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ABSTRACT

In supervised learning, it has been shown that label noise in the data can be
interpolated without penalties on test accuracy. We show that interpolating label
noise induces adversarial vulnerability, and prove the first theorem showing the
relationship between label noise and adversarial risk for any data distribution. Our
results are almost tight if we do not make any assumptions on the inductive bias
of the learning algorithm. We then investigate how different components of this
problem affect this result including properties of the distribution. We also discuss
non-uniform label noise distributions; and prove a new theorem showing uniform
label noise induces nearly as large an adversarial risk as the worst poisoning with
the same noise rate. Then, we provide theoretical and empirical evidence that
uniform label noise is more harmful than typical real-world label noise. Finally,
we show how inductive biases amplify the effect of label noise and argue the need
for future work in this direction.

1 INTRODUCTION

Label noise is ubiquitous in data collected from the real world. Such noise can be a result of both
malicious intent as well as human error. The well-known work of Zhang et al. (2017) observes that
training overparameterised neural networks with gradient descent can memorize large amounts of
label noise without increased test error. Recently, Bartlett et al. (2020) investigated this phenomenon
and termed it benign overfitting: perfect interpolation of the noisy training dataset still leads to
satisfactory generalization for overparameterized models. A long series of works (Donhauser et al.,
2022; Hastie et al., 2022; Muthukumar et al., 2020) focused on providing generalization guarantees
for models that interpolate data under uniform label noise. This suggests that noisy training data
does not hurt the test error of overparameterized models.

However, when deploying machine learning systems in the real world, it is not enough to guarantee
low test error. Adversarial vulnerability is a practical security threat (Kurakin et al., 2016; Sharif
et al., 2016; Eykholt et al., 2018) for deploying machine learning algorithms in critical environments.
An adversarially vulnerable classifier, that is accurate on the test distribution, can be forced to err
on carefully perturbed inputs even when the perturbations are small. This has motivated a large
body of work towards improving the adversarial robustness of neural networks (Goodfellow et al.,
2014; Papernot et al., 2016; Tramèr et al., 2018; Sanyal et al., 2018; Cisse et al., 2017). Despite the
empirical advances, the theoretical guarantees on robust defenses are still poorly understood.

Consider the setting of uniformly random label noise. Under certain distributional assump-
tions, Sanyal et al. (2021) claim that with moderate amount of label noise, when training classifiers
to zero training error, the adversarial risk is always large, even when the test error is low. Exper-
imentally, this is supported by Zhu et al. (2021), who showed that common methods for reducing
adversarial risk like adversarial training in fact does not memorise label noise. However, it is not
clear whether their distributional assumptions are realistic, or if their result is tight. To deploy
machine learning models responsibly, it is important to understand the extent to which a common
phenomenon like label noise can negatively impact adversarial robustness. In this work, we improve
upon previous theoretical results, proving a stronger result on how label noise guarantees adversarial
risk for large enough sample size.

∗Equal contribution.

1



Published as a conference paper at ICLR 2023

On the other hand, existing experimental results (Sanyal et al., 2021) seem to suggest that neural
networks suffer from large adversarial risk even in the small sample size regime. Our results show
that this phenomenon cannot be explained without further assumptions on the data distributions,
the learning algorithm, or the machine learning model. While specific biases of machine learning
models and algorithms (referred to as inductive bias) have usually played a “positive” role in ma-
chine learning literature (Vaswani et al., 2017; van Merriënboer et al., 2017; Mingard et al., 2020),
we show how some biases can make the model more vulnerable to adversarial risks under noisy
interpolation.

Apart from the data distribution and the inductive biases, we also investigate the role of the label
noise model. Uniform label noise, also known as random classification noise (Angluin and Laird,
1988), is a natural choice for modeling label noise, but it is neither the most realistic nor the most
adversarial noise model. Yet, our results show that when it comes to guaranteeing a lower bound
on adversarial risk for interpolating models, uniform label noise model is not much weaker than the
optimal poisoning adversary. Our experiments indicate that natural label noise (Wei et al., 2022) is
not as bad for adversarial robustness as uniform label noise. Finally, we also attempt to understand
the conditions under which such benign (natural) label noise arises.

Overview First, we introduce notation necessary to understand the rest of the paper. Then, we
prove a theoretical result (Theorem 2) on adversarial risk caused by label noise, significantly im-
proving upon previous results (Theorem 1 from Sanyal et al. (2021)). In fact, our Theorem 2 gives
the first theoretical guarantee that adversarial risk is large for all compactly supported input distri-
butions and all interpolating classifiers, in the presence of label noise. Our theorem does not rely
on the particular function class or the training method. Then, in Section 3, we show Theorem 2 is
tight without further assumptions, but does not accurately reflect empirical observations on standard
datasets. Our hypothesis is that the experimentally shown effect of label noise depends on properties
of the distribution and the inductive bias of the function class. In Section 4, we prove (Theorem 5)
that uniform label noise is on the same order of harmfmul as worst case data poisoning, given a
slight increase in dataset size and adversarial radius. We also run experiments in Figure 3, showing
that mistakes done by human labelers are more benign than the same rate of uniform noise. Finally,
in Section 5, we show that the inductive bias of the function class makes the impact of label noise
on adversarial vulnerability much stronger and provide an example in Theorem 7.

2 GUARANTEEING ADVERSARIAL RISK FOR NOISY INTERPOLATORS

Our setting Choose a norm ∥·∥ on Rd, for example ∥·∥2 or ∥·∥∞. For x ∈ Rd, let Br(x) denote
the ∥·∥-ball of radius r around x. Let µ be a distribution on Rd and let f∗ : C → {0, 1} be a
measurable ground truth classifier. Then we can define the adversarial risk of any classifier f with
respect to f∗, µ, given an adversary with perturbation budget ρ > 0 under the norm ∥·∥, as

RAdv,ρ(f, µ) = Px∼µ [∃z ∈ Bρ(x), f
∗(x) ̸= f(z))] . (1)

Next, consider a training set ((z1, y1), . . . , (zm, ym)) in Rd×{0, 1}, where the zi are independently
sampled from µ, and each yi equals f∗(zi) with probability 1 − η, where η > 0 is the label noise
rate. Let f be any classifier which correctly interpolates the training set. We now state the main
theoretical result of Sanyal et al. (2021) so that we can compare our result with it.
Theorem 1 ( Sanyal et al. (2021)). Suppose that there exist c1 ≥ c2 > 0, ρ > 0, and a finite set
ζ ⊂ Rd satisfying

µ

⋃
s∈ζ

Bρ/2(s)

 ≥ c1 and ∀s ∈ ζ, µ
(
Bρ/2(s)

)
≥ c2

|ζ|
(2)

Further, suppose that each of these balls contains points from a single class. Then for δ > 0, when
the number of samples m ≥ |ζ|

ηc2
log
(

|ζ|
δ

)
, with probability 1− δ

RAdv,ρ(f, µ) ≥ c1. (3)
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This is the first guarantee for adversarial risk caused by label noise in the literature. However,
Theorem 1 has two extremely strong assumptions:

• The input distribution has mass c1 in a union of balls, each of which has mass at least c2;
• Each ball only contains points from a single class.

It is not clear why such balls would exist for real-world datasets, or even MNIST or CIFAR-10. In
Appendix F, we give some evidence against the second assumption in particular. In Theorem 2,
we remove these assumptions and show that our guarantees hold for all compactly supported input
distributions, with comparable guarantees on adversarial risk.

Let C be a compact subset of Rd. An important quantity in our theorem will be the covering number
N = N(ρ/2; C, ∥·∥) of C in the metric ∥·∥. The covering number N is the minimum number of
∥·∥-balls of radius ρ/2 such that their union contains C. For any distribution µ on Rd, denote by
µ (C) = Px∼µ [x ∈ C] the mass of the distribution µ contained in the compact C.

Theorem 2. Let C ⊂ Rd satisfy µ(C) > 0, and let N = N(ρ/2; C, ∥·∥) be its covering number. For
δ > 0, when the number of samples satisfies m ≥ 8N

µ(C)η log 2N
δ . with probability 1− δ we have that

RAdv,ρ(f, µ) ≥
1

4
µ(C) (4)

for any classifier f that interpolates the training set.

The compact C can be chosen freely, allowing us to make tradeoffs between the required number
of samples m and the lower bound on the adversarial risk. As the chosen C expands in volume, the
lower bound on the adversarial risk µ (C) also increases. However, this also increases the required
number of samples for the theorem to kick in, which depends on its covering number N . The
tradeoff curve depends on the distribution µ; we discuss this in Section 3.

Note that Theorem 2 is easier to interpret than Theorem 1, as it holds for any compact C as opposed
to a finite set ζ of dense balls. Our result avoids the unwieldy assumptions, and in fact gives a
slightly stronger guarantee than Theorem 1. When Equation (2) holds, note that we can choose the
compact C =

⋃
s∈ζ Bρ/2(s) from Theorem 1 yielding N = |ζ| and µ (C) = c1. Thus, under similar

settings as the previous result, our theorem requires the number of samples m = Ω̃
(

|ζ|
ηc1

)
, which is

smaller than m = Ω̃
(

|ζ|
ηc2

)
required in Theorem 1.

We leave the proof of Theorem 2 to Appendix A, but we provide a brief sketch of the ideas.

Figure 1: Depending on the covering
number of C, a small number of ∥·∥-
balls of sufficient density cover a lot of
the measure of C. Label noise makes
every point drawn from the covered set
adversarially vulnerable.

Proof sketch We want to prove that a large portion of
points from µ have a mislabeled point nearby when m is
large enough. The expected number of label noise train-
ing points is ηm; however a priori those could be any-
where in the support of µ.

The key idea is that we can always find a set of ∥·∥-balls
covering a lot of measure, with each of the balls having a
large enough density of µ. We prove this in Lemma 8 and
provide an illustration in Figure 1. The blue dotted circles
in Figure 1 are the ∥·∥-balls; they do not cover the entire
space but cover a significant portion of the entire density.
Then, if we take a lot of ∥·∥-balls with large density of
a single class, we can prove that label noise induces an
opposite-labeled point in each of the chosen balls given
m large enough.

Concretely, the probability for a single chosen ball
to not be adversarially vulnerable is on the order of(
1− η

2N

)µ(C)m
, and summing this up over the O(N)

chosen balls goes to zero when m is large. By the union
bound, each of these balls is then adversarially vulnera-
ble, summing up to a constant adversarial risk.
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(a) MNIST (b) ResNet18 (CIFAR10) (c) DenseNet121 (CIFAR10)

Figure 2: From Sanyal et al. (2021). Adversarial error increases with increasing label noise η (x-
axis) at a rate much faster than predicted by Theorem 2. Here, ϵ is the perturbation magnitude (ρ in
the current paper). The label noise is synthetically injected in the training set with probability η.

We considered the binary classification case for simplicity. The proof in Appendix A lower bounds
the adversarial risk on a single true class. Thus, by summing up the risks for each class, we lose
only a constant factor on the guaranteed adversarial risk in the multi-class case.

For compactly supported µ, we can take C to be the support of µ to prove a general statement.
Corollary 3. Let N be the covering number of supp(µ) with balls of radius ρ/2. For δ > 0, when
the number of samples satisfies m ≥ 8N

η log 2N
δ . with probability 1− δ we have that

RAdv,ρ(f, µ) ≥
1

4
. (5)

This is easier to understand than Theorem 2: if interpolating a dataset with label noise, the number
of samples required to guarantee constant adversarial risk scales with the covering number of the
support of the distribution.
Remark 1. The proof in Appendix A actually proves Equation (4) by first proving a stronger fact: if
µ|C is the normalized restricton of µ on C, then

RAdv,ρ(f, µ|C) ≥
1

4
. (6)

We can use this to give better guarantees when f∗ is not robust. If a region of supp(µ) is already
adversarially vulnerable using the true classifier f∗, we can omit it from C, and just add the guarantee
from Theorem 2 to the original adversarial risk to get a stronger lower bound on RAdv,ρ(f, µ).

3 PRACTICAL IMPLICATIONS ON SAMPLE SIZE

In this section, we discuss the limitations of results like Theorem 2. When we allow arbitrary interpo-
lating classifiers, we show that Theorem 2 paints an accurate picture of the interaction of label noise,
interpolation, and adversarial risk. However, this particular theoretical framework cannot explain the
strong effect of label noise on adversarial risk in practice (see Figure 2). We argue that this requires
a better understanding of the inductive biases of the hypothesis class and the optimization algorithm.

Required sample size for Theorem 2 The number of required samples m in Theorem 2 can be
very large, depending on the density and the covering number of the chosen compact C. Consider
∥·∥ to be the ∥·∥∞ norm, as is customary in adversarial robustness research (Goodfellow et al.,
2014). Then the balls Bρ are small hypercubes in Rd. If we choose C to be the hypercube [0, 1]d,
the covering number scales exponentially in dimension:

N = N(ρ; [0, 1]d, ∥·∥∞) ≃
(
1

ρ

)d

. (7)

A rough back-of-the-envelope calculation indicates that this can scale badly even for standard
datasets such as MNIST (d = 784) or CIFAR-10 (d = 3072), since in Theorem 2 we need
m ≳ N

µ(C)η . This amounts an impossibly large sample size (m ≳ 10784) for ρ = 0.2 to explain
the effect already observed with in m = 50000 MNIST training samples in Figure 2a.
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Hence our result often does not guarantee any adversarial risk if the number of samples m is small.
In general, the covering number of a dataset is not polynomial in the dimension, except if the data
has special properties in the given metric. For example, if the data distribution is supported on
a subspace of Rd of ambient dimension k < d, we can pick a C for which the covering number
in ∥·∥2 will depend only on k and not on d. However, this is still not sufficient to explain the
behaviour in Figures 2b and 2c. If our result indeed kicks in for some ambient dimension k with
DenseNet121 on CIFAR10, then for a given adversarial risk (say 80%), the power law dependence

would imply
(

ρ2

ρ1

)k
≈ η1

η2
, where label noise rate ηi yields adversarial error 80% with perturbation

budget ρi. With another back-of-the-envelope calculation using Figure 2c, we set η1, η2 = 0.7, 0.1
and ρ1, ρ2 = 0.001, 0.004. This yields an ambient dimension k < 2, which is unrealistic for
CIFAR-10.

These calculations suggest the possibility that a tighter bound than Theorem 2 might exist. However,
the large sample size is not just a limitation of Theorem 2. In fact, we show that if arbitrary classifiers
and distributions are allowed, the adversarial risk cannot be lower bounded for m = poly(d).

Our result is tight It is a priori possible that the true dependence of adversarial risk on label noise
kicks in for much lower sample size regimes than in Theorem 2. This might suggest that the lower
bound on sample complexity can be improved. We show this is not the case and in fact our bound
is sharp. In particular, we design a simple distribution on Rd such that there exist classifiers which
correctly and robustly interpolate datasets with the number of samples m exponential in d.

Proposition 4. Let µ be the uniform distribution on Sd−1 ={
x1, . . . , xd ∈ Rd : x2

1 + . . .+ x2
d = 1

}
, and let the ground truth classifier f∗ be a threshold

function on x1: f∗(x) = 1x1>
1
2

. Consider any adversarial radius ρ < 1
4 in the Euclidean metric.

Then, for any label noise η < 1: with high probability, there exists a classifier f that interpolates
m = ⌊1.01d⌋ samples from the label noise distribution, such that RAdv,ρ(f, µ) = od(1).

Proof sketch The main ingredient of the proof is the concentration of measure on Sd−1, which
makes the training samples far apart in the Euclidean metric. We leave the full proof to Appendix B.
Similar statements in the clean data setting have appeared before, e.g. in Bubeck and Sellke (2021).

Note that Proposition 4 shows a construction where Theorem 2 cannot guarantee an adversarial
risk lower bound with sample size m sub-exponential in d. Hence, the covering number of any
substantial portion of Sd−1 is exponential in the dimension d. This unintentionally proves the well
known fact that the covering number of the sphere Sd−1 in the Euclidean metric is exponential.1

Optimizing C can avoid large sample size While Proposition 4 shows the tightness of Theorem 2
in the worst case, it is possible a smaller sample size requirement is sufficient under certain condi-
tions. In particular, if we can pick a compact C with small covering number, such that the measure
µ(C) is large, then Theorem 2 allows for a small sample size while guaranteeing a large adversarial
risk.

Example Take an adversarial radius ρ > 0 in the ∥·∥∞ metric and choose r ∈ (0, 1
2 ), let µ =

(1 − r)µ1 + rµ2 be the average of two measures, µ1 and µ2, with µ1 the uniform distribution on
[0, 1]d, and µ2 the uniform distribution on a smaller hypercube [0, ρ]d.

The first choice C = [0, 1]d as in Corollary 3 has covering number on the order of ρ−d. Theorem 2 is
then vacuous until m ≳ ρ−d/η, which is very large in high dimensions. Note that this is necessary
to achieve the lower bound of adversarial risk of 1

4 . However, if we only want to guarantee an
adversarial risk of r

4 , instead we can use C = [0, ρ]d. For this, the covering number is 1 and we can

use Theorem 2 for m = O
(

1
η

)
. This suggests that while the required sample size for the maximal

adversarial risk is possibly very large, it can be much smaller, depending on the distribution, for
guaranteeing a smaller adversarial risk.

1See Proposition 4.16 in https://www.stats.ox.ac.uk/˜rebeschi/teaching/AFoL/20/
material/lecture04.pdf
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Formally, to get the “best possible” m in Theorem 2 for a certain adversarial risk lower bound r, we
should solve the following optimization problem over subsets of supp(µ):

min
µ(C)≥4r

N(ρ/2, C, ∥·∥∞) logN(ρ/2, C, ∥·∥∞)

µ(C)
. (8)

The above optimization problem comes from substituting r into the adversarial risk placeholder in
Theorem 2. Equation (8) provides a complexity measure to get tighter lower bounds on the adversar-
ial vulnerability induced by uniform label noise. It is not known whether the optimization is tractable
in general. However, the concept of having to solve an optimization problem in order to get a tight
lower bound is common in the literature. Some examples are the representation dimension (Beimel
et al., 2019) and the SQ dimension (Feldman, 2017) .

To conclude, this section shows that in real world data, the required sample size for guaranteeing
large adversarial risk from interpolating label noise is significantly smaller than what an off-the-shelf
application of Theorem 2 might suggest. However, we also proved that it is not possible to obtain
tighter bounds without further assumptions on the data or the model.

4 NON-UNIFORM LABEL NOISE

In previous sections, we discussed guaranteeing a lower bound on adversarial error for noisy inter-
polators in Section 2. In Section 3, we discussed the tightness of the said bound. However, all of
these results assumed that the label noise is distributed uniformly on the points in the training set,
which corresponds to the popular Random Classification Noise (Angluin and Laird, 1988) model.
However, an uniform noise model is not very realistic (Hedderich et al., 2021; Wei et al., 2022); and
it is thus sensible to also investigate how our results change under non-uniform label noise models.

Uniform noise is almost as harmful as poisoning The worst-case non-uniform label noise model
is data poisoning, where an adversary can choose the labels of a subset of the training set of a fixed
size (see Biggio and Roli (2018) for a survey). It is well known that flipping the label of a constant
number of points in the training set can significantly increase the error of a logistic regression model
(Jagielski et al., 2018) or an SVM classifier (Biggio et al., 2011). On the contrary, the test error of a
neural networks has been surprisingly difficult to hurt by data poisoning attacks which flip a small
fraction of the labels. Lu et al. (2022) show that, on some datasets, the effect of adversarial data
poisoning on test accuracy is, in fact, comparable to the effect of uniform label noise.

We phrase the main result of this section informally in Theorem 5, using standard game-theoretic
metaphors for data poisoning, and defer the formal version to Appendix C. Let again µ be a distri-
bution on Rd and f∗ a correct binary classifier, and let η be the label noise rate. Consider a game
in which an adversary flips the labels of a subset of the training set, and tries to maximize the mini-
mum adversarial risk among all interpolators of the noisy (after flipping labels) training set. We will
compare the performances of two adversaries:

• Uniform, who samples T points uniformly from the distribution, and flips the label of each
of the T points in the sampled training set with probability η;

• Poisoner, who inserts N = ηm arbitrary points from supp(µ) with flipped labels into the
training set and then samples the remaining m−N points uniformly, with correct labels.

Here T and m are the respective training set sizes. If T ∼ 1
ηN = m, then the two adversaries flip

the same number of labels in expectation. In that sense, both of these adversaries have the same
budget. However, the Poisoner can choose which points to flip and thus intuitively, in this regime,
the Poisoner will get a higher adversarial risk than the Uniform. Surprisingly, we can prove the
Uniform is not much worse if T ∼ m logm.
Theorem 5 (Informal statement of Theorem 11). Denote the adversarial risks of the Uniform and
the Poisoner adversaries by RUnif and RPoison respectively. For any ρ > 0, we have that

RUnif
2ρ ≥ 1

2
RPoison

ρ (9)

as long as RPoison
ρ = Ω(1) and T ≳ m logm.

6



Published as a conference paper at ICLR 2023

Roughly speaking, the above theorem shows that if the Uniform adversary is given double the ad-
versarial radius and a log factor increase on the training set size, then Uniform can guarantee an
adversarial risk of the same magnitude as the Poisoner. The full statement and the proof of the
theorem are given in Appendix C but we provide a brief sketch here.

Proof sketch The Poisoner will choose N points to flip, adversarially poisoning every point in the
N corresponding ρ-balls. As in Theorem 2, we can use Lemma 8 to show that a subset of the balls
with density Ω(1/N) covers half of the adversarially vulnerable region. Then Uniform samples T
points, and we expect to hit each of the balls in the chosen subset. Because of the doubled radius,
each sampled point makes the the whole ρ-ball vulnerable. The log factor comes from the same
reason as in the standard coupon collector (balls and bins) problem; if we have N bins with hitting
probabilities Ω(1/N), then we need Ω(N logN) tries to hit each bin at least once.

Some label noise models are benign Different label noise models with the same expected label
noise rate can have very different effects on the adversarial risk. In the previous sections, we showed
that uniform label noise is almost as bad as the worst possible noise model with the same label noise
rate. This raises the question whether all noise models are as harmful as the uniform label noise
model. We answer the question in the negative especially for data distributions that have a long
tailed structure: many far-apart low-density subpopulations in the support of the distribution µ.

For this, we show a simple data distribution µ in Proposition 6, where:

• Uniform label noise with probability η guarantees adversarial risk on the order of η;
• A different label noise model, with expected label noise rate η, which affects only the long

tail of the distribution µ can be interpolated with o(1) adversarial risk.

We argue that this is neither an unrealistic distributional assumption nor an impractical noise model.
In fact, most standard image datasets, like SUN (Xiao et al., 2010), PASCAL (Everingham et al.,
2010), and CelebA (Liu et al., 2015) have a long tail (Zhu et al., 2014; Sanyal et al., 2022). Moreover,
it is natural to assume that mistakes in the datasets are more likely to occur in the long tail, where the
data points are atypical. In Feldman (2020), it was argued that noisy labels on the long tail are one
of the reasons for why overparameterized neural networks remember the training data. Formally,
we prove the following regarding the benign noise model for a long-tailed distribution.
Proposition 6. Let A < B be integers with A much smaller than B. Let µ be a mixture model on R
supported on a disjoint union of A+B intervals, such that half of the mass is on the first A intervals
and half of the mass is on the last B intervals:

µ =
1

2A

A∑
i=1

Unif

(
i, i+

1

2

)
+

1

2B

B∑
j=1

Unif

(
A+ j, A+ j +

1

2

)
Let the ground truth label be zero everywhere. Sample two datasets D1,D2 of size m from µ using
two different label noise distributions: For D1, flip the label of each sample x ∈ [0, A+B] indepen-
dently with probability η. For D2, flip the label of each sample x ∈ [A,A + B] independently with
probability 2η, and leave the labels of the other samples unchanged. Then, for any ρ, δ ∈

(
0, 1

2

)
,

for the number of samples m = Θ̃ρ(A) (ignoring log terms), we have that with probability 1− δ:

• For any f which interpolates D1, the adversarial risk is large: RAdv,ρ(f, µ) = Ωρ (1).

• There exists f which interpolates D2, such that RAdv,ρ(f, µ) = Oρ

(
A
B

)
.

A similar distribution was previously used as a representative long tailed distribution in the context
of privacy and fairness in Sanyal et al. (2022). Our result can also be extended to more compli-
cated long-tailed distributions with a similar strategy. Proposition 6 implies that the the first noise
model (for D1) induces Ω(1) adversarial risk on all interpolators. On the other hand, for the second
noise model i.e. for D2, it is possible to obtain interpolators with adversarial risk on the order of(
A
B

)
. Thus, for distributions where A ≪ B, this implies the existence of almost robust interpolators

despite having the same label noise rate.

Real-world noise is more benign than uniform label noise To support our argument that real
world noise models are, in fact, more benign than uniform noise models, we consider the noise
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Figure 3: Figures 3a and 3b plots adversarial risk against perturbation budget on CIFAR10
and CIFAR100 datasets respectively, with three label noise models. Clean denotes the original
CIFAR-10/100 labels. Human denotes the human-generated labels from (Wei et al., 2022). Uniform
refers to uniformly random label noise with the same rate as Human. Figure 3c plots the average
memorisation score per class for: Human mislabeled examples i.e. examples with Human noisy
labels and All samples. The horizontal line is the average across all classes. The higher score of
human mislabeled examples indicates that those examples belong to the long tail of the distribution.

induced by human annotators in Wei et al. (2022). They propose a new version of the CIFAR10/100
dataset (Krizhevsky et al., 2009) where each image is labelled by three human annotators. Known as
CIFAR-10/100-n, each example’s label is decided by a majority vote on the three annotated labels.
We train ResNet34 models till interpolation on these two datasets. The label noise rate, after the
majority vote, is ≈ 9% in CIFAR10 and ≈ 40% in CIFAR100. We repeat the same experiment
for uniform label noise with the same noise rates, and also without any label noise. Each of these
models’ adversarial error is evaluated with an ℓ∞ PGD adversary plotted in Figures 3a and 3b.

Figures 3a and 3b show that, for both CIFAR10 and CIFAR100, uniform label noise is indeed worse
for adversarial risk than human-generated label noise. For CIFAR-10, the model that interpolates
human-generated label noise is almost as robust as the model trained on clean data. This supports our
argument that real-world label noise is more benign, for adversarial risk, than uniform label noise.

An important direction for future research is understanding what types of label noise models are
useful mathematical proxies for realistic label noise. We shed some light on this question using the
idea of memorisation score (Feldman and Zhang, 2020). Informally, memorisation score quantifies
the atypicality of a sample; it measures the increase in the loss on a data point when the learning
algorithm does not observe it during training compared to when it does. A high memorisation
score indicates that the point is unique in the training data and thus, likely, lies in the long tail of
the distribution. In Figure 3c, we plot the average memorisation score of each class of CIFAR10
in brown, and the average for images that were mislabeled by the human annotator in blue. It is
clearly evident that the mislabeled images have a higher memorisation score. This supports our
hypothesis (also in Feldman (2020)) that, in the real world, examples in the long tail, are more likely
to be mislabeled.

5 THE ROLE OF INDUCTIVE BIAS

We have seen, in Section 3, that without further assumptions the theoretical guarantees in Theorem 2
only hold for very large training sets. In this section, we discuss how the inductive bias of the
hypothesis class or the learning algorithm can lower the sample size requirement and point to recent
work that indicates the presence of such inductive biases in neural networks.

Inductive bias can hurt robustness even further There is ample empirical evidence (Ortiz-
Jimenez et al., 2020; Kalimeris et al., 2019; Shamir et al., 2021) that neural networks exhibit an
inductive bias that is different from what is required for robustness. Shah et al. (2020) also provides
empirical evidence that neural networks exhibit a certain inductive bias, that they call simplicity
bias, that hurts adversarial robustness. Ortiz-Jiménez et al. (2022) show that this is also responsible
for a phenomenon known as catastrophic overfitting.
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W

≤ ρ

Figure 4: Visualization of a portion of the distribution µ and the hypothesis class H used in Theo-
rem 7. The crosses are the mislabeled examples and the circles are correctly labelled examples. All
the circles are adversarially vulnerable to upwards perturbations of magnitude less than ρ.

Here, we show a simple example to illustrate the role of inductive bias. Consider a binary classifi-
cation problem on a data distribution µ and a dataset Sm,η of m points, sampled i.i.d. from µ such
that the label of each example is flipped with probability η.
Theorem 7. For any ρ > 0, there exists a distribution µ on R2 and two hypothesis classes H and
F , such that for any label noise rate η ∈ (0, 1/2) and dataset size m = Θ

(
1
η

)
, in expectation we

have that: for all h ∈ H that interpolate Sm,η ,
RAdv,ρ (h, µ) ≥ Ω (1) ; (10)

whereas there exists an f ∈ F that interpolates Sm,η and RAdv,ρ (f ;µ) = O (ρ).

The classes H and F are precisely defined in Appendix E where a formal proof is given as well,
but we provide a proof sketch here. The data distribution µ in Theorem 7 is uniform on the
set [0,W ] × {0}, that is, the data is just supported on the first coordinate where W ≫ ρ > 0. The
ground truth is a threshold function on the first coordinate. The constructed f ∈ F simply labels
everything according to the ground truth classifier (which is a threshold function on the first coor-
dinate) except the mislabeled data points; where it constructs infinitesimally small intervals around
the point on the first coordinate. Note that this construction is similar to the one in Proposition 4. By
design, it interpolates the training set and its expected adversarial risk is upper bounded by 2mηρ.

Each hypothesis in the hypothesis class H can be thought of as a union of T-shaped decision regions.
The region inside the T-shaped regions are classified as 1 and the rest as 0. Note that the “head”
of a T-shaped region make the region on the data manifold (first coordinate) directly below them
adversarially vulnerable. The width of the T can be interpreted as the inductive bias of the learning
algorithm. The decision boundaries of neural networks usually lie on the data manifold (Somepalli
et al., 2022); and the network behaves more smoothly off the data manifold. A natural consequence
of this is that the head of the Ts are large. This is not the exact explanation of inductive bias in neural
networks, but rather an illustrative example for what might be happening in practice. In Appendix G,
we provide experimental evidence to show this type of behaviour for neural networks.

There are two important properties of this simple example relevant for understanding adversarial
vulnerability of neural networks. First, the adversarial examples constructed here are off-manifold:
they do not lie on the manifold of the data. This has been observed in prior works (Hendrycks
and Gimpel, 2016; Sanyal et al., 2018; Khoury and Hadfield-Menell, 2018). Second, our examples
implicitly exhibit the dimpled manifold phenomenon recently described in Shamir et al. (2021).

Is Theorem 2 about the wrong function class? When fitting deep neural networks to real
datasets, the results of Theorem 2 still hold even when the number of samples m is much smaller
than required, as can be seen in Figure 2. We think that proving guarantees on adversarial risk in
the presence of label noise is within reach for simple neural network settings. Towards this goal, we
propose a conjecture in a similar vein to Bubeck et al. (2020):
Conjecture 1. Let f : Rd → R be a neural network with a single hidden layer with k neurons.
Under the same conditions as in Theorem 2, for the number of samples m = Ω̃( 1ηpoly(k, d)),

RAdv,ρ(f, µ) ≥ const. (11)

for a distribution µ supported on [0, 1]d.

In short, we conjecture that neural networks exhibit inductive biases which hurt robustness when in-
terpolating label noise. Dohmatob (2021) show a similar result for a large class of neural networks.
However, the Bayes optimal error in their setting is a positive constant (as opposed to zero in our
setting), and we assume uniform label noise in the training set. Understanding these properties is
important for training on real-world data, where label noise is not a possibility but rather a norm.

9
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A PROOF OF THEOREM 2

Here we prove the following statement:

Theorem 2. Let C ⊂ Rd satisfy µ(C) > 0, and let N = N(ρ/2; C, ∥·∥) be its covering number. For
δ > 0, when the number of samples satisfies m ≥ 8N

µ(C)η log 2N
δ . with probability 1− δ we have that

RAdv,ρ(f, µ) ≥
1

4
µ(C) (4)

for any classifier f that interpolates the training set.

For notational convenience, we replace ρ by 2ρ in all places for the proof below.

Proof. Without loss of generality, let C0 = {x ∈ C : f∗(x) = 0 } have probability µ(C0) ≥ 1
2µ(C).

Let µ0 = µ|C0
, normalized so that µ0(C0) = 1.

By Chernoff, with probability 1 − exp
(
−µ(C)m

16

)
≥ 1 − δ

2 , at least m0 = ⌊µ(C)m
4 ⌋ of the samples

zi are in C0. Without loss of generality, let z1, . . . ,zm0 be those samples. Then

RAdv,2ρ (f, µ) ≥
1

2
µ(C) Px∼µ,x∈C0

[∃z ∈ B2ρ(x), f
∗(x) ̸= f(z))] (12)

=
1

2
µ(C) Px∼µ0

[∃z ∈ B2ρ(x), f(z) ̸= 0] (13)

≥ 1

2
µ(C) Px∼µ0 [∃ i ≤ m0 : zi ∈ B2ρ(x) ∩ C0, f(zi) ̸= 0] (14)

=
1

2
µ(C) Px∼µ0 [∃ i ≤ m0 : x ∈ B2ρ(zi), zi ∈ C0, f(zi) ̸= 0] . (15)

=
1

2
µ(C) µ0

 ⋃
i≤m0, f(zi )̸=0

B2ρ(zi)

 . (16)

Let s1, . . . , sN be the centers of a minimum ρ-covering of C0.

The plan is the following: we will lower bound
⋃

i≤m0, f(zi )̸=0 B2ρ(zi) by the union of some
Bρ(sk), which will have large µ0-measure in total. Moreover, each of the chosen Bρ(sk) will
have large enough µ0-measure. For this, we use the following general lemma:

Lemma 8. Let s1, . . . , sN be the centers of some balls Br(si) in Rd, and take any measure ν. Then,
for any constant 0 < α < 1, there exists a subset S ⊆ { 1, . . . , N } of the balls such that:

• ν
(⋃

i∈S Br(si)
)
≥ (1− α) ν

(⋃N
i=1 Br(si)

)
.

• ν (Br(si)) ≥ α
N ν

(⋃N
i=1 Br(si)

)
for all i ∈ S.

Informally, the first condition says that the union of the chosen subset has a constant fraction of the
measure of the union. The second condition says that each of the chosen balls has Ω(1/N) of the
measure of the union of all balls.

Proof. Without loss of generality, let the balls be ordered by measure:

ν (Br(s1)) ≥ ν (Br(s2)) ≥ · · · ≥ ν (Br(sN )) . (17)
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a) The original cover of C. b) The dense greedy subcover.

Figure 5: Illustration of Lemma 8 and Corollary 9. Given a cover of N balls, we can pick a subcover
of balls covering at least half of the measure, with each ball having measure at least 1

2N .

We take the greedy subset S = { 1, . . . ,K }, where 1 ≤ K ≤ N is the largest index such that
ν (Br(sK)) ≥ α ν

(⋃N
i=1 Br(si)

)
.

ν

(
K⋃
i=1

Br(si)

)
= ν

(
N⋃
i=1

Br(si)

)
− ν

(
N⋃

i=K+1

Br(si)

)
(18)

≥ ν

(
N⋃
i=1

Br(si)

)
− (N −K)

α

N
ν

(
N⋃
i=1

Br(si)

)
(19)

≥ (1− α) ν

(
N⋃
i=1

Br(si)

)
. (20)

The first inequality follows because for all i ≥ K + 1 it holds ν (Br(sK)) < α ν
(⋃N

i=1 Br(si)
)

,

and the second is because N−K
N ≤ 1. ■

We can apply the above to the situation in the proof of Theorem 2 with α = 1
2 . Without loss of

generality, order the covering s1, . . . , sN by the µ0-measure of the corresponding balls:

µ0 (Bρ(s1)) ≥ µ0 (Bρ(s2)) ≥ · · · ≥ µ0 (Bρ(sN )) . (21)

Corollary 9. If 1 ≤ K ≤ N is the largest index such that µ0(Bρ(sK) ≥ 1
2N , then

µ0

(
K⋃

k=1

Bρ(si)

)
>

1

2
. (22)

We now show that the chosen balls are dense enough to get samples in the training set with high
probability.

Lemma 10. With probability 1 − δ/2, each Bρ(sk) for k ≤ K contains at least one zi ∈ C0 such
that f(zi) ̸= 0.

Proof. We have

P [zi ∈ Bρ(sk) | zi ∈ C0] ≥
1

2N
, (23)

and because the label corruption is independent from everything, we also have

P [f(zi) ̸= 0 | zi ∈ C0] = η (24)

=⇒ P [f(zi) ̸= 0 and zi ∈ Bρ(sk) | zi ∈ C0] ≥
η

2N
(25)
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Therefore,

P [Bρ(sk) ∩ { zi : i ≤ m0, f(zi) ̸= 0 } = ∅] (26)

=

m0∏
i=1

P [zi /∈ Bρ(sk) or zi /∈ C0 or f(zi) ̸= 0] (27)

≤
(
1− η

2N

)m0

(28)

≤ exp
(
−m0η

2N

)
≥ δ

2N
, (29)

In the last line we used 1 + x ≤ ex, the fact that m0 = 1
4µ(C)m, and the expression for m from

Theorem 2. Now we can use the union bound to prove the lemma:

P [ some Bρ(sk) for k ≤ K contains no zi : i ≤ m0, f(zi) ̸= 0 ] ≤ K
δ

N
≤ δ. (30)

■

Finally, using both Lemma 8 and Lemma 10, we can finish:

RAdv,2ρ(f, µ) ≥
1

2
µ(C) µ0

 ⋃
i≤m0, f(zi )̸=0

B2ρ(zi)

 . (31)

≥ 1

2
µ(C) µ0

(
K⋃

k=1

Bρ(sk)

)
≥ 1

4
µ(C). (32)

B PROOF OF PROPOSITION 4

Proposition 4. Let µ be the uniform distribution on Sd−1 ={
x1, . . . , xd ∈ Rd : x2

1 + . . .+ x2
d = 1

}
, and let the ground truth classifier f∗ be a threshold

function on x1: f∗(x) = 1x1>
1
2

. Consider any adversarial radius ρ < 1
4 in the Euclidean metric.

Then, for any label noise η < 1: with high probability, there exists a classifier f that interpolates
m = ⌊1.01d⌋ samples from the label noise distribution, such that RAdv,ρ(f, µ) = od(1).

Proof. Let the m = 1.01d ≤ exp(d/80) samples be z1, . . . ,zm with labels y1, . . . , ym ∈ {0, 1}.
Almost surely the zi are distinct. Define the interpolating classifier f : Rd → {0, 1} as

f(x) =

{
yi if x ∈ {z1, . . . ,zm};
1x1>

1
2

otherwise.
(33)

We want to show f is robust. Draw x = (x1, . . . , xd) uniformly on Sd−1. There are only two ways
x can contribute to the adversarial risk RAdv,ρ(f, µ):

• x is close to a training sample zi with label noise;

• x is close to the “decision boundary” x1 = 1
2 of Sd−1.

Hence, remembering Equation (1),

RAdv,ρ(f, µ) ≤ P [x is in a ρ-ball around at least one of the zi] + P
[
1

2
− ρ ≤ x1 ≤ 1

2
+ ρ

]
.

(34)

≤ P [x is in a ρ-ball around at least one of the zi] + P
[
x1 ≥ 1

2
− ρ

]
. (35)
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By the union bound,

P [x is in a ρ-ball around at least one of the zi] (36)
≤ m P [∥x− z1∥2 ≤ ρ] (37)

≤ m P
[
∥x∥2 + ∥z1∥2 − 2⟨x, z1⟩ ≤ ρ2

]
(38)

= m P
[
⟨x, z1⟩ ≥ 1− ρ2/2

]
. (39)

As µ is rotationally invariant, ⟨x, z1⟩ is distributed the same as x1. We have proved

RAdv,ρ(f, µ) ≤ m P
[
x1 ≥ 1− ρ2

2

]
+ P

[
x1 ≥ 1

2
− ρ

]
. (40)

We can bound P[x1 ≥ t] for t > 0 as follows: let g1, . . . , gd be i.i.d. standard N(0, 1) random
variables.

P [x1 ≥ t] = P

[
g1√

g21 + . . .+ g2d
≥ t

]
(41a)

= P
[
g21 ≥ t2(g21 + . . .+ g2d)

]
(41b)

= P
[
1− t2

t2
g21 ≥ g22 + . . .+ g2d

]
(41c)

≤ P
[
1− t2

t2
g21 ≥ d− 1

2

]
+ P

[
g22 + . . .+ g2d ≤ d− 1

2

]
, (41d)

where the last inequality is because a ≥ b implies a ≥ c or b ≤ c.

As 0 < ρ < 1
4 , we can take t = 1

4 in both probabilities in Equation (40). We now use the often-cited
chi-square bounds from Lemma 1 in Laurent and Massart (2000).

P
[
g22 + . . .+ g2d ≤ (d− 1)− 2

√
(d− 1)s

]
≤ exp (−s) (42a)

P
[
g21 ≥ 1 + 2

√
s+ 2s

]
≤ exp (−s) (42b)

Then for s = d
40 , it’s easy to see that both probabilities in Equation (41d) are less than the corre-

sponding probabilities in Equation (42b) and Equation (42a).

Finally, as d goes to infinity,

RAdv,ρ(f, µ) ≤ m exp(−d/40) + exp(−d/40) (43)
≤ exp(−d/80) + exp(−d/40) → 0. (44)

C POISONING THEOREM

Recall the definition of the adversarial risk RAdv,ρ from Section 2:

RAdv,ρ(f, µ) = Px∼µ [∃z ∈ Bρ(x), f
∗(x) ̸= f(z))] . (45)

For interpolating classifiers with minimal test error, there are two sources of adversarial risk: de-
cision boundaries and label noise. In this paper, we are specifically interested in the latter. The
theorem is easiest to formalize in the case where the decision boundary contribution to the adversar-
ial risk is negligible. For example, this is the case when the classes are separable with a large margin,
or in real-world datasets when there is not much data which humans would label ambiguously.

Therefore, instead of working with the adversarial risk, we introduce the separable proxy for the
adversarial risk. Let the label noised points be S = {s1, . . . , sN}, and let f interpolate the training
set, and otherwise minimize the test error.

R̂Adv,ρ(S, µ)
def
= Px∼µ [∃1 ≤ k ≤ N, sk ∈ Bρ(x)] ≤ RAdv,ρ(f, µ). (46)
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The proxy adversarial risk R̂Poison for the poisoned case is easy to define:

R̂Poison
ρ,N = sup

s1,...,sN∈supp(µ)

R̂Adv,ρ({s1, . . . , sN}, µ) (47)

= sup
s1,...,sN∈supp(µ)

µ

(
N⋃

k=1

Bρ(sk)

)
. (48)

In fact, by a compactness argument, the sup above can be replaced by max, but this is not important
for the theorem we want to prove.

The uniform version R̂Unif is a random variable. Its value depends on the random training set and
which points get their labels flipped. We define it as follows:
Sample a training set of T random points from µ independently, and let S be a random subset of the
training set, with each point taken with probability η. Then

R̂Unif
ρ,T,η := R̂Adv,ρ(S, µ). (49)

We are now ready to state our formal theorem.
Theorem 11. Let η > 0 be the label noise rate, and let T,m be positive integers representing
the training set sizes for Uniform and Poisoner. Fix N = ⌊ηm⌋ to be be the number of labels the
poisoner can flip. For δ > 0, with probability 1− δ, for any ρ > 0,

R̂Unif
2ρ,T,η ≥ 1

2
R̂Poison

ρ,N (50)

for T = Ω

(
m(logm+log 1

δ )

R̂Poison
ρ,N

)
.

To be precise, the Uniform adversary takes at least the following number of samples:

T =
2N

ηR̂Poison
ρ,N

(
logN + log

1

δ

)
=

2m

R̂Poison
ρ,N

(
logm+ log η + log

1

δ

)
. (51)

The proof is quite similar in spirit to the proof of Theorem 2.

Proof. Let the Poisoner pick points s1, . . . , sN ∈ Rd. We want to prove that with high probability,

R̂Unif
2ρ,T,η ≥ 1

2
µ

(
N⋃

k=1

Bρ(sk)

)
.

We show that, with high probability, a sample of T points from µ, with uniform label noise with
probability η, will result in many of the balls Bρ(sk) having a mislabeled point in them.

Order the points s1, . . . , sN such that
µ (Bρ(s1)) ≥ µ (Bρ(s2)) ≥ · · · ≥ µ (Bρ(sN )) . (52)

By Lemma 8 with α = 1
2 , we know that there exists K such that

µ

(
K⋃

k=1

Bρ(sk)

)
≥ 1

2
µ

(
N⋃

k=1

Bρ(sk)

)
=

1

2
R̂Poison

ρ,N (53)

and µ (Bρ(sk)) ≥ 1
2N R̂Poison

ρ,N for all 1 ≤ k ≤ K.

As in Appendix A, we proceed to show that with high probability, a random sample of T points
from µ will hit each of the balls B(sk, ρ) for k ≤ K, because the chosen balls are dense enough to
get hit when T ≳ m logm. This is enough to prove

R̂Unif
2ρ,T,η ≥ µ

(
K⋃

k=1

Bρ(sk)

)
, (54)

since any two points in the same Bρ(sk) are within distance 2ρ of each other.

Let z1, . . . ,zT be a random dataset of T points from µ. We have a lemma similar to Lemma 10:
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Lemma 12. With probability 1− δ, each Bρ(sk) for k ≤ K contains a mislabeled point zi.

Proof. We have

P [zi ∈ Bρ(sk)] ≥
1

2N
R̂Poison

ρ,N (55)

and because the label corruption is independent from everything, we also have

P [zi ∈ Bρ(sk) and zi mislabeled] ≥ η

2N
R̂Poison

ρ,N . (56)

Therefore,

P [Bρ(sk) ∩ {mislabeled zi } = ∅] (57)

=

T∏
i=1

P [zi /∈ Bρ(sk) or zi mislabeled] (58)

≤
(
1− η

2N
R̂Poison

ρ,N

)T
(59)

≤ exp

(
− Tη

2N
R̂Poison

ρ,N

)
≤ δ

N
. (60)

Here in the last line we used 1 + x ≤ ex and Equation (51).

Now we can use the union bound to prove the lemma:

P [ some Bρ(sk) for k ≤ K contains no mislabeled zi ] ≤ K
δ

N
≤ δ. (61)

■

Combining Equation (53) and Equation (54), we have the desired

R̂Unif
2ρ,T,η ≥ 1

2
R̂Poison

ρ,N . (62)

As this holds for any s1, . . . , sN , and the left-hand-side does not depend on the chosen points sk,
we can take the supremum over all possible choices of s1, . . . , sN to prove the theorem.

D PROOF OF PROPOSITION 6

Proposition 6. Let A < B be integers with A much smaller than B. Let µ be a mixture model on R
supported on a disjoint union of A+B intervals, such that half of the mass is on the first A intervals
and half of the mass is on the last B intervals:

µ =
1

2A

A∑
i=1

Unif

(
i, i+

1

2

)
+

1

2B

B∑
j=1

Unif

(
A+ j, A+ j +

1

2

)
Let the ground truth label be zero everywhere. Sample two datasets D1,D2 of size m from µ using
two different label noise distributions: For D1, flip the label of each sample x ∈ [0, A+B] indepen-
dently with probability η. For D2, flip the label of each sample x ∈ [A,A + B] independently with
probability 2η, and leave the labels of the other samples unchanged. Then, for any ρ, δ ∈

(
0, 1

2

)
,

for the number of samples m = Θ̃ρ(A) (ignoring log terms), we have that with probability 1− δ:

• For any f which interpolates D1, the adversarial risk is large: RAdv,ρ(f, µ) = Ωρ (1).

• There exists f which interpolates D2, such that RAdv,ρ(f, µ) = Oρ

(
A
B

)
.
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Proof. To prove the adversarial risk for D1, we simply invoke Theorem 2. Consider the com-
pact C =

⋃A
i=1

(
i, i+ 1

2

)
. The covering number for C is N = A

2ρ and its probability mass

µ (C) = 1
2 . By Theorem 2, for m ≥ 16A

ρη log
(

A
ρδ

)
, with probability greater than 1 − δ we have

that RAdv,ρ(f, µ) ≥ 1
8 . This proves the first part.

For the second part, using Hoeffding’s inequality, as long as m ≥ 16 log
(
2
δ

)
, we have that with

probability at least 1−δ, the number of samples in [A,A+B] is less than 3m
4 . Therefore, the number

of mislabeled samples in that interval is also less than 3m
4 with the same probability. Now consider

the interpolator that is zero everywhere except at the mislabeled points. The maximum adversarial
risk of this interpolator is the probability mass of the union of the intervals [A+ j, A+ j + 1

2 ] each

of the mislabeled points lie in. This probability mass is at most 3mρ
8B . Setting, m = 16A

ρη log
(

A
ρδ

)
,

we obtain RAdv,ρ(f, µ) = Õρ

(
A
B

)
.

E PROOF OF INDUCTIVE BIAS

Theorem 7. For any ρ > 0, there exists a distribution µ on R2 and two hypothesis classes H and
F , such that for any label noise rate η ∈ (0, 1/2) and dataset size m = Θ

(
1
η

)
, in expectation we

have that: for all h ∈ H that interpolate Sm,η ,

RAdv,ρ (h, µ) ≥ Ω (1) ; (10)

whereas there exists an f ∈ F that interpolates Sm,η and RAdv,ρ (f ;µ) = O (ρ).

Proof. For any ρ ≥ 0, W ≫ ρ, construct a distribution µ on [0,W ]×{0} as follows. Distribute the
covariates uniformly randomly in [0, W

2 − 2ρ]
⋃

[W2 +2ρ, W ] and then label then with the ground
truth labelling function f∗ (x) = 1{x1 ≥ W

2 } where x = [x1, x2] is the two-dimensional covariate.
Next, we construct an m dimensional dataset and flip each label independently with probability
1− η. We denote this set with Sm,η .

The hypothesis class F is the class of one-dimensional thresholds on the first coordinate of the
input space (ignores the second coordinate entirely). Define the following interpolating classifier
f ∈ F : R2 → {0, 1} as follows

f(x) =

{
y1 if x is in Sm,η

1{x1 ≥ W
2 } otherwise

.

As the sampling of the covariates and the label noise are independent events,

ESm,η
[# of mislabeled points in Sm,η] = mη.

Then the expected measure of the set of points adversarially vulnerable by an adversary of pertur-
bation magnitude ρ on the classifier h, as defined above, is upper bounded by 2ρmη. Using the fact
that the total measure of the domain is W and that m = Θ

(
1
η

)
, we get that

ESm,η
[RAdv,ρ (f ;µ)] ≤

2ρmη

W
= O(ρ).

Next, consider the hypothesis class H defined as follows. Given a set of points Z = {z1, . . . , zk} ∈
[0,W ]k and γ > ρ, define the hypothesis

hZ,γ (x) =


1 ∃z ∈ Z | 1{x2 < ρ} ∧ 1{x1 = z}
1 ∃z ∈ Z | 1{x2 < ρ} ∧ 1{|x1 − z| ≤ γ}
0 otherwise.

If S̃ is the set of mislabeled 1s in Sm,η , then for any interpolating classifier hZ,γ , it holds that
S̃ ⊆ Z . Next, by construction, for every point z ∈ Z , it holds that all points x ∈ [z − γ, z + γ]
can adversarially perturbed in the x2 component to obtain the label 1. Thus the total measure of the
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adversarially vulnerable set of points is greater than the number of mislabeled points, whose original
label is zero, multipled with 2γ, which is 2mηγ.

Thus, we have that for any h ∈ H that interpolates Sm,η ,

ESm,η [RAdv,ρ (f ;µ)] ≥ min

(
2γmη

W
,
1

2

)
= Ω(γ).

We proved the adversarial risk bounds only in expectation over the training set; but note that both
of the bounds in Theorem 7 can be transformed into high probability bounds using concentration
inequalities.

For simplicity, we did not treat the second bound in the theorem as a learning problem. However,
it is possible to show that there exists a learning algorithm that uses a similar number of samples to
output f ∈ F such that the adversarial risk is O (ρ).

F SEPARATION AND AVERAGE DISTANCES OF DIFFERENT CLASSES

For a classification dataset, it is not easy to check if a given class can be covered by balls of some
radius in a given metric, such that each ball contains only points from a single class.

However, we can estimate the distance distribution between points inside a class and between points
of different classes, If those two distributions are similar, and especially if the minimum distances
are roughly the same, then it seems likely that it’s not possible for the balls to contain only points
from a single class.

The plots in Figure 6 strongly suggest that the points of different classes are not extremely “far off”
in the ∥·∥2 or ∥·∥∞ metrics, compared to the distances between points inside a class.

G EXPERIMENTS REGARDING INDUCTIVE BIAS

We show that the the structure of the T-shaped classifier used in Theorem 7 is visible when fitting
neural networks to label noise on a tiny dataset. We sample a three dimensional dataset of points
(X,Y, Z) with labels in {0, 1} as follows:

• X is sampled uniformly from the segment [0, 1];
• Y is sampled from a normal distribution N (0, 0.1);
• Z is sampled from a normal distribution N (0, 0.001);
• The label is 1 if X > 0.5, and 0 otherwise.

We sample 50 points from this distribution to create the clean dataset. To create the noisy dataset,
we randomly flip 10% of the labels to generate the noisy dataset.

Then we train a one-hidden layer MLP with 1000 hidden units using the ADAM optimizer with a
learning rate of 0.01. The decision boundary after running this for 350 epochs with a batch size of
20 is plotted in Appendix G. All our models interpolate the dataset (both clean and noisy).

We plot the decision region in the XY plane for three different values of the Z dimension in Ap-
pendix G for models trained on the noisy dataset as well as the clean dataset. The first row in a box
corresponds to the model trained on the noisy dataset and the second row corresponds to the model
trained on the clean dataset. The maroon circles inside the plots are balls of radius 0.04, drawn
around the points with label noise, indicating the region of adversarial vulnerability induced by the
points in that plane.

As visualizations like these are often susceptible to variance due to random seeds, we report for
three different seeds, denoted as Run 1, Run 2, and Run 3.

To interpret the T-like structure from Figure 7 in these experiments, note that ρ = 0.04, so the
“head” of the ‘T’ is in the XY plane for Z = 0.04. Further, the Z = −0.04 is essentially the head

20



Published as a conference paper at ICLR 2023

Figure 6: Separation and average distances of different classes in CIFAR-10.

W

≤ ρ

Figure 7: Visualization of a portion of the distribution µ and the hypothesis class H used in Theo-
rem 7. The crosses are the mislabeled examples and the circles are correctly labelled examples. All
the circles are adversarially vulnerable to upwards perturbations of magnitude less than ρ.

of the ‘T’ for the other class. In the first rows in all of the boxes (i.e. the noisy dataset), note that
“heads of the Ts” are almost entirely within the decision region of one of the classes. This indicates
that all points on the XY plane at Z = 0 can be perturbed along the Z-axis with a perturbation less
than 0.04 to change its predicted label, yielding an adversarial risk of 100%. However, in the Z = 0
plane, the region of vulnerability is the union of the maroon balls, which is significantly smaller than
what is what induced by perturbation along the Z-dimension. This suggests that our intuition with
the T-shaped classifiers may be relevant in practice for neural networks.
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Figure 8: Each box is a different independent sample of the dataset. The first row in each box
is with label noise, and the second row is without label noise. The three plots in each row (Z ∈
{−0.04, 0.00, 0.04}) show the decision boundary of the interpolating model on the XY plane for
different values of Z. The Z = 0.04 can be interpreted as the head of the ’T’ shaped decision region
and Z = −0.04 is similarly an inverted ’T’ for the other class. The plots clearly show that when the
model interpolates label noise, the width of the head of the ’T’s are significantly more responsible
for adversarial vulnerability than the decision region in the Z = 0 plane.
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