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ABSTRACT

We consider the domain generalization problem, where the test domain differs
from the training domain. For deep neural networks, we show that the batch nor-
malization layer is a highly unstable component under such domain shifts, and
we identify two sources for its instability. Based on this observation, we propose
a new learning formulation that can learn robust neural networks so that the cor-
responding batch normalization layers are invariant under domain shifts. Exper-
imental results on three standard domain generalization benchmarks demonstrate
that our method can learn neural network models with significantly more stable
batch normalization layers on unseen domains, and the improved stability leads to
superior generalization performances.

1 INTRODUCTION

Conventional neural networks are based on the assumption that the training and test data are from
the same underlying distribution. However, this assumption does not always hold in real scenarios,
which causes the test performance to drop dramatically in case of distribution shifts. In this work, we
focus on the domain generalization task which aims to relax the i.i.d assumption between the training
and test data, without accessing test domain data. Unlike the traditional domain adaptation setting,
domain generalization tasks assume that we can not access the test domain during training, which
requires that the learned model should have a good generalization ability to fit well on the unseen
distribution shifts. It is widely believed that the model that is robust to the probable domain shifts
should rely on the domain invariant features, rather than the domain style features. To extract domain
invariant features, most of the existing algorithms utilize the multi-source domain information to
guide the training. Our algorithm also follows this setting.

Domain styles, including object textures, lighting conditions and filter effects, are considered as a
major source of distribution shifts. Several approaches (Arjovsky et al., 2019; Dou et al., 2019;
Li et al., 2018a; Balaji et al., 2018), including distribution matching based, meta-learning based
are proposed to learn an invariant representation with discarding the spurious correlation domain
factor. However, most of the work focuses on using the final classifier to measure the invariant of
the learned representation, which may not effectively identify the domain style information. Recent
work (Li et al., 2018e; Wang et al., 2019; Pan et al., 2018; Nam & Kim, 2018) illustrates that batch
normalization is extremely unstable under domain shifts. Studies (Huang & Belongie, 2017; Karras
et al., 2019) on style transfer show that normalization layers are highly correlated with image style,
motivating us to analyze the instability of batch normalization in the distribution shift.

In particular, we conduct an empirical study and observe that the reasons of the instability in batch
normalization are due to two distribution shifts: 1). marginal distribution shift in the learned rep-
resentation makes domains have different normalization statistics, 2). conditional distribution shift
leads to the instability of the rescaling parameters in normalization. In the unsupervised domain
adaptation field, the marginal distribution shift is addressed by replacing normalization statistics
from the source domain to the target domain (Li et al., 2018e; Wang et al., 2019). However, in
domain generalization, target domain data is unseen during training, making replace normalization
statistics impossible. To alleviate the distribution shift in the multi-source domain generalization
scenario, we propose a learning formulation that stabilizes the batch normalization layer by learn-
ing an invariant representation. Specifically, our formulation identifies the domain style information
by measuring the performance gap between the shared and domain optimal normalization layer. If
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some spurious features of the representation layer are related to a domain, we can always train a
better domain-specific model by merely adapting the normalization layer bias to a specific domain.
And the features with different conditional distribution can be removed by forcing that the shared
normalization layer is also optimal in each specific domain. The features with marginal distribution
shifts are discarded by penalizing the performance drop when replacing the domain optimal normal-
ization statistics to domain mixture. Through ensuring that the domain shared normalization is also
optimal in each domain, the representation layer is explicitly guided to learn robustness features,
leading to an insensitive neural network under distribution shift.

We summarize our contributions as follows:

• From empirical analysis, we show batch normalization is highly unstable under domain
shifts, and we identify two sources of domain sensitivities for batch normalization: nor-
malization parameter sensitivity due to the change of distribution statistics, and rescaling
parameter sensitivity due to the change of conditional distribution.

• We present a new learning formulation that can be used to learn batch normalization pa-
rameters that are insensitive to domain changes. This formulation learns neural network
models with robust feature representations, so that batch normalization layer becomes in-
variant under unknown distribution shifts. This property improves the model’s generaliza-
tion performance on unseen domains.

• We conduct extensive experiments on standard domain generalization benchmarks to show
that our method successfully learns robust batch normalization that achieves state-of-the-art
performances on these datasets.

2 RELATED WORK

In this section, we briefly review the topics relevant to our work.

2.1 DOMAIN GENERALIZATION

Domain generalization aims to enhance the model generalization ability under the distribution shift.
Unlike conventional domain adaptation setting, domain generalization can not access target domain
data during training, which requires the model to learn an invariant representation under the distri-
bution shift.

Distribution matching. Matching distribution in latent representation is a widely surveyed topic in
the domain adaptation field (Ben-David et al., 2010; Ganin et al., 2016), which is utilized to alleviate
the domain shift. Specifically, conventional domain adaptation methods learned a domain invariant
representation by matching the latent marginal distribution with minimizing the MMD distance or
adversarial training. (Li et al., 2018c;d) further erase the domain style information by aligning
both marginal and conditional distribution in multiple source domain scenarios. (Li et al., 2018b)
improves MMD based method with Adversarial Autoencoder framework. Later, IRM (Arjovsky
et al., 2019) provides a new paradigm in evaluating invariant: ”An invariant representation Φ(X) is
one such that the optimal linear predictor, ω is the same across all environments”. (Arjovsky et al.,
2019) converts the invariant condition to a bi-level optimization problem and solves it by penalizing
the gradient norm in domain direction. Although the gradient norm represents the distance to the
optimal point, it is scale sensitive to the parameter, making the penalty weight hard to tune. Our
approach follows IRM in measuring the invariant of the learned representation, while provides a
flexible formulation to stabilize normalization. There is work improving IRM, like (Ahuja et al.,
2020) which further relaxes the linear classifier and transformation assumption in IRM with playing
an ensemble game among environments. Our approach is orthogonal to them.

Other approaches. Except for matching the distribution, meta-learning, data augmentation, decom-
position and other related methods are also proposed to increase the model generalization ability.
Meta-learning aims at improving the model’s transferability by giving the experience of multiple
learning episodes, which has a similar training pipeline with domain generalization. To learn a
domain invariant model, (Li et al., 2018a; 2019) adapt MAML (Finn et al., 2017) by splitting the
multiple training domains with meta-train and meta-test split. (Balaji et al., 2018; Dou et al., 2019)
further improve MLDG (Li et al., 2018a) by generating a meta-based regularization with minimizing
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domain based discrepancy that maximizes the meta-test domain likelihood. (Li et al., 2017; Piratla
et al., 2020) propose to decompose the learned parameters with low-rank structure and remove the
domain bias information. Augmenting data in the domain direction is another effective approach
to regularize the model, which including generating domain adversarial examples (Shankar et al.,
2018; Volpi et al., 2018) and transferring the image style in different domains (Gong et al., 2019;
Nam et al., 2019). (Tseng et al., 2020; Lee et al., 2020) perturb latent representation to enhance the
robustness across tasks and distributions.

2.2 NORMALIZATION

Normalization layer is a common technique used to stabilize and accelerate the training in neural
network. Batch normalization (Ioffe & Szegedy, 2015) is the first pioneering work, which normal-
izes the latent layer along the batch and feature dimension. Existed approaches (Ioffe & Szegedy,
2015; Li et al., 2018e; Wang et al., 2019) claim that batch normalization suffers from the distribution
shift due to the change of distribution statistics. (Li et al., 2018e) addresses the statistics shift by
replacing source domain statistics with the target domain. (Pan et al., 2018; Nam & Kim, 2018)
alleviate the statistics shift by inserting a instance normalization before batch normalization to re-
move image style, however, it may sacrifice the model’s discriminative. In this work, we further
analyze the influence of the distribution shift on batch normalization, where marginal distribution
shift leads to the change of normalization statistics and conditional distribution shift leads to the sen-
sitivity of the rescaling parameter. The success of style transfer by training the rescaling parameter
also illustrates the effect of conditional distribution shift on the normalization layer (Huang & Be-
longie, 2017; Karras et al., 2019). (Seo et al., 2019; Chang et al., 2019; Xie et al., 2020) address the
sensitivity of normalization layer by augmenting its parameter space with domain-specific, which
largely improves the training performance. However, augmenting parameter space can not learn a
stable normalization layer, which makes them can not apply to the unseen domain. Our proposed
InvarNorm elicit a stable batch normalization layer by learning robust representation with less to
marginal and conditional distribution shift across domains.

3 APPROACH

In this section, we first analyze the source of unstable in batch normalization under distribution shift.
Then we introduce our Invariant Batch Normalization method to learn an invariant representation
with domain stable normalization layer.

3.1 BATCH NORMALIZATION

Let {(xi, yi)}mi=1 denotes the data in the batch, and µb and σb are the mean and variance. During
training stage, batch normalization calculates the normalization statistics for each feature channel
along the batch dimension and uses the calculated statistics to normalize the feature to N (0, 1).
After normalizing, learned rescaling parameter γ and β are used to rescale the features, which is
stated as follows:

µb =
1

m

m∑
i=1

xi, σb =
1

m

m∑
i=1

(xi − µb)
2, x̂ =

x− µb√
σ2
b + ε

, y = γx̂+ β, (1)

During the inference stage, BN uses the moving average µb and σb from the training data for pre-
dicting the test data. It is proper if the train and test data are drawn from i.i.d.. However, in the
multi-domain setting, the i.i.d. assumption is violated due to the distribution shift across different
domains. Let (Xd, Y d) denotes the data from domain d. We use superscript s and t to denote source
and target domain, respectively. The distribution shift means that p(Xs, Y s) 6= p(Xt, Y t) .

3.2 SOURCE OF DOMAIN UNSTABLE IN BATCH NORMALIZATION

Following traditional studies in transfer learning, we analyze the source of performance drop is from
two distribution shifts: marginal distribution and conditional distribution shift in the learned feature
representation. Specifically, we argue that the distribution shifts affect the normalization layer from
two perspectives:
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Figure 1: Empirical study with Adabn and fine-tuning different parameters with the same parameter
size on PACS dataset, where FC, Norm, conv1 denotes the final classifier , normalizaiton layer and
the first convolution layer respectively.

• The different of the marginal distribution between source and target makes the normal-
ization statistics in hidden representation layer change, leading to inconsistent between
training and inference: P (Φ(Xs)) 6= P (Φ(Xt)) → µs

b 6= µt
b, σ

s
b 6= σt

b, where Φ denotes
the feature encoder before the normalization layer. To verify if this distribution shift causes
the performance drop, we check the performance gain after adjusting the normalization
statistics by AdaBN (Li et al., 2018e).

• If the conditional distributions of image and label is different between source and tar-
get, γ and β in rescaling function would be different, which leads to the performance
drop when applying the source learned γ and β to the target domain. P (Y s|Φ(Xs)) 6=
P (Y t|Φ(Xt)) → γs 6= γt, βs 6= βt. We verify this distribution shift by measuring the
performance improvement after fine-tuning the γ and β in the target domain data.

In Figure 1, we display the empirical study about BN on the PACS dataset (Li et al., 2017). By
comparing the source only model with AdaBN, we can find that aligning the normalization statistics
consistently improve the trained model 1-2 % accuracy rate in the target domain, illustrating the
existence of statistics shift and performance drop. By comparing AdaBN with the model fine-tuned
the parameters γ and β while fixing the other layer, we get that the conditional distribution shift
in normalization has a tremendous influence on performance degradation. What’s more, we also
compared the performance gain of fine-tuning different parameters (First convolution layer, BN
layer, Final classifier layer) to find the most domain sensitive parameters. We can observe that
fine-tuning the batch normalization parameter has the fastest convergence speed and the largest
performance gain, proving that BN is more sensitive compared with other parameters.

3.3 INVARIANT NORMALIZATION

After identifying the source of the unstable in the normalization layer, we introduce the way we
measure its stability and enhance it. Following the recent work (Arjovsky et al., 2019; Ahuja et al.,
2020) that, if the learned representation layer is invariant, the shared classifier is optimal in each
specific domain, which is formulated as follows:

Rd(L(fΦ,ω(xd), yd)) ≤ min
ωd

Rd(L(fΦ,ωd
(xd), yd)) + εd ∀d ∈ Etr, (2)

where R is the empirical risk, L is the loss function, Φ is the feature encoder that maps the input
data into latent representation X → Z , ω, ωd are the shared and domain-specific classifiers in the
training domains Etr and εd is a small positive number. In our Invariant Batch Normalization, we
treat the convolutional layer with parameter θ as the feature encoder Φ and the normalization layer
with parameter γ and β as the classifier ω. If our normalization layer satisfies the inequality in
Formula 2, the stability of normalization are ensured since one shared normalization can achieve
optimal in each specific domain.

To sum up, we require our neural network not only achieves small empirical risk but also has a stable
normalization layer, which can be phrased as follows:

min
Φ,ω

∑
d∈Etr

Rd(L(fΦ,ω(xd), yd)) (3)

s.t. Rd(L(fΦ,ω(xd), yd)) ≤ min
ωd

Rd(L(fΦ,ωd
(xd), yd)) + εd ∀d ∈ Etr.
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To solve this objective function, we convert the objective function in Formula 3 with a new practical
formulation.

min
Φ,ω

max
ωd

∑
d∈Etr

Rd(L(fΦ,ω(xd), yd)) + λ
(
Rd(L(fΦ,ω(xd), yd))−Rd(L(fΦ,ωd

(xd), yd))
)
, (4)

where λ is the penalty weight that balances the discriminative ability (ERM term) with the stable
of the normalization layer (penalty term). In Formula 4, we maximize Rd(L(fΦ,ωd

(xd), yd) with
respect to the parameter in the domain-specific normalization layer ωd to extract the domain bias
information, and minimize

(
Rd(L(fΦ,ω(xd), yd))−Rd(L(fΦ,ωd

(xd), yd))
)

with respect to the pa-
rameter Φ in the shared convolution layer to remove the domain bias information extracted by ωd.
By minimizing the performance gap between the shared normalization layer and the domain opti-
mal normalization layer, the stability of the shared normalization on the given representation can be
guaranteed due to achieving optimal in each specific domain.

Marginal distribution shift

Except for having a stable rescaling parameter γ and β, an invariant batch normalization should
make the normalization statistics µ and σ insensitive under marginal distribution shift. In multi-
domain setting, we achieve this goal by penalizing the different of domain-specific normalization
statistics with the average of them. Specifically, we use the domain-specific normalization statistics
in calculating the ERM term as in (Xie et al., 2020; Seo et al., 2019). And in the penalty term, we
compute the shared part by using the average of the statistics, which can lead to performance drop
due to the different of the normalization statistics. Our algorithm alleviates this marginal distribution
shifts by penalizing the performance drop compared with using domain-specific and domain shared
normalization statistics.

By penalizing the change of normalization statistics and rescaling parameter between shared and
domain-specific branch, the learned representation is guided to only extract those invariant features
that have less shift in marginal and conditional distribution. With learning an invariant representa-
tion, batch normalization is insensitive under distribution shifts.

3.4 TRAINING PIPELINE

We summarize the training pipeline in Algorithm 3.4. During inference, the domain-specific com-
ponents are discarded and the shared component are used to forward the input data.

Algorithm 1 Training pipeline for Invariant Normalization
Input: Source domain training data {(xdi , ydi )}i=1 with d ∈ Etr, Shared components Φ, ω, and
domain-specific components ωd, penalty weight λ.
while Training do

Sample data from multiple domains and compute the first ERM term.
Update shared components Φ and ω.
Fix feature encoder Φ
while Fine-tune domain-specific component do

Sample data from multiple domains and compute Rd(L(fΦ,ωd
(xd), yd)

Update domain-specific component ωd

end while
Compute penalty term λ

(
Rd(L(fΦ,ω(xd), yd))−Rd(L(fΦ,ωd

(xd), yd))
)

Update feature encoder Φ
end while

3.5 DISCUSSION WITH IRM

Our approach is motivated by IRM and share some similarity in measuring the invariant of the
learned neural network. However, our formulation differs to IRM in solving the objective function.
Compared with IRM that use the gradient norm, we propose a scale-invariant minmax formulation,
which makes the penalty weight less sensitive to the change of neural network. Our formula also
can be applied in other environments. We left it as our future work.
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4 EXPERIMENTS

In this section, we conduct extensive experiments on three domain generalization datasets PACS
(Li et al., 2017), Office-home (Venkateswara et al., 2017), VLCS (Fang et al., 2013) to evaluate the
generalization ability of our proposed Invariant Batch Normalization.

4.1 EXPERIMENTAL SETUP

We train our model on source domain datasets and leave out one target domain as the unseen domain
to evaluate its domain generalization ability. To avoid the leakage of unseen domain information
during training, we select the final model from the training domain validation set. In this work, we
implement our algorithm in the ResNet-18 and ResNet-50 network He et al. (2016) and initialized it
with ImageNet pre-trained weight. SGD optimizer with learning rate 0.005 and weight decay 1e-4
is utilized to optimize the network. The batch size is set as 32 for each training domain with 4,000
training steps in PACS and VLCS dataset and 6,000 training steps in Office-home dataset.

We compare our InvarNorm with the following state-of-the-art methods: ERM is our baseline
method that aggregates all the source domains data and optimizes with the empirical risk mini-
mization. IRM (Arjovsky et al., 2019) is a regularization based method that learns an invariant
representation by removing the domain style information in the latent representation. Our method
shares some similarities with it in removing the domain style information, but our method focus
on addressing the invariant problem in normalization layer and utilize a better objective function
that is fixed with our framework. JiGen (Carlucci et al., 2019) is a data augmentation based ap-
proach which augments the data and solves jigsaw task to regularize the model. MASF (Dou et al.,
2019) and MetaReg (Balaji et al., 2018) are method that regularizes the network in the meta-learning
paradigm. MMLD (Matsuura & Harada, 2020) proposes to match the latent distribution in differ-
ent domains without accessing the domain information. Epi-FCR (Li et al., 2019) and D-SAM
(D’Innocente & Caputo, 2018) is a method that fuse the shared and domain-specific layer to regular-
ized the learned shared parameters can adapt to each domain-specific layer. Our method shares the
same spirit but with a more effective regularization on domain invariant representation. DSON (Seo
et al., 2019) is relative to our method in the normalization part, which separates the normalization
layer with domain-specific. However, DSON ensembles the normalization layer during inference,
which largely increases the inference time.

4.2 PACS DATASET

Table 1: Experimental results on PACS dataset (* denotes the model selected on the target domain).
Network Method A C P S Average

ResNet
-18

ERM 77.78 73.93 96.23 73.43 80.34
JigGen 79.42 75.25 96.03 71.35 80.51
MASF 80.29 77.17 94.99 71.69 81.03
IRM 80.60 73.64 95.63 76.64 81.63
MetaReg* 83.70 77.20 95.50 70.30 81.70
MMLD 81.28 77.16 95.87 72.29 81.83
Epi-FCR 82.10 77.00 93.90 73.00 81.50
InvarNorm 80.62 76.87 95.45 79.33 83.07

ResNet
-50

ERM 85.79 79.40 96.83 82.13 86.03
MASF 82.89 80.49 95.01 72.29 82.67
MetaReg* 87.20 79.20 97.60 70.30 82.67
InvarNorm 86.08 80.64 96.04 82.92 86.42

PACS is a standard domain generalization benchmark built by (Li et al., 2017). It consists of four
different style domains: Photo, Art Painting , Cartoon, and Sketch with 9,991 images and 7 image
recognition categories. We use the standard train-val split with 90 % for training and 10% for
evaluation and select the best-performed model in the training data validation set.

Results In Table 1, we report the experimental results on the unseen target domain and compare it
with state-of-the-art in the PASC dataset. We draw the following observations. First, comparing
our approach InvarNorm with existing domain generalization methods in terms of Average Acc,
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InvarNorm leads to the best results with 83.07% Acc, which illustrates the effectiveness of our
approach in enhancing domain generalization ability. Second, by checking the results on the ar-
chitecture ResNet-18 and ResNet-50, we can get that our approach consistently stabilize the batch
normalization in both shallow and deep networks. Compared with IRM, our method outperforms it
with 1.37% on average, which demonstrates the effectiveness in learning an invariant representation
based on the normalization layer. Our InvarNorm also beats other meta learning (Dou et al., 2019)
or augmentation based methods. Note that our InvarNorm is orthogonal to them and can be applied
to both meta-learning and data augmentaiton framework.

4.3 OFFICE-HOME

Office-home is another large-scale generalization benchmark with around 15,500 images and 65
categories. Similar to PACS, the four domains in office-home: Artistic Images, Clip art, Product,
and Real-World are collected with different style of images. Compared with PACS, Office-home is
a difficult task, which has more training data and classes with large domain gap.

Table 2: Experimental results on the office-home dataset
Network Method A C P R Average

ResNet
-18

ERM 58.46 41.51 70.71 73.35 61.01
IRM 59.02 41.33 68.27 72.55 60.29
D-SAM 58.03 44.37 69.22 71.45 60.77
JiGen 53.04 47.51 71.47 72.79 61.20
InvarNorm 60.41 43.98 70.64 74.32 62.46

ResNet
-50

ERM 66.03 48.25 74.37 78.00 66.67
InvarNorm 67.73 49.14 75.32 79.01 67.51

Results We report the domain generalization results on Office-home dataset compared with recent
state-of-the-arts in Table 2. We can see that our InvarNorm consistently outperforms our baseline
ERM on different network architectures, which proves the flexibility of our InvarNorm. Compared
with D-SAM and JiGen (Carlucci et al., 2019) that implicitly regularize the network to increase its
domain generalization ability, the improvement of InvarNorm shows that learning a domain invariant
representation on the normalization space is effectiveness.

4.4 VLCS

VLCS is a classic benchmark for domain generalization task, with collecting data from four datasets
: 1). PASCAL VOC 2007 (V), 2). LabelME (L), 3). Caltech, 4). SUN09. The training pipeline is
following (Fang et al., 2013) that randomly divides training domains into 70% training and 30% for
evaluation. Since our method focuses on addressing the problem in normalization layer, we replace
the AlexNet in the conventional methods by ResNet-18 architecture.

Table 3: Experimental results on VLCS dataset
Method V L C S Average
ERM 73.40 59.92 97.35 68.35 74.75
IRM 74.11 60.62 97.13 68.57 75.08
InvarNorm 74.92 62.71 97.55 68.31 75.87

Results In Table 3, we can draw similar observations with the results in PACS and Office-home that
our InvarNorm effectively enhances model generalization ability compared with baseline method.

4.5 ABLATION STUDY

Marginal distribution shift. To measure how well of our InvarNorm in addressing the negative ef-
fect of marginal distribution shift to the normalization layer, we compare the performance gain of the
source trained model after replacing the normalization statistics with the target domain. AlignNorm
is another baseline that directly minimizes the normalization statistics between different domains,
leading to the same normalization statistics in training domains. In Table 4, we can find that AdaBN
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consistently improves the source trained model, which illustrates the change of normalization statis-
tics leads to a performance drop. By checking the performance gain of network with and without
AdaBN, we see that AdaBN brings ERM 1.81% improvement while AdaBN only improves In-
varNorm with 0.72%, which illustrates that our InvarNorm is less sensitive to marginal distribution
shift.

Table 4: Comparison the performance gain of AdaBN on different models.
Method A C P S Average Improv
ERM 77.78 73.93 96.23 73.43 80.34 -
ERM (AdaBN) 80.12 76.84 96.89 74.78 82.15 +1.81
AlignNorm 79.93 72.65 94.51 77.39 81.12
AlignNorm (adabn) 80.56 75.42 95.21 78.23 82.35 +1.22
InvarNorm 80.62 76.87 95.45 79.33 83.07 -
InvarNorm (AdaBN) 81.03 77.92 96.23 79.98 83.79 +0.72

Comparison with different Normalization methods. To analyze the effectiveness of our In-
varNorm in stabilizing batch normalization, we further conduct experiments to compare our In-
varNorm with other normalization method, including (Chang et al., 2019), (Pan et al., 2018), (Luo
et al., 2019), (Seo et al., 2019). The results of (Chang et al., 2019), (Pan et al., 2018), (Luo et al.,
2019), (Seo et al., 2019) are directly copied from (Seo et al., 2019). Note that (Pan et al., 2018),
(Luo et al., 2019), (Seo et al., 2019) contain instance normalization layer, which can alleviate the
style shift to some extent. We follow the way in (Seo et al., 2019) to insert the instance normal-
ization (Ulyanov et al., 2016) to our InvarNorm. Table 5 represents the results comparing with
different normalization methods. We can see that our InvarNorm consistently outperforms the nor-
malization layer without IN. By comparing the method with IN, InvarNorm also gets the best results
and achieves similar results with the ensemble version of DSON in which the shared normalization
layer can achieve similar results with ensemble of domain-specific normalization with our learning
formulation.

Table 5: Comparison of different normalization on PACS and Office-home dataset. (sgl denotes the
best results using the domain-specific branch, ens denotes the ensemble results in DSON, where
ensemble operation requires 3 × inference time compared with a single model.)

Method P A C S Avg A C P R Avg
DSBN 78.6 66.2 95.5 70.2 77.6 59.0 45.0 72.7 72.0 62.2
IBN 75.3 73.0 92.0 77.4 79.4 55.4 44.8 68.3 72.0 60.1
SN 82.5 76.8 93.5 80.8 83.4 54.1 45.0 64.5 71.4 58.8
DSON(sgl) 78.7 75.7 95.4 79.5 82.3 - - - - -
DSON(ens) 84.7 77.7 95.9 82.2 85.1 59.4 45.7 71.8 74.7 62.9
BN 80.0 74.3 94.6 74.5 80.9 58.4 41.5 70.7 73.4 61.0
InvarNorm 81.7 75.5 96.1 79.0 83.1 60.9 44.0 70.6 74.3 62.5
BN+IN 81.5 76.4 96.7 80.3 83.7 56.3 41.3 67.5 73.7 59.7
InvarNorm + IN 83.5 77.5 96.2 81.7 84.8 61.9 43.9 70.5 74.5 62.8

5 CONCLUSION

We propose a new learning formulation and training pipeline in learning an invariant neural net-
work based on batch normalization. Specifically, our formulation guides the neural network to learn
invariant representation by penalizing the normalization statistics change due to the marginal dis-
tribution shift and rescaling parameter change due to the conditional distribution shift. InvarNorm
provides a new perspective in identifying the the domain bias representation and robustify the rep-
resentation to only contain invariant features. Our Extensive experimental results on three domain
generalization benchmarks clearly illustrate that an invariant neural network can be learned by our
proposed approach.
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