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ABSTRACT

Learning a human-like driving policy from large-scale driving demonstrations is
promising, but the uncertainty and non-deterministic nature of planning make it
challenging. Existing learning-based planning methods follow a deterministic
paradigm to directly regress the action, failing to cope with the uncertainty problem.
In this work, we propose a probabilistic planning model for end-to-end autonomous
driving, termed VADv2. We resort to a probabilistic field function to model the
mapping from the action space to the probabilistic distribution. Since the planning
action space is a high-dimensional continuous spatiotemporal space and hard to
tackle, we first discretize the planning action space to a large planning vocabulary
and then tokenize the planning vocabulary into planning tokens. Planning tokens
interact with scene tokens and output the probabilistic distribution of action. Mass
driving demonstrations are leveraged to supervise the distribution. VADv2 achieves
state-of-the-art closed-loop performance on the CARLA Town05 benchmark, sig-
nificantly outperforming all existing methods. We also provide comprehensive
evaluations on the NAVSIM dataset and a large-scale 3DGS-based benchmark,
demonstrating its effectiveness in real-world applications. Code will be released to
facilitate future research.

1 INTRODUCTION

End-to-end autonomous driving is an important research topic currently. A plethora of human driving
demonstrations in real-world scenarios are readily accessible. It is very promising to derive a human-
like driving policy for vehicle control from these extensive demonstrations. However, the uncertainty
and non-deterministic nature of planning make it challenging to extract the driving knowledge from
driving demonstrations. To illustrate such uncertainty, two scenarios are presented in Fig. 1 and
explained as follows. 1) Following another vehicle: The human driver exhibits various reasonable
driving maneuvers, such as maintaining the current lane or changing lanes to overtake. 2) Interaction
with an oncoming vehicle: The human driver faces two potential driving maneuvers, i.e., yielding
or overtaking. From a statistical perspective, the actions (including timing and speed) are highly
stochastic, influenced by numerous latent factors that cannot be accurately modeled.

Existing learning-based planning methods (Jiang et al., 2023; Hu et al., 2022c; Jia et al., 2023b;
Prakash et al., 2021b; Hu et al., 2022a; Zhang et al., 2021) follow a deterministic paradigm to directly
regress the action. The regression target is the future trajectory in (Jiang et al., 2023; Hu et al., 2022c;
Jia et al., 2023b; Prakash et al., 2021b) and control signal (acceleration and steering) in (Hu et al.,
2022a; Zhang et al., 2021). Such a paradigm assumes there exists a deterministic relation between
the driving scene and action, which is not the case. The variance of human driving behavior causes
the ambiguity of the regression target. Especially when the feasible solution space is non-convex,
i.e., there exist multiple feasible solutions (see Fig. 1), the deterministic modeling cannot cope with
non-convex cases and may output an in-between action, causing safety problems.

In this work, we propose probabilistic planning to cope with the uncertainty of planning. We
model the planning policy as a scene-conditioned non-stationary stochastic process, formulated as
p(a|o), where o is the historical and current observations of the driving scene, and a is a candidate
planning action. Compared with deterministic planning, probabilistic planning is more robust against
uncertainty in planning and able to model non-convex feasible solution space, and thus achieves more
accurate and safer planning performance.
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Figure 1: Uncertainty exists in planning. There doesn’t
exist a deterministic relation between driving scene and
action. The deterministic planning fails to model such
uncertainty especially when the feasible solution space is
non-convex. VADv2 is based on probabilistic planning
and learns the scene-conditioned probabilistic distribu-
tion of action from large-scale driving demonstrations.

We resort to a probabilistic field func-
tion to model the mapping from the ac-
tion space to the probabilistic distribu-
tion. Since the planning action space is
a high-dimensional continuous spatiotem-
poral space and hard to tackle, we first dis-
cretize the planning action space to a large
planning vocabulary and then tokenize the
planning vocabulary into planning tokens.
Planning tokens interact with scene tokens
and output the probabilistic distribution of
action. Mass driving demonstrations are
leveraged to supervise the distribution.

Probabilistic planning has two other ad-
vantages. First, unlike deterministic plan-
ning which has to regress the optimal ac-
tion according to scene information, prob-
abilistic planning models the correlation
between each action and the driving scene.
It just ranks different actions and sam-
ples a high-scoring one. Such modeling is
much simpler. Besides, probabilistic plan-
ning is flexible in the inference stage. It
outputs multi-mode planning results and is easy to combine with rule-based and optimization-based
planning methods. We can flexibly add other candidate planning actions to the planning vocabulary
and evaluate them because we model the distribution over the whole action space.

Based on the probabilistic planning, we present VADv2, an end-to-end driving model, which takes
surround-view image sequence as input in a streaming manner, tokenizes sensor data and planning
action space, outputs the probabilistic distribution of action, and samples one action to control
the vehicle. Only with camera sensors, VADv2 achieves state-of-the-art closed-loop planning
performance on the CARLA Town05 benchmark, significantly outperforming all existing methods,
and also delivers leading planning results on the NAVSIM and our 3DGS-based benchmark. VADv2
runs stably in a fully end-to-end manner, even without a rule-based wrapper as a post-processing step
to avoid infraction.

Our contributions are summarized as follows:

• We propose probabilistic planning to cope with the uncertainty and non-deterministic nature
of planning. We design a probabilistic field to map from the action space to the probabilistic
distribution and learn the distribution of action from large-scale driving demonstrations.

• Based on the probabilistic planning, we present VADv2, an end-to-end driving model, which tok-
enizes sensor data and planning action space for interaction, outputs the probabilistic distribution
of action, and samples one action to control the vehicle.

• VADv2 achieves state-of-the-art planning performance in both closed- and open-loop settings
across multiple benchmarks. Abundant closed-loop simulations and real-world deployment results
validate its effectiveness and stability in vehicle control.

2 RELATED WORK

Perception. Perception is the first step in achieving autonomous driving, and a unified representation
of driving scenes is beneficial for easy integration into downstream tasks. Bird’s Eye View (BEV)
representation has become a common strategy in recent years, enabling effective scene feature
encoding and multimodal data fusion. LSS (Philion & Fidler, 2020) is a pioneering work that
achieves the perspective view to BEV transformation by explicitly predicting depth for image pixels.
BEVFormer (Li et al., 2022c), on the other hand, avoids explicit depth prediction by designing
spatial and temporal attention mechanisms. Subsequent works (Li et al., 2022b; Wang et al., 2023a)
continuously optimize temporal modeling and BEV transformation strategies. In terms of vectorized
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mapping, HDMapNet (Li et al., 2022a) converts lane segmentation into vector maps through post-
processing. VectorMapNet (Liu et al., 2022) predicts vector map elements in an autoregressive
manner. MapTR (Liao et al., 2022; 2023b) introduces permutation equivalence and hierarchical
matching strategies, significantly improving mapping performance. LaneGAP (Liao et al., 2023a)
introduces path-wise modeling for lane graphs.

Motion Prediction. Motion prediction aims to forecast future trajectories of other traffic participants,
assisting the ego vehicle in making informed planning decisions. Traditional motion prediction
methods utilizes input such as historical trajectories and high-definition maps to predict future
trajectories (Gao et al., 2020; Liu et al., 2021). However, recent end-to-end methods (Gu et al., 2022;
Jiang et al., 2022) perform perception and motion prediction jointly. Some works (Hu et al., 2021;
Zhang et al., 2022) represent future motion as dense occupancy and flow fields, while others (Gu et al.,
2022; Jiang et al., 2022) predict agent-level multi-modal trajectories. Another line of work reformulate
trajectory prediction as a classification problem rather than a regression task. Trajeglish (Philion et al.,
2023) introduces K-disk sampling to construct a compact one-step motion vocabulary, achieving
lower discretization error compared to k-means. MotionLM (Seff et al., 2023) factorizes each single-
step action into longitudinal and lateral components and applies axis-aligned uniform quantization.
While such single-step modeling enables a compact representation and a small vocabulary, iterative
rollout can lead to error accumulation and may produce trajectories that violate physical constraints.
In contrast, each action token in VADv2 represents a complete trajectory, ensuring physically feasible
motion primitives and enabling one-shot planning without error accumulation.

Planning. Learning-based planning has shown great potential recently due to its data-driven nature
and impressive performance with increasing amounts of data. Early attempts (Codevilla et al., 2019;
Prakash et al., 2021a) use a completely black-box spirit, where sensor data is directly used to predict
control signals. However, this strategy lacks interpretability and is difficult to optimize. In addition,
there are numerous studies combining reinforcement learning and planning (Chen et al., 2021; Zhang
et al., 2021; Gao et al., 2025) by autonomously exploring driving behavior in closed-loop simulation
environments. Imitation learning (Chekroun et al., 2021; Hu et al., 2022b; Ma et al., 2025) is another
research direction, where models learn expert driving behavior to achieve good planning performance
and develop a driving style close to that of humans.

UniAD (Hu et al., 2022c) cleverly integrates multiple perception and prediction tasks to enhance
planning performance. VAD (Jiang et al., 2023) explores the potential of vectorized scene repre-
sentation for planning and getting rid of dense maps. Diffusion Planner (Zheng et al., 2025) jointly
predicts ego and other agents’ motions via iterative diffusion, but it relies on ground-truth perception
and HD maps. DiffusionDrive (Liao et al., 2025) accelerates the denoising process through truncated
diffusion; yet the limited and predefined trajectory anchors may constrain generation quality, and
increasing the number of anchors introduces additional computational cost. GoalFlow (Xing et al.,
2025) decomposes planning into goal-point selection followed by trajectory generation via flow
matching, but relying on a single goal point may affect trajectory diversity, and its hand-crafted
trajectory selection rules limit generality and scalability.

Large Language Model in Autonomous Driving. Recent researches explore the combination of
LLMs and autonomous driving (Sha et al., 2023; Xu et al., 2023; Mao et al., 2023). One line of work
utilizes LLMs for driving scene understanding and evaluation through question-answering (Chen
et al., 2023; Sima et al., 2024). Another approach goes a step further by directly utilizing LLMs for
planning (Wang et al., 2023b; 2024). However, current LLM-based planning approaches inevitably
suffer from limited inference speed, which constrains their practicality for real-time deployment
in autonomous driving applications. VADv2 draws inspiration from GPT (Achiam et al., 2023) to
cope with the uncertainty problem, which also exists in language modeling. Given a specific context,
the next word is non-deterministic, LLM learns the context-conditioned probabilistic distribution of
the next word from a large-scale corpus, and samples one word from the distribution. Inspired by
LLM, VADv2 models the planning policy as a scene-conditioned nonstationary stochastic process.
VADv2 discretizes the action space to generate a planning vocabulary, approximates the probabilistic
distribution based on large-scale driving demonstrations, and samples one action from the distribution
at each time step to control the vehicle.
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Figure 2: Overall architecture of VADv2. VADv2 takes multi-view image sequences as input in a
streaming manner, tokenizes sensor data and planning action space, outputs the probabilistic distribu-
tion of action, and samples one action to control the vehicle. Large-scale driving demonstrations and
scene constraints are used to supervise the predicted distribution.

3 VADV2

The overall framework of VADv2 is depicted in Fig. 2. VADv2 takes multi-view image sequences
as input in a streaming manner, transforms sensor data into scene token embeddings, outputs the
probabilistic distribution of action, and samples one action to control the vehicle. Large-scale driving
demonstrations and scene constraints are used to supervise the predicted distribution.

3.1 SCENE ENCODER

VADv2 uses a scene encoder to transform the sensor data into instance-level token embeddings
Escene ∈ RM×D to explicitly extract high-level information, where M is the number of scene tokens
and D is the feature dimension. Concretely, Escene includes four kinds of scene tokens: map tokens,
agent tokens, traffic element tokens, and image tokens.

BEV Encoder. VADv2 first employs a BEV encoder (Li et al., 2022c) to transform the multi-view
image features from perspective view to Bird’s Eye View, obtaining a feature map in the BEV space.
This feature map will be used for learning instance-level map features and agent features.

Map Tokens. VADv2 utilizes a group of map tokens (Liao et al., 2023a;b) to learn the vectorized
map elements of the driving scene from the BEV feature map, including lane centerline, lane divider,
road boundary, and pedestrian crossing.

Agent Tokens. Besides, a group of agent tokens (Jiang et al., 2023) is adopted to predict traffic
participants’ motion information, including location, orientation, size, speed, and future trajectories.

Traffic Element Tokens. Traffic signals also play a vital role in planning. In CARLA, we consider
two types of traffic signals: traffic light signals and stop signs. VADv2 further encodes the front view
image features extracted from the image backbone with an MLP into traffic element tokens to predict
the states of the traffic signals.

Image Tokens. Apart from the above instance-level tokens, VADv2 also utilizes the front-view image
features as the image tokens. These image tokens provide a more dense scene feature for planning,
containing rich information that is complementary to the instance-level tokens.

Map tokens, agent tokens, and traffic element tokens are supervised with corresponding supervision
signals to ensure they explicitly encode corresponding high-level information. Besides, navigation
information and ego state are also encoded into embeddings (Enavi, Estate) with an MLP. In summary,
the Scene Encoder transforms the sparse sensor data into more compact high-level scene features
(Escene, Enavi, Estate), which serve as the foundation for the following planning module.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 PROBABILISTIC PLANNING

We propose probabilistic planning to cope with the uncertainty of planning. We model the planning
policy as a scene-conditioned nonstationary stochastic process, formulated as p(a|o), where o is
the observed scene information and a is the action, represented as a waypoint sequence of future
planning trajectory,

o = (Escene, Enavi, Estate), a = (x1, y1, x2, y2, ..., xT , yT ). (1)

T is the number of waypoints. Each waypoint (xi, yi) corresponds to a future timestamp ti.

Algorithm 1: Planning vocabulary sampling.
Input: Planning action set S, Planning vocabulary

size N
Output: Planning vocabulary V
Initialization: V ← ∅
for i = 1 to N − 1 do

if V == ∅ then
random select a action a in S
V ← V ∪ {a} add action to planning

vocabulary
S ← S \ {a} remove action from

planning action set
end
max_dis = 0
for trajectory a in S do

dis = calculate_distance(a,V)
if dis > max_dis then

max_dis = dis
â = a update the currently furthest

trajectory
end

end
V ← V ∪ {â}

end
Return: V

calculate_distance will calculate the distance be-
tween the endpoint of action a and the endpoints
of all actions in set V . It will return the minimum
value among these distances as the result.

We approximate the probabilistic distribution of
the planning action space based on large-scale
driving demonstrations, and sample one action
from the distribution at each time step to control
the vehicle.

The planning action space is a high-dimensional
continuous spatiotemporal space and hard to
tackle. Thus, we discretize the planning ac-
tion space to a large planning vocabulary V =
{ai}N , where N is the vocabulary size. Specifi-
cally, we collect all the planning actions in driv-
ing demonstrations as the planning action set
S and adopt the furthest trajectory sampling to
select N representative actions to serve as the
planning vocabulary. The vocabulary sampling
algorithm is presented in Alg. 1. Each planning
action in V is sampled from driving demonstra-
tions and thus naturally satisfies the kinematic
constraints of the ego vehicle, which means that
when the action is converted into control signals
(steer, throttle, and brake), the control signal val-
ues do not exceed the feasible range. By default,
N is set to 4096.

The probability p(a) is assumed to be
continuous with respect to a and insen-
sitive to the little deviation of a, i.e.,
lim∆a→0 (p(a)− p(a+∆a)) = 0. Inspired
by NeRF (Mildenhall et al., 2020), which mod-
els the continuous radiance field over the 5D
space, we resort to a probabilistic field to model the continuous mapping from the action space to the
probabilistic distribution.

Concretely, we first encode each action (trajectory waypoint) into a high-dimensional planning token
embedding E(a),

E(a) =
(
Γ(xi),Γ(yi)

)T
i=1

, Γ(pos) =
(
γ(pos, j)

)L−1

j=0
,

γ(pos, j) =
(
cos(pos/100002πj/L), sin(pos/100002πj/L)

)
.

(2)

Γ is an encoding function that maps each coordinate from R into a high dimensional embedding
space R2L, and is applied separately to each of the coordinate values of trajectory a. pos denotes the
position (referring to the x or y coordinate of waypoint). We use these functions to map continuous
coordinates into a higher dimensional space to better approximate a higher frequency field function.

Then, we use a cascaded Transformer decoder ϕ for interaction with scene information Escene, and
combine with navigation information Enavi and ego state Estate to output the probability of each
action,

p(a) = σ(MLP(ϕ(E(a), Escene) + Enavi + Estate)). (3)

5
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σ is the sigmoid function. In the Transformer decoder ϕ, E(a) serves as query, and Escene serves as
key and value. E(a), Enavi, Estate, and the output of MLP are with the same dimension (1×D).

3.3 TRAINING

We train VADv2 with three kinds of supervision, distribution loss, conflict loss, and scene token loss.

Distribution Loss. We learn the probabilistic distribution from large-scale driving demonstra-
tions. KL divergence is used to minimize the difference between the predicted distribution and the
distribution of the data:

Ldistribution = DKL(pdata||ppred) =
∑
a∈V

pdata(a) · log
pdata(a)

ppred(a)
, (4)

pdata(a) is estimated through occurrence frequency in demonstrations. Since pdata(a) is fixed,
pdata(a) · log pdata(a) is a constant and can be omitted. Therefore, minimizing KL divergence is
equivalent to optimizing the cross-entropy loss:

Ldistribution = −
∑
a∈V

pdata(a) · log ppred(a). (5)

For each frame in the demonstrations, we select the action from the planning vocabulary that has the
lowest L2 distance to the ground-truth action. This best-matched action is assigned a label of 1, and
all other actions are assigned 0. Over all the frames, the occurrence frequency pdata(a) of one action
a is then estimated by counting how often each action is the best match, normalized by the total
number of frames. This modeling is analogous to the standard formulation used in Large Language
Models, where the ground-truth token is labeled as 1 and others as 0, and cross-entropy loss is used
to minimize the divergence between the predicted distribution and the empirical distribution.

Conflict Loss. We use the driving scene constraints to help model learn important prior knowledge
about driving and regularize the predicted distribution. Specifically, if one action in the planning
vocabulary conflicts with other agents’ ground truth future motion or road boundary, the action is
regarded as a negative sample, and we impose a significant loss to reduce the probability of this
action,

Lconflict =
∑
a∈V

1conflit(a) · log ppred(a). (6)

1conflit(a) is the indicator function, whose value is 1 if conflict happens to a, otherwise is 0.

Scene Token Loss. Map, agent, and traffic-element tokens are supervised with corresponding
supervision signals to ensure they explicitly encode the relevant high-level information.

The loss of map tokens is the same with MapTRv2 (Liao et al., 2023b). l1 loss is adopted to calculate
the regression loss between the predicted map points and the ground truth map points. Focal loss is
used as the map classification loss.

The loss of agent tokens is composed of the detection loss and the motion prediction loss (Jiang et al.,
2023). l1 loss is used as the regression loss to predict agent attributes (location, orientation, size,
etc.), and focal loss to predict agent classes. For each agent who has matched with a ground truth
agent, we predict K future trajectories and use the trajectory that has the minimum final displacement
error (minFDE) as a representative prediction. Then we calculate l1 loss between this representative
trajectory and the ground truth trajectory as the motion regression loss. Besides, focal loss is adopted
as the multi-modal motion classification loss.

Traffic element tokens consist of two parts: the traffic light token and the stop sign token. On one
hand, we send the traffic light token to an MLP to predict the state of the traffic light (yellow, red, and
green) and whether the traffic light affects the ego vehicle. On the other hand, the stop sign token is
also sent to an MLP to predict the overlap between the stop sign area and the ego vehicle. Focal loss
is used to supervise these predictions. The final loss can be denoted as:

L = Ldistribution + Lconflict + Ltoken. (7)

6
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Table 1: Closed-loop evaluation on the Town05 Long benchmark.

Method Reference Modality DS ↑ RC ↑ IS ↑
Transfuser (Prakash et al., 2021b) TPAMI’22 C+L 31.0 47.5 0.77
ThinkTwice (Jia et al., 2023b) CVPR’23 C+L 70.9 95.5 0.75
DriveAdapter+TCP (Jia et al., 2023a) ICCV’23 C+L 71.9 97.3 0.74
DriveMLM (Wang et al., 2023b) arXiv’23 C+L 76.1 98.1 0.78

Roach (Zhang et al., 2021) ICCV’21 C 41.6 96.4 0.43
ST-P3 (Hu et al., 2022b) ECCV’22 C 11.5 83.2 -
MILE (Hu et al., 2022a) NeurIPS’22 C 61.1 97.4 0.63
Interfuser (Shao et al., 2023) CoRL’22 C 68.3 95.0 -
VAD (Jiang et al., 2023) ICCV’23 C 30.3 75.2 -
Rao et al. (2024) TIV’24 C 74.9 94.6 0.77
DriveCoT (Wang et al., 2024) arXiv’24 C 73.6 96.8 0.76
LeapVAD (Ma et al., 2025) arXiv’25 C 73.7 95.7 0.78
VADv2 Ours C 85.1 98.4 0.87

Table 2: End-to-end planning results on the NAVSIM navtest split with closed-loop metrics.

Method Reference Modality NC ↑ DAC ↑ TTC ↑ Comf ↑ EP ↑ PDMS ↑
UniAD (Hu et al., 2022c) CVPR’23 C 97.8 91.9 92.9 100 78.8 83.4
Transfuser (Prakash et al., 2021b) PAMI’23 C+L 97.7 92.8 92.8 100 79.2 84.0
PARA-Drive (Weng et al., 2024) CVPR’24 C 97.9 92.4 93.0 99.8 79.3 84.0
GoalFlow Xing et al. (2025) CVPR’25 C+L 98.3 93.8 94.3 100 79.8 85.7
Hydra-MDP++ Li et al. (2025a) arXiv’25 C 97.6 96.0 93.1 100 80.4 86.6
DiffusionDrive (Liao et al., 2025) CVPR’25 C+L 98.2 96.2 94.7 100 82.2 88.1
WoTE Li et al. (2025b) ICCV’25 C+L 98.5 96.8 94.9 99.9 81.9 88.3
Hydra-NeXt Li et al. (2025c) arXiv’25 C+L 98.1 97.7 94.6 100 81.8 88.6
VADv2 Ours C 98.3 97.4 95.7 100 82.3 89.3

3.4 INFERENCE

In closed-loop inference, it’s flexible to get the driving policy from the distribution. Intuitively, we
sample the action with the highest probability at each time step, and use the PID controller to convert
the selected action to control signals (steer, throttle, and brake).

In real-world applications, there are more robust strategies to make full use of the probabilistic
distribution. A good practice is, sampling top-K actions as proposals, and adopting a rule-based
wrapper for filtering proposals and an optimization-based post-solver for fine-grained trajectory
refinement. Besides, the probability of the action reflects how confident the end-to-end model is, and
can be regarded as the judgment condition to switch between conventional rule-based planning and
control and learning-based planning and control.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

CARLA Benchmark. We first use CARLA (Dosovitskiy et al., 2017) simulator to evaluate the
performance of VADv2. We conduct closed-loop evaluation on the widely adopted Town05 and
Bench2Drive Jia et al. (2024) benchmarks. Specifically, each benchmark contains several pre-defined
driving routes. The simulation and control frequency for closed-loop inference is 10 Hz. VADv2
takes a multi-view image sequence as input in a streaming manner and plans a 3-second future
trajectory. The trajectory consists of 6 waypoints (i.e., T = 6). The time interval between two
adjacent waypoints is 0.5s. The default feature dimension D for VADv2 is set to 256. All experiments
are conducted based on 16 NVIDIA 4090 GPUs.
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Table 3: End-to-end planning results on the NAVSIMv2 benchmark with Extended Metrics.

Method NC ↑ DAC ↑ DDC ↑ TL ↑ EP ↑ TTC ↑ LK ↑ HC ↑ EC ↑ EPDMS ↑
Transfuser 96.9 89.9 97.8 99.7 87.1 95.4 92.7 98.3 87.2 76.7
HydraMDP++ 97.2 97.5 99.4 99.6 83.1 96.5 94.4 98.2 70.9 81.4
PRIX 98.0 95.6 99.5 99.8 87.4 97.2 97.1 98.3 87.6 84.2
VADv2 98.0 98.3 99.4 99.8 87.1 96.8 95.2 98.3 88.1 85.8

Table 4: Closed-loop quantitative comparisons with other methods on the 3DGS-based benchmark.

Method Reference CR↓ DCR↓ SCR↓ DR↓ PDR↓ HDR↓ ADD↓
TransFuser TPAMI 22 0.320 0.273 0.047 0.235 0.188 0.047 0.263
VAD ICCV 23 0.335 0.273 0.062 0.314 0.255 0.059 0.304
GenAD ECCV 24 0.341 0.299 0.042 0.291 0.160 0.131 0.265
VADv2 Ours 0.270 0.240 0.030 0.243 0.139 0.104 0.273

CARLA data. As for generating the driving demonstration data for the Town05 benchmark, we use
the official autonomous agent of CARLA to collect training data by randomly generating driving
routes in Town03, Town04, Town06, Town07, and Town10. We collect approximately 3 million
clips for training. For each clip, we save 6-camera surround-view image sequences at 10Hz for the
past 1.6 seconds, along with information on traffic signals, traffic participants, and the state of the
ego vehicle. Additionally, we obtain the vectorized maps for training the online mapping module
by preprocessing the OpenStreetMap (Haklay & Weber, 2008) format maps provided by CARLA.
The maps are provided only as ground truth during training, and VADv2 does not use high-definition
maps for evaluation.

NAVSIM and 3DGS-based Benchmarks. To further validate generalization ability in real-world
scenarios, we also evaluate VADv2 on the NAVSIM, NAVSIMv2 (Dauner et al., 2024) and a large-
scale 3DGS-based (Kerbl et al., 2023) benchmarks. we collect 2000 hours of real-world human
driving demonstrations for training, and utilizing 337 reconstructed 3DGS (3D Gaussian Splatting)
environments for closed-loop evaluation. Each environment features an 8s scenario capturing
interactions in dense traffic with potential collision risks, providing a representative segment of
real-world driving behaviors and multi-agent interactions.

The photorealistic 3DGS reconstruction enables accurate agent trajectory modeling and dynamic
environment rendering, providing a testbed that closely mirrors real-world driving conditions. More
details of the 3DGS-based benchmark can be found in Appendix A due to page limits. We also deploy
VADv2 on real-world vehicles. The results are presented in the supplementary material.

4.2 METRICS

On the CARLA benchmark, we employ its official closed-loop metrics, Route Completion (RC),
Infraction Score (IS) and Driving Score (DS). DS is the product between RC and IS, which serves
as the main metric. In benchmark evaluation, most works adopt a rule-based wrapper to reduce the
infraction. For a fair comparison, we follow the common practice of adopting a rule-based wrapper
over the learning-based policy, which is similar to Transfuser (Prakash et al., 2021b). We also conduct
open-loop evaluation using the L2 displacement error and collision rate. In most ablations, we adopt
open-loop metrics by default because they are faster to evaluate and more stable. We use the official
autonomous agent of CARLA to generate the validation set on the Town05 Long benchmark for
open-loop evaluation, and the results are averaged over all validation samples.

On the NAVSIM benchmark, its official closed-loop metrics such as PDMS are adopted. On the
3DGS-based benchmark, we use safety-critical metrics grounded in real-world driving analytics:
Collision Ratio (CR, sum of Dynamic and Static Collision Ratios) evaluates interaction safety in dense
traffic, while Deviation Ratio (DR, combining Positional and Heading Deviation Ratios) and Average
Deviation Distance (ADD) jointly assess trajectory consistency with expert human demonstrations.
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Table 5: Closed-loop results on the Bench2Drive.

Method DS ↑ SR ↑ Effi ↑ Comf ↑
SparseDrive 44.54 16.71 170.21 48.63
MomAD 47.91 18.11 174.91 51.20
DriveTransformer 63.46 35.01 100.64 20.78
ETA 74.33 48.33 186.04 25.77
VADv2 76.15 50.46 178.24 37.81

Table 6: Ablation on the multi-modal outputs.

Traj. NC ↑ DAC ↑ TTC ↑ Comf ↑ EP ↑ PDMS ↑
Top1 98.3 97.4 95.7 100 82.3 89.3
Top2 98.2 97.3 94.8 100 82.2 89.1
Top3 98.0 96.7 94.6 99.8 82.0 88.3
Top4 97.8 96.2 93.2 99.9 81.7 87.6
Top5 97.4 96.1 93.5 99.7 81.4 87.5

Table 7: Ablation for design choices. “Dist. Loss" denotes Distribution Loss.“Traf. Token" denotes
Traffic Element Token.

ID Dist. Conflict Agent Map Traf. Image L2 (m) ↓ Collision (%) ↓
Loss Loss Token Token Token Token 1s 2s 3s 1s 2s 3s

1 ✓ ✓ ✓ ✓ ✓ 1.415 2.310 3.153 0.698 0.755 0.746
2 ✓ ✓ ✓ ✓ ✓ 0.086 0.173 0.291 0.000 0.012 0.039
3 ✓ ✓ ✓ ✓ ✓ 0.089 0.190 0.327 0.015 0.047 0.085
4 ✓ ✓ ✓ ✓ ✓ 0.086 0.191 0.332 0.005 0.034 0.070
5 ✓ ✓ ✓ ✓ ✓ 0.082 0.171 0.295 0.000 0.017 0.051
6 ✓ ✓ ✓ ✓ ✓ 0.083 0.170 0.293 0.000 0.010 0.039
7 ✓ ✓ ✓ ✓ ✓ ✓ 0.082 0.169 0.290 0.000 0.010 0.039

4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

On the Town05 Long benchmark in Tab. 1, VADv2 achieves a DS of 85.1, a RC of 98.4, and an IS
of 0.87. Relative to the former state-of-the-art method DriveMLM (Wang et al., 2023b), VADv2
achieves a higher RC while significantly improving DS by 9.0. It is worth noting that VADv2 only
utilizes cameras as perception input, whereas DriveMLM uses both cameras and LiDAR. Furthermore,
compared to the previous best camera-based method (Rao et al., 2024), VADv2 demonstrates even
greater advantages, with a remarkable increase in DS of up to 10.2. On the Bench2Drive benchmark
(Tab. 5), VADv2 also achieves the highest Drive Score of 76.15.

Besides the CARLA-based benchmarks, VADv2 also achieves state-of-the-art planning performance
on the NAVSIM and NAVSIMv2 benchmarks, as shown in Tab. 2 and Tab. 3. Additionally, Tab. 4
presents the results on the 3DGS-based benchmark. VADv2 reduces the Collision Ratio to 0.270,
a 15.6% improvement over TransFuser (0.320), while maintaining a competitive Deviation Ratio
of 0.243 that approaches the best reported performance. These results demonstrate robust safety in
real-world dynamic interactions.

4.4 ABLATION STUDY

Multimodal Planning Performance. We further evaluate the multi-modal planning performance of
VADv2. Beyond the highest-probability trajectory, we consider other candidates within the top-5 set,
as shown in Tab. 6. Results indicate that the top-1 trajectory achieves the best overall performance,
and the performance of other candidates is basically comparable to the top-1, demonstrating that
VADv2 can generate high-quality multi-modal outputs.

Key Modules. Tab. 7 shows the ablation experiments of the key modules in VADv2. 50k clips
of driving demonstrations are used in training. The model performs poorly in terms of planning
accuracy without the supervision of expert driving behavior provided by the Distribution Loss (ID
1). The Conflict Loss provides critical prior information about driving; therefore, removing it (ID
2) also affects the model’s planning accuracy. Scene tokens encode important scene elements into
high-dimensional features, and the planning tokens interact with the scene tokens to learn both
dynamic and static information about the driving scene. When any type of scene token is missing,
the model’s planning performance will be affected (ID 3-ID 6). The best planning performance is
achieved when the model incorporates all of the aforementioned designs (ID 7). More experiments
and ablations are presented in Appendix A due to page limits.
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Table 8: Ablation on the performance under different planning manners and traffic densities.

Planning Manner Traffic Density NC ↑ DAC ↑ TTC ↑ Comf ↑ EP ↑ PDMS ↑
Deterministic Low 98.1 97.4 95.2 99.9 83.2 89.4
Probabilistic Low 98.3 99.0 95.5 100 83.5 90.6
Deterministic Medium 97.8 96.3 94.8 100 81.9 87.5
Probabilistic Medium 98.4 96.8 95.4 100 82.3 89.0
Deterministic High 97.3 95.1 93.6 100 79.8 85.8
Probabilistic High 98.0 97.4 94.3 100 82.0 87.7

t=0

t=3

t=0

t=3

t=0

t=3

t=0

t=3

Figure 4: Qualitative results of VADv2 on the CARLA Town05 Long benchmark.

Planning Robustness. Based on the number of dynamic agents within 20 m of the ego vehicle, we
categorize traffic density as Low (<5), Medium (5–10), and High (>10), and evaluate performance
under different planning manners and density levels (Tab. 8). For deterministic planning, we modify
the planning head of VADv2 to an MLP and directly regress future trajectories following common
practice (Jiang et al., 2023). The results show that probabilistic planning consistently outperforms its
deterministic counterpart. Furthermore, while probabilistic planning maintains stable performance
across varying density scenarios, deterministic planning exhibits noticeable degradation. These
findings demonstrate the effectiveness and robustness of our probabilistic planning paradigm.

4.5 VISUALIZATION

Fig. 4 shows qualitative results of VADv2. The top left image illustrates multi-modal planning
trajectories at different driving speeds. The top right shows predictions of both forward creeping
and left lane-changing. The bottom left presents a right lane-change at an intersection, where
VADv2 predicts trajectories for both going straight and changing lanes. The bottom right depicts a
lane-change with a vehicle in the target lane, and VADv2 generates multiple reasonable trajectories.

5 CONCLUSIONS AND LIMITATIONS

In this work, we present VADv2, an end-to-end driving model based on probabilistic planning. In
the CARLA simulator, VADv2 runs stably and achieves state-of-the-art closed-loop performance,
significantly outperforming all existing methods. Comprehensive experiments on the NAVSIM and
the 3DGS-based benchmark also demonstrate its impressive planning capability. The feasibility of
this probabilistic planning paradigm is primarily validated.

Currently, both simulator and 3DGS-based closed-loop environments still present limitations, such as
naive agent behaviors and insufficient scene realism, which may restrict the performance of VADv2.
In future work, we plan to explore how large-scale expert driving data can be leveraged to further
enhance planning performance and bridge the gap between simulation and real-world deployment.
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Table 9: Closed-loop results on Town05 Short.

Method Modality DS ↑ RC ↑

CILRS C 7.5 13.4
LBC C 31.0 55.0
Transfuser C+L 54.5 78.4
ST-P3 C 55.1 86.7
VAD C 64.3 87.3
LeapVAD C 88.2 99.5
VADv2 C 89.7 93.0

Table 10: Ablation on vocabulary size.

Size L2 (m) ↓ Collision (%) ↓
1s 2s 3s 1s 2s 3s

256 0.110 0.207 0.337 0.000 0.019 0.057
512 0.099 0.189 0.313 0.000 0.022 0.045

1024 0.093 0.175 0.293 0.000 0.020 0.044
2048 0.088 0.173 0.294 0.000 0.017 0.041
4096 0.082 0.169 0.290 0.000 0.010 0.039

Table 11: Ablation on the amount of training
clips.

Amount L2 (m) ↓ Collision (%) ↓
1s 2s 3s 1s 2s 3s

1× 105 0.121 0.264 0.461 0.015 0.061 0.107
3× 105 0.082 0.169 0.290 0.000 0.010 0.039
1× 106 0.073 0.153 0.267 0.000 0.008 0.027
3× 106 0.072 0.133 0.225 0.000 0.000 0.007

Table 12: Ablation on planning manners.

Planning DS ↑ RC ↑ L2(m) Collision(%)
@3s↓ @3s↓

Deterministic 74.6 95.1 0.223 0.006
Probabilistic 85.1 98.4 0.225 0.007

A APPENDIX

A.1 CLOSED-LOOP RESULTS ON THE TOWN05 SHORT BENCHMARK

We summarize the Town05 Short benchmark results of VADv2 in Table 9. This benchmark evaluates
targeted driving behaviors, including lane changes in dense traffic and before intersections. VADv2
achieves the highest DS score, while LeapVAD exhibits higher RC but lower DS, suggesting more
infractions. Overall, the results highlight the strong and reliable driving capability of VADv2 in
challenging scenarios.

A.2 MORE ABLATION STUDY

Vocabulary Size. We ablate about the vocabulary size in Tab. 10. With the vocabulary size increasing,
both L2 and collision metrics become better. A larger vocabulary size can better represent the action
space with less discretization error.

Amount of Training Clips. Tab. 11 is the ablation experiments about the amount of clips of driving
demonstrations used for training the end-to-end model. As expected, the model achieves better L2
and collision metrics with the data amount increasing.

Probabilistic vs. Deterministic. Ablation results on the Town05 Long benchmark (Tab. 12) show
that deterministic and probabilistic planning perform similarly in open-loop evaluation. However, in
closed-loop settings, probabilistic planning achieves notably better stability and performance, while
deterministic planning struggles with planning uncertainty.

Vocabulary Sampling. In Tab. 13, we report discrete errors and planning performance for different
vocabulary sampling strategies. For each training sample in NAVSIM, we select the vocabulary

Table 13: Ablation on the discretization error and performance of vocabulary sampling strategies.

Strategy Avg. L2 ↓ Max L2 ↓ NC ↑ DAC ↑ TTC ↑ Comf ↑ EP ↑ PDMS ↑
k-means 0.132 0.217 97.9 97.2 94.5 100 81.9 89.0
K-disks 0.128 0.204 98.1 97.3 94.8 100 82.2 89.1
nuScenes 0.116 0.212 98.2 97.1 95.4 100 82.5 89.1
FTS 0.102 0.181 98.3 97.6 95.1 100 82.3 89.3
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Table 14: More detailed statistics of our real world
3DGS-based validation dataset.

Scenario Type Percentage

Sunny Weather 74.78%
Night & Rainy Weather 25.22%
Crowded Road Precise Behavior 6.23%
Narrow Road Precise Behavior 6.82%
Intersection Precise Behavior 38.58%
Cut-in Interactive Scenario 9.79%
Ped. Crossing Interactive Scenario 9.20%

Figure 5: Visualization of the planning vocabulary
on the CARLA Town05 Benchmark.

Table 15: More evaluation details on the 3DGS-based benchmark.

Method Reference Parameters Latency Collision (%) Platform

TransFuser TPAMI 22 0.36B 118ms 0.320 RTX 4090
VAD ICCV 23 0.36B 118ms 0.335 RTX 4090
GenAD ECCV 24 0.38B 121ms 0.341 RTX 4090
VADv2 Ours 0.40B 125ms 0.270 RTX 4090

trajectory that yields the minimum L2 distance and then measure the per-timestep L2 error. We derive
both the Average and Max L2 Errors and average them across all samples.

The choice of strategy leads to only minor differences, with Furthest Trajectory Sampling (FTS)
achieving the best action space coverage and strongest results. We also build the vocabulary by
sampling trajectories from the nuScenes training set and evaluate on NAVSIM, where performance
remains comparable, indicating that VADv2 can effectively generalize across scenarios.

A.3 MORE EVALUATION DETAILS OF THE 3DGS-BASED BENCHMARK

Tab. 14 showcases the diverse and challenging test scenarios in our dataset, enabling more robust
evaluation. We also assess 3DGS-based reconstruction under different weather conditions, achieving
PSNR (Peak Signal-to-Noise Ratio) metrics of 29.5, 28.8, and 28.2 for sunny, rainy, and nighttime
scenes, respectively, demonstrating a leading level of performance.

Tab. 15 reports the inference latency, model parameters, and hardware platforms of baseline methods
like TransFuser and VAD. To fairly compare planning performance, we use the same perception back-
bone across all methods. Thus, differences in latency mainly arise from the planning module design.
While VADv2 adds some overhead with its planning vocabulary, its latency remains comparable to
other baselines and notably improves the primary collision rate metric.

We provide additional details of our real-world dataset and compare it with popular benchmarks in
Tab. 16. While nuScenes is dominated by straight-driving scenarios and NAVSIM features more turns
but limited data, our dataset stands out in both scale and scene diversity.

A.4 LLM USAGE

We only use LLMs to check grammar and polish writing in this paper, and the authors take full
responsibility for all content.

Table 16: Quantitative analysis of the real-world 3DGS-based dataset.

Dataset Duration Environment Straight Turning

nuScenes 5.55h Urban 92.80% 7.20%
NAVSIM 120h Urban 66.40% 33.60%
Ours 2000h Urban, Highway, Rural 52.50% 47.50%
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