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ABSTRACT

Machine-learned safety-critical systems need to be self-aware and reliably know
their unknowns in the open-world. This is often explored through the lens of
anomaly/outlier detection or out-of-distribution modeling. One popular formula-
tion is that of open-set classification, where an image classifier trained for 1-of-K
classes should also recognize images belonging to a (K + 1)th “other” class, not
present in the training set. Recent work has shown that, somewhat surprisingly,
most if not all existing open-world methods do not work well on high-dimensional
open-world images (Shafaei et al., 2019). In this paper, we carry out an empirical
exploration of open-set classification, and find that combining classic statistical
methods with carefully computed features can dramatically outperform prior work.
We extract features from off-the-shelf (OTS) state-of-the-art networks for the
underlying K-way closed-world task. We leverage insights from the retrieval
community for computing feature descriptors that are low-dimensional (via pool-
ing and PCA) and normalized (via L2-normalization), enabling the modeling of
training data densities via classic statistical tools such as kmeans and Gaussian
Mixture Models (GMMs). Finally, we (re)introduce the task of open-set semantic
segmentation, which requires classifying individual pixels into one of K known
classes or an “other" class. In this setting, our feature-based statistical models
noticeably outperform prior open-world methods.

1 INTRODUCTION

Embodied perception and autonomy require systems to be self-aware and reliably know their un-
knowns. This requirement is often formulated as the open set recognition problem (Scheirer et al.,
2012), meaning that the system, e.g., a K-way classification model, should recognize anomalous
examples that do not belong to one of K closed-world classes. This is a significant challenge for
machine-learned systems that notoriously over-generalize to anomalies and unknowns on which they
should instead raise a warning flag (Amodei et al., 2016).

Open-world benchmarks: Curating open-world benchmarks is hard (Liu et al., 2019). One common
strategy re-purposes existing classification datasets into closed vs open examples – e.g., declaring
MNIST digits 0-5 as closed and 6-9 as open (Neal et al., 2018; Oza & Patel, 2019; Geng et al., 2020).
In contrast, anomaly/out-of-distribution (OOD) benchmarks usually generate anomalous samples by
adding examples from different datasets - e.g., declaring CIFAR as anomalous for MNIST (Ge et al.,
2017; Oza & Patel, 2019; Liu et al., 2019). Most open-world protocols assume open-world data is not
available during training (Liang et al., 2018; Oza & Patel, 2019). Interestingly, Dhamija et al. (2018);
Hendrycks et al. (2019b) find that, if some open examples are available during training, one can learn
simple open-vs-closed binary classifiers that are remarkably effective. However, Shafaei et al. (2019)
comprehensively compare various well-known open-world methods through rigorous experiments,
and empirically show that none of the compared methods generalize to high-dimensional open-world
images. Intuitively, classifiers can easily overfit to the available set of open-world images, which
won’t likely exhaustively span the open world outside the K classes of interest.

In this paper, we carry out a rigorous empirical exploration of open-set recognition of high-
dimensionial images. We explore simple statistical models such as Nearest Class Means (NCMs),
kmeans and Gaussian Mixture Models (GMMs). Our hypothesis is that such classic statistical
methods can reliably model the closed-world distribution (through the closed-world training data),
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Figure 1: We motivate open-set recognition with safety concerns in autonomous systems. Left: State-of-
the-art semantic segmentation networks (Wang et al., 2019) do not model “strollers”, which are outside
the K closed-set categories in Cityscapes benchmark (Cordts et al., 2016). Here, the network misclassifies
the “stroller” as a “motorcycle”, which can be a critical mistake when fed into an autonomy stack
because the two objects exhibit different behaviours (and so require different plans for obstacle avoidance).
Right: While classic semantic segmentation benchmarks explicitly evaluate background pixels outside the
set of K classes (Everingham et al., 2015), contemporary benchmarks such as Cityscapes ignore such pixels
during evaluation. As a result, most segmentation networks also ignore such pixels during training. Perhaps
surprisingly, such ignored pixels include vulnerable objects like wheelchairs and strollers (see left). We repurpose
these ignored pixels as open-set examples that are from the (K+1)th “other” class, allowing for a large-scale
exploration of open-set recognition via semantic segmentation.

and help avoid overfitting (an issue in open-vs-closed classifiers). Traditionally, such simple models
have been used to address the open-world (Chandola et al., 2009; Geng et al., 2020), but are largely
neglected in the recent literature. We revisit these simple methods, and find them quite effective once
crucial techniques are considered, as summarized by contributions below.

Contribution 1: We build classic statistical models on top of off-the-shelf (OTS) features computed
by the underlying K-way classification network. We find it crucial to use OTS features that have been
pre-trained and post-processed appropriately (discussed further below). Armed with such features,
we find classic statistical models such as kmeans and GMMs (Murphy, 2012) can outperform prior
work. We describe two core technical insights below.

Insight-1 Pre-training networks (e.g., on ImageNet (Deng et al., 2009)) is a common practice for
traditional closed-world tasks. However, to the best of our knowledge, open-world methods do not
sufficiently exploit pre-training (Oza & Patel, 2019). Hendrycks et al. (2019a) report that pre-training
improves anomaly detection using softmax confidence thresholding (Hendrycks & Gimpel, 2017). We
find pretraining to be a crucial factor in learning better representations that support more sophisticated
open-world reasoning. Intuitively, pre-trained networks expose themselves to diverse data that may
look similar to open-world examples encountered at test-time. We operationalize this intuition by
building statistical models on top of existing discriminative networks, which tend to make use of
pre-training by design. We demonstrate this significantly outperforms features trained from scratch,
as most prior open-set work does.

Insight-2 Low-dimensional normalized features. While some existing open-world methods also
exploit OTS features (Lee et al., 2018), we find it crucial to make use of insufficiently well-known
best practices for feature extraction. Specifically, to reduce dimensionality, we pool spatially (Gong
et al., 2014) and use principle component analysis (PCA) (Turk & Pentland, 1991). Then, to ensure
features are invariant to scalings, we adopt L2 normalization (Gong et al., 2014; Gordo et al., 2017).
While these are somewhat standard practices for deep feature extraction in areas such as retrieval,
their combination is not well explored in the open-set literature (Bendale & Boult, 2016; Grathwohl
et al., 2019). Given a particular OTS K-way classification network, we determine the “right” feature
processing through validation. In particular, we find that L2-normalization greatly boosts open-world
recognition performance; spatial pooling and PCA altogether reduce feature dimension by three
orders of magnitude without degrading performance, resulting in a lightweight pipeline.

Contribution 2: We re(introduce) the problem of open-set semantic segmentation. Interestingly,
classic benchmarks explicitly evaluate background pixels outside the set of K classes of interest (Ev-
eringham et al., 2015). However, contemporary benchmarks such as Cityscapes (Cordts et al., 2016)
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Figure 2: Flowchart for extracting off-the-shelf (OTS) features used for open-set recognition. We determine
the appropriate feature processing steps on validation set, including spatial pooling (sp) and L2 normalization
(L2). Left: for open-set image recognition, we extract OTS features at the last convolution layer of a K-way
classification network. Right: for open-set semantic segmentation, we extract OTS features from the “pyramid
head” module, which has sufficiently captured multi-scale information. We do not adopt spatial pooling and
instead use the per-pixel features to represent pixels. Note that, different from our practice, many other methods
like OpenMax (Bendale & Boult, 2016) and generative methods (Grathwohl et al., 2019) work on logit features,
which are too invariant to be effective for open-set recognition (cf. Figure 3 and Table 2).

ignore such pixels during evaluation. As a result, most contemporary segmentation networks also
ignore such pixels during training. Perhaps surprisingly, such ignored pixels include vulnerable
objects like strollers and wheelchairs. Misclassifying such objects may have serious implications
for real-world autonomous systems (see Figure 1). Instead of ignoring these pixels, we use them to
explore open-world recognition by repurposing them as open-world examples. Interestingly, this
setup naturally allows for open-pixels in the train-set, a protocol advocated by (Dhamija et al., 2018;
Hendrycks et al., 2019b). We benchmark various open-world methods on this setup, and show that
our suggested simple statistical models still outperform typical open-world methods. Similar to past
work, we also find that simple open-vs-closed binary classifiers serve as strong baselines, provided
one has enough training examples of open pixels that span the open-world.

2 RELATED WORK

Open-set recognition. There are multiple lines of work addressing the open-world problems in the
context of K-way classification, such as anomaly/out-of-distribution detection (Chandola et al., 2009;
Zong et al., 2018; Hendrycks et al., 2019b), novelty/outlier detection (Pidhorskyi et al., 2018). Defined
on K-way classification, these problems can be crisply formulated as open-set recognition (Scheirer
et al., 2012; Bendale & Boult, 2016; Lee et al., 2018; Geng et al., 2020). Given a testing example,
these methods compute the likelihood that it belongs to the open-world via post-hoc functions like
density estimation (Zong et al., 2018), uncertainty modeling (Gal & Ghahramani, 2016; Liang et al.,
2018; Kendall & Gal, 2017) and reconstruction error of the testing example (Pidhorskyi et al., 2018;
Dehaene et al., 2020). Different from the above sophisticated methods, we train simple statistical
models (e.g., GMM) which can work much better by following our proposed pipeline.

Feature extraction. Off-the-shelf (OTS) features can be extracted from the discriminative network
and act as powerful embeddings (Donahue et al., 2014). Using OTS features for open-set recognition
has been explored in prior work (Oza & Patel, 2019; Grathwohl et al., 2019; Lee et al., 2018).
OTS features can be logits, softmax and other intermediate feature activations computed by the
discriminative network. Early open-set methods modify the softmax (Hendrycks & Gimpel, 2017;
Bendale & Boult, 2016). Grathwohl et al. (2019) learn an energy-based model over the logit
features for anomaly detection. Oza & Patel (2019) reconstruct input images from penultimate-layer
features and use the reconstruction error as the open-set likelihood. Most related to our work is Lee
et al. (2018), who build Gaussian models over OTS features for anomaly detection, but relies on
input image perturbation for better open-set classification performance. In contrast, we study even
simpler statistical models such as kmeans and GMM, and show that proper feature processing (via
L2-normalization and PCA) greatly boosts the efficacy and efficiency of open-set recognition.

3 OPEN-SET RECOGNITION VIA LIGHTWEIGHT STATISTICAL PIPELINES

In this section, we discuss various design choices in our pipeline, including (1) training schemes for
the underlying closed-world task, (2) methods for extracting and repurposing closed-world feature
descriptors for open-world recognition, and (3) the statistical density estimation models built on such
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extracted features. We conclude with (4) an analysis of the additional compute required for self-aware
processing (via the addition of an open-world "head" on top of the closed-world network), pointing
out that minimal additional processing is needed.

1. Network training strategies. Virtually all state-of-the-art deep classifiers make use of large-scale
pre-training, e.g., on ImageNet (Deng et al., 2009), which seems to consistently improve towards
the state-of-the-art performance on the closed-world data (Sun et al., 2017; Mahajan et al., 2018).
However, many, if not all, open-world methods trains the discriminant network purely on the closed-
world data without pre-training (Oza & Patel, 2019; Hendrycks & Gimpel, 2017). We argue that
a pre-trained network also serves as an abstraction of the (pseudo) open world. Intuitively, such a
pre-trained model has already seen diverse data that may look similar to the open-world examples
that will be encountered at test-time, particularly if ImageNet does not look similar to the (closed)
training set for the task of interest. Recently, Hendrycks et al. (2019a) show that pre-training improves
open-world robustness with a simplistic method that thresholds softmax confidence (Hendrycks &
Gimpel, 2017). Our diagnostic study shows that our explored statistical models, as well as prior
methods, do perform much better when built on a pre-trained network than a network trained from
scratch!

2. Feature extraction. OTS features generated at different layers of the trained discriminative
model can be repurposed for open-set recognition (Lee et al., 2018). Most methods leverage
softmax (Hendrycks & Gimpel, 2017) and logits (Bendale & Boult, 2016; Grathwohl et al., 2019)
which can be thought of as features extracted at top layers. Similar to (Lee et al., 2018), we find it
crucial to analyze features from intermediate layers for open-set recognition, for which logits and
softmax may be too invariant to be effective for open-set recognition (see Figure 3). One immediate
challenge to extract features from an intermediate layer is their high dimensionality, e.g., of size
512x7x7 from ResNet18 (He et al., 2016). To reduce feature dimension, we simply (max or average)
pool the feature activations spatially into a 512-dim feature vectors (Yang & Ramanan, 2015). We
further use PCA, which can reduce dimension by 10× (from 512-dim to 50-dim) without sacrificing
performance. We find this dimensionality particularly important for learning second-order covariance
statistics as in GMMs, described below. Finally, following (Gong et al., 2014; Gordo et al., 2017), we
find it crucial to L2-normalize extracted features (see Figure 2).

3. Statistical models. Given the above extracted features, we can learn various generative statis-
tical models to capture the confidence/probability that a test example belongs to the closed-world
distribution. We explore simple parametric models such as Nearest Class Means (NCMs) (Mensink
et al., 2013) and class-conditional Gaussian models (Lee et al., 2018; Grathwohl et al., 2019), as
well as non-parametric models such has nearest neighbors (NN) (Boiman et al., 2008; Júnior et al.,
2017). We finally explore an intermediate regime of mixture models, including (class-conditional)
GMMs and kmeans (Chandola et al., 2009;?; Cao et al., 2016; Geng et al., 2020). Our models label a
test example as open-world when the inverse probability (e.g., of the most-likely class-conditional
GMMs) or distance (e.g., to the closest class centroid) is above a threshold. One benefit of such
simple statistical models is that they are interpretable and relatively easier to diagnose failures. For
example, one failure mode is an open-world sample being misclassified as a closed-world class.
This happens when open-world data lie close to a class-centroid or Gaussian component mean (see
Figure 3-left). Note that a single statistical model may have several hyperparameters – GMMs can
have multiple Gaussian components and different structures of second-order covariance, e.g., either a
single scalar, a vector or a full-rank general covariance per component, as denoted by “spherical”,

“diag” and “full”, respectively. We make use of a validation set to determine the hyperparameters (as
well as feature processing steps listed above).

4. Lightweight Pipeline. We re-iterate that the above feature extraction and statistical models
result in a lightweight pipeline for open-set recognition. We now analyze the number of additional
parameters in our pipeline. Naively learning a GMM over features from the last convolutional
layer result in massive second-order statistics, on the order of (512× 7× 7)2 for a 512x7x7 Res18
feature map. We find that spatial pooling and PCA can reduce dimensionality to 50, which requires
only 502 covariance parameters (a reduction of 105). We find linear dimensionality reduction more
effective than sparse covariance matrices (e.g., assuming diagonal structure). The appendix includes
additional experiments. Given a class-conditional five-component GMM (the largest found to be
effective through cross validation), this requires 128KB storage per class, or 594KB for all 19
classes in Cityscapes. This is less than 0.1% of the compute of the underlying closed-world network
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(e.g., HRNet at 250 MB), making it a quite practical addition that enables self-aware processing on
real-time autonomy stacks.

4 EXPERIMENT

We extensively validate our proposed lightweight statistical pipeline under standard open-set recog-
nition benchmarks, typically focused on image classification. We also consider open-set semantic
segmentation, revisiting classic formulations of semantic segmentation that make use of a background
label (Everingham et al., 2015). We start by introducing implementation details, evaluation metrics
and baselines. We then present comprehensive evaluations on each setup.

Implementation. As discussed earlier, open-world recognition is often explored through the lens
of open-set classification. To ensure our approaches retain high-accuracy on the original closed-
world tasks, we build statistical models on top of off-the-shelf (OTS) state-of-the-art networks. For
open-set image classification, we fine-tune an ImageNet-pretrained ResNet network (Res18/50 in
our experiments) (He et al., 2016) exclusively on the closed-train-set using cross-entropy loss. For
open-set semantic segmentation we use HRNet (Wang et al., 2019), a highly-ranked model on the
Cityscapes leaderboard (Cordts et al., 2016). We extract features at the penultimate layer of each
discriminative network (other layers also apply but we do not explore them in this work). We conduct
experiments with PyTorch (Paszke et al., 2017) on a single Titan X GPU.

Evaluation Metric. Following past work (Hendrycks & Gimpel, 2017; Lee et al., 2018), we evaluate
binary detection of open-world examples using the area under the receiver operating characteristic
curve (AUROC) (Davis & Goadrich, 2006). AUROC is a calibration-free and threshold-less metric,
simplifying comparisons between methods. For open-set semantic segmentation, we also use AUROC
to evaluate the performance of recognizing “background” pixels as open-world examples. This is
different from traditional practice in segmentation benchmarks (Everingham et al., 2015) which treat
such “background” pixels as just another class.

Baselines. Our statistical pipeline supports various statistical models. We study the simple models
proposed in Section 3, including NN, kmeans, NCM, and GMMs. All models, including baselines to
which we compare, are based on the same underlying classification network. Hyperparameters for all
models (e.g., number of mixtures) are tuned on a validation set1.

• Classifiers. Hendrycks et al. (2019b) learn a binary open-vs-closed classifier (CLS2) for anomaly
detection. Following classic work in semantic segmentation (Everingham et al., 2015), we also
evaluate a (K+1)-way classifier (CLS(K+1)). We use the softmax score corresponding to the
(K+1)th “other” class as the open-set likelihood. Both methods require open-set examples during
training.

• Likelihoods. Many probabilistic models measure open-set likelihood on OTS features, including
Max Softmax Probability (MSP) (Hendrycks & Gimpel, 2017) and Entropy (Steinhardt & Liang,
2016) (derived from softmax probabilities). OpenMax (Bendale & Boult, 2016) fits logits to Weibull
distributions (Scheirer et al., 2011) that recalibrate softmax outputs for open-set recognition.
C2AE (Oza & Patel, 2019) learns an additional K-way classifier on OTS features based on
reconstruction errors, which are then used as open-set likelihood function. GDM (Lee et al., 2018)
learns a Gaussian Discriminant Model on OTS features and designs open-set likelihood based
on Mahalanobis distance. CROSR (Yoshihashi et al., 2019) trains a reconstruction-based model
that jointly performs closed-set K-way classification and open-set recognition. G-Open (Ge et al.,
2017) and OSRCI (Neal et al., 2018) turn to Generative Adversarial Networks (GANs) to generate
fake images that augment the closed-set training set, and train a discriminative model for open-set
recognition. CGDL (Sun et al., 2020) learns class-conditional Gaussian model and relies on
reconstruction error for open-set recognition. The last three methods (CROSR, G-Open and CGDL)
train ground-up models in contrast to our statistical models that operate on OTS features of an
already-trained K-way classification network. As we focus on an empirical exploration rather than
achieving the state-of-the-art, we refer readers to more recent approaches for the state-of-the-art by
training ground-up models with sophisticated techniques (Zhang et al., 2020; Chen et al., 2020).

1We use open-source code when available. We implemented C2AE and its authors validated our code through
personal communication.
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Table 1: Single-dataset open-set recognition (Setup-I) AUROC↑. Error bars are shown in gray rows . Bolded
numbers mark the top-5 ranked methods on each dataset. Because GDM does not L2-normalize features, we
add a variant that does (denoted GDML2). L2-normalization clearly improves performance, particularly on
CIFAR. Interestingly, GDML2 underperforms NCM, implying that a full-covariance Gaussian (used by GDM)
overfits compared to an identity covariance. GMM makes use of low-dimensional covariances (learned via
PCA) and strikes a balance between flexibility and generalization, achieving comparable performance to many
sophisticated approaches.

MSP Entropy OpenMax G-Open OSRCI CROSR C2AE CGDL MSPc MCdrop GDM GDML2 NN NCM kmeans GMM

MNIST .977 .988 .981 .984 .988 .998 .989 .994 .985 .981 .984 .984 .989 .991 .991 .993
.002 .002 .002 .005 .004 .004 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002

SVHN .886 .895 .894 .896 .910 .955 .922 .935 .891 .888 .862 .868 .866 .901 .906 .914
.006 .006 .013 .017 .006 .004 .009 .003 .006 .005 .005 .003 .003 .003 .004 .003

CIFAR .757 .788 .811 .675 .699 — .895 .903 .808 .801 .686 .744 .752 .798 .811 .817
.032 .030 .032 .035 .029 — .008 .009 .015 .011 .009 .008 .007 .007 .008 .008

• Bayesian Networks. Bayesian neural networks compute uncertainty estimates via Monte Carlo
estimates (MCdrop) (Gal & Ghahramani, 2016; Loquercio et al., 2020) and calibrated Max Softmax
Probability (MSPc) (Liang et al., 2018), which can also be used as open-set likelihoods. We
implement MCdrop via 500 samples.

4.1 SETUP-I: SINGLE-DATASET OPEN-SET RECOGNITION

Setup. We begin by following the standard benchmark protocol used in most prior work; split a single
dataset into open and closed sets w.r.t class labels (e.g., define MNIST digits 0-5 as the closed-set,
and digits 6-9 as the open-set). This is a common practice in open-set recognition (Neal et al., 2018;
Oza & Patel, 2019). Notably, methods do not have access to open-set examples during training.

Datasets. MNIST / CIFAR / SVHN are popular datasets used in the open-set recognition litera-
ture (Neal et al., 2018; Hendrycks & Gimpel, 2017). All three datasets contain ten classes with
balanced numbers of images per class. Standard protocol randomly splits six (four) classes of
train/validation-sets into closed (open) train/validation-sets, respectively. We repeat five times and
report average AUROC for each method. Through cross-validation, we find reliable OTS features
can be computed by average-pooling features from the last convolutional layer down to 512-dim,
projecting down to 50-dim via PCA, and L2-normalizing.

Results. Table 1 shows that, perhaps surprisingly, simple statistical models (like kmeans and GMMs)
defined on such normalized features already performs on par to many prior methods/ Because
GDM (Lee et al., 2018) does not L2-normalize features, we evaluate a variant that does (GDML2).
The improved performance demonstrates the importance of feature normalization, which although is
well known in the image retrieval community, is not widely used in open-set recognition. We hereby
focus on statistical models trained on normalized features, providing raw vs. normalized comparisons
in the appendix.

4.2 SETUP-II: CROSS-DATASET OPEN-SET RECOGNITION

Setup. In these experiments, we use the cross-dataset protocol advocated by (Shafaei et al., 2019),
where some outlier examples are sampled from a different dataset for training/validation. (e.g.,
train on TinyImageNet-closed as closed-set, validate on MNIST-open as outlier set, and test on
CIFAR-open as open-set). Conclusions drawn under this setup may generalize better due to less
dataset bias in the experimental protocol (Torralba & Efros, 2011).

Datasets. We use TinyImageNet as the closed-world dataset (for K-way classification), which has
200 classes of 64x64 images, split into 500/50/50 images as the train/val/test sets. Following (Shafaei
et al., 2019), we construct open val/test sets using cross-dataset images (Torralba & Efros, 2011),
including MNIST, SVHN, CIFAR and Cityscapes. For example, we use an outlier dataset (e.g.,
MNIST train-set) to tune/train an open-world method, and test on another dataset as the open-set (e.g.,
CIFAR test-set). We use bilinear interpolation to resize all images into 64x64 to match TinyImageNet
image resolution. Through cross validation, we find reliable OTS features can be computed by
average-pooling features from the last convolutional layer down to 2048-dim, projecting down to
200-dim via PCA, and L2-normalizing.

Results for Table 2 are summarized below:
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Figure 3: tSNE plots (Maaten & Hinton, 2008)
of open-vs-closed data, as encoded by differ-
ent features from a Res50 model (trained with
pre-training in the closed world, cf. Table 2).
Points are colored w.r.t closed-world class la-
bels. Left: Logit features mix open and closed
data, suggesting that methods based on them
(Entropy, SoftMax and OpenMax) may strug-
gle in open-set classification. Right: Convolu-
tional features better separate open vs closed
data (cf. Figure 2).

Table 2: Cross-dataset open-set image recognition (Setup-II) AUROC↑. In this setup, we train on Tiny-
ImageNet, validate using outlier images from a second dataset, and test using open-set images from a third
dataset. For each open-set dataset, we compute the average AUROC over all results when using different
outlier datasets. We study two Res50 models either trained from scratch (pink row), or fine-tuned from an
ImageNet-pretrained model (blue row). Clearly, simple statistical models can handily outperform much prior
work. Pre-training boosts open-set recognition performance for all methods (see last row pair). Binary classifiers
CLS2 do not generalize well, presumably due to overfitting. Somewhat surprisingly, OpenMax works quite
poorly. We conjecture that the regularized logit features on which it is based may too invariant to be effective for
cross-dataset open-set recognition. Table 4 and 5 supplement this table with more details.

open-test MSP Entropy OpenMax MSPc MCdrop C2AE GDM GDML2 NN NCM kmeans GMM CLS2 CLS(K+1)

MNIST .709 .712 .144 .773 .657 .811 .454 .799 .966 .961 .939 .940 .963 .939
.775 .789 .453 .832 .801 .796 .723 .957 .901 .979 .963 .964 .986 .944

SVHN .752 .768 .314 .803 .833 .723 .841 .991 .993 .994 .982 .984 .754 .907
.770 .787 .123 .863 .783 .780 .820 .999 .994 .995 .993 .990 .701 .948

CIFAR .694 .703 .338 .750 .741 .719 .712 .886 .852 .963 .937 .968 .739 .867
.725 .732 .471 .791 .809 .763 .838 .961 .927 .975 .948 .961 .754 .880

Citysc. .739 .753 .604 .862 .877 .753 .725 .650 .559 .839 .903 .885 .601 .919
.751 .762 .543 .851 .868 .784 .651 .513 .715 .833 .886 .867 .646 .971

average .723 .734 .350 .797 .777 .752 .683 .832 .843 .939 .940 .938 .764 .908
.755 .768 .397 .834 .815 .781 .758 .857 .884 .946 .948 .945 .772 .936

• Simple statistical models (e.g., NCM and kmeans) can outperform prior open-set methods (e.g.,
C2AE and GDM). We find that L2-normalization greatly contributes to the success of these
simple statistical methods (cf. details in the appendix). Both the metric learning and image
retrieval (Mensink et al., 2012; Musgrave et al., 2020) literature have shown the importance of
L2-normalization. Informally, open-set recognition queries the testing example and measures how
close it is to any of the closed-world training examples (Musgrave et al., 2020).

• Interestingly, kmeans performs slightly better than GMMs. Considering that the former can be
seen as a special case of GMMs that have an identity covariance, we conjecture that learning other
types of covariance (e.g., a full-rank covariance matrix) does not help when the underlying K-way
network has already provided compact feature representations.

• From last row pair, we can see pre-training notably improves all the methods. GDML2 outperforms
the original GDM which operates on raw features (without L2-normalization). This further confirms
the importance of L2-normalization in feature extraction for open-set recognition.

• Perhaps surprisingly, OpenMax does not work well in this setup (though we have spent considerable
effort tuning it). This is consistent with the results in (Dhamija et al., 2018; Shafaei et al., 2019), and
we conjecture the reason is that OpenMax cannot effectively recognize cross-dataset anomalous
inputs using logit features because they are too invariant to be useful for open-set recognition
(Figure 3). Similar lackluster results hold for other methods that operate on logit features (Entropy
and MSP).

4.3 SETUP-III: OPEN-SET SEMANTIC SEGMENTATION

Setup. In these experiments, we (re)introduce the task of open-set segmentation by repurposing
“background” pixels in contemporary segmentation benchmarks (Cityscapes) as open-world pixels.
As elaborated before, such pixels are either traditionally treated as just another class for segmentation
evaluation (Everingham et al., 2015) or ignored completely. Instead, we evaluate them using open-
world metrics such as AUROC. We will show our statistical methods also outperform other typical
open-world methods. As this setup has natural access to open-world pixels during training, we
explore the training of simple open-vs-closed classifiers.
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Figure 4: Two random images from Cityscapes-val, visualized with ground-truth and the predicted semantic
segmentation maps by the HRNet. We visualize open-world pixels in the ground-truth (white regions), as well
as predicted open-world pixels for a standard baseline (MSP) and our method (GMM). MSP tends to predict
segment boundaries as open-pixels, while our GMM tends to find open-set objects (street-shop and rollator as
pointed by the red arrows).

Figure 5: Performance of CLS versus amount of (open) training data.
We train CLS on the OTS features of the state-of-the-art HRNet, which
has already exploited all closed-world pixels in the train-set. The binary
open-vs-closed classifier CLS2 outperforms CLS(K+1), presumably due
to that the former being trained on balanced batches. With fewer than 50
images, GMMs outperform such discriminative models. But with enough
open training examples, simple binary classification performs remarkably
well. However, because GMMs do not require any open training examples,
it cannot overfit to them and so may generalize better to the open-world.

Datasets. Cityscapes (Cordts et al., 2016) provides per-pixel annotations for urban scene images
(1024x2048-resolution) for autonomous driving research. We construct our train- and val-sets from
its 2,975 training images, in which we use the last 10 images as val-set and the rest as train-set. We
use its official 500 validation images as our test-set. The “background” pixels (shown in white of
ground-truth visual in Figure 4) are the open-world examples in this setup. Through validation, we
find reliable OTS features can be computed by projecting features from the last convolutional layer
from 720 down to 100-dim via PCA, and L2-normalizing.

Results. For our statistical models (as well as GDM), we randomly sample 5000 closed-world pixel
features from each class, as it is prohibitively space-consuming to use all the pixel features from the
Cityscapes train-set. We show quantitative comparison in Table 3 and list salient conclusions below.

• Clearly, our simple statistical models (e.g., NN and GMM) perform significantly better than the
classic open-world methods (e.g., MSP and OpenMax). However, when training on large amounts
of open-pixels, CLS methods achieve significantly better performance. This clearly shows the
benefit of training on open-world pixels (Hendrycks et al., 2019b). We do note that GMMs do not
need any open pixels during learning, and so may generalize better to novel open-world scenarios
not encountered in the training set (Figure 5).

• GDM performs poorly, probably due to arbitrary scales of the raw features that are too uninformative
to be used for open-set pixel recognition. We note that other statistical methods all struggle with
raw pooled features (cf. appendix). However, once we L2-normalize the pixel features to be
scale-invariant, these statistical methods perform significantly better (as reported in this table).

• Figure 4 shows qualitative results. MSP predicts segment boundaries as open-pixels. This makes
sense as the MSP mostly returns aleatoric uncertainties corresponding to ambiguous pixel sensor
measurements around object boundaries (Kendall & Gal, 2017). In contrast, GMM reports open-
pixels on truly novel objects, such as the street-shop and rollator, both of which are
ignored by the semantic segmentation network during training HRNet (Wang et al., 2019). These
regions appear to be caused by epistemic uncertainty arising from the lack of training data (Kendall
& Gal, 2017).

• Figure 6 plots AUROC performance vs model size for various statistical models. Notably, NN
consumes the most memory, even more than the underlying networks. GMMs perform the best and
are quite lightweight, only consuming 0.6MB when built on the HRNet model (250MB).
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Table 3: Open-set semantic segmentation (Setup-III) AUROC↑. Simple statistical methods (GMMs) out-
perform prior methods, with the notable exception of discriminative classifiers (CLS2 and CLS(K+1)) that have
access to open-set training examples. Figure 5 analyzes this further, demonstrating that GMMs can outperform
such discriminative models when they have access to less open training examples, suggesting that GMMs may
better generalize to never-before-seen open-world scenarios.

MSP Entropy OpenMax C2AE MSPc MCdrop GDM NN NCM kmeans GMM CLS2 CLS(K+1)

.590 .600 .655 .603 .612 .563 .539 .769 .715 .755 .795 .897 .867

Figure 6: AUROC vs. memory cost (MB) for various statistical
models for open-set semantic segmentation. NN stores ∼100k OTS
features, which is larger than the underlying network (HRNet). We
explore GMMs with various covariance structures (spherical, diago-
nal, full), feature dimensionality via PCA, and mixture components.
We find the best AUROC-memory tradeoff on the validation set
(shown here to be a single-mixture GMM with full-covariance and
PCA), and find it generalizes well to held-out test (cf. Appendix).

5 CONCLUSION

We explore an empirical exploration of open-set recognition via lightweight statistical pipelines. We
find simple statistical models quite effective if built on properly processed off-the-shelf features
computed by the discriminative networks (originally trained for the closed-world tasks). Our pipelines
endow K-way networks with the ability to be “self-aware”, with negligible additional compute
costs (0.1%). Finally, we (re)introduce the task of open-set semantic segmentation by repurposing
background pixels as open-world examples, requiring classification of individual pixels into one of
K known/closed-world classes and an “other” open-world class.
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APPENDIX OUTLINE

As elaborated in the main paper, we introduce a lightweight statistical pipeline for open-set recognition
by repurposing off-the-shelf (OTS) features computed by a state-of-the-art recognition network. As
our pipeline does not require (re)training the underlying network, it is guaranteed to replicate the
state-of-the-art performance of the network on the (closed-world) task for which it was trained,
but still allows the final recognition system to properly identify never-before-seen data from the
open-world. In the appendix, we expand on our pipeline, including more experiments, analyses and
visualizations. We outline the appendix below.

Section A: Data statistics for open-set semantic segmentation. We provide data details used for
open-set semantic segmentation (Setup-III), motivated by safety concerns in autonomous stacks as
shown in Figure 1 left.

Section B: Detailed results by statistical models. We provide detailed results on the open-set
recognition including open-set image recognition (Setup-II), and open-set semantic segmentation
(Setup-III). We detail the performance of the various statistical models studied in the main paper,
including Nearest Neighbor (NN), Nearest Class Mean (NCMs), kmeans and Gaussian Mixture
Models (GMMs).

Section C: Reduced dimension via PCA. We show that PCA can reduce dimensionality significantly
(making our pipeline quite lightweight), while maintaining or even improving performance.

Section D: Performance vs. memory/compute. We rigorously evaluate the memory/compute costs
of our various statistical pipelines, emphasizing solutions that are both accurate and lightweight.

Section E: Visualization of Gaussian component means. One benefit of our simple statistical mod-
els is their interpretability; we visualize Gaussian means through centroid images, and demonstrate
that they correspond to canonical objects (e.g., those with standard poses and clean background).

Section F: Open-Source demonstration. We include code (via Jupyter Notebook) for open-set
semantic segmentation, assuming one has access to precomputed features from HRNet (Wang et al.,
2019).

A SETUP FOR OPEN-SET SEMANTIC SEGMENTATION

As we (re)introduce the task of open-set semantic segmentation for exploring open-set recognition,
in which we re-purpose “backgroud” pixels of Cityscapes as open-world examples (that are from
the (K+1)th “other” class). We hereby list the statistics of open and closed-world examples (pixels).
Cityscapes training set has 2,975 images. We use the first 2,965 images for training, and hold out the
last 10 as validation set for model selection. We use the 500 Cityscapes validation images as our test
set. Here are the statistics for the full train/val/test sets.

• train-set for closed-pixels: 2,965 images providing 334M closed-set pixels.
• train-set for open-pixels: 2,965 images providing 44M open-set pixels.
• val-set for closed-pixels: 10 images providing 1M closed-set pixels.
• val-set for open-pixels: 10 images providing 0.2M open-set pixels.
• test-set for closed-pixels: 500 images providing 56M pixels.
• test-set for open-pixels: 500 images providing 8.3M pixels.

B DETAILED RESULTS BY STATISTICAL PIPELINE

In Figure 10 on the last page of this document, we provide detailed results of various statistical models
for open-world tasks, including open-set image recognition and open-set semantic segmentation.
In the main paper, we state that we tune and select statistical models (if it has hyper-parameters to
tune) on the small validation set, and report on the test set with the selected (best-performing) model.
Such hyper-parameters can be the number of means/components in kmeans and GMM models,
and covariance types in GMM — “spherical”, “diagonal” and “full” denote that the covariance
matrix of each Gaussian component is controlled by a single scalar, a vector and full-rank matrix,
respectively. It demonstrates that validation can reliably tune the statistical models whose performance
can be translated to the test sets. Moreover, we also record the detailed results of whether using
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Figure 7: Study of open-set performance versus feature dimension reduced by PCA. We study this with
the experiment of open-set image classification, where TinyImageNet/Cityscapes are the closed/open sets.
We extract OTS features from the Res50pt network (as detailed in the paper). The spatially pooled (and L2-
normalized) feature has 2048 dimension. To avoid randomness (as in some statistical models like GMM and
k-means), we use NCM model which simply computes per-class mean feature and computes the distance of
nearest center as the open-set likelihood. Surprisingly, using PCA to reduce feature dimension can improve the
open-set performance!

L2-normalization on the features. We can see that L2-normalization greatly boosts open-world
performance.

Table 4 and 5 list details of various methods on cross-dataset evaluation (Setup-II), supplementing
Table 2. Please refer to the caption for details.

C PERFORMANCE VS. PCA REDUCED DIMENSION

As analyzed in the main paper, PCA is an important technique to make our pipeline lightweight by
considerably reducing feature dimensions. We study how a statistical model performs under different
reduced feature dimensions by PCA. We choose the simplistic NCM method which does not induce
randomness (unlike kmeans and GMM which require random initialization for learning). We study
this through open-set image recognition under Setup-II. To simplify the study, we choose (resized)
Cityscapes images as open-set data, i.e., we use TinyImagenet/Cityscapes images as the closed/open
set. As we use the network Res50 in the diagnostic study, the original dimension of the pooled
features is 2048. In Fig. 7, we plot the performance (AUROC) of NCM as a function of reduced
dimension by PCA. Perhaps surprisingly, PCA even improves the open-world performance while
significantly reducing feature dimension (from 2048 to 100)!

D PERFORMANCE VS. MEMORY/COMPUTE

As seen previously, PCA reduces the feature dimension greatly and hence makes the statistical models
quite lightweight. We now study how lightweight different statistical models can be by considering
the open-world performance. We analyze the models learned for two tasks (open-world image
classification and open-world semantic segmentation), where the OTS features have dimension 2048
(extracted from Res50) and 720 (extracted from HRNet), respectively. We use PCA to reduce the
features dimensions to 200 and 100, respectively.

We focus on NN, kmeans and GMMs, all of which operate on the PCA reduced features (with L2-
normalization). NN is the straightforward baseline that memorizes all training examples to recognize
open-set examples. For GMM, we study it by specifying three types of covariance – “spherical”,
“diag” and “full” meaning the covariance matrix of each Gaussian component is controlled by a single
scalar, a vector or a full-rank (symmetric) matrix, respectively. For open-set semantic segmentation,
it is prohibitively space-consuming to memorize all the pixel features of the whole train set. So we
randomly sample 5000 pixels from each of the 19 classes defined by Cityscapes (∼200k in total).

In Figure 8, we draw the open-world performance (AUROC) for the two tasks w.r.t the total memory
cost (i.e., the required space to save a model’s parameters). We can see that NN takes the most memory
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Open Classification (TinyImageNet-vs-Cityscapes): val Open Segmentation (Cityscapes): val

Figure 8: Open-set performance w.r.t memory cost (MB) by different models. Memory cost means the space
required to store the parameters in these models. Left: open-set (200-way) image recognition for TinyImageNet-
vs-Cityscapes. Right: open-set semantic segmentation (19 classes) on the Cityscapes. NN memorizes training
examples for open-world recognition, and hence it consumes huge memory to store OTS features of training
examples (more memory consumption than the underlying SOTA models). Compared with the underlying
networks, GMM-spherical and k-means induce negligible computation cost. They also perform considerably
better than NN and GMM-full/diag on open-set image classification, but not as well as NN and GMM-full on
open-world semantic segmentation. These plots clearly serve as guidelines to choose the appropriate statistical
models on specific tasks. Note that the validation performance shown here can be nicedly translated to test sets,
as detailed in Figure 10 .

usage, which is even more than the underlying networks. In contrast, GMM-spherical and k-means
models are significantly more compact, i.e., ∼0.3MB for both tasks. Moreover, on open-world image
classification (Figure 8-left), k-means and GMM-spherical achieve much better performance than the
other models. Interestingly GMM-full achieves the best and stable performance for open-set semantic
segmentation (Figure 8-right) but not for open-set image classification (Figure 8-left). Despite this,
we note that the validation performance (as plotted here) can be nicely translated to real test sets, as
shown in Figure 10).

It is worth noting that the specified PCA-reduced dimension is not optimal that an even lower
dimension can lead to better open-world performance (cf. Figure 7). We do not exhaustively explore
this in this work, but instead emphasize that our pipeline is quite lightweight that can be tuned on
specific tasks, e.g., 0.6MB GMM-full compared with 250MB HRNet for semantic segmentation.

E VISUALIZATION OF GAUSSIAN MEANS

As statistical models are interpretable, we visualize what the statistical model can capture. To do
so, we visualize per-class Gaussian means through medoid images, which are training images that
have features closest to their corresponding per-class mean feature. We show the medoid images in
Figure 9, as well as some random images sorted by the cosine similarity (i.e., Euclidean distance on
L2-normalized features) to the Gaussian means within each class. We can see the medoid images
most likely capture the canonical objects of each class, e.g., those of with “standard” pose and clean
background.

F OPEN-SOURCE DEMONSTRATION

We attach our code (via three Jupyter Notebook files) to demonstrate our exploration of open-set
recognition. One can run the code with access to networks (Res50 and HRNet (Wang et al., 2019))
trained for closed-world tasks. We are not able to upload models or pre-computed features due to
space limit, but we are committed to releasing them to the public after paper notification. We refer
readers to the Jupyter Notebook files for self-explanatory descriptions.

• “demo_Open-Set-Image-Recognition-Setup-II_GMM_Res50pt_pca_L2norm.ipynb”: We show
how we train, select and evaluate GMMs on cross-dataset open-set image recognition (Setup-II).

• “demo_tsne_visual_res50pt.ipynb”: We show t-SNE visualizations of OTS features of cross-dataset
open-set examples (Setup-II). This intuitively demonstrates the benefit of exploiting OTS features
for open-set recognition.

• “demo_open-set-semantic-segmentation.ipynb”: We demonstrate how we train and evaluate GMM
under Setup-III, open-set semantic segmentation.
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Table 4: Cross-dataset evaluation (Setup-II) with a K-way classification network that is trained-from-
scratch. We report performance with the AUROC metric. This table supplements Table 2. Recall that we train
on TinyImageNet as the closed-set, use another dataset as outlier set to tune and select model, and report on the
third dataset as the open-set. All the methods operate on off-the-shelf features extracted from the underlying
classification network. We report their averaged performance and standard deviation in the last two columns.

 

outlier set MNIST SVHN CIFAR Cityscapes 

avg std 

open test set MN SV CF CS MN SV CF CS MN SV CF CS MN SV CF CS 

MSP .709 .752 .694 .739 .709 .752 .694 .739 .709 .752 .694 .739 .709 .752 .694 .739 .723 .023 

Entropy .712 .768 .703 .753 .712 .768 .703 .753 .712 .768 .703 .753 .712 .768 .703 .753 .734 .027 

OpenMax .145 .324 .346 .538 .145 .328 .348 .545 .145 .328 .348 .545 .139 .277 .311 .789 .350 .173 

MSP-calib .773 .803 .750 .862 .773 .803 .750 .862 .773 .803 .750 .862 .773 .803 .750 .862 .797 .042 

MC-dropout .657 .821 .725 .854 .655 .841 .749 .890 .659 .830 .739 .872 .655 .841 .749 .890 .777 .086 

C2AE .864 .744 .683 .708 .864 .744 .683 .708 .757 .701 .755 .797 .757 .701 .755 .797 .752 .055 

GDM .459 .859 .713 .725 .444 .862 .712 .724 .457 .822 .712 .725 .457 .822 .712 .725 .683 .142 

GDM-L2 .799 .991 .886 .650 .799 .991 .886 .650 .799 .991 .886 .650 .799 .991 .886 .650 .832 .125 

NN .966 .993 .852 .559 .966 .993 .852 .559 .966 .993 .852 .559 .966 .993 .852 .559 .843 .172 

NCM .961 .994 .963 .839 .961 .994 .963 .839 .961 .994 .963 .839 .961 .994 .963 .839 .939 .059 

kmeans .980 .993 .923 .928 .947 .998 .974 .906 .979 .995 .975 .833 .849 .943 .877 .945 .940 .050 

GMM .987 .999 .979 .905 .987 .999 .979 .905 .973 .999 .985 .821 .811 .938 .817 .928 .938 .065 

CLS-2 .999 .362 .428 .514 .978 .999 .985 .380 .983 .988 .999 .504 .959 .621 .530 .999 .764 .260 

CLS-(K+1) .999 .929 .826 .896 .911 .950 .914 .901 .964 .799 .803 .881 .882 .951 .925 .999 .908 .058 

  

Table 5: Cross-dataset evaluation (Setup-II) with a K-way classification network that is finetuned from
an ImageNet pre-trained model. We report performance with the AUROC metric. This table supplements
Table 2. Recall that we train on TinyImageNet as the closed-set, use another dataset as outlier set to tune
and select model, and report on the third dataset as the open-set. All the methods operate on off-the-shelf
features extracted from the underlying classification network. We report their averaged performance and standard
deviation in the last two columns.

 

outlier set MNIST SVHN CIFAR Cityscapes 

avg std 

open test set MN SV CF CS MN SV CF CS MN SV CF CS MN SV CF CS 

MSP .775 .770 .725 .751 .775 .770 .725 .751 .775 .770 .725 .751 .775 .770 .725 .751 .755 .020 

Entropy .789 .787 .732 .762 .789 .787 .732 .762 .789 .787 .732 .762 .789 .787 .732 .762 .768 .023 

OpenMax .458 .125 .473 .515 .458 .125 .473 .515 .458 .125 .473 .515 .438 .116 .464 .625 .397 .164 

MSP-calib .832 .863 .791 .851 .832 .863 .791 .851 .832 .863 .791 .851 .832 .863 .791 .851 .834 .027 

MC-dropout .801 .783 .809 .868 .801 .783 .809 .868 .801 .783 .809 .868 .801 .783 .809 .868 .815 .032 

C2AE .842 .747 .753 .762 .781 .791 .766 .791 .781 .791 .766 .791 .781 .791 .766 .791 .781 .021 

GDM .766 .817 .831 .633 .717 .842 .845 .637 .717 .842 .845 .637 .690 .780 .831 .696 .758 .079 

GDM-L2 .957 .999 .961 .513 .957 .999 .961 .513 .957 .999 .961 .513 .957 .999 .961 .531 .857 .198 

NN .901 .994 .927 .715 .901 .994 .927 .715 .901 .994 .927 .715 .901 .994 .927 .715 .884 .103 

NCM .979 .995 .975 .833 .979 .995 .975 .833 .979 .995 .975 .833 .979 .995 .975 .833 .946 .065 

kmeans .966 .998 .950 .901 .966 .998 .950 .901 .961 .994 .963 .839 .957 .981 .927 .904 .948 .042 

GMM .973 .998 .953 .848 .977 .999 .955 .875 .957 .993 .964 .837 .949 .997 .967 .908 .945 .050 

CLS-2 .999 .501 .500 .500 .999 .999 .999 .567 .999 .999 .999 .522 .948 .306 .519 .994 .772 .256 

CLS-(K+1) .988 .951 .925 .999 .988 .981 .925 .885 .976 .909 .745 .999 .824 .951 .925 .999 .936 .068 
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Figure 9: Visualization of per-class Gaussian means with medoid images (whose features are closest to
the means within their corresponding classes). As comparison, we show some random images sorted by
their cosine similarity to the per-class Gaussian mean. We can see the medoid images capture “canonical”
objects representing the corresponding classes, e.g., those with “standard” shape and cleaner background. This
visualization suggests our statistical models are quite interpretable.
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Figure 10: Detailed results of (left) open-set image recognition using Cityscapes images as cross-dataset
open-world examples under Setup-II) and (right) open-set semantic segmentation (Setup-III). In each cell, the
first and second (if existing) row numbers denote AUROC performance on the val and test sets, respectively. We
highlight the best performance on the val set, on which we tune the hyper-parameter and report the performance
on the test set. As for notation, gGMM means we learn GMM “globally” on the whole closed train-set, agnostic
to class labels; while cGMM means that we learn class-conditional GMMs. For open-set semantic segmentation,
we only train GMM in a class-conditional fashion (i.e., cGMM), because using pixel features from all classes
to train a global GMM is prohibitively time-consuming. “Raw feat.” means the feature we extract from the
last convolution layer without L2-normalization, and “w/ L2” means we L2-normalize the extracted features.
Clearly, L2-normalization greatly boosts open-world performance.
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