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ABSTRACT
Accented speech poses significant challenges for state-of-the-
art automatic speech recognition (ASR) systems. Accent is a
property of speech that lasts throughout an utterance in vary-
ing degrees of strength. This makes it hard to isolate the in-
fluence of accent on individual speech sounds. We propose
coupled training for encoder-decoder ASR models that acts
on pairs of utterances corresponding to the same text spoken
by speakers with different accents. This training regime intro-
duces an L2 loss between the attention-weighted representa-
tions corresponding to pairs of utterances with the same text,
thus acting as a regularizer and encouraging representations
from the encoder to be more accent-invariant. We focus on
recognizing accented English samples from the Mozilla Com-
mon Voice corpus. We obtain significant error rate reductions
on accented samples from a large set of diverse accents using
coupled training. We also show consistent improvements in
performance on heavily accented samples (as determined by
a standalone accent classifier).

Index Terms— Accented speech recognition, sequence-
to-sequence models with attention, coupled training

1. INTRODUCTION

Automatic speech recognition (ASR) technologies have
achieved remarkable progress in recent years and are gaining
widespread adoption in various applications. Despite these
impressive advances, ASR performance is sub-par on speech
that is not “typical”; for example, ASR performance degrades
when evaluated on heavily accented speech. Labeled speech
is plentiful for certain standard accents and limited for many
underrepresented accents. How do we adapt an end-to-end
ASR system trained on large amounts of a standard accent,
using relatively smaller amounts of underrepresented accents,
such that ASR performance on the latter improves while per-
formance on the standard accent does not deteriorate? How
can we effectively leverage the same text spoken by different
speakers with different accents? These are the main questions
we tackle in this work.

State-of-the-art sequence-to-sequence ASR systems, that
directly learn transformations from speech to text, have sur-
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passed the performance of traditional cascaded ASR systems
in recent years [1]. Our proposed solution builds on top of
an end-to-end sequence-to-sequence model with attention [2].
In this work, we focus on improved recognition for differ-
ent accents of English. We use Mozilla’s Common Voice
dataset [3] that consists of diverse speech samples spanning
multiple speech accents. This dataset also has a substantial
amount of overlap in content. That is, the same text is spoken
by multiple speakers in a number of different accents. We ex-
ploit this feature and introduce a coupled training paradigm.

During coupled training, we feed pairs of utterances with
the same underlying text as inputs to a sequence-to-sequence
model. The encoder weights are shared across both utter-
ances. Apart from the standard cross-entropy (CE) loss that
drives the decoder to produce a character sequence for each
utterance, we additionally impose an L2 loss between the con-
text vectors at each decoder time-step. This encourages the
context vectors for pairs of utterances corresponding to the
same text to be close to each other despite varying accents.
Having access to speech samples corresponding to the same
text from diversely accented speakers allows us to be agnostic
to the content and encourage representations from the encoder
to be more invariant to accents.

To summarize, our contributions in this work are:

• We introduce a coupled training paradigm where pairs
of utterances with the same underlying text are fed as
inputs and an L2 loss is imposed between the context
vectors for each utterance at each decoder time-step.
• We demonstrate the utility of coupled training by

showing significant improvements in word error rates
(WERs) on more than ten different accents.
• We present a thorough discussion analyzing how our

coupled training benefits accented speech recognition.

2. RELATED WORK

Improving speech recognition for accented speech has re-
mained a fairly active area of research. Traditional ASR
systems tackled this problem by either changing the pronun-
ciation dictionary [4, 5] or the acoustic model [6, 7, 8, 9].
There have also been attempts to augment the feature vector
using accent specific input [10, 11]. More recent work has
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Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use
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decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.
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Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as
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is the acoustic model (AM) probability. Note that the observa-
tion probability is
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and the HMMs of the CD-GMM-HMM system. Note that the
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tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding
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5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
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is the number of frames associated with senone
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A.ArchitectureofCD-DNN-HMMs

Fig.1illustratesthearchitectureofourproposedCD-DNN-
HMMs.Thefoundationofthehybridapproachistheuseofa
forcedalignmenttoobtainaframelevellabelingfortrainingthe
ANN.ThekeydifferencebetweentheCD-DNN-HMMarchi-
tectureandearlierANN-HMMhybridarchitectures(andcon-
text-independentDNN-HMMs)isthatwemodelsenonesasthe
DNNoutputunitsdirectly.Theideaofusingsenonesasthe
modelingunithasbeenproposedin[22]wheretheposterior
probabilitiesofsenoneswereestimatedusingdeep-structured
conditionalrandomfields(CRFs)andonlyoneaudioframe
wasusedastheinputoftheposteriorprobabilityestimator.
Thischangeofferstwoprimaryadvantages.First,wecanim-
plementaCD-DNN-HMMsystemwithonlyminimalmodifica-
tionstoanexistingCD-GMM-HMMsystem,aswewillshow
inSectionII-B.Second,anyimprovementsinmodelingunits
thatareincorporatedintotheCD-GMM-HMMbaselinesystem,
suchascross-wordtriphonemodels,willbeaccessibletothe
DNNthroughtheuseofthesharedtraininglabels.

IfDNNscanbetrainedtobetterpredictsenones,then
CD-DNN-HMMscanachievebetterrecognitionaccu-
racythantri-phoneGMM-HMMs.Moreprecisely,inour
CD-DNN-HMMs,thedecodedwordsequenceisdetermined
as
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whereisthelanguagemodel(LM)probability,and
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istheacousticmodel(AM)probability.Notethattheobserva-
tionprobabilityis
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(senone)estimatedfromthetrainingset,andisindepen-
dentofthewordsequenceandthuscanbeignored.Although
dividingbythepriorprobability(calledscaledlikelihood
estimationby[38],[40],[41])maynotgiveimprovedrecog-
nitionaccuracyundersomeconditions,wehavefoundittobe
veryimportantinalleviatingthelabelbiasproblem,especially
whenthetrainingutterancescontainlongsilencesegments.

B.TrainingProcedureofCD-DNN-HMMs

CD-DNN-HMMscanbetrainedusingtheembeddedViterbi
algorithm.ThemainstepsinvolvedaresummarizedinAlgo-
rithm1,whichtakesadvantageofthetriphonetyingstructures
andtheHMMsoftheCD-GMM-HMMsystem.Notethatthe
logicaltriphoneHMMsthatareeffectivelyequivalentareclus-
teredandrepresentedbyaphysicaltriphone(i.e.,severallog-
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physicaltriphonehasseveral(typically3)stateswhicharetied
andrepresentedbysenones.Eachsenoneisgivena
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Algorithmic1MainStepstoTrainCD-DNN-HMMs

1)Trainabesttied-stateCD-GMM-HMMsystemwhere
statetyingisdeterminedbasedonthedata-driven
decisiontree.DenotetheCD-GMM-HMMgmm-hmm.

2)Parsegmm-hmmandgiveeachsenonenamean
orderedstartingfrom0.Thewill
beservedasthetraininglabelforDNNfine-tuning.

3)Parsegmm-hmmandgenerateamappingfrom
eachphysicaltri-phonestate(e.g.,b-aht.s2)to
thecorresponding.Denotethismapping

.
4)Convertgmm-hmmtothecorresponding

CD-DNN-HMM–byborrowingthe
tri-phoneandsenonestructureaswellasthetransition
probabilitiesfrom–.

5)Pre-traineachlayerintheDNNbottom-uplayerby
layerandcalltheresultptdnn.
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7)Convert–towhereeachphysical
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tofine-tunetheDBNusingback-propagationorother
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.
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observedinthedevelopmentset;Otherwiseuse
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models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use
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A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing
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A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and
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is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN
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A.ArchitectureofCD-DNN-HMMs

Fig.1illustratesthearchitectureofourproposedCD-DNN-
HMMs.Thefoundationofthehybridapproachistheuseofa
forcedalignmenttoobtainaframelevellabelingfortrainingthe
ANN.ThekeydifferencebetweentheCD-DNN-HMMarchi-
tectureandearlierANN-HMMhybridarchitectures(andcon-
text-independentDNN-HMMs)isthatwemodelsenonesasthe
DNNoutputunitsdirectly.Theideaofusingsenonesasthe
modelingunithasbeenproposedin[22]wheretheposterior
probabilitiesofsenoneswereestimatedusingdeep-structured
conditionalrandomfields(CRFs)andonlyoneaudioframe
wasusedastheinputoftheposteriorprobabilityestimator.
Thischangeofferstwoprimaryadvantages.First,wecanim-
plementaCD-DNN-HMMsystemwithonlyminimalmodifica-
tionstoanexistingCD-GMM-HMMsystem,aswewillshow
inSectionII-B.Second,anyimprovementsinmodelingunits
thatareincorporatedintotheCD-GMM-HMMbaselinesystem,
suchascross-wordtriphonemodels,willbeaccessibletothe
DNNthroughtheuseofthesharedtraininglabels.

IfDNNscanbetrainedtobetterpredictsenones,then
CD-DNN-HMMscanachievebetterrecognitionaccu-
racythantri-phoneGMM-HMMs.Moreprecisely,inour
CD-DNN-HMMs,thedecodedwordsequenceisdetermined
as
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whereisthelanguagemodel(LM)probability,and
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istheacousticmodel(AM)probability.Notethattheobserva-
tionprobabilityis
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whereisthestate(senone)posteriorprobabilityesti-
matedfromtheDNN,isthepriorprobabilityofeachstate
(senone)estimatedfromthetrainingset,andisindepen-
dentofthewordsequenceandthuscanbeignored.Although
dividingbythepriorprobability(calledscaledlikelihood
estimationby[38],[40],[41])maynotgiveimprovedrecog-
nitionaccuracyundersomeconditions,wehavefoundittobe
veryimportantinalleviatingthelabelbiasproblem,especially
whenthetrainingutterancescontainlongsilencesegments.

B.TrainingProcedureofCD-DNN-HMMs

CD-DNN-HMMscanbetrainedusingtheembeddedViterbi
algorithm.ThemainstepsinvolvedaresummarizedinAlgo-
rithm1,whichtakesadvantageofthetriphonetyingstructures
andtheHMMsoftheCD-GMM-HMMsystem.Notethatthe
logicaltriphoneHMMsthatareeffectivelyequivalentareclus-
teredandrepresentedbyaphysicaltriphone(i.e.,severallog-
icaltriphonesaremappedtothesamephysicaltriphone).Each
physicaltriphonehasseveral(typically3)stateswhicharetied
andrepresentedbysenones.Eachsenoneisgivena
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Algorithmic1MainStepstoTrainCD-DNN-HMMs
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eachphysicaltri-phonestate(e.g.,b-aht.s2)to
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Fig. 1. Schematic diagram illustrating coupled training.

focused on using end-to-end ASR models to recognize ac-
cented speech. [12] integrated a hierarchical loss based on
both phonemes and graphemes into an end-to-end model and
showed improvements on multiple English dialects. There
have also been attempts at exploring this problem within
a multi-task framework [13, 14] where the auxiliary task
involves predicting accents or accent-specific features. Fea-
tures from these auxiliary tasks could also be fed back to the
primary task in the form of accent embeddings [14, 15, 16].
Another interesting direction explored for accented speech
recognition has been to use adversarial training to learn rep-
resentations that are accent-invariant [17, 18]. [19] explored
the use of a mixture of feature extractors where each individ-
ual extractor focused on a particular phone or accent class.
[20] demonstrated how large error rate reductions can be
obtained by fine-tuning only the initial encoder layers when
very limited amount of accented speech is available.

3. METHODOLOGY

A key contribution of this work is incorporating coupled train-
ing within a basic LAS model, as illustrated in Figure 1. An
LAS model consists of three components: an encoder, an at-
tention module and a decoder. For a speech sample, x =
{x1, . . . , xT } with a label sequence y = {y1, . . . , yM}, LAS
models the conditional probability P (y|x) as follows:

Pr(y|x) =
M∏
j=1

Pr(yj |x, y1:j−1)

=

M∏
j=1

Pr(yj |h, si, ci) (1)

where h = ENC(x) and {si, ci} = DEC-ATT(h, y1:j−1); we
will define both these functions shortly. In the LAS frame-
work, the encoder is a stacked Bidirectional Long Short Term

Memory (BiLSTM) network and the decoder consists of uni-
directional LSTM-based recurrent layers. The encoder, de-
noted by ENC(x), is layered in a pyramidal structure as orig-
inally proposed for LAS: The bottommost encoder layer un-
folds across the length of the utterance for T time-steps and
each additional encoder layer on top reduces the number of ef-
fective time-steps by a factor of 2. ENC(x) returns a sequence
of encoder states h = {h1, . . . , hK} over which the atten-
tion and decoder modules interact. (Here, K is the number of
time-steps in the topmost encoder layer; in our implementa-
tion with 3 encoder layers, K ≈ T

4 as there is no subsampling
in the first layer.) For each decoder state si−1, LAS learns an
attention distribution {αi1, . . . , αiK} that is used to linearly
interpolate {h1, . . . , hK} to form a context vector ci for every
ith decoder time-step:

ci =

K∑
k=1

αikhk

Each attention weight αik is a function of the encoder state
hk and the decoder state si−1 and is learned using an MLP
network. DEC-ATT(h, y1:j−1)) returns the context vector ci
as well as the decoder state si = LSTM(si−1, ci, yi−1). The
training objective to be maximized in LAS, with Pr(y|x) de-
fined as in Eq. (1), is:

LLAS = log Pr(y|x, y∗1:j−1)

where y∗1:j−1 corresponds to the ground-truth of previous
characters.

Coupled Training: In coupled training, we use a pair of
utterances x and x′ from different speakers with the same
underlying label sequence y. Let h = ENC(x) and h′ =
ENC(x′) and let the corresponding context vectors at each
decoder time-step i be ci and c′i, respectively. Since the char-
acter sequence y is identical, both utterances will produce the
same number of decoding time-steps. We introduce an L2
loss, Lpair, across the context vectors:

Lpair =
1

K

∑
i

||ci − c′i||2

We now optimize a linear combination of the LAS and cou-
pled objectives:

Lfinal = (1− λ)LLAS + λLpair

where λ ∈ [0, 1] is a tunable hyperparameter.
Coupled training can be invoked with different training

schedules. We could start with a fully trained LAS-model,
followed by a pass of coupled training. Or, we could start
from the very beginning with the combined training objective
Lcomb so that the L2 regularization over context vectors is ef-
fective right from the start. We will discuss which training
schedule is more effective in Section 5.

8255

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on September 07,2022 at 03:01:00 UTC from IEEE Xplore.  Restrictions apply. 



Dataset No. of sentences Duration (hrs)
TRAIN-US 99933 115.32

0.25-NONUS 25764 30.40
0.5-NONUS 51339 60.66
TRAIN-IN 15766 20.13
TEST-US 11527 16.42

TEST-NONUS 13126 14.35
TEST-IN 2198 2.84

Table 1. Statistics for all the datasets.

4. DATASET CONSTRUCTION

We used the Mozilla Common Voice dataset (version 3) [3]
for all our experiments. The original corpus contained a sig-
nificant amount of redundant content with the same text ren-
dered in speech by a number of different speakers. It also
contained many samples that were not tagged with accent la-
bels. We extracted a subset of the corpus and created train/test
splits that were disjoint in speakers and sentences, and the
train set contained many instances of the same text spoken by
different speakers. (40.5% of the sentences in 0.5-NONUS
are spoken by multiple speakers.) Our resulting splits are de-
tailed in Table 1. We present both US-based and NONUS-
based datasets. The latter has speech in the following accents:
African (AFK), Australian (AU), Bermuda (BM), Canadian
(CA), Great Britain (GB), Hongkong(HK), Indian (IN), Ire-
land (IR), Malaysia (ML), New-Zealand (NZ), Philippines
(PHI), Scotland (SC), Singapore (SG), South-Atlantic (ST)
and Wales (WL). GB, IN, AU and CA are the dominant ac-
cents and contribute towards 36%, 15%, 14% and 13% of the
datasets, respectively, with the remaining accents contributing
less than 4% each.1

We created 0.25-NONUS and 0.5-NONUS that contain
speech samples from 15 different non-US accents and are ap-
proximately 25% and 50% the size of the TRAIN-US cor-
pus respectively. We use these datasets to show how perfor-
mance of coupled training varies with different amounts of
accented speech. We also created TRAIN-IN consisting of
speech samples only in the Indian accent. The latter was cho-
sen because compared to all the other non-US accents, the
Indian accented samples were particularly difficult for a base-
line system trained only on TRAIN-US to recognize.

5. EXPERIMENTS AND RESULTS

5.1. Implementation Details

We utilized the ESPnet toolkit [21] for all our experiments and
added new code to support coupled training. Our base LAS
model consists of 2 VGG-ish convolutional layers followed
by three 1024-sized BiLSTM layers, location-based attention

1More details about our data splits are available at www.cse.iitb.
ac.in/˜vinit/MCV_splits/.

and two 1024-sized decoder layers. We regularized the model
using a dropout rate of 0.5. The model was optimized using
Adadelta [22] with a starting learning rate of 1 and an epsilon
value of 1e−8. The scaling factor λ for the coupled loss Lpair
was tuned on a held-out dataset and set to 0.0001. We used
150 sub-word units and a scheduled sampling rate of 0.3.

5.2. How much does coupled training help?

We use the TRAIN-US and 0.25-NONUS datasets to train all
the systems defined in this section. We define four baseline
LAS systems that are all trained by optimizing LLAS: 1) US:
Only TRAIN-US is used during training. 2) MIXED-1.25:
A mixture of TRAIN-US and 0.25-NONUS is used during
training. 3) US+FT-0.25: A fully trained US model is fine-
tuned using 0.25-NONUS. 4) US+FT-1.25: A fully trained
US model is fine-tuned using a mixture of 0.25-NONUS and
TRAIN-US.

We present five systems that use coupled training (i.e. by
optimizing Lcomb): 1) MIXED2+C-1.25: The MIXED-1.25
baseline trained for two epochs is optimized with coupled
training using a mixture of TRAIN-US + 0.25-NONUS data.
2) C-1.25: A mixture of TRAIN-US and 0.25-NONUS is
used for coupled training from scratch. 3) US+C-0.25: A
fully trained US model is fine-tuned with coupled training us-
ing 0.25-NONUS. 4) US+C-1.25: A fully trained US model
is fine-tuned with coupled training using a mixture of 0.25-
NONUS and TRAIN-US. 5) C-1.25+C-0.25: A fully trained
C-1.25 model is fine-tuned with coupled training using 0.25-
NONUS.

Table 2 shows CERs and WERs for all nine systems. (Ut-
terance pairs for coupled training were constructed by dis-
tributing utterances corresponding to the same text into pairs;
any odd sample left out was not considered for coupled train-
ing.) We see significant WER reductions (at p < 0.001 us-
ing the MAPSSWE test [23]) on both TEST-US and TEST-
NONUS using our best form of coupled training (C-1.25+C-
0.25) compared to the best baseline system (i.e. US+FT-
0.25 for TEST-NONUS and US+FT-1.25 for TEST-US).

System TEST-US TEST-NONUS
US 19.29/36.4 37.25/58.93

MIXED-1.25 21.09/39.06 35.44/57.19
US+FT-0.25 20.08/37.99 31.90/53.05
US+FT-1.25 17.81/34.45 32.15/53.21

MIXED2+C-1.25 18.95/36.80 33.0/55.14
US+C-0.25 20.94/39.68 31.58/53.25

C-1.25 17.34/33.84 31.06/51.96
US+C-1.25 16.92/33.45 31.18/52.47

C-1.25+C-0.25 16.84/33.28 28.39/48.82

Table 2. CER/WER on TEST-US and TEST-NONUS from
baseline and coupled training systems.
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System TEST-US TEST-NONUS
US+FT-0.25 20.08/37.99 31.90/53.05

C-1.25 17.34/33.84 31.06/51.96
MIXED-1.5 22.52/39.92 36.07/56.00
US+FT-0.5 19.61/37.12 30.62/51.45
US+FT-1.5 17.54/34.24 30.43/51.27

C-1.5 16.84/33.50 29.07/49.88
C-1.5+C-0.5 16.20/32.41 26.19/45.64

Table 3. CER/WER for coupled training using 0.5-NONUS.

5.3. Varying amounts of accented speech

Similar to the systems shown in Table 2, we train both base-
line systems and coupled training systems using the larger
0.5-NONUS dataset. This highlights the effect of using more
accented data with the coupled training paradigm. From Ta-
ble 3, we see that C-1.5+C-0.5 significantly outperforms the
best baseline system US+FT-1.5 (at p < 0.001). Coupled
training provides consistent performance benefits even with
larger amounts of accented speech.

5.4. Focusing on a single accent

We focus on the effect of coupled training when a small
amount of accented speech is available for a single accent
(IN).Table 4 shows the performance of two fully trained US
models fine-tuned with TRAIN-IN using CE and coupled loss,
respectively. The last row denotes a model that is trained on
TRAIN-US+TRAIN-IN from scratch using coupled loss, fol-
lowed by fine-tuning on TRAIN-IN using coupled loss. Even
with limited data (i.e. ≈ 20 hours of speech), this model gives
significant improvements in WERs (at p < 0.001) compared
to a standard fine-tuning pass using CE loss.

5.5. Discussion

Breakdown across accents: In Fig. 2, we analyze improve-
ments for each individual accent by comparing US+FT-1.5
vs. C-1.5+C-0.5. Our model consistently outperforms the
baseline systems across accents and gets notably larger im-
provements on strong accents such as Indian and Malaysian.
Clearly accented samples: We use a standalone BiLSTM-
based accent classifier, that was trained on all the non-US
training data, to identify samples with clearly discernible ac-

System TEST-US TEST-IN
US+FT-IN 26.92/47.51 35.3/57.42
US+C-IN 26.57/47.21 34.60/56.67

US+IN+C-IN 17.74/35.08 31.55/53.28

Table 4. CER/WERs from baseline and coupled training us-
ing only Indian accented samples.

Fig. 2. WERs for US+FT1.5 and C-1.5+C-0.5 systems
across different accents.

Fig. 3. WER reductions for heavy and non-heavy accented
samples. Confidence scores are within “()” for each accent.

cents.Test samples that were correctly predicted by this classi-
fier belonging to accents with an average confidence score of
0.8 or higher are referred to as being “heavily accented” and
the remaining test samples are “non heavily accented”. Fig. 3
shows the absolute improvements in WER for five different
accents. Improvements on the heavily accented samples in IN
and GB accents are larger than on the less heavily accented
samples; these are also the two accents whose test samples
are correctly predicted with the highest confidence scores.

6. CONCLUSION

In this work, we proposed a new coupled training paradigm
which imposes an L2 regularization between the context vec-
tors for two utterances with the same text. We showed sig-
nificant improvements in WERs across diverse accented sam-
ples and data settings. In future work, we will devise coupled
training paradigms for CTC and hybrid end-to-end models.
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