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ABSTRACT

Learning a human-like driving policy from large-scale driving demonstrations is
promising, but the uncertainty and non-deterministic nature of planning make it
challenging. Existing learning-based planning methods follow a deterministic
paradigm to directly regress the action, failing to cope with the uncertainty problem.
In this work, we propose a probabilistic planning model for end-to-end autonomous
driving, termed VADv2. We resort to a probabilistic field function to model the
mapping from the action space to the probabilistic distribution. Since the planning
action space is a high-dimensional continuous spatiotemporal space and hard to
tackle, we first discretize the planning action space to a large planning vocabulary
and then tokenize the planning vocabulary into planning tokens. Planning tokens
interact with scene tokens and output the probabilistic distribution of action. Mass
driving demonstrations are leveraged to supervise the distribution. VADv2 achieves
state-of-the-art closed-loop performance on the CARLA Town05 benchmark, sig-
nificantly outperforming all existing methods. We also provide comprehensive
evaluations on the NAVSIM dataset and a large-scale 3DGS-based benchmark,
demonstrating its effectiveness in real-world applications. Code will be released to
facilitate future research.

1 INTRODUCTION

End-to-end autonomous driving is an important research topic currently. A plethora of human driving
demonstrations in real-world scenarios are readily accessible. It is very promising to derive a human-
like driving policy for vehicle control from these extensive demonstrations. However, the uncertainty
and non-deterministic nature of planning make it challenging to extract the driving knowledge from
driving demonstrations. To illustrate such uncertainty, two scenarios are presented in Fig. |1{and
explained as follows. 1) Following another vehicle: The human driver exhibits various reasonable
driving maneuvers, such as maintaining the current lane or changing lanes to overtake. 2) Interaction
with an oncoming vehicle: The human driver faces two potential driving maneuvers, i.e., yielding
or overtaking. From a statistical perspective, the actions (including timing and speed) are highly
stochastic, influenced by numerous latent factors that cannot be accurately modeled.

Existing learning-based planning methods (Jiang et al., |2023; Hu et al., |2022c; Jia et al., 2023b;
Prakash et al.,[2021b; Hu et al.||2022a}; [Zhang et al.|[2021) follow a deterministic paradigm to directly
regress the action. The regression target is the future trajectory in (Jiang et al., 2023} |[Hu et al.| 2022c}
Jia et al., [2023b} |[Prakash et al.| 2021b) and control signal (acceleration and steering) in (Hu et al.|
2022a; Zhang et al.,[2021). Such a paradigm assumes there exists a deterministic relation between
the driving scene and action, which is not the case. The variance of human driving behavior causes
the ambiguity of the regression target. Especially when the feasible solution space is non-convex,
i.e., there exist multiple feasible solutions (see Fig. [I), the deterministic modeling cannot cope with
non-convex cases and may output an in-between action, causing safety problems.

In this work, we propose probabilistic planning to cope with the uncertainty of planning. We
model the planning policy as a scene-conditioned non-stationary stochastic process, formulated as
p(alo), where o is the historical and current observations of the driving scene, and a is a candidate
planning action. Compared with deterministic planning, probabilistic planning is more robust against
uncertainty in planning and able to model non-convex feasible solution space, and thus achieves more
accurate and safer planning performance.
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We resort to a probabilistic field func-
tion to model the mapping from the ac-
tion space to the probabilistic distribu-
tion. Since the planning action space is
a high-dimensional continuous spatiotem-
poral space and hard to tackle, we first dis-
cretize the planning action space to a large
planning vocabulary and then tokenize the
planning vocabulary into planning tokens.
Planning tokens interact with scene tokens
and output the probabilistic distribution of
action. Mass driving demonstrations are
leveraged to supervise the distribution.

Probabilistic planning has two other ad- Driving Demonstrations  Deterministic Planning  Probabilistic Planning

vantages. First, unlike deterministic plan- ] o ]
ning which has to regress the optimal ac- Figure 1: Uncertainty exists in planning. There doesn’t

tion according to scene information, prob- exist a deterministic relation between driving scene and
abilistic planning models the correlation action. The deterministic planning fails to model such
between each action and the driving scene. uncertainty especially when the feasible solution space is
It just ranks different actions and sam- non-convex. VADV2 is based on probabilistic planning
ples a high-scoring one. Such modeling is  and learns the scene-conditioned probabilistic distribu-
much simpler. Besides, probabilistic plan- tion of action from large-scale driving demonstrations.
ning is flexible in the inference stage. It

outputs multi-mode planning results and is easy to combine with rule-based and optimization-based
planning methods. We can flexibly add other candidate planning actions to the planning vocabulary
and evaluate them because we model the distribution over the whole action space.

Based on the probabilistic planning, we present VADv2, an end-to-end driving model, which takes
surround-view image sequence as input in a streaming manner, tokenizes sensor data and planning
action space, outputs the probabilistic distribution of action, and samples one action to control
the vehicle. Only with camera sensors, VADv2 achieves state-of-the-art closed-loop planning
performance on the CARLA Town05 benchmark, significantly outperforming all existing methods,
and also delivers leading planning results on the NAVSIM and our 3DGS-based benchmark. VADv2
runs stably in a fully end-to-end manner, even without a rule-based wrapper as a post-processing step
to avoid infraction.

Our contributions are summarized as follows:

* We propose probabilistic planning to cope with the uncertainty and non-deterministic nature
of planning. We design a probabilistic field to map from the action space to the probabilistic
distribution and learn the distribution of action from large-scale driving demonstrations.

* Based on the probabilistic planning, we present VADv2, an end-to-end driving model, which tok-
enizes sensor data and planning action space for interaction, outputs the probabilistic distribution
of action, and samples one action to control the vehicle.

e VADV2 achieves state-of-the-art planning performance in both closed- and open-loop settings
across multiple benchmarks. Abundant closed-loop simulations and real-world deployment results
validate its effectiveness and stability in vehicle control.

2 RELATED WORK

Perception. Perception is the first step in achieving autonomous driving, and a unified representation
of driving scenes is beneficial for easy integration into downstream tasks. Bird’s Eye View (BEV)
representation has become a common strategy in recent years, enabling effective scene feature
encoding and multimodal data fusion. LSS (Philion & Fidler, [2020) is a pioneering work that
achieves the perspective view to BEV transformation by explicitly predicting depth for image pixels.
BEVFormer 2022c), on the other hand, avoids explicit depth prediction by designing
spatial and temporal attention mechanisms. Subsequent works (Li et al}, [2022b; [Wang et al.| [2023a)
continuously optimize temporal modeling and BEV transformation strategies. In terms of vectorized




Under review as a conference paper at ICLR 2026

mapping, HDMapNet (Li et al.,2022a) converts lane segmentation into vector maps through post-
processing. VectorMapNet (Liu et al.l 2022) predicts vector map elements in an autoregressive
manner. MapTR (Liao et al.| 2022} 2023b)) introduces permutation equivalence and hierarchical
matching strategies, significantly improving mapping performance. LaneGAP (Liao et al.| 2023a)
introduces path-wise modeling for lane graphs.

Motion Prediction. Motion prediction aims to forecast future trajectories of other traffic participants,
assisting the ego vehicle in making informed planning decisions. Traditional motion prediction
methods utilizes input such as historical trajectories and high-definition maps to predict future
trajectories (Chai et al.l 2019; |Gao et al.l 2020; Liu et al., 2021). However, recent end-to-end
methods (Hu et al.,|2021; |Zhang et al.| 2022; |Gu et al., |2022; Jiang et al., [2022) perform perception
and motion prediction jointly. Some works (Hu et al., 2021} [Zhang et al 2022) predict future
motion as dense occupancy and flow. Some other works (Gu et al., [2022} Jiang et al., 2022) predict
agent-level multi-mode trajectories. Planning can draw inspiration from these approaches to model
uncertainty, although the number of modes remains limited.

Planning. Learning-based planning has shown great potential recently due to its data-driven nature
and impressive performance with increasing amounts of data. Early attempts (Pomerleau, |1988;
Codevilla et al., 2019b; [Prakash et al., 2021a)) use a completely black-box spirit, where sensor
data is directly used to predict control signals. However, this strategy lacks interpretability and
is difficult to optimize. In addition, there are numerous studies combining reinforcement learning
and planning (Chen et al.| 2021} |[Zhang et al., 2021} |Gao et al., [2025) by autonomously exploring
driving behavior in closed-loop simulation environments. Imitation learning (Chekroun et al., 2021}
Hu et al.| [2022b; Ma et al.| 2025; [Liao et al.l 2025) is another research direction, where models
learn expert driving behavior to achieve good planning performance and develop a driving style
close to that of humans. In recent years, end-to-end autonomous driving has emerged, integrating
perception, motion prediction, and planning into a single model, resulting in a fully data-driven
approach that demonstrates promising performance. UniAD (Hu et al.}|2022c) cleverly integrates
multiple perception and prediction tasks to enhance planning performance. VAD (Jiang et al., [2023)
explores the potential of vectorized scene representation for planning and getting rid of dense maps.

Large Language Model in Autonomous Driving. Recent researches explore the combination of
LLMs and autonomous driving (Sha et al., 2023} |Xu et al., 2023; Mao et al., 2023)). One line of work
utilizes LLMs for driving scene understanding and evaluation through question-answering (Chen
et al.| 2023} Sima et al.| 2024)). Another approach goes a step further by directly utilizing LLMs for
planning (Wang et al., [2023b; 2024). However, current LLM-based planning approaches inevitably
suffer from limited inference speed, which constrains their practicality for real-time deployment
in autonomous driving applications. VADvV2 draws inspiration from GPT (Achiam et al.,|[2023)) to
cope with the uncertainty problem, which also exists in language modeling. Given a specific context,
the next word is non-deterministic, LLM learns the context-conditioned probabilistic distribution of
the next word from a large-scale corpus, and samples one word from the distribution. Inspired by
LLM, VADv2 models the planning policy as a scene-conditioned nonstationary stochastic process.
VADV?2 discretizes the action space to generate a planning vocabulary, approximates the probabilistic
distribution based on large-scale driving demonstrations, and samples one action from the distribution
at each time step to control the vehicle.

3 VADvV2

The overall framework of VADV2 is depicted in Fig.[2] VADv2 takes multi-view image sequences
as input in a streaming manner, transforms sensor data into scene token embeddings, outputs the
probabilistic distribution of action, and samples one action to control the vehicle. Large-scale driving
demonstrations and scene constraints are used to supervise the predicted distribution.

3.1 SCENE ENCODER

VADV?2 uses a scene encoder to transform the sensor data into instance-level token embeddings
Eqcene € RMXD 1o explicitly extract high-level information, where M is the number of scene tokens
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Figure 2: Overall architecture of VADv2. VADvV2 takes multi-view image sequences as input in a
streaming manner, tokenizes sensor data and planning action space, outputs the probabilistic distribu-
tion of action, and samples one action to control the vehicle. Large-scale driving demonstrations and
scene constraints are used to supervise the predicted distribution.

and D is the feature dimension. Concretely, Ficepe includes four kinds of scene tokens: map tokens,
agent tokens, traffic element tokens, and image tokens.

BEYV Encoder. VADvV2 first employs a BEV encoder (Li et al., 2022c¢)) to transform the multi-view
image features from perspective view to Bird’s Eye View, obtaining a feature map in the BEV space.
This feature map will be used for learning instance-level map features and agent features.

Map Tokens. VADV?2 utilizes a group of map tokens (Liao et al., 2023alb) to learn the vectorized
map elements of the driving scene from the BEV feature map, including lane centerline, lane divider,
road boundary, and pedestrian crossing.

Agent Tokens. Besides, a group of agent tokens (Jiang et al., [2023) is adopted to predict traffic
participants’ motion information, including location, orientation, size, speed, and future trajectories.

Traffic Element Tokens. Traffic signals also play a vital role in planning. In CARLA, we consider
two types of traffic signals: traffic light signals and stop signs. VADv2 further encodes the front view
image features extracted from the image backbone with an MLP into traffic element tokens to predict
the states of the traffic signals.

Image Tokens. Apart from the above instance-level tokens, VADV?2 also utilizes the front-view image
features as the image tokens. These image tokens provide a more dense scene feature for planning,
containing rich information that is complementary to the instance-level tokens.

Map tokens, agent tokens, and traffic element tokens are supervised with corresponding supervision
signals to ensure they explicitly encode corresponding high-level information. Besides, navigation
information and ego state are also encoded into embeddings ( Eyavi, Pstate) With an MLP. In summary,
the Scene Encoder transforms the sparse sensor data into more compact high-level scene features
(Escenes Pnavi, Pstate ), Which serve as the foundation for the following planning module.

3.2 PROBABILISTIC PLANNING

We propose probabilistic planning to cope with the uncertainty of planning. We model the planning
policy as a scene-conditioned nonstationary stochastic process, formulated as p(a|o), where o is
the observed scene information and a is the action, represented as a waypoint sequence of future
planning trajectory,

o= (Escen67 Enav17 Estate)» a = ($17y17x27y27 teey ‘rTayT)~ (1)

T is the number of waypoints. Each waypoint (z;, y;) corresponds to a future timestamp ¢;.
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We approximate the probabilistic distribution of
the planning action space based on large-scale
driving demonstrations, and sample one action
from the distribution at each time step to control
the vehicle.

The planning action space is a high-dimensional
continuous spatiotemporal space and hard to
tackle. Thus, we discretize the planning ac-
tion space to a large planning vocabulary V =
{a’}", where N is the vocabulary size. Specifi-
cally, we collect all the planning actions in driv-
ing demonstrations as the planning action set
S and adopt the furthest trajectory sampling to
select N representative actions to serve as the
planning vocabulary. The vocabulary sampling
algorithm is presented in Alg.[T} Each planning
action in V is sampled from driving demonstra-
tions and thus naturally satisfies the kinematic
constraints of the ego vehicle, which means that
when the action is converted into control signals
(steer, throttle, and brake), the control signal val-
ues do not exceed the feasible range. By default,
N is set to 4096.

The probability p(a) is assumed to be
continuous with respect to a and insen-
sitive to the little deviation of a, i.e.,
limag—0 (p(a) — p(a + Aa)) = 0. Inspired
by NeRF (Mildenhall et al.,|2020), which mod-
els the continuous radiance field over the 5D

space, we resort to a probabilistic field to model the continuous mapping from the action space to the

probabilistic distribution.

Concretely, we first encode each action (trajectory waypoint) into a high-dimensional planning token

embedding E(a),

T

Algorithm 1: Planning vocabulary sampling.

Input: Planning action set S, Planning vocabulary
size N
Output: Planning vocabulary V
Initialization: V < )
fori =1t0 N —1do
if V == () then
random select a action a in S
V « VU {a} add action to planning
vocabulary
S + S\ {a} remove action from
planning action set
end
max_dis =0
for trajectory a in S do
dis = calculate_distance(a, V)
if dis > max_dis then
max_dis = dis
a = a update the currently furthest

trajectory
end
end
V<« Vuia}
end
Return: V

calculate_distance will calculate the distance be-
tween the endpoint of action a and the endpoints
of all actions in set V. It will return the minimum

value among these distances as the result.

L—

E(a) = (T(:).T(5)) 1, T(pos) = (v(pos.5))

, . (@)
~v(pos,j) = (cos(pos/100002’”/L)7 sin(pos/lOOOOQ’”/L)).

T is an encoding function that maps each coordinate from R into a high dimensional embedding

space R2%, and is applied separately to each of the coordinate values of trajectory a. pos denotes the

position (referring to the x or y coordinate of waypoint). We use these functions to map continuous

coordinates into a higher dimensional space to better approximate a higher frequency field function.

Then, we use a cascaded Transformer decoder ¢ for interaction with scene information Fy.cpe, and
combine with navigation information F,,,; and ego state Fiiate to output the probability of each
action,

p(a) = U(MLP(¢(E(G)7 Escene) + Enavi + Estate))' (3)
o is the sigmoid function. In the Transformer decoder ¢, E(a) serves as query, and Egcene Serves as
key and value. E(a), Fyavi, Fstate, and the output of MLP are with the same dimension (1 x D).

3.3 TRAINING

We train VADv2 with three kinds of supervision, distribution loss, conflict loss, and scene token loss.

Distribution Loss. We learn the probabilistic distribution from large-scale driving demonstrations.
KL divergence is used to minimize the difference between the predicted distribution and the distri-
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bution of the data. pqata(@) is estimated through occurrence frequency in demonstrations. Since
Ddata(@) is fixed, Pdata(@) - 10g Pdata (@) is a constant and can be omitted.

Ldistribution = DKL(pdataprred) = - Z pdata(a’) ' 1ngpred(a‘)~ “4)
acV

For each frame in the demonstrations, we select the action from the planning vocabulary that has the
lowest L2 distance to the ground-truth action. This best-matched action is assigned a label of 1, and
all other actions are assigned 0. Over all the frames, the occurrence frequency pqata(a) of one action
a is then estimated by counting how often each action is the best match, normalized by the total
number of frames. This modeling is analogous to the standard formulation used in Large Language
Models, where the ground-truth token is labeled as 1 and others as 0, and cross-entropy loss is used
to minimize the divergence between the predicted distribution and the empirical distribution.

Conflict Loss. We use the driving scene constraints to help model learn important prior knowledge
about driving and regularize the predicted distribution. Specifically, if one action in the planning
vocabulary conflicts with other agents’ ground truth future motion or road boundary, the action is
regarded as a negative sample, and we impose a significant loss to reduce the probability of this
action,

Econﬂict = Z ]lconﬂit (a) . 1ngpred(a)- (5)
acV

Leontiit (@) is the indicator function, whose value is 1 if conflict happens to a, otherwise is 0.

Scene Token Loss. Map, agent, and traffic-element tokens are supervised with corresponding
supervision signals to ensure they explicitly encode the relevant high-level information.

The loss of map tokens is the same with MapTRv2 (Liao et al.}[2023b)). /; loss is adopted to calculate
the regression loss between the predicted map points and the ground truth map points. Focal loss is
used as the map classification loss.

The loss of agent tokens is composed of the detection loss and the motion prediction loss (Jiang et al.|
2023). [ loss is used as the regression loss to predict agent attributes (location, orientation, size,
etc.), and focal loss to predict agent classes. For each agent who has matched with a ground truth
agent, we predict K future trajectories and use the trajectory that has the minimum final displacement
error (minFDE) as a representative prediction. Then we calculate /; loss between this representative
trajectory and the ground truth trajectory as the motion regression loss. Besides, focal loss is adopted
as the multi-modal motion classification loss.

Traffic element tokens consist of two parts: the traffic light token and the stop sign token. On one
hand, we send the traffic light token to an MLP to predict the state of the traffic light (yellow, red, and
green) and whether the traffic light affects the ego vehicle. On the other hand, the stop sign token is
also sent to an MLP to predict the overlap between the stop sign area and the ego vehicle. Focal loss
is used to supervise these predictions. The final loss can be denoted as:

L= £distribution + ﬁconﬁict + Ltoken- (6)

3.4 INFERENCE

In closed-loop inference, it’s flexible to get the driving policy from the distribution. Intuitively, we
sample the action with the highest probability at each time step, and use the PID controller to convert
the selected action to control signals (steer, throttle, and brake).

In real-world applications, there are more robust strategies to make full use of the probabilistic
distribution. A good practice is, sampling top-K actions as proposals, and adopting a rule-based
wrapper for filtering proposals and an optimization-based post-solver for fine-grained trajectory
refinement. Besides, the probability of the action reflects how confident the end-to-end model is, and
can be regarded as the judgment condition to switch between conventional rule-based planning and
control and learning-based planning and control.
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Table 1: Closed-loop evaluation on the Town05 Long benchmark.

Method Modality Reference DS 1 RC 1 ISt
Transfuser (Prakash et al.||2021b) C+L TPAMI 22 31.0 47.5 0.77
ThinkTwice (Jia et al.!|2023b) C+L CVPR 23 70.9 95.5 0.75
DriveAdapter+TCP (Jia et al.|[2023a) C+L ICCV 23 71.9 97.3 0.74
DriveMLM (Wang et al.[[2023b) C+L arXiv 23 76.1 98.1 0.78
CILRS (Codevilla et al.|[2019a) C CVPR 19 7.8 10.3 0.75
LBC (Chen et al.[[2020) C CoRL 20 12.3 31.9 0.66
Roach (Zhang et al.|[2021) C ICCV 21 41.6 96.4 0.43
ST-P3 (Hu et al.| 2022b) C ECCV 22 11.5 83.2 -

MILE (Hu et al.|[2022a) C NeurIPS 22 61.1 97.4 0.63
Interfuser (Shao et al.|[2023) C CoRL 22 68.3 95.0 -

VAD (Jiang et al.|[2023) C ICCV 23 30.3 75.2 -

Rao et al.[(2024) C TIV 24 74.9 94.6 0.77
DriveCoT (Wang et al.|[2024) C arXiv 24 73.6 96.8 0.76
LeapVAD (Ma et al.|[2025) C arXiv 25 73.7 95.7 0.78
VADv2 C Ours 85.1 98.4 0.87

Table 2: End-to-end planning results on the NAVSIM navtest split with closed-loop metrics.

Method Reference Modality NC1 DACT TTC1 Comf1 EP{1 PDMS 1
Transfuser (Prakash et al.||2021b) PAMI 23 C+L 97.7 92.8 92.8 100 79.2 84.0
DRAMA (Yuan et al.|/[2024) arXiv 23 C+L 98.0 93.1 94.8 100 80.1 85.5
Hydra-MDP (Li et al.|[2024) arXiv 24 C+L 98.3 96.0 94.6 100 78.7 86.5
DiffusionDrive (Liao et al.[|2025) CVPR 25 C+L 98.2 96.2 94.7 100 82.2 88.1
UniAD (Hu et al.|[2022c) CVPR 23 C 97.8 91.9 92.9 100 78.8 834
LTF (Prakash et al.[[2021b) PAMI 23 C 97.4 92.8 92.4 100 79.0 83.8
PARA-Drive (Weng et al.|2024) CVPR 24 C 97.9 92.4 93.0 99.8 79.3 84.0
VADvV2 Ours C 98.1 94.8 94.3 100 80.6 86.2

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

CARLA Benchmark. We first adopt the widely used CARLA (Dosovitskiy et al.,|2017) simulator
to evaluate the performance of VADv2. Following common practice, we use Town05 benchmarks
for closed-loop evaluation. Specifically, each benchmark contains several pre-defined driving routes.
Town05 Long consists of 10 routes, each route is about 1km in length. Town05 Short consists of 32
routes, each route is 70m in length. Town05 Long validates the comprehensive capabilities of the
model, while Town05 Short focuses on evaluating the model’s performance in specific scenarios,
such as lane changing before intersections. The simulation and control frequency for closed-loop
inference is 10 Hz. VADv2 takes a multi-view image sequence as input in a streaming manner and
plans a 3-second future trajectory. The trajectory consists of 6 waypoints (i.e., T' = 6). The time
interval between two adjacent waypoints is 0.5s. The default feature dimension D for VADV2 is set
to 256. All experiments are conducted based on 16 NVIDIA 4090 GPUs.

CARLA data. As for generating the driving demonstration data, we use the official autonomous
agent of CARLA to collect training data by randomly generating driving routes in Town03, Town04,
Town06, Town(07, and Town10. We collect approximately 3 million clips for training. For each
clip, we save 6-camera surround-view image sequences at 10Hz for the past 1.6 seconds, along with
information on traffic signals, traffic participants, and the state of the ego vehicle. Additionally,
we obtain the vectorized maps for training the online mapping module by preprocessing the Open-
StreetMap (Haklay & Weber}, |2008)) format maps provided by CARLA. The maps are provided only
as ground truth during training, and VADv2 does not use high-definition maps for evaluation.

NAVSIM and 3DGS-based Benchmarks. To further validate generalization ability in real-world
scenarios, we also evaluate VADv2 on the NAVSIM (Dauner et al., 2024} and a large-scale 3DGS-
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Table 3: Closed-loop quantitative comparisons with other methods on the 3DGS-based benchmark.

Method Reference CR| DCR| SCR| DR| PDR| HDR| ADD|
TransFuser TPAMI22 0.320 0.273 0.047 0.235 0.188 0.047 0.263

VAD ICCv23 0335 0.273 0.062 0.314 0.255 0.059 0.304
GenAD ECCV24 0341 0299 0.042 0291 0.160 0.131 0.265
VADv2 Ours 0270 0.240 0.030 0.243 0.139 0.104 0.273

Table 4: Ablation for design choices. “Dist. Loss" denotes Distribution Loss. “Traf. Token" denotes
Traffic Element Token.

D Dist. Conflict Agent Map Traf. Image L2 (m)| Collision (%) |
Loss Loss Token Token Token Token Is 2s 3s 1s 2s 3s
1 v v v v v 1415 2310 3.153 0.698 0.755 0.746
2 v v v v v 0.086 0.173 0.291 0.000 0.012 0.039
3 v v v v v 0.089 0.190 0.327 0.015 0.047 0.085
4 v v v v v 0.086 0.191 0.332 0.005 0.034 0.070
5 v v v v v 0.082 0.171 0.295 0.000 0.017 0.051
6 v v v v v 0.083 0.170 0.293 0.000 0.010 0.039
7 v v v v v v 0.082 0.169 0.290 0.000 0.010 0.039

based (Kerbl et al., |2023) benchmarks. we collect 2000 hours of real-world human driving demonstra-
tions for training, and utilizing 337 reconstructed 3DGS (3D Gaussian Splatting) environments for
closed-loop evaluation. Each environment features an 8s scenario capturing interactions in dense traf-
fic with potential collision risks, providing a representative segment of real-world driving behaviors
and multi-agent interactions.

The photorealistic 3DGS reconstruction enables accurate agent trajectory modeling and dynamic
environment rendering, providing a testbed that closely mirrors real-world driving conditions. More
details of the 3DGS-based benchmark can be found in Appendix [A]due to page limits. We also deploy
VADV2 on real-world vehicles. The results are presented in the supplementary material.

LLM Usage. We only use LLMs to check grammar and polish writing in this paper, and the authors
take full responsibility for all content.

4.2 METRICS

On the CARLA benchmark, we employ its official closed-loop metrics, Route Completion (RC),
Infraction Score (IS) and Driving Score (DS). DS is the product between RC and IS, which serves
as the main metric. In benchmark evaluation, most works adopt a rule-based wrapper to reduce the
infraction. For a fair comparison, we follow the common practice of adopting a rule-based wrapper
over the learning-based policy, which is similar to Transfuser (Prakash et al.,|[2021b). We also conduct
open-loop evaluation using the L2 displacement error and collision rate. In most ablations, we adopt
open-loop metrics by default because they are faster to evaluate and more stable. We use the official
autonomous agent of CARLA to generate the validation set on the Town05 Long benchmark for
open-loop evaluation, and the results are averaged over all validation samples.

On the NAVSIM benchmark, its official closed-loop metrics such as PDMS are adopted. On the
3DGS-based benchmark, we use safety-critical metrics grounded in real-world driving analytics:
Collision Ratio (CR, sum of Dynamic and Static Collision Ratios) evaluates interaction safety in dense
traffic, while Deviation Ratio (DR, combining Positional and Heading Deviation Ratios) and Average
Deviation Distance (ADD) jointly assess trajectory consistency with expert human demonstrations.

4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

On the Town05 Long benchmark in Tab. E], VADv?2 achieves a DS of 85.1, a RC of 98.4, and an IS
of 0.87. Relative to the former state-of-the-art method DriveMLM (Wang et al., 2023b), VADv2
achieves a higher RC while significantly improving DS by 9.0. It is worth noting that VADv2 only
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Figure 4: Qualitative results of VADv2 on the CARLA Town05 Long benchmark.

utilizes cameras as perception input, whereas DriveMLM uses both cameras and LiDAR. Furthermore,
compared to the previous best camera-based method (Rao et al., 2024), VADv2 demonstrates even
greater advantages, with a remarkable increase in DS of up to 10.2.

On the NAVSIM benchmark in Tab. 2] VADv2 also achieves state-of-the-art camera-based planning
performance. In comparison with the strongest prior approach (Weng et al,[2024), PDMS greatly
improved from 84.0 to 86.2. Additionally, Tab. 3| presents the results on the 3DGS-based benchmark.
VADV2 reduces the Collision Ratio to 0.270, a 15.6% improvement over TransFuser (0.320), while
maintaining a competitive Deviation Ratio of 0.243 that approaches the best reported performance.
These results demonstrate robust safety in real-world dynamic interactions.

4.4 ABLATION STUDY

Key Modules. Tab. 4| shows the ablation experiments of the key modules in VADv2. 50k clips
of driving demonstrations are used in training. The model performs poorly in terms of planning
accuracy without the supervision of expert driving behavior provided by the Distribution Loss (ID
1). The Conflict Loss provides critical prior information about driving; therefore, removing it (ID
2) also affects the model’s planning accuracy. Scene tokens encode important scene elements into
high-dimensional features, and the planning tokens interact with the scene tokens to learn both
dynamic and static information about the driving scene. When any type of scene token is missing,
the model’s planning performance will be affected (ID 3-ID 6). The best planning performance is
achieved when the model incorporates all of the aforementioned designs (ID 7). More experiments
and ablations are presented in Appendix [A]due to page limits.

4.5 VISUALIZATION

Fig. [] shows qualitative results of VADv2. The top left image illustrates multi-modal planning
trajectories at different driving speeds. The top right shows predictions of both forward creeping
and left lane-changing. The bottom left presents a right lane-change at an intersection, where
VADV2 predicts trajectories for both going straight and changing lanes. The bottom right depicts a
lane-change with a vehicle in the target lane, and VADv2 generates multiple reasonable trajectories.

5 CONCLUSIONS AND LIMITATIONS

In this work, we present VADV2, an end-to-end driving model based on probabilistic planning. In
the CARLA simulator, VADvV2 runs stably and achieves state-of-the-art closed-loop performance,
significantly outperforming all existing methods. Comprehensive experiments on the NAVSIM and
the 3DGS-based benchmark also demonstrate its impressive planning capability. The feasibility
of this probabilistic planning paradigm is primarily validated. However, both simulator-based and
3DGS-based closed-loop environments still present limitations, such as overly simplistic agent
behaviors and insufficient scene realism, which may restrict the performance of VADv2. In future
work, we plan to explore how large-scale real-world driving data can be leveraged to further enhance
planning performance and bridge the gap between simulation and real-world deployment.
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Table 5: Closed-loop results on Town05 Short.
Table 6: Ablation on vocabulary size.

Method Modality DS 1T RC7?T

Size L2 (m) | Collision (%) |

CILRS C 75 13.4 1s 2s 3s 1s 2s 3s
LBC C 31.0 55.0 256 0.110 0.207 0.337 0.000 0.019 0.057
Transfuser C+L 545 784 512 0.099 0.189 0.313 0.000 0.022 0.045
ST-P3 C 55.1  86.7 1024 0.093 0.175 0.293 0.000 0.020 0.044
VAD C 643 873 2048 0.088 0.173 0.294 0.000 0.017 0.041
LeapVAD C 88.2 995 4096 0.082 0.169 0.290 0.000 0.010 0.039
VADv2 C 89.7 93.0

Table 7: Ablation on the amount of training clips. ) .
Table 8: Ablation on planning manners.

Amount L2 (m) ) Collision (%) | -
1s 2s 3s Is 2s 3s Planni DS L2(m) Collision(%)
_ anning 1T RCT @3s), @3s)
1x10°> 0.121 0.264 0461 0.015 0.061 0.107 B i
3x10° 0.082 0.169 0290 0.000 0.010 0.039 Deterministic | 74.6  95.1  0.223 0.006
1x10® 0073 0.153 0267 0.000 0.008 0.027 Probabilistic | 85.1 98.4  0.225 0.007

3x 105 0.072 0.133 0225 0.000 0.000 0.007

A APPENDIX

A.1 CLOSED-LOOP RESULTS ON THE TOWNOS5 SHORT BENCHMARK

We present the results for all publicly available works on the TownO5 Short benchmark in Tab. [5}
Compared to the Town05 Long benchmark, the Town05 Short benchmark focuses more on evaluating
the ability of models to perform specific driving behaviors, such as lane changing in congested traffic
flow and lane changing before intersections. VADv?2 achieves the best performance on the main DS
metric, while LeapVAD has a higher RC but a lower DS, indicating more infractions during evaluation.
This demonstrates the comprehensive driving ability of VADvV2 in complex driving scenarios.

A.2 ABLATION ON VOCABULARY SIZE

We ablate about the vocabulary size in Tab. [6] With the vocabulary size increasing, both L2 and
collision metrics become better. A larger vocabulary size can better represent the action space with
less discretization error.

A.3 ABLATION STUDY ON THE AMOUNT OF TRAINING CLIPS

Tab. [7)is the ablation experiments about the amount of clips of driving demonstrations used for
training the end-to-end model. As expected, the model achieves better L2 and collision metrics with
the data amount increasing.

A.4 PROBABILISTIC PLANNING vs. DETERMINISTIC PLANNING

Ablation experiments about modeling manners of planning are presented in Tab. [§] In terms of
deterministic modeling, following common practice (Jiang et al., 2023} Hu et al., 2022c};, Prakash
et al.| [2021b)), we change the planning head to an MLP, which directly regresses the future trajectory
based on scene tokens, navigation information, and ego state. The results show that deterministic
planning and probabilistic planning achieves similar performance in open-loop evaluation. However,
in closed-loop evaluation, probabilistic planning is significantly better. Deterministic planning cannot
cope with the uncertainty problem of planning and is more unstable in closed-loop evaluation.

A.5 MORE EVALUATION DETAILS ON THE 3DGS-BASED BENCHMARK

Tab. 9 reports the inference latency, model parameters, and hardware platforms of baseline methods
such as TransFuser (Prakash et al.,[2021b) and VAD (Jiang et al.|[2023)). To ensure a fair comparison
and accurately evaluate the planning performance improvements of our proposed strategy, we adopt
the same perception backbone across all methods.
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Table 9: More evaluation details on the 3DGS-based benchmark.

Method Reference  Parameters Latency Collision (%)  Platform

TransFuser TPAMI 22 0.36B 118ms 0.320 RTX 4090
VAD ICCV 23 0.36B 118ms 0.335 RTX 4090
GenAD ECCV 24 0.38B 121ms 0.341 RTX 4090
VADv2 Ours 0.40B 125ms 0.270 RTX 4090

As a result, the observed differences in inference latency are mainly attributed to variations in the
design of the planning modules. While VADV2 introduces some computational overhead due to
the use of planning vocabulary, its inference latency remains comparable to that of other baseline
methods, and it significantly improves the primary collision rate metric.

Table 10: Quantitative analysis of the real-world 3DGS-based dataset.

Dataset Duration Environment Straight  Turning
nuScenes 5.55h Urban 92.80%  7.20%
NAVSIM 120h Urban 66.40%  33.60%
Ours 2000h  Urban, Highway, Rural 52.50% 47.50%

Table 11: More details of the real-world 3DGS-based validation dataset.

Scenario Type Percentage
Sunny Weather 74.78%
Night & Rainy Weather 25.22%
Crowded Road Precise Behavior 6.23%
Narrow Road Precise Behavior 6.82%
Intersection Precise Behavior 38.58%
Cut-in Interactive Scenario 9.79%
Ped. Crossing  Interactive Scenario 9.20%

A.6 MORE DATASET DETAILS OF THE 3DGS-BASED BENCHMARK

We provide additional details of our real-world dataset and include comparisons with other popular
benchmarks in Tab. The nuScenes dataset contains a high proportion of straight-driving scenarios,
while NAVSIM includes more turning scenarios but still has a relatively small overall data volume.
In contrast, our dataset offers a clear advantage in both data scale and scene diversity.

Tab. [TT]highlights the wide range of challenging test scenarios in our dataset, supporting more robust
and comprehensive evaluation. In addition, we evaluate the reconstruction quality of driving scenes
under different weather conditions in our 3DGS-based environment. The PSNR (Peak Signal-to-
Noise Ratio) metrics for sunny, rainy, and nighttime conditions were 29.5, 28.8, and 28.2, respectively,
demonstrating a leading level of performance.
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