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Abstract

Traditional relation extraction models predic-
t confidence scores for each relation type
based on a condensed sentence representation.
In prompt tuning, prompt templates is used
to tune pre-trained language models (PLMs),
which outputs relation types as verbalized type
tokens. This strategy shows great potential
to support relation extraction because it is ef-
fective to take full use of rich knowledge in
PLMs. However, current prompt tuning mod-
els are directly implemented on a raw input.
It is weak to encode contextual features and
semantic dependencies of a relation instance.
In this paper, we designed a cueing strategy
which implants task specific cues into the in-
put. It controls the attention of prompt tun-
ing, which enable PLMs to learn task specif-
ic contextual features and semantic dependen-
cies of a relation instance. We evaluated our
method on two public datasets. Experiments
show great improvement. It exceeds state-of-
the-art performance by more than 4.8% and
1.4% in terms of F1-score on the SemEval cor-
pus and the ReTACRED corpus'.

1 Introduction

Relation extraction (RE) identifies predefined se-
mantic relationships between two named entities
in a sentence. It is a specific information extrac-
tion task characterized by two properties. First,
extracting entity relations depends on global fea-
tures of a sentence, but a sentence usually contain-
s several named entities. Second, relation types
are asymmetric. The order of entities in a rela-
tion instance should be considered. Therefore, re-
lation extraction should verify all entity pairs in
a sentence, which leads to a serious data imbal-
ance problem. Because all relation instances share
the same context, it is important to learn contex-
tual features and semantic dependencies relevan-
t to considered entities. In deep neural networks,

'Our codes to implement the cueing strategy will be avail-
able online.

many techniques have been developed to do so, for
example, position embedding (Zeng et al., 2015),
multi-channel (Chen et al., 2020), neuralized fea-
ture engineer (Chen et al., 2021) and entity indi-
cators (Qin et al., 2021; Zhou and Chen, 2021).
These models are common in that entities relevant
features (e.g., entity positions or types) are encod-
ed into a task specific representation. Then it is fed
into a deep architecture for classification, which
outputs confidence scores for every relation type.

In prompt tuning, prompts are defined as tem-
plates with slots that take values from a verbalized
type token set. These prompts are concatenated
with an input (a sentence), then fed into PLM-
s to predict masked slots, the same as a cloze-
style schema (Schick and Schiitze, 2020). Be-
cause prompt tuning is effective to take use of
knowledge within PLMs, it has been successful-
ly applied in tasks such as text classification and
natural language inference (Schick and Schiitze,
2020). For example, in semantic recognition, an
input is first concatenated with a prompt (e.g., “It
was [MASK]”). Then, it is fed into PLMs for pre-
dicting the masked token (e.g., Glad or Sad). In
relation extraction, let e; and e represent two
named entities. A “person:parent” relation can be
identified by a prompt template “the [MASK] e;
[MASK] the [MASK] e2” (Han et al., 2021). If
a PLM output three type tokens as “person”, “is
parent of” and “person” respectively, it indicates a
“person:parent” relation between ejand es.

In traditional type classification models, PLMs
are mainly used to support token embedding. A
deep architecture is usually designed to compress
every relation instance into an abstract representa-
tion (a vector in common). The classification only
depends on a single representation of the whole
input, which undoubtedly results in a serious se-
mantic loss. Furthermore, the process to initialize
PLMs is implemented as a masked token predic-
tion task (Devlin et al., 2018). There is a gap be-



tween pre-training objectives and fine tuning ob-
jectives. On the other hand, the effectiveness of
prompt tuning is heavily depends on the quality of
prompt templates. In related work, many prompts
have been designed for PLMs tuning (Brown et al.,
2020). However, current prompt tuning models
are often directly implemented on a raw input con-
catenated with predefined prompt templates. Rare
work has been done to tune PLMs for learning task
specific features about considered entities.

As discussed above, due to the properties of re-
lation extraction, it is very important to learn con-
textual features and semantic dependencies rele-
vant to considered entities. Motivated by tech-
niques developed in type classification and prompt
tuning, in this paper, we designed a cueing strate-
gy which implants task specific cues into the input.
It controls the attention of prompt tuning to learn
task specific contextual features and semantic de-
pendencies in a sentence. By combining the cue-
ing strategy with prompt tuning, it enables PLMs
encoding semantic dependencies between type to-
kens and contextual words. Furthermore, the pre-
dicting process is similar as that of PLMs tuning, it
is helpful to bridge the gap between PLMs and re-
lation extraction. Our study shows remarkable im-
provement in the performance. It reveals a mean-
ingful mechanism that is essential for relation ex-
traction and prompt tuning. Contributions of this
paper are listed as follows:

1 Several cueing strategies are designed for
tuning PLMs. It is effective to reinforce the
attention of neural networks to learn task spe-
cific features.

2 Our method is evaluated on two public
datasets. Experiments are also conducted to
analyse the attention mechanism of cueing
for relation extraction.

The remainder of this paper is organized as fol-
lows. Section 2 introduces related work. The cue-
ing strategy is presented in Section 3. Section 4
conducts experiments to evaluate our cueing strat-
egy. The conclusion is given in Section 5.

2 Related Work

Relation extraction has always been regarded as
a classification problem. In the early stage, shal-
low architectures are widely used (Zhao and Gr-
ishman, 2005; Chen et al., 2015). Because manu-
ally designed rules are required to extract features

of a relation instance, these models are expensive
in human labour and the migration between differ-
ent domains is difficult. On the other hand, deep
architectures adopt multi-stacked network layer-
s implementing designed feature transformation,
e.g, convolutional networks (Zeng et al., 2014; N-
guyen and Grishman, 2015) or recurrent networks
(Zhou et al., 2016; Wang et al., 2016). They have
the advantage to automatically extract high order
abstract representation from raw input.

For learning better relation representations,
PLMs (e.g., ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2018)) are widely adopted for em-
bedding tokens into distributed representations.
Therefore, in relation extraction, PLMs tuning has
achieved great success(Torfi et al., 2020). PLMs
usually consist of billions of parameters automat-
ically learned from external resources. They en-
code rich knowledge of sentences that are valuable
for downstream tasks (Brown et al., 2020). There-
fore, in the training process, PLMs are tuned with
annotated examples for learning task relevant rep-
resentations. In this field, there are two paradigm
to tune PLMs: fine tuning and prompt tuning.

In fine-tuning paradigm, PLMs are used to map
every token into a distributed representation, e.g.,
BERT (Devlin et al., 2018), ALBERT (Lan et al.,
2019), RoBERTa (Liu et al., 2019). Because
PLMs are pre-trained from external resources with
unsupervised methods, they are effective to relief
the feature sparsity problem (Soares et al., 2019;
Li and Tian, 2020). Based on PLMs, Zhao et al.
(2021) proposed a graph neural network (GNN)
for joint entity and relation extraction. Chen et
al. (2021) combined neural network with feature
engineering and proposed a neuralized feature en-
gineering method. Cohen et al. (2020) used the
schema of question answering to verify the feasi-
bility of relation extraction. Lyu et al. (2021) pro-
posed an entity type restriction, where the entity
types are exploited to restrict candidate relations.

Prompt tuning has received considerable atten-
tion in recent years, and has achieved great success
(Liu et al., 2021). In this paradigm, relation ex-
traction is implemented as a mask language mod-
el, which involves to two issues: template design-
ing and verbalizer constructing. In related work,
Han et al. (2021) proposed a PTR model, which
applies logic rules to construct prompts with sev-
eral sub-prompts. It is able to encode prior knowl-
edge of each class into prompt tuning. Shin et al.



(2020) proposed a gradient-guided methods to cre-
ate prompts automatically. Gao et al. (2020) pre-
sented a prompt model, which take sequence-to-
sequence models to generate prompt candidates.
Chen et al. (2020) proposed a knowledge-aware
prompt-tuning approach. It jointly optimize the
representation of a virtual prompt template and an-
swer words with knowledge constraints.

3 Methodology

To provide a formalized discussion, the task of ex-
tracting entity relations is formalized as follows:

A relation instance is defined as a 3-tuple I =
(r,e1, e2), which contains a relation mention r and
two named entities e; and es. Relation mention
r is a token sequence r = [t1,t2, - ,t,]. En-
tities e, = [ti,---,t;] (K € {1,2}) is a sub-
string of . Let’ Y = {yo,v1, -+ ,yn} be a re-
lation type set. It is composed of M positive rela-
tion types and one negative relation types yg. Let
I ={I,1I,- -} represent a relation instance set.
Then, relation extraction is represented as a map
between I and Y, denoted as:

fiIoY (1)

where f is a function which can be a shallow mod-
el (e.g., a support vector machine, a maximum en-
tropy classifier) or a deep neural network (e.g., a
convolutional network or a recurrent network).

3.1 Classification Paradigm

In a traditional model, a deep architecture (denot-
ed as V) is implemented on the original input r
to extract its representation. To encode external
knowledge, the network N can be embedded with
a PLM to support token embedding. It is denot-
ed as M. The output of Ny, is represented as
H = [Hy, Hs,- -, H,|, where H; is an abstract
representation of token ¢;. H is often transformed
into a vector, then fed into a classifier (C) to make
a prediction. The process is formalized as:

P(Y|I) = Softmax(C(NM(r))> ()

Directly implementing a deep network on r usu-
ally cause serious performance degradation, be-
cause the network know nothing about the position
of considered entities. To handle this problem, Qin
et al. (2021) and Zhong et al. (2020) implant en-
tity cues to the input to control the attention of a

deep network for learning task specific representa-
tion. It is formalized as:

Cueing(er) = [(ck), €k, {/ck)]
Cueing(r) = [Fle, jCucing(er) k={1.2)]

3)

where, (c) and (/c) are specific tokens repre-
senting the start and end boundaries of entity ey
(k = {1,2}). They are named as entity cues.

In Equation (3), the first equation concatenates
two tokens on both sides of e;. In the second
equation, e/Cueing(ex) denotes to the string
replacement operation, where ey, is replaced by
Cueing(ey). Therefore, the function Cueing(r)
implant entity cues into both side of the considered
entity pair. With this settings, Equation (2) can be
revised as:

P(Y|I)=Softmax <C (NM (Cueing(r)))) 4)

In the above equation, after entity cues have
been implanted into the input, it enables the deep
network focusing on considered entity pair. Then,
the classification is based on a sentence represen-
tation relevant to considered entities. It is effective
to learn contextual features and semantic depen-
dencies of a relation instance.

3.2 Prompt Tuning Paradigm

In prompt tuning, class types are verbalized into
a token set V. = {person, parent, true,---}. It
is composed of entity types, relation types or cat-
egory labels (e.g., “true” or “false”). Elements of
V are referred as “type tokens”. Then, a prompt
is defined as a template with slots can be filled by
verbalized type tokens (e.g., “It is a [MASK]").
It is concatenated with a raw input and fed into
a deep network for predicting the distribution of
type tokens in the position of “ [MASK]”.

The design of prompt templates heavily depend-
s on the property of a task. At current, it is an art
instead of a science. In this paper, we follow the
work of Han et al. (Han et al., 2021), where a re-
lation prompt is defined as a template with three
slots: “P(e1,e2) =the [MASK]; e; is [MASK],
to [MASK]3 eo”, where, [MASK] takes values
from V. The prompt is concatenated with the in-
put and fed into a deep neural network to learn

token representations H. It is represented as:
[Hy, - -,HL]:NM(Cueing(r)+P(el, 62)) (5)

In prompt tuning, instead of outputting a class
label based on token representations [Hy, - -, H],



for each slot ((MASK]) in a prompt template, the
normalized confidence score that ANy assigns a
type token v € V to [MASK]; is computed as:

S(IMASK| =v|I) = H,-Hy,  (6)

where, H)y;, € H is the representation of a
[MASK]; and H, is the token type representation
of v € V in the employed PLMs. Then, given a
relation instance I, the distribution of type token v
in slot [MASK]; is computed as:

exp (S (IMASK] =v[T))

P|I)=
S, ey exp (S([MASK] - v’|I)>

(7N

In prompt tuning, a right output requires that
three slots are correct recognized. Because prompt
tuning is effective to use rich knowledge in PLMs,
it still show competitive performance.

3.3 Cueing Strategies

As discussed in Section 1, in relation extraction, it
is very important to learn contextual features and
semantic dependencies relevant to considered en-
tities (Han et al., 2021; Chen et al., 2021; Zhong
and Chen, 2020). In prompt tuning, researches are
mainly focusing on designing prompt templates to
tune PLMs for downstream tasks (Brown et al.,
2020). We assume that, in prompt tuning, tuning
PLMs attents to task specific information is also
valuable. Instead of designing new prompt tem-
plates, we focus on designing and implanting enti-
ty cues for tuning PLMs to support relation extrac-
tion. Several cueing strategies have been proposed
in this paper. They are listed as follows:

Cueing Types Demonstration
Cueing,(ex) lex]

Cueinga(er,) [(ck), ex, {/cx)]
Cueinge(er) | [{(entity) e1}], [{(entity) ea}]
Cueingni(ex) | [{(head) e1}], [([tail] )]

Table 1: Cueing Strategies

In Table 1, square brackets is used to indicate
that the inner is a token sequence. C'ueing, mean-
s that the input relation mention is unchanged.
Cueing, replaces entity e, (k € {1,2}) with a
token sequence “(cg), e, (/c)”. This is a tradi-
tional strategy used in related work (Chen et al.,
2021; Qin et al., 2021). In Cueing.(eg), each
entity (er) in a relation mention is replaced by

a string “{(entity) e;}”. Note that all pairs of
closed braces and parentheses are also used as to-
kens to indicate the position of named entities. In
Cueingpy(er), a “head” token and a “tail” token
with different braces are used to distinguish dif-
ferent entities. In our experiments, we found that,
in the latter two cueing strategies, the token “enti-
ty”, “head” and “tail” and braces can be any words
or braces. It has little influence on the final perfor-
mance. But in Cueingp(e;), for different entities,
the tokens and braces should be different.

Entity cues are implanted into the input. Then,
the revised input is concatenated with prompt tem-
plates to tune PLMs for relation extraction. In Fig-
ure 1, we give examples to demonstrate the cueing
strategy.

In Figure 1, “PTR prompt” is the prompt tem-
plate proposed by Han et al. (Han et al., 2021),
in which a template has three slots. [MASK]; and
[MASK]j; can take values in {“person”, “country”,
--- }. They denote to the type of named entities.
[MASK], takes values in {“was born in”, “was lo-
cated in”, - -- }. It is used to indicate the relation
between named entities. In “Naive prompt”, three
[MASK] are directly used without any contextual
words. It is mainly used for comparison.

The cueing strategies listed in Table 1 are con-
catenated with both “PTR prompt” and “Naive
prompt”, where & denotes to the concatenating
operation. For example, “Cueingp(ey)+PTR”
means that, given a relation instance (r,eq,e2),
we first replace e; and e; in r by two string
“{(head) e1}” and “([tail] e3)”. Then, the re-
vised relation mention (¥[c, /Cueingy, (ex)k={1,2})
is concatenated with the PTR prompt. The output
is fed into a PLM to predict type tokens in each
[MASK]. If a PLM outputs “person”, “is paren-
t of”, “person”, then a “person:parent™ relation is
identified between e and es.

4 Experiments

In this section, our strategies are verified on two
popular evaluation datasets. Then, it is compared
with several SOTA models. Experiments are also
conducted to show the advantage of cueing strate-
gies in few-shot learning.

4.1 Datasets and Experimental Settings

Our experiments are conducted on two evalua-
tion datasets: SemEval 2010 Task 8 (Hendrickx
et al., 2019) and ReTACRED (Stoica et al., 2021).
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Figure 1: Examples of Cueing Strategies

The SemEval corpus is a classic and widely used
dataset, which contains 8000 train data and 2717
test data, annotated with 19 relation types. The
ReTACRED is a large relation extraction dataset,
annotated with 40 relation types. ReTACRED of-
ficially divided the whole relation instances into
58465, 19584 and 13418 for training, developing
and testing.

In our experiments, the RoBERTar 4rgr (Liu
et al., 2019) is adopted as our PLMs. The max
length for each input is set as 128. The “Adam”
is used as the model optimizer. The dropout is set
to 0.1 to avoid the overfitting. Epochs, learning
rate and batch size are set as 20, 2e-5, 32, respec-
tively. To compare with related work, we follow
experiment settings in Han et al. (2021). All per-
formance is reported micro-averaged F1-score on
positive relation types.

4.2 Comparing with Related Work

In this experiment, we adopt the Cueingn:(ex)
strategy in Table 1, where entities e; and es
in a relation mention are replaced by string
“{(head) e1}” and “([tail| eq)”, respectively.
The revised relation mention is concatenated with
the PTR prompt. An example is illustrated in Fig-
ure 1. Every concatenated string is fed into a PLM
to predict type tokens in masked slots. Our cue-
ing strategy is compared with several related work.
The first four are fine tuning models. The latter t-
wo are prompt tuning models. They are introduced
as follows.

MTB (Soares et al., 2019): This model takes
in pairs of relation statements in which two enti-
ty mentions are replaced by blanks. In the train-
ing process, relation representations are learned to
be similar to themselves if these statements range

over the same pairs of entities.

R-BERT (Wu and He, 2019): This model in-
corporates information from two considered enti-
ties to support the relation extraction task. It first
locates considered entities. Then, encodings of en-
tities are transferred through a pre-trained archi-
tecture for classification.

REDN (Li and Tian, 2020): This model propos-
es a special loss function to serve as a downstream
task of PLMs for supervised relation extraction. It
has the advantage to extract complicated relations,
such as long-distance relation or overlapped rela-
tions on entity-pairs.

QA (Cohen et al., 2020): This is a span-
prediction based system. In stead of using a single
embedding to represent the relation, the extraction
task is implemented as a span-prediction problem,
the same as a Question Answering model.

PTR (Han et al., 2021): It is a prompt tun-
ing based model, which applies logic rules to en-
code prior knowledge about the relation extraction
task. In the ReTACRED, they reversed some rela-
tion types for predicting. To make a fair compar-
ison, we only list their performance reported on
unchanged dataset.

KnowPrompt (Xiang et al., 2020): This model
focuses on incorporating knowledge into promp-
t tuning. It presents a knowledge-ware prompt-
tuning approach with synergistic optimization and
learnable template words.

Table 2 gives the performance of our strategy
and related work. All performance is reported in
F1 score (%).

Unlike fine tuning that outputs a class label for
each input, in prompt tuning models, extracting a
relation requires three type tokens to be correctly
identified. In prompt tuning, the process to extract



Tuning | Methods SemEval ReTACRED

MTB 89.2 -

2 | R-BERT 89.25 -

& | REDN 91.0 -
QA 91.9 ;

e PTR 89.9 90.9

£ | KnowPrompt | 90.1 89.8

A~ Ours 96.77 92.36

Table 2: Comparing with Related Work

relation is the same as to train PLMs, it is help-
ful to bridge the gap between PLMs training and
downstream tasks. As Table 2 showing, promp-
t tuning still achieves competitive performance.
Furthermore, prompt tuning outputs type tokens
based contextual features and semantic dependen-
cies of a sentence, it is effective to take full use of
rich knowledge in PLMs.

ReTACRED has a lot of relation types (40 re-
lation types). Because the corpus contains a large
number of training data, comparing with the Se-
mEval corpus (19 relation types), it also achieved
competitive performance. For related work in the
SemEval corpus, fine tuning model REDN and
QA has achieved the best performance. The rea-
son is that both the REDN and QA models also
address the gap between PLMs and downstream
tasks. Therefore, they are also effective to use
knowledge in PLMs.

Comparing with related work, our model
achieves the state-of-the-art performance. It con-
siderably outperforms related working exceeding
state-of-the-art performance by more than 4.8%
and 1.4% in terms of F1-score on the SemEval cor-
pus and the ReTACRED corpus, respectively. The
result shows that, instead of directly implementing
prompt tuning on the raw input, implanting entity
cues is valuable to support relation extraction. The
conclusion reveals the mechanism of prompt tun-
ing. It is significant to support future studies on
both relation extraction and prompt tuning.

4.3 Ablation Study

Several cueing strategies have been presented in
Table 1. In order to demonstrate the effective-
ness of cueing strategies, we combine them with
the naive prompt and PTR prompt to show the in-
fluence of cueing strategies on the performance.
The sentence “Mark Twain was born in Florida"
is used as an example to illustrate the combina-

tions, in which "Mark Twain" is person entity and
"Florida" is location entity. There is a “was born
in” relation between them. The performance of d-
ifferent combinations was listed in Table 4. In the
following, each of them is discussed separately.

(1) In Cueing,(ey)+Naive, every original in-
put is directly concatenated with a naive prompt,
which is composed with only tree masked token
without any contextual words. This combination is
mainly conducted for comparison. It can be seen
as the baseline of prompt tuning. Because there
is no “fixed” word in both the input and prompt,
it is difficult to learn semantic dependencies be-
tween them. The result shows that it achieved the
worst performance, especially in the ReTACRED
corpus.

(2) Cueing,(ex)+PTR is the strategy used in
Han et al. (2021). Every input is directly concate-
nated with the PTR prompt and fed into a PLM for
predicting type tokens that can be filled in template
slots. Because the PRT prompt contains contextu-
al words, it encodes semantic information about
the prompt which is helpful to take use of PLMs.
Comparing with its naive version, it considerably
improves the performance.

(3) In Cueing,, (ej )+Naive, entity cues proposed
in Chen et al. (2021) are implanted into the input
to indicate the position of entities e; (i € {1,2}).
The performance is clearly improved in the Se-
mEval corpus, in which, comparing with (1), enti-
ty cues improve the performance above 10% in F1
score. Comparing with related work in Table 2, it
already achieved the state of the art performance.
The result indicates that entity cues are every pow-
erful in prompt tuning based models. In the ReTA-
CRED corpus, comparing (2) and (3) with (1), we
can see that both entity cues and prompts are valu-
able to support relation extraction.

(4) Cueing,(e;)+PTR also outperforms its
naive version. The different between (3) and (4)
is that the PTR prompt contains contextual words.
They are meaningful to encode semantic informa-
tion of the prompt. It also enables PLMs encoding
semantic dependencies between type tokens and
contextual words.

(5) Cueing, (ex,) is a novel entity cues proposed
in this paper. In this strategy, each e (k € {1,2})
is replaced by a string {(entity)er}, where al-
1 braces and parentheses are also used as tokens.
They are used to indicate the position of named
entities. In this setting, e; and ey use the same



ID| Cueing+Prompt Example SemEval ReTACRED

(1) Cueingo (ek)+Naive [CLS] Mark Twain was born in Florida. [MASK]; [MASK]> 82 77 43.37
[MASK]; [SEP]

) Cueingo(ek)+PTR [CL.S] Mark Twain was born in. Florida. the [MASK]; Mark 8991 90.46
Twain [MASK]2 [MASK]3 Florida [SEP]

(3)| Cueing, (cx)+Naive [CLS] (c1) Mark Twain (/c1) was born in (c2) Florida (/c2). 93.37 90,62
[MASK]; [MASK]2 [MASK]s [SEP]

@) Cueinga(ek)+PTR [CLS] (c1) Mark Twain.(/cl) was born in (c2) Flor.ida (/c2). 93.63 91.12
the [MASK]; Mark Twain [MASK]> [MASK]3 Florida [SEP]

(5) Cueinge(ek)+Naive [CLS] { (entity ) Mark Twain } was born in { ( entity ) Florida 88.75 87.09
}. IMASK]; [MASK]2 [MASK];3 [SEP]

(6) Cueinge (ek)+PTR [CLS] { (entity ) Mark T\.Jvain } was bornin { ( entity ) Florida }. 93.55 90.89
the [MASK]; Mark Twain [MASK]> [MASK]3 Florida [SEP]

%) Cueinght(ek)+Naive [CLS] { ( head ) Mark Twain } was born in ([ tail | Florida ) . 9523 90 43
[MASK]; [MASK]s [MASK]3 [SEP]

) Cueinght(ek)+PTR [CLS] { ( head ) Mark T.wain } was born in ([ tail | .Florida ). 96.77 92.36
the [MASK]; Mark Twain [MASK]> [MASK]3 Florida [SEP]

Table 3: Performance with Different Cueing Strategies
D Cuein SemEval ReTACRED
ueme 8 16 mean | 8 16 32 mean

) Cueingo(ek)+PTR 69.20 79.08 83.21 77.16 52.34 58.05 61.83 57.41

2) Cueinga(ek)+PTR 54.79 78.58 85.38 72.92 52.85 55.20 63.58 57.21

3) Cueinge (ek)+PTR 61.19 80.46 85.94 75.86 50.13 57.13 63.52 56.93

(4) | Cueingy, (ek)+PTR 62.26 89.80 92.07 81.38 50.36 57.98 63.70 57.35

Table 4: Performance of Few-shot

entity cues. It is ineffective to let PLMs to dis-
tinguish different entities. Comparing with (3), it
worsens the performance.

(6) This cueing strategy also suffers from the
same problem as its naive version in Row (5),
where the same entity cues are used in e; and es.
However, an interesting phenomenon is that the P-
TR prompt is helpful to compensate the problem.
It considerably outperforms its naive version.

(7) In this cueing strategy, different entity cues
are used to make a distinction between entities. In
stead of specific tags (e.g., {(ck) or (/ck)), contex-
tual words are also used as entity cues (“head” and
“tail”’). The result in SemEval shows that it has
substantial influence on the performance. Howev-
er, its performance is not robust. Comparing with
the same naive version in Row (3), it achieves low-
er performance in the ReTACRED corpus.

(8) In this cueing strategy, both entity cues and
prompts contains contextual words. They are ef-
fective to encode contextual features and seman-
tic dependencies of a relation instance, especially

in ReTACRED. This setting achieves the highest
performance in our experiments.

In all experiments, we also found that enti-
ty cues are more useful in the SemEval corpus.
The reason is that, comparing with the relation
definition in ReTACRED, entity types in the Se-
mEval corpus are more discriminative for relation
extraction. When both entity cues and prompt-
s are used simultaneously, the relation extraction
achieves more robust and superior performance.

4.4 Performance on Few-shot

Because PLMs encode rich knowledge of a sen-
tence, which is valuable to support few-shot learn-
ing. In this experiment, we evaluate the ability of
our method in few-shot learning.

We randomly sample K-shot (K € {8, 16, 32})
from each relation class the training dataset. They
are used to tune PLMs, then evaluated on the w-
hole testing dataset. In this experiment, we com-
bine our cueing strategies with the PTR prompt.
The result is shown in Table 4.
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Figure 2: Influence of Training Epochs on Few-shot Learning

From the Table 4, we can see that few-shot
learning still has competitive performance in the
SemEval corpus. However, the performance is
degenerated considerably in the ReTACRED cor-
pus, because the latter has large number of relation
types which are heavily depends semantic features
of a relation instance.

Comparing strategy (2) with strategy (1), we
found that, in few-shot learning, when the num-
ber of shot is small (K € {8,16}), implanting
entity cues into the input may worsens the perfor-
mance. The reason is that PLMs are initialized
without implanted entity cues. Therefore, a few
shots is incapable to tune PLMs for downstream
tasks. In contrast, due to the incompatibility prob-
lem, it worsens the performance. When the value
of K is increasing, benefiting from entity cues and
prompts, the performance is improved rapidly.

In all experiments, when the number of shots is
increased, the performance is improved steadily.
In SemEval, few-shot learning has impressive per-
formance. When K = 32, it has achieved compet-
itive performance. However, in ReTACRED, com-
paring with Row (8) in Table 4, its performance
degraded considerably. The reason is that the re-
lation extraction task in ReTACRED is more chal-

lenging. Its performance heavily depends on the
number of training data.

In Figure 2, the influence of training epochs on
few-shot learning is demonstrated. In SemEval,
the cueing strategy can lead to faster convergence.
It has stable performance in the training process.
However, in ReTACRED, the performance is un-
stable. The conclusion is the same as in Table 4.

5 Conclusion

Prompt tuning has shown great potential to sup-
port natural language processing. However, infor-
mation extraction usually focuses on identifying
specific semantic elements in a sentence. There-
fore, in the tuning process, let PLMs attention to
targeted elements is important to learn contextual
features and semantic dependencies of a sentence.
In this paper, we propose several cueing strategies
to control the attention of a deep network. In our
experiments, they achieve the state of the art per-
formance in relation extraction. The result reveals
the mechanism of prompt tuning in relation extrac-
tion. In our future work, the cueing strategy can
be extended to support other NLP tasks. Further-
more, more studies can be conducted to reveal the
mechanism of cueing strategies.
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