation experiments were conducted on a SLURM-managed computing
cluster equipped with 16 NVIDIA A100 Tensor Core GPUs (80GB memory each), interconnected
via NVLink 3.0 technology. Each compute node featured 512GB memory. For code performance
evaluation, all measurements were conducted in isolated environments. Each test was run on a
separate virtual machine instance with identical configurations to minimize system-level variability:
a dedicated CPU-only node was deployed containing dual Intel Xeon E5-2695 v4 processors (36
threads total @ 2.1GHz base frequency) with 512GB DDR4-2400 memory. All experiments followed
deterministic computing practices with fixed random seeds to ensure reproducibility.

Metrics. In line with existing benchmarks [23, 31, 22], we evaluate the efficiency and correctness
of the generated code using several key metrics. Execution Time (ET) measures the total runtime of
the generated code in seconds, while Normalized Execution Time (NET) represents the execution
time of the generated code divided by that of the canonical human-written solution. Max Memory
Usage (MU) captures the peak memory consumption (in MB) during execution, with Normalized
Max Memory Usage (NMU) normalizing this value against the reference solution to assess memory
efficiency. Correctness is evaluated as the proportion of test samples successfully passing all test
cases. When computing execution time and memory usage, we exclude generated code that fails to
pass all test cases, ensuring that efficiency metrics are not skewed by severely incorrect programs.

Baselines & Method Implementation. We compare our approach against the following base-
lines, which, to the best of our knowledge, represent the current state-of-the-art: the standard
“Perplexity”-based generation of LLMs with nucleus (top-p) and best-of-n sampling and selec-
tion; “Self-Debug” [9], a self-refinement approach aimed at improving code generation correctness;
“EffiLearner” [22] and “PerfCodeGen” [38], which both optimize the efficiency of generated code
by incorporating runtime feedback during generation. Before evaluating correctness and performance,
we apply a post-processing step to extract the generated code from the model’s response without
modifying its content. For implementing our methods, we use the prompt shown in Appendix A.2 as
default input to the critique LLM, and use the prompt in Appendix A.1 for code generation. For the
search strategies, we set a default search space of 50 (n=50 for best-of-n) and p=0.95 for nucleus
(top-p) sampling following common practice [36]. See supplementary materials for more details.

4.2 Comparison to Baselines

Quantitative Results. In Table 1 (and the supplementary materials), we demonstrate that our
method consistently improves both efficiency and correctness metrics across different model ar-
chitectures with varying model sizes, various datasets and all metrics. Compared to default LLM
decoding (i.e., “Perplexity”), our approach reduces the average execution time (ET Avg) by around
92.0%-96.6%, while the median execution time (ET Median) improves by at least 28.2% and up to
58.9%. Additionally, our method lowers memory usage (NMU) by 6.9% to 39.9%. Compared to the
previous efficiency-optimized methods, i.e., EffiLearner and PerfCodeGen, our approach achieves
substantial reductions in resource usage. Specifically, it reduces average execution time (ET Avg) by
up to 94.1%, median execution time (ET Median) by up to 24.3%, and normalized memory usage

1 https://huggingface.co/infly/OpenCoder-8B-Instruct
2 https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
3 https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
4 https://huggingface.co/bigcode/starcoder2-15b
5 https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
6 https://github.com/pyutils/line_profiler
7 https://pypi.org/project/memory-profiler/

5

https://huggingface.co/infly/OpenCoder-8B-Instruct
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
https://huggingface.co/bigcode/starcoder2-15b
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://github.com/pyutils/line_profiler
https://pypi.org/project/memory-profiler/

Datasets Models Methods ET(Avg)↓ ET(Median) ↓ NET(Avg) ↓ NET(Median) ↓ NMU ↓ Correctness ↑

EffiBench

DeepSeek-6.7b

Perplexity (Best-of-n) 1.65 1.42 1.14 0.97 1.42 52.25%
Perplexity (Top-p) 1.67 1.51 1.23 1.01 1.39 50.05%
Self-Debug 0.74 1.11 0.89 0.72 1.07 51.17%
EffiLearner 0.68 1.02 0.71 0.69 0.94 12.40%
PerfCodeGen 0.65 1.07 0.89 0.74 1.14 56.63%
Ours 0.06 0.92 0.65 0.62 0.92 57.92%

OpenCoder-8b

Perplexity (Best-of-n) 0.73 1.38 0.84 0.94 1.05 52.41%
Perplexity (Top-p) 0.72 1.35 0.77 0.87 1.24 58.73%
Self-Debug 0.72 1.41 0.87 0.89 1.16 59.78%
EffiLearner 0.68 1.02 0.71 0.69 0.95 12.41%
PerfCodeGen 0.64 0.87 0.69 0.71 1.01 62.88%
Ours 0.04 0.86 0.62 0.59 0.89 64.17%

StarCoder2-15b

Perplexity (Best-of-n) 0.75 1.17 0.81 0.91 1.02 41.51%
Perplexity (Top-p) 0.77 1.17 0.81 0.91 0.97 38.23%
Self-Debug 0.73 1.15 0.83 0.72 0.97 51.88%
EffiLearner 0.67 1.04 0.71 0.68 0.95 13.29%
PerfCodeGen 0.71 1.11 0.75 0.73 1.08 50.08%
Ours 0.06 0.84 0.62 0.56 0.95 53.81%

DeepseekCoder-v2-16b

Perplexity (Best-of-n) 1.39 1.41 0.79 0.83 1.05 45.51%
Perplexity (Top-p) 1.37 1.42 0.81 0.81 1.13 42.22%
Self-Debug 0.71 0.74 0.81 0.83 1.04 52.37%
EffiLearner 0.59 0.63 0.68 0.57 1.11 14.41%
PerfCodeGen 0.65 0.71 0.77 0.79 0.97 53.32%
Ours 0.05 0.58 0.63 0.59 0.88 57.68%

Qwen2.5-Coder-32b

Perplexity (Best-of-n) 1.45 1.35 1.11 0.96 1.48 53.12%
Perplexity (Top-p) 1.43 1.33 1.02 0.91 1.39 50.77%
Self-Debug 0.77 0.88 0.91 0.82 1.12 64.65%
EffiLearner 0.62 0.73 0.76 0.68 1.08 13.23%
PerfCodeGen 0.66 0.75 0.85 0.79 1.01 59.84%
Ours 0.05 0.61 0.66 0.58 0.89 66.42%

Mercury

DeepSeek-6.7b

Perplexity (Best-of-n) 3.55 3.71 2.84 2.98 1.11 26.14%
Perplexity (Top-p) 3.48 3.68 2.72 2.83 1.14 27.42%
Self-Debug 3.74 3.86 2.91 3.09 1.01 30.01%
EffiLearner 3.27 3.54 2.63 2.75 1.02 8.80%
PerfCodeGen 3.21 3.09 2.49 2.56 0.97 32.07%
Ours 0.12 2.61 2.06 2.14 0.91 34.23%

OpenCoder-8b

Perplexity (Best-of-n) 3.75 3.81 2.98 3.14 1.09 27.22%
Perplexity (Top-p) 3.69 3.77 2.85 2.94 1.13 28.81%
Self-Debug 3.86 3.91 3.03 3.18 1.03 31.13%
EffiLearner 3.45 3.69 2.79 2.83 1.03 8.79%
PerfCodeGen 3.36 3.23 2.54 2.58 0.98 33.16%
Ours 0.13 2.74 2.13 2.24 0.93 34.88%

StarCoder2-15b

Perplexity (Best-of-n) 3.02 3.25 2.34 2.52 0.94 30.15%
Perplexity (Top-p) 2.97 3.23 2.22 2.39 0.92 30.87%
Self-Debug 3.13 3.32 2.35 2.58 0.90 32.17%
EffiLearner 2.70 3.02 2.08 2.23 0.88 9.32%
PerfCodeGen 2.63 2.70 2.01 2.08 0.84 34.62%
Ours 0.09 2.13 1.60 1.67 0.75 37.02%

DeepseekCoder-v2-16b

Perplexity (Best-of-n) 3.46 3.61 2.75 2.91 1.12 27.93%
Perplexity (Top-p) 3.41 3.59 2.64 2.78 1.11 28.65%
Self-Debug 3.63 3.77 2.82 3.01 1.04 30.45%
EffiLearner 3.17 3.46 2.55 2.71 1.03 8.21%
PerfCodeGen 3.09 3.13 2.43 2.51 0.99 32.69%
Ours 0.11 2.47 1.92 1.97 0.89 35.01%

Qwen2.5-Coder-32b

Perplexity (Best-of-n) 3.28 3.42 2.61 2.77 1.08 35.91%
Perplexity (Top-p) 3.33 3.45 2.53 2.67 1.09 36.88%
Self-Debug 3.54 3.64 2.68 2.88 1.03 39.18%
EffiLearner 3.14 3.39 2.46 2.59 1.01 9.52%
PerfCodeGen 3.01 2.97 2.34 2.43 0.95 31.14%
Ours 0.10 2.52 1.97 2.02 0.89 43.77%

Table 1: Comparisons of the generated code efficiency across different datasets. Methods that explic-
itly optimize for code efficiency are highlighted with a shaded background . The best performance
across all methods is indicated in bold.

(NMU) by up to 20.7%. These improvements are consistent across models and datasets, with average
reductions over all five models on EffiBench of 92.0% (ET Avg), 13.8% (ET Median), and 9.4%
(NMU) when compared to EffiLearner, and 92.2% (ET Avg), 15.3% (ET Median), and 12.9%
(NMU) when compared to PerfCodeGen. More importantly, while EffiLearner struggles with
correctness (achieving below 15% accuracy on many models), our method improves correctness by
up to 13.3%, demonstrating its ability to generate not only more efficient but also functionally correct
code. Overall, our approach consistently achieves substantial gains on all benchmark datasets in our
experiments, surpassing both naive decoding and prior efficiency-optimized methods, providing a
more effective solution for optimizing execution time, memory usage, and correctness simultaneously.

Computation Overhead of Each Method. Computation overhead during inference is a critical
factor for the practical deployment of efficiency-optimized methods. As shown in Table 2, our
method introduces significantly less overhead than existing inference-time scaling approaches, with
processing times that are two to three orders of magnitude lower than those of baseline methods

6

Models Perplexity
(Best-of-n)

Perplexity
(Top-p) Self-Debug EffiLearner PerfCodeGen Ours

DeepSeek-6.7b 3.08 2.51 4088.59 3212.49 4144.29 28.39
OpenCoder-8b 2.83 2.31 3887.27 3009.78 3987.53 26.79
StarCoder2-15b 5.71 4.52 6910.46 5316.53 6985.29 121.32
DeepseekCoder-v2-16b 6.34 5.02 8177.13 6242.98 8288.58 56.78
Qwen2.5-Coder-32b 11.41 9.18 21661.09 17145.45 22180.94 101.34

Table 2: The median processing time (in seconds) of each method on the EFFIBENCH dataset.

such as Self-Debug, EffiLearner, and PerfCodeGen. In contrast to these baselines—which incur
significant computational costs due to repeated and extensive execution of generated code during
inference, as well as the considerable engineering effort required to maintain real-time execution
environments—our method remains lightweight and efficient. For instance, while EffiLearner and
PerfCodeGen require several thousand seconds to refine the generated outputs from large models like
StarCoder2-15b and Qwen2.5-Coder-32b, our method completes inference in 121.32s and 101.34s,
respectively. Notably, it is expected that standard Perplexity-based decoding (the shaded region
marked in Table 2) exhibits minimal overhead, as it does not involve any additional evaluation
or optimization steps. However, among all efficiency-aware methods, our approach stands out as
significantly more practical, delivering strong performance gains without incurring the substantial
computational costs typically associated with code execution-based evaluation loops.

0 2 4 6 8 10 12
Execution Time

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Methods
Perplexity (Best-of-n)
Perplexity (Top-P)
Self-Debug
EffiLearner
PerfCodeGen
Ours

(a) EffiBench

0 2 4 6 8 10 12
Execution Time

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Methods
Perplexity (Best-of-n)
Perplexity (Top-P)
Self-Debug
EffiLearner
PerfCodeGen
Ours

(b) Mercury

0 2 4 6 8 10 12
Execution Time

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

Methods
Perplexity (Best-of-n)
Perplexity (Top-P)
Self-Debug
EffiLearner
PerfCodeGen
Ours

(c) COFFE

0 2 4 6 8 10 12
Execution Time

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

D
en

si
ty

Methods
Perplexity (Best-of-n)
Perplexity (Top-P)
Self-Debug
EffiLearner
PerfCodeGen
Ours

(d) HumanEval+
Figure 1: Execution time (ET) distribution of generated code by OpenCoder-8b across EFFIBENCH,
MERCURY, COFFE and HUMANEVAL+.

Execution Time Distributions of Generated Code. We further analyze the execution time distri-
butions of the generated code across different methods on the test tasks from various benchmarks.
This provides a more comprehensive view of execution efficiency beyond the average and median
statistics presented in Table 1. As shown in Figure 1, our method, alongside EffiLearner and
PerfCodeGen, exhibits a substantial reduction in overall execution time compared to the default
(Perplexity-based) decoding, highlighting the benefits of efficiency-aware approaches. Notably,
while refinement-based methods like Self-Debug adopt similar post-hoc correction procedures to
EffiLearner and PerfCodeGen, they do not explicitly model efficiency as an optimization objec-

7

tive. As a result, Self-Debug shows little improvement in execution efficiency, underscoring the
necessity of explicitly incorporating efficiency considerations into the generation process. Moreover,
while default Perplexity-based decoding often leads to low-efficiency code with a heavy-tailed
distribution, our efficiency-aware method concentrates the majority of the generated code within
shorter execution times, effectively reducing the occurrence of excessively slow outputs. This sug-
gests that the improvements observed in average execution time are not merely superficial artifacts of
outliers but reflect a consistent and systematic enhancement in efficiency. Furthermore, our approach
demonstrates a more concentrated and effective improvement compared to the EffiLearner and
PerfCodeGen baseline, reinforcing its advantages in optimizing execution performance.

rLLM = 0.81, rAST = 1, PP = 7.23, ET:
6.45× 10−4s.

Figure 2: OpenCoder generated solution.

rLLM = 0.43, rAST = 1, PP = 9.27, ET:
1.52× 10−3s.

Figure 3: Alternative candidate solution 1.

rLLM = 0.89, rAST = 1, PP = 9.05, ET:
1.64× 10−4s.

Figure 4: Our generated solution.

rLLM = 0.78, rAST = 1, PP = 8.57, ET:
5.97× 10−4s.

Figure 5: Alternative candidate solution 2.

4.3 Analysis Studies

Qualitative Examples. We show in Figures 2–5 a concrete example of the generated candidate
solutions for the “Median of Two Sorted Arrays” problem. Specifically, we illustrate the correspond-
ing reward values and the final execution time alongside each code snippet. As observed, the default
OpenCoder decoding prioritizes the solution with the lowest perplexity (PP), which often leads to
suboptimal efficiency. In contrast, our critique-based LLM reward (rLLM) demonstrates a strong
correlation with actual execution time, providing a more effective signal for efficiency evaluation.
While the vanilla AST-based reward (rAST) can be useful, it may not always be informative, as seen
in this case where the predefined patterns do not directly apply. To address this, we incorporate AST
analysis into the LLM critique prompts, enabling a more adaptive and expressive evaluation that
benefits from both structural insights and learned assessments.

Varying Critique LLM. We analyze the impact of using different critique LLMs within our
framework, while keeping OpenCoder-8b fixed as the target generation model. As shown in Table 3,
larger critique LLMs generally yield better overall performance—achieving lower ET, NET, and
NMU values, along with the highest correctness score of 67.73%. This result is expected, as larger
models typically encode more domain knowledge, allowing them to more effectively evaluate the
efficiency of generated code based on a deeper understanding of program structure and execution

8

Critique LLMs ET(Avg) NET(Avg) NMU Correctness

DeepSeek-6.7b 0.06 0.62 0.95 59.87%
OpenCoder-8b 0.04 0.59 0.89 64.17%
DeepseekCoder-v2-16b 0.04 0.56 0.88 66.49%
Qwen2.5-Coder-32b 0.03 0.53 0.88 67.73%

Table 3: Comparison of different critique
LLMs of our method with OpenCoder-8b as
the target generation LLM on EFFIBENCH.

Prompt Strategies NET (Median) NMU Correctness

Default (Appendix A.2) 0.73 0.91 63.89%
w/o AST (Appendix A.3) 0.75 0.94 63.03%
w/o perplexity (Appendix A.4) 0.74 0.94 63.21%
w/o AST and perplexity (Appendix A.5) 0.74 0.94 62.88%

Table 4: Comparison of varying prompting
strategies for critique LLMs on EFFIBENCH.

behavior. Nonetheless, even when smaller or architecturally different models are used as the critique
LLM, the overall trend remains consistent: our method continues to significantly outperform all
baselines across key metrics. Although absolute performance may decline slightly—particularly
in memory-related metrics—when adopting small critique models, the relative gains over default
decoding and previous approaches remain substantial. This indicates that while more powerful
critique LLMs can offer additional benefits, our method is not strictly dependent on model size or
architectural alignment, and generalizes robustly across different critique configurations.

Varying Prompting Strategies. We investigate the impact of different prompting strategies for
critique LLMs in Table 4. The results indicate only minor variations in performance, with all variants
achieving substantial improvements over the baselines. The best-performing strategy is our default
prompt (Appendix A.2), which integrates both AST analysis and perplexity, achieving the lowest
NET, lowest NMU, and highest correctness at 63.89%. Removing AST analysis (w/o AST) or
perplexity (w/o perplexity) results in slightly worse performance, while omitting both (w/o AST
and perplexity) leads to the most noticeable decline. These findings validate the reasonableness of
our default choice, suggesting that incorporating multiple perspectives—structural insights from
AST analysis and likelihood estimation via perplexity—enhances the critique LLM’s effectiveness.
Furthermore, the relatively stable results across different prompting strategies highlight the inherent
expressive power of LLMs, allowing them to adaptively balance different aspects without requiring
fragile or intensive hyperparameter tuning, This flexibility enables the critique LLM to emphasize
useful patterns while mitigating potential weaknesses in individual components, making our approach
more robust across various settings.

Reward vs. Runtime Alignment. We analyze the alignment between the LLM-derived reward
used at decoding time with real execution efficiency. Concretely, for each program i we form a
paired observation (riLLM,∆ti), where riLLM is the scalar reward assigned by the critique LLM to our
method’s final generated code, and ∆ti = tiours − tibaseline is the per-sample runtime difference relative
to the corresponding reference baseline (i.e., “Perplexity (best-of-n)”). Using differences
rather than raw times controls for program-specific difficulty and isolates efficiency changes at-
tributable to our decoding. We then compute the Pearson correlation coefficient across the set of pairs,
i.e., ρ = corr

(
{riLLM}, {∆ti}

)
, which represents the correlation between the centered, standardized

vectors of {riLLM} and {∆ti}, to quantify how closely the reward signal tracks actual performance
gains. Here, values closer to −1 indicate stronger alignment, since lower ∆ti means faster execution.
Averaged over samples from multiple datasets and models, we observe strong negative correlations:
−0.78 on EFFIBENCH, −0.69 on MERCURY, and −0.74 on COFFE, suggesting that higher LLM
rewards are generally associated with greater reductions in execution time.

5 Discussions & Limitations

Inference-time Scaling. Our approach builds on the premise that trained LLMs already possess
substantial knowledge about code efficiency and have been exposed to diverse programming patterns
during pre-training. This enables them to understand code efficiency and generate diverse solutions,
including highly optimized ones. This aligns with recent findings that inference-time scaling can be
more effective than training-time scaling (i.e., fine-tuning), as it fully utilizes the model’s pre-trained
knowledge without requiring costly retraining.

In the context of our task, pre-training corpora frequently contain recurring efficiency-related patterns
and anti-patterns that LLMs can internalize. Moreover, many online sources included in the training
data, such as developer forums and technical blogs, explicitly discuss runtime behavior or algorithmic

9

complexity alongside code examples. Consequently, models may implicitly learn correlations
between code structure and efficiency. While final runtime depends partly on hardware, the dominant
determinants of efficiency are algorithmic and structural (which can be captured by the program’s
computational graph), and can be analyzed through static code representations.

Nonetheless, inference-time scaling remains bounded by the model’s pre-existing knowledge and may
underperform in domains where such information is scarce. In these cases, fine-tuning on curated
datasets of highly optimized code could provide a complementary path to adapt the model toward
domain-specific efficiency requirements.

Practicality, Scalability, and Generality. Existing decoding strategies prioritize perplexity, which
reflects code frequency in training data but does not correlate with execution efficiency, often leading
to suboptimal results. We address this by introducing an efficiency-aware ranking mechanism,
achieving substantial improvements in execution time, memory usage, and correctness, making the
generated code more practical for real-world deployment. At the same time, our method improves
the practicability of the generation pipeline by avoiding the computational overhead of executing
code during inference, a limitation of existing efficiency-aware approaches. (See additional results
in Appendix D.2.) While invoking an LLM as a critique introduces some cost, it offers a favorable
trade-off by eliminating the need for direct execution and environment setup. Moreover, preliminary
experiments suggest potential efficiency gains by using high-temperature perplexity-based token
generation for diversity, followed by parallelized best-of-n selection with efficiency-aware rewards,
reducing inference overhead to parallel critique LLM calls on a fixed set of sequences while ensuring
efficiency-aware optimization and practical scalability.

Generality across programming languages is also an important aspect of practicality. In principle,
our method can be extended to other languages, as high-level AST patterns are often similar and the
LLM-based reward component is designed to be language-agnostic, given appropriate training. While
some engineering effort is required to adapt the AST extraction module for each target language, this
does not present a fundamental obstacle.

Finally, building on its generality, our method also demonstrates practical scalability. The overall
processing time grows approximately linearly with code length, which allows it to handle reasonably
large code snippets without a significant increase in computational cost. In more complex, multi-
file coding problems, additional engineering may be needed to enable cross-file coordination and
dependency tracking. Nevertheless, the approach remains feasible up to the model’s maximum input
capacity, indicating that its scalability is constrained primarily by the backbone model’s context size
rather than by the design of our generation pipeline.

6 Conclusion

In summary, our work enhances the practicability of code-generating LLMs by improving both
generated code efficiency and the generation pipeline. We introduce an efficiency-aware sampling
mechanism that improves execution time, memory usage, and correctness without requiring costly
code execution during inference. Additionally, our analysis of critique LLM variations and prompting
strategies demonstrates the flexibility and robustness of our approach across different settings. These
findings pave the way for more efficient and scalable LLM-based code generation, with potential for
further optimizations and broader real-world adoption.

Acknowledgments

We thank the anonymous reviewers for their valuable comments and constructive feedback, which
have significantly improved the quality of this work.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Anthropic. The Claude 3 Model Family: Opus, Sonnet, Haiku, 2024.

10

[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[4] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional AI:
Harmlessness from AI feedback. arXiv preprint arXiv:2212.08073, 2022.

[5] Boyuan Chen, Zhen Ming Jiang, Paul Matos, and Michael Lacaria. An industrial experi-
ence report on performance-aware refactoring on a database-centric web application. In 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 653–
664. IEEE, 2019.

[6] Jinfu Chen, Zishuo Ding, Yiming Tang, Mohammed Sayagh, Heng Li, Bram Adams, and
Weiyi Shang. IoPV: On inconsistent option performance variations. In Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 845–857. ACM, 2023.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[8] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E Hassan, Mohamed Nasser, and
Parminder Flora. Detecting performance anti-patterns for applications developed using object-
relational mapping. In Proceedings of the 36th International Conference on Software Engineer-
ing (ICSE), pages 1001–1012. ACM, 2014.

[9] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug. In The Twelfth International Conference on Learning Representations
(ICLR), 2024.

[10] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[11] Jonathan Cordeiro, Shayan Noei, and Ying Zou. An empirical study on the code refactoring
capability of large language models. arXiv preprint arXiv:2411.02320, 2024.

[12] Jonathan Cordeiro, Shayan Noei, and Ying Zou. Llm-driven code refactoring: Opportunities
and limitations. In 2025 IEEE/ACM Second IDE Workshop (IDE), pages 32–36. IEEE, 2025.

[13] Kayla DePalma, Izabel Miminoshvili, Chiara Henselder, Kate Moss, and Eman Abdullah
AlOmar. Exploring ChatGPT’s code refactoring capabilities: An empirical study. Expert
Systems with Applications, 249:123602, 2024.

[14] Mingzhe Du, Luu Anh Tuan, Bin Ji, Qian Liu, and See-Kiong Ng. Mercury: A code efficiency
benchmark for code large language models. Advances in Neural Information Processing
Systems, 37, 2024.

[15] Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. In Forty-first
International Conference on Machine Learning (ICML), 2024.

[16] Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation.
In Thang Luong, Alexandra Birch, Graham Neubig, and Andrew Finch, editors, Proceedings of
the First Workshop on Neural Machine Translation. Association for Computational Linguistics,
2017.

[17] Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of
LLM inference using lookahead decoding. In Forty-first International Conference on Machine
Learning (ICML), 2024.

[18] Micha Gorelick and Ian Ozsvald. High Performance Python: Practical Performant Program-
ming for Humans. O’Reilly Media, 2020.

11

[19] Wenhan Xiong Grattafiori, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron,
Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code Llama: Open
foundation models for code. arXiv preprint arXiv:2308.12950, 2023.

[20] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, YK Li, et al. DeepSeek-Coder: When the large language model meets programming –
The rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

[21] Jingxuan He and Martin Vechev. Large language models for code: Security hardening and
adversarial testing. In Proceedings of the ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), pages 1865–1879. ACM, 2023.

[22] Dong Huang, Jianbo Dai, Han Weng, Puzhen Wu, Qing Yuhao, Heming Cui, Zhijiang Guo,
and Jie Zhang. EffiLearner: Enhancing efficiency of generated code via self-optimization. In
Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024.

[23] Dong Huang, Yuhao Qing, Weiyi Shang, Heming Cui, and M. Zhang Jie. EffiBench: Bench-
marking the efficiency of automatically generated code. In Thirty-eighth Annual Conference on
Neural Information Processing Systems (NeurIPS), 2024.

[24] Siming Huang, Tianhao Cheng, Jason Klein Liu, Weidi Xu, Jiaran Hao, Liuyihan Song, Yang
Xu, Jian Yang, Jiaheng Liu, Chenchen Zhang, Linzheng Chai, et al. OpenCoder: The open
cookbook for top-tier code large language models. In Proceedings of the 63rd Annual Meeting
of the Association for Computational Linguistics. Association for Computational Linguistics,
2025.

[25] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-
jun Zhang, Bowen Yu, Keming Lu, et al. Qwen2.5-Coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

[26] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Understanding and
detecting real-world performance bugs. ACM SIGPLAN Notices, 47(6):77–88, 2012.

[27] Raphaël Khoury, Anderson R. Avila, Jacob Brunelle, and Baba Mamadou Camara. How secure
is code generated by ChatGPT? In IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 2445–2451. IEEE, 2023.

[28] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, Joao
Monteiro, Oleh Shliazhko, Nicolas Gontier, et al. StarCoder: May the source be with you!
Transactions on Machine Learning Research (TMLR), 2023.

[29] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with AlphaCode. Science, 378(6624):1092–1097, 2022.

[30] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The
Twelfth International Conference on Learning Representations (ICLR), 2024.

[31] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
ChatGPT really correct? Rigorous evaluation of large language models for code generation. In
Thirty-seventh Annual Conference on Neural Information Processing Systems (NeurIPS), 2023.

[32] Zhijie Liu, Yutian Tang, Xiapu Luo, Yuming Zhou, and Liang Feng Zhang. No need to lift a
finger anymore? Assessing the quality of code generation by ChatGPT. IEEE Transactions on
Software Engineering, 50(6):1548–1584, 2024.

[33] Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291,
2023.

12

[34] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. StarCoder 2 and The
Stack v2: The next generation. arXiv preprint arXiv:2402.19173, 2024.

[35] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-Refine: Iterative refinement
with self-feedback. In Thirty-seventh Annual Conference on Neural Information Processing
Systems (NeurIPS), 2023.

[36] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. CodeGen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations (ICLR), 2023.

[37] Changan Niu, Ting Zhang, Chuanyi Li, Bin Luo, and Vincent Ng. On evaluating the efficiency
of source code generated by LLMs. In Proceedings of the 2024 IEEE/ACM First International
Conference on AI Foundation Models and Software Engineering (FORGE), pages 103–107.
ACM, 2024.

[38] Yun Peng, Akhilesh Deepak Gotmare, Caiming Xiong, Silvio Savarese, Michael Lyu, and
Doyen Sahoo. Perfcodegen: Improving performance of llm generated code with execution
feedback. In Proceedings of the 2025 IEEE/ACM Second International Conference on AI
Foundation Models and Software Engineering (FORGE), pages 1–13. IEEE, 2025.

[39] Yun Peng, Jun Wan, Yichen Li, and Xiaoxue Ren. COFFE: A code efficiency benchmark for
code generation. arXiv preprint arXiv:2502.02827, 2025.

[40] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. Do users write more insecure
code with AI assistants? In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 2785–2799. ACM, 2023.

[41] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring. PeASS: A tool for identifying
performance changes at code level. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 1146–1149. IEEE, 2019.

[42] William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022.

[43] Jieke Shi, Zhou Yang, and David Lo. Efficient and green large language models for software
engineering: Vision and the road ahead. ACM Transactions on Software Engineering and
Methodology, 34(5):1–22, 2024.

[44] Alexander G. Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob R. Gardner, Yiming
Yang, Milad Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir
Yazdanbakhsh. Learning performance-improving code edits. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

[45] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute op-
timally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

[46] Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang,
and Jun Wang. Alphazero-like tree-search can guide large language model decoding and training.
In Forty-first International Conference on Machine Learning (ICML), 2024.

[47] Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and
Zhifang Sui. Math-Shepherd: A label-free step-by-step verifier for LLMs in mathematical
reasoning. arXiv preprint arXiv:2312.08935, 2023.

[48] Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu,
and Zhifang Sui. Math-Shepherd: Verify and reinforce LLMs step-by-step without human
annotations. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 2024.

13

[49] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. CodeT5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP). Association
for Computational Linguistics, 2021.

[50] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Thirty-Sixth Annual Conference on Neural Information Processing Systems (NeurIPS), 2022.

[51] Lingmei Weng, Yigong Hu, Peng Huang, Jason Nieh, and Junfeng Yang. Effective performance
issue diagnosis with value-assisted cost profiling. In Proceedings of the Eighteenth European
Conference on Computer Systems (EuroSys), pages 1–17. ACM, 2023.

[52] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Thirty-
eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024.

[53] Yao Zhao, Zhitian Xie, Chen Liang, Chenyi Zhuang, and Jinjie Gu. Lookahead: An inference
acceleration framework for large language model with lossless generation accuracy. In Proceed-
ings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),
pages 6344–6355. ACM, 2024.

14

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly describe our work’s contribution and scope in the abstract and
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

15

Justification: We have a section to discuss the limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not conduct theoretical analysis.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.

16

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:We provide the implementation at the following link: https://github.com/
hitum-dev/Fastdecoder.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

17

https://github.com/hitum-dev/Fastdecoder
https://github.com/hitum-dev/Fastdecoder
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details in the Experiments section and the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide details in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

18

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include a discussion section in the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve misuse-related research.
Guidelines:

• The answer NA means that the paper poses no such risks.

19

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the source of the open-sourced models we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We include the implementation details in the Appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing experiments or experiments with
human subjects.

20

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve the described research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We investigate the applications of LLMs in code generation research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Appendix

These supplementary materials include the prompt templates (§A), the details of the static AST
patterns (§B), the implementation details (§C), and additional results (§D). The source code is
available at the following link: https://github.com/hitum-dev/Fastdecoder.

A Prompt Templates

A.1 Generation LLM

You are a software engineer with Python expertise, and your task is to complete the code with the
given prefix. Your generated code should be the optimal in time efficiency and memory usage.

During each generation step, you need to rethink step by step whether your generation is optimal
in time efficiency. You need to self-evaluate whether the generated code is the optimal in time
efficiency, if it is not optimal, you need to reflection and regenerate it.

There are test examples included in the prompt and you need to analyze it. The completed code
needs to be included in a code block.

{
task

}

A.2 Critique LLM (default)

{
code snippet: “code“

}
Please rate the above code snippet based on the following performance-related criteria:

1. Time Complexity (Big-O Notation): Assess the time complexity of the code and assign a
score reflecting its efficiency in terms of how the time complexity scales with input size.
A score closer to 1 indicates highly efficient code (e.g., O(logn), O(n)), while a score
closer to 0 indicates inefficient code (e.g., O(n2), O(2n)).

2. Space Complexity (Big-O Notation): Evaluate the space complexity of the code, con-
sidering memory usage for variables and data structures. A score closer to 1 represents
minimal space usage (e.g., O(1), O(n)), while a score closer to 0 reflects high memory
consumption (e.g., O(n)).

3. Running Time Performance: Provide an estimate of the expected running time for typical
input sizes (small, medium, large). Assign a score between 0 and 1 based on the speed of
execution, with 1 being the fastest and 0 being the slowest.

4. Memory Usage Efficiency: Evaluate how effectively the code uses memory resources,
including variable allocations and data structures. A score closer to 1 indicates optimal
memory usage, while a score closer to 0 indicates inefficiency or excessive memory
consumption.

5. AST Analysis for Performance: Perform an Abstract Syntax Tree (AST) analysis to assess
the efficiency of the code’s structure and operations. The analysis should consider factors
like loop depth, redundant expressions, and operator usage. Provide a performance score
based on how well-optimized the AST is for execution. A score closer to 1 represents an
optimized AST structure, while a score closer to 0 indicates a structure with potential
inefficiencies.

6. If the code contains syntax error, the final score is 0.
7. The perplexity of the code snippet is as low as better.

Output: A single numerical value between 0 and 1 that represents the overall performance score
based on the above criteria. No additional text or analysis should be provided. Just the final
performance score.

22

https://github.com/hitum-dev/Fastdecoder

A.3 Critique LLM (without AST){
code snippet: “code“

}
Please rate the above code snippet based on the following performance-related criteria:

1. Time Complexity (Big-O Notation): Assess the time complexity of the code and assign a
score reflecting its efficiency in terms of how the time complexity scales with input size.
A score closer to 1 indicates highly efficient code (e.g., O(logn), O(n)), while a score
closer to 0 indicates inefficient code (e.g., O(n2), O(2n)).

2. Space Complexity (Big-O Notation): Evaluate the space complexity of the code, con-
sidering memory usage for variables and data structures. A score closer to 1 represents
minimal space usage (e.g., O(1), O(n)), while a score closer to 0 reflects high memory
consumption (e.g., O(n)).

3. Running Time Performance: Provide an estimate of the expected running time for typical
input sizes (small, medium, large). Assign a score between 0 and 1 based on the speed of
execution, with 1 being the fastest and 0 being the slowest.

4. Memory Usage Efficiency: Evaluate how effectively the code uses memory resources,
including variable allocations and data structures. A score closer to 1 indicates optimal
memory usage, while a score closer to 0 indicates inefficiency or excessive memory
consumption.

5. If the code contains syntax error, the final score is 0.
6. The perplexity of the code snippet is as low as better.

Output: A single numerical value between 0 and 1 that represents the overall performance score
based on the above criteria. No additional text or analysis should be provided. Just the final
performance score.

A.4 Critique LLM (without perplexity){
code snippet: “code“

}
Please rate the above code snippet based on the following performance-related criteria:

1. Time Complexity (Big-O Notation): Assess the time complexity of the code and assign a
score reflecting its efficiency in terms of how the time complexity scales with input size.
A score closer to 1 indicates highly efficient code (e.g., O(logn), O(n)), while a score
closer to 0 indicates inefficient code (e.g., O(n2), O(2n)).

2. Space Complexity (Big-O Notation): Evaluate the space complexity of the code, con-
sidering memory usage for variables and data structures. A score closer to 1 represents
minimal space usage (e.g., O(1), O(n)), while a score closer to 0 reflects high memory
consumption (e.g., O(n)).

3. Running Time Performance: Provide an estimate of the expected running time for typical
input sizes (small, medium, large). Assign a score between 0 and 1 based on the speed of
execution, with 1 being the fastest and 0 being the slowest.

4. Memory Usage Efficiency: Evaluate how effectively the code uses memory resources,
including variable allocations and data structures. A score closer to 1 indicates optimal
memory usage, while a score closer to 0 indicates inefficiency or excessive memory
consumption.

5. AST Analysis for Performance: Perform an Abstract Syntax Tree (AST) analysis to assess
the efficiency of the code’s structure and operations. The analysis should consider factors
like loop depth, redundant expressions, and operator usage. Provide a performance score
based on how well-optimized the AST is for execution. A score closer to 1 represents an
optimized AST structure, while a score closer to 0 indicates a structure with potential
inefficiencies.

6. If the code contains syntax error, the final score is 0.
Output: A single numerical value between 0 and 1 that represents the overall performance score
based on the above criteria. No additional text or analysis should be provided. Just the final
performance score.

23

A.5 Critique LLM (without AST, without perplexity)

{
code snippet: “code“

}
Please rate the above code snippet based on the following performance-related criteria:

1. Time Complexity (Big-O Notation): Assess the time complexity of the code and assign a
score reflecting its efficiency in terms of how the time complexity scales with input size.
A score closer to 1 indicates highly efficient code (e.g., O(logn), O(n)), while a score
closer to 0 indicates inefficient code (e.g., O(n2), O(2n)).

2. Space Complexity (Big-O Notation): Evaluate the space complexity of the code, con-
sidering memory usage for variables and data structures. A score closer to 1 represents
minimal space usage (e.g., O(1), O(n)), while a score closer to 0 reflects high memory
consumption (e.g., O(n)).

3. Running Time Performance: Provide an estimate of the expected running time for typical
input sizes (small, medium, large). Assign a score between 0 and 1 based on the speed of
execution, with 1 being the fastest and 0 being the slowest.

4. Memory Usage Efficiency: Evaluate how effectively the code uses memory resources,
including variable allocations and data structures. A score closer to 1 indicates optimal
memory usage, while a score closer to 0 indicates inefficiency or excessive memory
consumption.

5. If the code contains syntax error, the final score is 0.
Output: A single numerical value between 0 and 1 that represents the overall performance score
based on the above criteria. No additional text or analysis should be provided. Just the final
performance score.

B Static AST Patterns

1. Nested Loops: The program detects nested loops, which are a potential source of inefficiency
due to increased time complexity.

1. Detect Nested Loops
nested_loops_penalty = 10 # Larger penalty for nested loops
for node in ast.walk(tree):

if isinstance(node, ast.For) or isinstance(node, ast.While):
for other_node in ast.walk(tree):

if isinstance(other_node, (ast.For, ast.While)) and node != other_node:
if isinstance(node, ast.For) and isinstance(other_node, ast.For):

score -= nested_loops_penalty

2. Redundant Function Calls (Inside Loops): Checks for repeated calls to functions like
expensive_function within loops and suggests moving them outside the loop.

2. Detect Redundant Function Calls Inside Loops
redundant_function_calls_penalty = 8 # Moderate penalty for redundant calls
for node in ast.walk(tree):

if isinstance(node, (ast.For, ast.While)):
for stmt in node.body:

if isinstance(stmt, ast.Expr) and isinstance(stmt.value, ast.Call):
func_name=stmt.value.func.id if isinstance(stmt.value.func,ast.Name) else ""
if func_name == "expensive_function":

score -= redundant_function_calls_penalty

3. Redundant Function Calls (Memorization): Flags redundant calls to functions with
identical arguments and suggests memorization.

3. Detect Redundant Function Calls (Memoization Opportunities)
redundant_function_calls_memoization_penalty = 5
function_calls = {}
for node in ast.walk(tree):

if isinstance(node, ast.Expr) and isinstance(node.value, ast.Call):
func_name = node.value.func.id if isinstance(node.value.func, ast.Name) else ""
if func_name == "expensive_function":

if func_name not in function_calls:
function_calls[func_name] = set()

args = tuple(ast.dump(arg) for arg in node.value.args)
if args in function_calls[func_name]:

score -= redundant_function_calls_memoization_penalty

24

function_calls[func_name].add(args)

4. Inefficient Use of Data Structures: Identifies inefficient data structures, like using a list for
membership testing.

4. Detect Inefficient Use of Data Structures (list for membership test)
inefficient_data_structure_penalty = 6
for node in ast.walk(tree):

if isinstance(node, ast.Expr) and isinstance(node.value, ast.Compare):
if isinstance(node.value.left,ast.Name) and isinstance(node.value.comparators[0],ast.List):

score -= inefficient_data_structure_penalty

5. Excessive Function Calls in Loops: Detects function calls in loops that might be expensive
and suggests optimization.

5. Detect Excessive Function Calls in Loops
excessive_function_calls_penalty = 7
for node in ast.walk(tree):

if isinstance(node, (ast.For, ast.While)):
for stmt in node.body:

if isinstance(stmt, ast.Expr) and isinstance(stmt.value, ast.Call):
if isinstance(stmt.value.func, ast.Name):

if stmt.value.func.id in ["expensive_function", "some_expensive_function"]:
score -= excessive_function_calls_penalty

6. Unnecessary Recursion: Finds unnecessary recursion and suggests a more efficient iterative
approach.

6. Detect Unnecessary Recursion
unnecessary_recursion_penalty = 12
for node in ast.walk(tree):

if isinstance(node, ast.FunctionDef):
if any(isinstance(n, ast.Call) and isinstance(n.func, ast.Name) \

and n.func.id == node.name for n in ast.walk(node)):
score -= unnecessary_recursion_penalty

7. Deeply Nested Conditional Statements: Warns when the conditional logic is too deeply
nested, which can affect readability and efficiency.

7. Detect Deeply Nested Conditional Statements
deeply_nested_conditions_penalty = 4
for node in ast.walk(tree):

if isinstance(node, ast.If):
depth = 0
parent = node
while isinstance(parent, ast.If):

depth += 1
parent = parent.parent if hasattr(parent, 'parent') else None

if depth > 3:
score -= deeply_nested_conditions_penalty

8. Inefficient String Concatenation: Detects inefficient string concatenation inside loops and
suggests using the join() method.

8. Detect Inefficient String Concatenation
inefficient_string_concatenation_penalty = 6
for node in ast.walk(tree):

if isinstance(node, ast.For):
for stmt in node.body:

if isinstance(stmt, ast.Expr) and isinstance(stmt.value, ast.BinOp) \
and isinstance(stmt.value.op, ast.Add):
if isinstance(stmt.value.left,ast.Str) and isinstance(stmt.value.right,ast.Str):

score -= inefficient_string_concatenation_penalty

9. Inefficient File/Database Operations: Flags file and database operations inside loops,
which could be optimized by batching or caching.

9. Detect Inefficient File/Database Operations
inefficient_io_operations_penalty = 10
for node in ast.walk(tree):

if isinstance(node, ast.With):
for stmt in node.body:

if isinstance(stmt, ast.Expr) and isinstance(stmt.value, ast.Call):
func_name = stmt.value.func.id if isinstance(stmt.value.func, ast.Name) else ""
if func_name in ["open", "execute", "query"]:

score -= inefficient_io_operations_penalty

25

10. Large Functions: Identifies large functions that could benefit from refactoring for clarity
and performance.

10. Detect Large Functions (Refactoring Opportunity)
large_function_penalty = 8
for node in ast.walk(tree):

if isinstance(node, ast.FunctionDef):
function_size = len(node.body)
if function_size > 20: # Arbitrary threshold for large functions

score -= large_function_penalty

11. Inefficient Loop Terminology: Identifies inefficient loop constructs like
range(len(data)).

11. Detect Inefficient Loop Terminology (e.g., range(len(data)) vs for item in data)
inefficient_loop_terminology_penalty = 6
for node in ast.walk(tree):

if isinstance(node, ast.For):
if isinstance(node.iter, ast.Call) and isinstance(node.iter.func, ast.Name) \

and node.iter.func.id == "range":
if isinstance(node.iter.args[0], ast.Call) \

and isinstance(node.iter.args[0].func,ast.Name) and node.iter.args[0].func.id=="len":
score -= inefficient_loop_terminology_penalty

12. Potential Syntax Errors: Identifies syntax errors or incomplete code.

try:
tree = ast.parse(code)

except SyntaxError as e:
issues.append(f"SyntaxError detected:{e}. Code might be incomplete. Analyzing partial AST.")
score -= 20 # Penalize incomplete code

C Implementation Details

We employ the official open-source implementations of EffiLearner8 and PerfCodeGen9 for
evaluation. Since no official implementation is available for Self-Debug, we re-implemented it
based on the descriptions provided in the original paper. For the standard vanilla Perplexity-based
decoding, we evaluate commonly used sampling strategies, including top-p and best-of-n for a fair
and stable comparison. We set a maximum limit of new tokens to 256 to enforce a stopping criterion
for token generation. The temperature is set to 1 by default. Furthermore, we use regular expressions
to extract the code portion from the model’s response. If multiple code implementations are contained,
we only extract and test the first one.

Our method is implemented using beam search and best-of-n selection, with a default beam width
b = 1 and number of trials n = 50. Table 5 summarizes the default hyperparameter settings for
the different configurations of our method used in the ablation study. The default configuration,
corresponding to the main paper results, uses the composite scoring function α·rAST+β ·rLLM+γ ·PP
with b = 1 and n = 50.

α β γ

α · rAST + β · PP (b = 1, n = 50) 1.2 0.4 –
α · rLLM + β · PP (b = 1, n = 50) 1.0 0.4 –
α · rAST + β · rLLM + γ · PP (b = 1, n = 50) 1.3 1 0.4
α · rAST + β · PP (b = 50, n = 1) 1.5 0.5 –
α · rLLM + β · PP (b = 50, n = 1) 0.9 0.5 –
α · rAST + β · LLM (b = 50, n = 1) 1.2 0.8 –

Table 5: Weight Configuration for Different Reward Functions.

8 https://github.com/huangd1999/EffiLearner
9 https://github.com/SalesforceAIResearch/perfcodege

26

https://github.com/huangd1999/EffiLearner
https://github.com/SalesforceAIResearch/perfcodege

D Additional Results

D.1 Experiments on HumanEval+ and COFFE dataset

We present the detailed quantitative results in Table 6, comparing different methods on the HU-
MANEVAL+ and COFFE datasets. This serves as a supplementary analysis to Table 1 in the main
paper.

Datasets Models Methods ET(Avg)↓ ET(Median)↓ NET(Avg)↓ NET(Median)↓ NMU↓ Correctness↑

HumanEval+

DeepSeek-6.7b

Perplexity (Best-of-n) 1.39 1.26 0.89 0.85 1.25 49.89%
Perplexity (Top-p) 1.44 1.26 1.06 0.86 1.15 50.12%
Self-Debug 0.73 1.20 0.89 0.95 1.17 54.76%
EffiLearner 0.64 1.05 0.75 0.75 1.01 13.15%
PerfCodeGen 0.72 0.84 0.73 0.72 0.97 55.81%
Ours 0.05 0.82 0.63 0.62 0.91 62.20%

CodeLlama-7b

Perplexity (Best-of-n) 2.51 2.38 2.02 1.96 1.15 48.77%
Perplexity (Top-p) 2.55 2.41 2.14 1.94 1.13 47.95%
Self-Debug 2.81 2.25 1.96 1.02 1.12 52.83%
EffiLearner 1.70 1.10 1.81 1.80 1.06 15.94%
PerfCodeGen 1.78 1.91 1.79 1.75 1.04 54.29%
Ours 1.54 1.89 1.71 1.68 0.95 60.37%

OpenCoder-8b

Perplexity (Best-of-n) 1.33 1.21 0.83 0.81 1.18 51.72%
Perplexity (Top-p) 1.37 1.23 0.98 0.82 1.11 52.04%
Self-Debug 0.69 1.12 0.85 0.91 1.09 56.94%
EffiLearner 0.60 0.98 0.68 0.70 0.95 11.08%
PerfCodeGen 0.68 0.81 0.70 0.68 0.94 58.02%
Ours 0.04 0.75 0.59 0.60 0.87 64.89%

CodeLlama-13b

Perplexity (Best-of-n) 1.65 1.33 0.96 0.90 1.31 48.12%
Perplexity (Top-p) 1.50 1.34 1.10 0.91 1.20 48.39%
Self-Debug 0.78 1.22 0.93 0.99 1.19 53.41%
EffiLearner 0.68 1.08 0.79 0.78 1.03 14.87%
PerfCodeGen 0.75 0.89 0.77 0.73 1.01 54.92%
Ours 0.17 0.53 0.44 0.51 0.93 60.08%

StarCoder2-15b

Perplexity (Best-of-n) 1.30 1.18 0.82 0.80 1.15 52.46%
Perplexity (Top-p) 1.35 1.20 0.95 0.83 1.08 52.71%
Self-Debug 0.70 1.10 0.84 0.89 1.06 57.12%
EffiLearner 0.61 0.96 0.66 0.69 0.93 10.58%
PerfCodeGen 0.66 0.79 0.69 0.67 0.92 58.94%
Ours 0.03 0.73 0.58 0.59 0.86 65.31%

DeepseekCoder-v2-16b

Perplexity (Best-of-n) 1.21 1.09 0.76 0.74 1.04 54.31%
Perplexity (Top-p) 1.26 1.11 0.87 0.78 0.99 54.89%
Self-Debug 0.65 1.02 0.78 0.84 1.00 59.36%
EffiLearner 0.55 0.91 0.62 0.64 0.89 9.62%
PerfCodeGen 0.61 0.75 0.65 0.63 0.88 61.24%
Ours 0.02 0.67 0.51 0.56 0.82 68.47%

Qwen2.5-Coder-32b

Perplexity (Best-of-n) 1.10 0.98 0.68 0.66 0.96 56.78%
Perplexity (Top-p) 1.14 1.01 0.79 0.70 0.91 57.25%
Self-Debug 0.59 0.96 0.71 0.79 0.94 61.58%
EffiLearner 0.49 0.85 0.58 0.60 0.84 8.21%
PerfCodeGen 0.56 0.71 0.60 0.58 0.83 63.45%
Ours 0.01 0.61 0.47 0.52 0.78 69.83%

COFFE

DeepSeek-6.7b

Perplexity (Best-of-n) 2.15 2.31 1.64 1.78 1.28 40.12%
Perplexity (Top-p) 2.08 2.22 1.55 1.63 1.24 41.75%
Self-Debug 2.26 2.33 1.72 1.84 1.21 43.19%
EffiLearner 1.92 2.05 1.49 1.53 1.10 11.34%
PerfCodeGen 1.75 1.89 1.38 1.45 1.06 44.66%
Ours 0.18 1.69 1.21 1.30 0.91 47.90%

OpenCoder-8b

Perplexity (Best-of-n) 1.96 2.08 1.48 1.62 1.18 41.88%
Perplexity (Top-p) 1.91 2.03 1.39 1.55 1.13 43.50%
Self-Debug 2.14 2.26 1.63 1.75 1.16 44.95%
EffiLearner 1.83 1.96 1.35 1.40 1.08 10.97%
PerfCodeGen 1.69 1.81 1.32 1.39 1.03 46.22%
Ours 0.17 1.60 1.15 1.22 0.88 48.77%

StarCoder2-15b

Perplexity (Best-of-n) 2.01 2.18 1.51 1.67 1.22 39.21%
Perplexity (Top-p) 1.98 2.14 1.44 1.58 1.17 40.56%
Self-Debug 2.20 2.30 1.69 1.80 1.19 42.37%
EffiLearner 1.78 1.93 1.36 1.41 1.05 9.95%
PerfCodeGen 1.66 1.77 1.29 1.34 1.00 43.66%
Ours 0.16 1.57 1.10 1.18 0.86 46.93%

DeepseekCoder-v2-16b

Perplexity (Best-of-n) 2.29 2.42 1.70 1.88 1.29 37.73%
Perplexity (Top-p) 2.20 2.35 1.62 1.76 1.25 39.00%
Self-Debug 2.34 2.49 1.79 1.92 1.22 40.84%
EffiLearner 1.94 2.09 1.45 1.52 1.12 10.11%
PerfCodeGen 1.82 1.94 1.39 1.46 1.06 42.11%
Ours 0.19 1.65 1.23 1.29 0.90 45.88%

Qwen2.5-Coder-32b

Perplexity (Best-of-n) 2.42 2.55 1.83 1.94 1.31 36.27%
Perplexity (Top-p) 2.37 2.49 1.76 1.86 1.27 38.03%
Self-Debug 2.46 2.59 1.87 1.95 1.24 39.96%
EffiLearner 2.03 2.15 1.53 1.60 1.14 10.42%
PerfCodeGen 1.91 2.01 1.43 1.50 1.08 41.02%
Ours 0.20 1.70 1.28 1.35 0.91 44.66%

Table 6: Comparison of the generated code efficiency on HUMANEVAL+ and COFFE. Methods that
explicitly optimize efficiency are shaded; best results are in bold.

27

D.2 Additional Results on Method Processing Time

To further support the findings presented in the main paper, we report the median processing time
during the decoding phase for each method on the Mercury, HumanEval+, and COFFE datasets in
Tables 7–9. These results serve as a supplement to Table 2 in the main paper.

Consistent with our earlier findings, our method demonstrates a significant advantage in decoding
efficiency compared to baseline methods specifically designed to optimize the generated code
beyond the perplexity, e.g., Self-Debug, EffiLearner and PerfCodeGen. These baselines achieve
improved runtime performance or correctness in the generated outputs, but do so at the expense of
substantially higher decoding latency—in some cases, one to two orders of magnitude slower than
our method. In contrast, our approach achieves superior code efficiency, competitive or superior
functional correctness, while maintaining fast generation speeds. It is worth noting that the vanilla
baselines not explicitly optimized for code efficiency (i.e., Perplexity) remain faster, but they do not
offer the same runtime benefits in the generated code as our approach.

Models Perplexity
(Best-of-n)

Perplexity
(Top-p) Self-Debug EffiLearner PerfCodeGen Ours

DeepSeek-6.7b 2.89 2.22 3998.65 3555.88 3979.42 25.17
OpenCoder-8b 2.91 2.05 4117.52 4242.41 4884.11 23.36
StarCoder2-15b 6.06 5.13 7111.11 5989.32 7373.07 153.32
DeepseekCoder-v2-16b 6.27 5.84 7215.69 6004.49 7517.46 65.59
Qwen2.5-Coder-32b 13.33 11.03 25543.87 18787.55 20089.51 115.58

Table 7: The median processing time (in seconds) of each method on the MERCURY dataset.

Models Perplexity
(Best-of-n)

Perplexity
(Top-p) Self-Debug EffiLearner PerfCodeGen Ours

DeepSeek-6.7b 3.18 2.45 4212.84 3763.19 4189.66 27.14
OpenCoder-8b 3.21 2.28 4328.75 4463.52 5078.94 25.36
StarCoder2-15b 6.61 5.52 7358.99 6224.08 7613.42 159.47
DeepseekCoder-v2-16b 6.68 6.21 7432.77 6230.55 7735.28 69.18
Qwen2.5-Coder-32b 14.02 11.59 26438.73 19420.86 20833.11 121.46

Table 8: The median processing time (in seconds) of each method on the HUMANEVAL+ dataset.

Models Perplexity
(Best-of-n)

Perplexity
(Top-p) Self-Debug EffiLearner PerfCodeGen Ours

DeepSeek-6.7b 2.74 2.08 3895.42 3450.31 3870.15 24.38
OpenCoder-8b 2.78 1.95 4012.67 4129.84 4775.33 22.41
StarCoder2-15b 5.83 4.90 6982.76 5855.24 7232.58 149.11
DeepseekCoder-v2-16b 6.01 5.60 7099.28 5883.20 7400.38 63.45
Qwen2.5-Coder-32b 12.95 10.67 25032.15 18345.77 19675.28 112.76

Table 9: The median processing time (in seconds) of each method on the COFFE dataset.

D.3 Hyperparameter Tuning

As part of our preliminary study, we performed hyperparameter tuning to determine effective configu-
rations for sampling strategies in code generation.

This tuning was performed using the CodeLlama-7B-Instruct-HF and CodeLlama-13B-Instruct-HF
models on the HumanEval+ dataset. The results of these experiments, detailing the average execution
time (ET) of generated code under various hyperparameter settings, are presented in Table 10.

D.4 Impact of Different Critique LLMs

We present the detailed quantitative results of varying critique LLMs in Table 11. This serves as a
supplementary analysis to Table 3 in the main paper.

28

α β γ CodeLlama-7b-Instruct-HF CodeLlama-13b-Instruct-HF

1 1 0.5 1.61 0.21
1.3 1 0.5 1.55 0.19
1.3 1 0.4 1.54 0.17
1.5 1 0.5 1.49 0.19
1.5 0.7 0.3 1.56 0.18

Table 10: The ET (Avg) of the generated code on HUMANEVAL+ dataset across different settings.

Critique LLMs ET (Avg) ET (Median) NET (Avg) NET (Median) NMU Correctness

DeepSeek-6.7b 0.04 0.92 0.66 0.63 1.42 63.89%
CodeLlama-7b 0.04 0.97 0.68 0.66 1.22 61.13%
OpenCoder-8b 0.04 0.86 0.62 0.59 0.89 64.17%
DeepseekCoder-v2-16b 0.04 0.85 0.61 0.59 0.92 64.79%
Qwen2.5-Coder-32b 0.04 0.83 0.60 0.58 0.88 65.02%

Table 11: More metrics on the impact of different critique LLMs of our method with OpenCoder-8b
as the target generation LLM on EFFIBENCH.

D.5 Impact of Intermediate Per-statement Selection

We present additional results comparing two variants: one that performs selection only at the end using
standard perplexity-driven token generation during intermediate decoding (“End-Selection”), and
our default setting that applies selection after every statement (“Ours”). The results in Table 12 show
that our method consistently outperforms “End-Selection”, suggesting that intermediate feedback
more effectively guides generation and promotes greater diversity in the outputs. We hypothesize
that applying the reward at the statement level (as the default of our method) provides fine-grained
control during decoding, helping the model better explore its learned code manifold and construct
efficient solutions incrementally, rather than relying solely on post hoc refinement.

Models Methods ET(Avg) ↓ Correctness ↑

DeepSeek-6.7b End-Selection 0.43 33.79%
Ours 0.12 34.23%

OpenCoder-8b End-Selection 1.12 31.19%
Ours 0.13 32.88%

StarCoder2-15b-instruct End-Selection 0.78 33.15%
Ours 0.09 37.02%

DeepseekCoder-v2-16b End-Selection 1.08 30.03%
Ours 0.11 35.01%

Qwen2.5-33b End-Selection 0.79 30.08%
Ours 0.10 33.77%

Table 12: Comparison between End-Selection and Ours across different models on MERCURY.

D.6 Impact of Different Combinations of Configuration Components

We further investigate how different combinations of configuration components influence the ef-
ficiency of generated code across the COFFE and HUMANEVAL+ benchmarks. Figures 6 and 7
present the results. Notably, while individual components vary in their contributions, combining all
different rewards generally yields the most effective outcomes in terms of code efficiency. Among
the components, the AST reward appears to contribute the least when used in isolation.

29

OpenCoder-8b DeepSeek-6.7b CodeLlama-7b
Models

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
or

re
ct

ne
ss

rLLM (b = 1, n = 50)
rAST + PP (b = 1, n = 50)
rLLM + PP (b = 1, n = 50)
rLLM + rAST + PP (b = 1, n = 50)

(a) Correctness

OpenCoder-8b DeepSeek-6.7b CodeLlama-7b
Models

0.0

0.5

1.0

1.5

2.0

2.5

E
T

(A
V

G
)

rLLM (b = 1, n = 50)
rAST + PP (b = 1, n = 50)
rLLM + PP (b = 1, n = 50)
rLLM + rAST + PP (b = 1, n = 50)

(b) ET (Avg)

OpenCoder-8b DeepSeek-6.7b CodeLlama-7b
Models

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
E

T
(A

V
G

)

rLLM (b = 1, n = 50)
rAST + PP (b = 1, n = 50)
rLLM + PP (b = 1, n = 50)
rLLM + rAST + PP (b = 1, n = 50)

(c) NET (AVG)

OpenCoder-8b DeepSeek-6.7b CodeLlama-7b
Models

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
M

U

rLLM (b = 1, n = 50)
rAST + PP (b = 1, n = 50)
rLLM + PP (b = 1, n = 50)
rLLM + rAST + PP (b = 1, n = 50)

(d) NMU

Figure 6: Comparison across different configurations on HUMANEVAL+ with OpenCoder-8B as fθ.

OpenCoder-8b DeepSeek-6.7b CodeLlama-7b
Models

0.0

0.1

0.2

0.3

0.4

0.5

C
or

re
ct

ne
ss

rLLM (b = 1, n = 50)
rAST + PP (b = 1, n = 50)
rLLM + PP (b = 1, n = 50)
rLLM + rAST + PP (b = 1, n = 50)

(a) Correctness

OpenCoder-8b DeepSeek-6.7b CodeLlama-7b
Models

0.0

0.5

1.0

1.5

2.0

2.5

E
T

(A
V

G
)

rLLM (b = 1, n = 50)
rAST + PP (b = 1, n = 50)
rLLM + PP (b = 1, n = 50)
rLLM + rAST + PP (b = 1, n = 50)

(b) ET (Avg)

OpenCoder-8b DeepSeek-6.7b CodeLlama-7b
Models

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
E

T
(A

V
G

)

rLLM (b = 1, n = 50)
rAST + PP (b = 1, n = 50)
rLLM + PP (b = 1, n = 50)
rLLM + rAST + PP (b = 1, n = 50)

(c) NET (AVG)

OpenCoder-8b DeepSeek-6.7b CodeLlama-7b
Models

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
M

U

rLLM (b = 1, n = 50)
rAST + PP (b = 1, n = 50)
rLLM + PP (b = 1, n = 50)
rLLM + rAST + PP (b = 1, n = 50)

(d) NMU

Figure 7: Comparison across different configurations on COFFE with OpenCoder-8B as fθ.

30

	Introduction
	Related Work
	Method
	Efficiency-Aware Critique for Decoding
	Diverse Candidate Exploration

	Experiments
	Setup
	Comparison to Baselines
	Analysis Studies

	Discussions & Limitations
	Conclusion
	Prompt Templates
	Generation LLM
	Critique LLM (default)
	Critique LLM (without AST)
	Critique LLM (without perplexity)
	Critique LLM (without AST, without perplexity)

	Static AST Patterns
	Implementation Details
	Additional Results
	Experiments on HumanEval+ and COFFE dataset
	Additional Results on Method Processing Time
	Hyperparameter Tuning
	Impact of Different Critique LLMs
	Impact of Intermediate Per-statement Selection
	Impact of Different Combinations of Configuration Components

