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Abstract
Traditional relation extraction models predic-001
t confidence scores for each relation type002
based on a condensed sentence representation.003
In prompt tuning, prompt templates is used004
to tune pre-trained language models (PLMs),005
which outputs relation types as verbalized type006
tokens. This strategy shows great potential007
to support relation extraction because it is ef-008
fective to take full use of rich knowledge in009
PLMs. However, current prompt tuning mod-010
els are directly implemented on a raw input.011
It is weak to encode contextual features and012
semantic dependencies of a relation instance.013
In this paper, we designed a cueing strategy014
which implants task specific cues into the in-015
put. It controls the attention of prompt tun-016
ing, which enable PLMs to learn task specif-017
ic contextual features and semantic dependen-018
cies of a relation instance. We evaluated our019
method on two public datasets. Experiments020
show great improvement. It exceeds state-of-021
the-art performance by more than 4.8% and022
1.4% in terms of F1-score on the SemEval cor-023
pus and the ReTACRED corpus1.024

1 Introduction025

Relation extraction (RE) identifies predefined se-026

mantic relationships between two named entities027

in a sentence. It is a specific information extrac-028

tion task characterized by two properties. First,029

extracting entity relations depends on global fea-030

tures of a sentence, but a sentence usually contain-031

s several named entities. Second, relation types032

are asymmetric. The order of entities in a rela-033

tion instance should be considered. Therefore, re-034

lation extraction should verify all entity pairs in035

a sentence, which leads to a serious data imbal-036

ance problem. Because all relation instances share037

the same context, it is important to learn contex-038

tual features and semantic dependencies relevan-039

t to considered entities. In deep neural networks,040

1Our codes to implement the cueing strategy will be avail-
able online.

many techniques have been developed to do so, for 041

example, position embedding (Zeng et al., 2015), 042

multi-channel (Chen et al., 2020), neuralized fea- 043

ture engineer (Chen et al., 2021) and entity indi- 044

cators (Qin et al., 2021; Zhou and Chen, 2021). 045

These models are common in that entities relevant 046

features (e.g., entity positions or types) are encod- 047

ed into a task specific representation. Then it is fed 048

into a deep architecture for classification, which 049

outputs confidence scores for every relation type. 050

In prompt tuning, prompts are defined as tem- 051

plates with slots that take values from a verbalized 052

type token set. These prompts are concatenated 053

with an input (a sentence), then fed into PLM- 054

s to predict masked slots, the same as a cloze- 055

style schema (Schick and Schütze, 2020). Be- 056

cause prompt tuning is effective to take use of 057

knowledge within PLMs, it has been successful- 058

ly applied in tasks such as text classification and 059

natural language inference (Schick and Schütze, 060

2020). For example, in semantic recognition, an 061

input is first concatenated with a prompt (e.g., “It 062

was [MASK]”). Then, it is fed into PLMs for pre- 063

dicting the masked token (e.g., Glad or Sad). In 064

relation extraction, let e1 and e2 represent two 065

named entities. A “person:parent” relation can be 066

identified by a prompt template “the [MASK] e1 067

[MASK] the [MASK] e2” (Han et al., 2021). If 068

a PLM output three type tokens as “person”, “is 069

parent of” and “person” respectively, it indicates a 070

“person:parent” relation between e1and e2. 071

In traditional type classification models, PLMs 072

are mainly used to support token embedding. A 073

deep architecture is usually designed to compress 074

every relation instance into an abstract representa- 075

tion (a vector in common). The classification only 076

depends on a single representation of the whole 077

input, which undoubtedly results in a serious se- 078

mantic loss. Furthermore, the process to initialize 079

PLMs is implemented as a masked token predic- 080

tion task (Devlin et al., 2018). There is a gap be- 081
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tween pre-training objectives and fine tuning ob-082

jectives. On the other hand, the effectiveness of083

prompt tuning is heavily depends on the quality of084

prompt templates. In related work, many prompts085

have been designed for PLMs tuning (Brown et al.,086

2020). However, current prompt tuning models087

are often directly implemented on a raw input con-088

catenated with predefined prompt templates. Rare089

work has been done to tune PLMs for learning task090

specific features about considered entities.091

As discussed above, due to the properties of re-092

lation extraction, it is very important to learn con-093

textual features and semantic dependencies rele-094

vant to considered entities. Motivated by tech-095

niques developed in type classification and prompt096

tuning, in this paper, we designed a cueing strate-097

gy which implants task specific cues into the input.098

It controls the attention of prompt tuning to learn099

task specific contextual features and semantic de-100

pendencies in a sentence. By combining the cue-101

ing strategy with prompt tuning, it enables PLMs102

encoding semantic dependencies between type to-103

kens and contextual words. Furthermore, the pre-104

dicting process is similar as that of PLMs tuning, it105

is helpful to bridge the gap between PLMs and re-106

lation extraction. Our study shows remarkable im-107

provement in the performance. It reveals a mean-108

ingful mechanism that is essential for relation ex-109

traction and prompt tuning. Contributions of this110

paper are listed as follows:111

1 Several cueing strategies are designed for112

tuning PLMs. It is effective to reinforce the113

attention of neural networks to learn task spe-114

cific features.115

2 Our method is evaluated on two public116

datasets. Experiments are also conducted to117

analyse the attention mechanism of cueing118

for relation extraction.119

The remainder of this paper is organized as fol-120

lows. Section 2 introduces related work. The cue-121

ing strategy is presented in Section 3. Section 4122

conducts experiments to evaluate our cueing strat-123

egy. The conclusion is given in Section 5.124

2 Related Work125

Relation extraction has always been regarded as126

a classification problem. In the early stage, shal-127

low architectures are widely used (Zhao and Gr-128

ishman, 2005; Chen et al., 2015). Because manu-129

ally designed rules are required to extract features130

of a relation instance, these models are expensive 131

in human labour and the migration between differ- 132

ent domains is difficult. On the other hand, deep 133

architectures adopt multi-stacked network layer- 134

s implementing designed feature transformation, 135

e.g, convolutional networks (Zeng et al., 2014; N- 136

guyen and Grishman, 2015) or recurrent networks 137

(Zhou et al., 2016; Wang et al., 2016). They have 138

the advantage to automatically extract high order 139

abstract representation from raw input. 140

For learning better relation representations, 141

PLMs (e.g., ELMo (Peters et al., 2018) and BERT 142

(Devlin et al., 2018)) are widely adopted for em- 143

bedding tokens into distributed representations. 144

Therefore, in relation extraction, PLMs tuning has 145

achieved great success(Torfi et al., 2020). PLMs 146

usually consist of billions of parameters automat- 147

ically learned from external resources. They en- 148

code rich knowledge of sentences that are valuable 149

for downstream tasks (Brown et al., 2020). There- 150

fore, in the training process, PLMs are tuned with 151

annotated examples for learning task relevant rep- 152

resentations. In this field, there are two paradigm 153

to tune PLMs: fine tuning and prompt tuning. 154

In fine-tuning paradigm, PLMs are used to map 155

every token into a distributed representation, e.g., 156

BERT (Devlin et al., 2018), ALBERT (Lan et al., 157

2019), RoBERTa (Liu et al., 2019). Because 158

PLMs are pre-trained from external resources with 159

unsupervised methods, they are effective to relief 160

the feature sparsity problem (Soares et al., 2019; 161

Li and Tian, 2020). Based on PLMs, Zhao et al. 162

(2021) proposed a graph neural network (GNN) 163

for joint entity and relation extraction. Chen et 164

al. (2021) combined neural network with feature 165

engineering and proposed a neuralized feature en- 166

gineering method. Cohen et al. (2020) used the 167

schema of question answering to verify the feasi- 168

bility of relation extraction. Lyu et al. (2021) pro- 169

posed an entity type restriction, where the entity 170

types are exploited to restrict candidate relations. 171

Prompt tuning has received considerable atten- 172

tion in recent years, and has achieved great success 173

(Liu et al., 2021). In this paradigm, relation ex- 174

traction is implemented as a mask language mod- 175

el, which involves to two issues: template design- 176

ing and verbalizer constructing. In related work, 177

Han et al. (2021) proposed a PTR model, which 178

applies logic rules to construct prompts with sev- 179

eral sub-prompts. It is able to encode prior knowl- 180

edge of each class into prompt tuning. Shin et al. 181
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(2020) proposed a gradient-guided methods to cre-182

ate prompts automatically. Gao et al. (2020) pre-183

sented a prompt model, which take sequence-to-184

sequence models to generate prompt candidates.185

Chen et al. (2020) proposed a knowledge-aware186

prompt-tuning approach. It jointly optimize the187

representation of a virtual prompt template and an-188

swer words with knowledge constraints.189

3 Methodology190

To provide a formalized discussion, the task of ex-191

tracting entity relations is formalized as follows:192

A relation instance is defined as a 3-tuple I =193

⟨r, e1, e2⟩, which contains a relation mention r and194

two named entities e1 and e2. Relation mention195

r is a token sequence r = [t1, t2, · · · , tn]. En-196

tities ek = [ti, · · · , tj ] (k ∈ {1, 2}) is a sub-197

string of r. Let Y = {y0, y1, · · · , yM} be a re-198

lation type set. It is composed of M positive rela-199

tion types and one negative relation types y0. Let200

I = {I1, I2, · · · } represent a relation instance set.201

Then, relation extraction is represented as a map202

between I and Y, denoted as:203

f : I → Y (1)204

where f is a function which can be a shallow mod-205

el (e.g., a support vector machine, a maximum en-206

tropy classifier) or a deep neural network (e.g., a207

convolutional network or a recurrent network).208

3.1 Classification Paradigm209

In a traditional model, a deep architecture (denot-210

ed as N ) is implemented on the original input r211

to extract its representation. To encode external212

knowledge, the network N can be embedded with213

a PLM to support token embedding. It is denot-214

ed as NM. The output of NM is represented as215

H = [H1,H2, · · · ,Hn], where Hi is an abstract216

representation of token ti. H is often transformed217

into a vector, then fed into a classifier (C) to make218

a prediction. The process is formalized as:219

P (Y|I) = Softmax

(
C
(
NM(r)

))
(2)220

Directly implementing a deep network on r usu-221

ally cause serious performance degradation, be-222

cause the network know nothing about the position223

of considered entities. To handle this problem, Qin224

et al. (2021) and Zhong et al. (2020) implant en-225

tity cues to the input to control the attention of a226

deep network for learning task specific representa- 227

tion. It is formalized as: 228

Cueing(ek) = [⟨ck⟩, ek, ⟨/ck⟩]
Cueing(r) = [r̈|ek/Cueing(ek),k={1,2}]

(3) 229

where, ⟨ck⟩ and ⟨/ck⟩ are specific tokens repre- 230

senting the start and end boundaries of entity ek 231

(k = {1, 2}). They are named as entity cues. 232

In Equation (3), the first equation concatenates 233

two tokens on both sides of ek. In the second 234

equation, ek/Cueing(ek) denotes to the string 235

replacement operation, where ek is replaced by 236

Cueing(ek). Therefore, the function Cueing(r) 237

implant entity cues into both side of the considered 238

entity pair. With this settings, Equation (2) can be 239

revised as: 240

P (Y|I)=Softmax

(
C
(
NM

(
Cueing(r)

)))
(4) 241

In the above equation, after entity cues have 242

been implanted into the input, it enables the deep 243

network focusing on considered entity pair. Then, 244

the classification is based on a sentence represen- 245

tation relevant to considered entities. It is effective 246

to learn contextual features and semantic depen- 247

dencies of a relation instance. 248

3.2 Prompt Tuning Paradigm 249

In prompt tuning, class types are verbalized into 250

a token set V = {person, parent, true, · · · }. It 251

is composed of entity types, relation types or cat- 252

egory labels (e.g., “true” or “false”). Elements of 253

V are referred as “type tokens”. Then, a prompt 254

is defined as a template with slots can be filled by 255

verbalized type tokens (e.g., “It is a [MASK]”). 256

It is concatenated with a raw input and fed into 257

a deep network for predicting the distribution of 258

type tokens in the position of “ [MASK]”. 259

The design of prompt templates heavily depend- 260

s on the property of a task. At current, it is an art 261

instead of a science. In this paper, we follow the 262

work of Han et al. (Han et al., 2021), where a re- 263

lation prompt is defined as a template with three 264

slots: “P(e1, e2) = the [MASK]1 e1 is [MASK]2 265

to [MASK]3 e2”, where, [MASK] takes values 266

from V. The prompt is concatenated with the in- 267

put and fed into a deep neural network to learn 268

token representations H. It is represented as: 269

[H1,· · ·,HL]=NM
(
Cueing(r)+P(e1, e2)

)
(5) 270

In prompt tuning, instead of outputting a class 271

label based on token representations [H1,· · ·,HL], 272
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for each slot ([MASK]) in a prompt template, the273

normalized confidence score that NM assigns a274

type token v ∈ V to [MASK]i is computed as:275

276

S([MASK] = v|I) = Hv ·HMi (6)277

where, HMi ∈ H is the representation of a278

[MASK]i and Hv is the token type representation279

of v ∈ V in the employed PLMs. Then, given a280

relation instance I , the distribution of type token v281

in slot [MASK]i is computed as:282

P (v|I)=
exp

(
S
(
[MASK]=v|I

))
∑

v′∈V exp
(
S
(
[MASK]=v′|I

)) (7)283

In prompt tuning, a right output requires that284

three slots are correct recognized. Because prompt285

tuning is effective to use rich knowledge in PLMs,286

it still show competitive performance.287

3.3 Cueing Strategies288

As discussed in Section 1, in relation extraction, it289

is very important to learn contextual features and290

semantic dependencies relevant to considered en-291

tities (Han et al., 2021; Chen et al., 2021; Zhong292

and Chen, 2020). In prompt tuning, researches are293

mainly focusing on designing prompt templates to294

tune PLMs for downstream tasks (Brown et al.,295

2020). We assume that, in prompt tuning, tuning296

PLMs attents to task specific information is also297

valuable. Instead of designing new prompt tem-298

plates, we focus on designing and implanting enti-299

ty cues for tuning PLMs to support relation extrac-300

tion. Several cueing strategies have been proposed301

in this paper. They are listed as follows:

Cueing Types Demonstration
Cueingo(ek) [ek]
Cueinga(ek) [⟨ck⟩, ek, ⟨/ck⟩]
Cueinge(ek) [{(entity) e1}], [{(entity) e2}]
Cueinght(ek) [{(head) e1}], [⟨⌈tail⌋ e2⟩]

Table 1: Cueing Strategies

302
In Table 1, square brackets is used to indicate303

that the inner is a token sequence. Cueingo mean-304

s that the input relation mention is unchanged.305

Cueinga replaces entity ek (k ∈ {1, 2}) with a306

token sequence “⟨ck⟩, ek, ⟨/ck⟩”. This is a tradi-307

tional strategy used in related work (Chen et al.,308

2021; Qin et al., 2021). In Cueinge(ek), each309

entity (ek) in a relation mention is replaced by310

a string “{(entity) ek}”. Note that all pairs of 311

closed braces and parentheses are also used as to- 312

kens to indicate the position of named entities. In 313

Cueinght(ek), a “head” token and a “tail” token 314

with different braces are used to distinguish dif- 315

ferent entities. In our experiments, we found that, 316

in the latter two cueing strategies, the token “enti- 317

ty”, “head” and “tail” and braces can be any words 318

or braces. It has little influence on the final perfor- 319

mance. But in Cueinght(ei), for different entities, 320

the tokens and braces should be different. 321

Entity cues are implanted into the input. Then, 322

the revised input is concatenated with prompt tem- 323

plates to tune PLMs for relation extraction. In Fig- 324

ure 1, we give examples to demonstrate the cueing 325

strategy. 326

In Figure 1, “PTR prompt” is the prompt tem- 327

plate proposed by Han et al. (Han et al., 2021), 328

in which a template has three slots. [MASK]1 and 329

[MASK]3 can take values in {“person”, “country”, 330

· · · }. They denote to the type of named entities. 331

[MASK]2 takes values in {“was born in”, “was lo- 332

cated in”, · · · }. It is used to indicate the relation 333

between named entities. In “Naive prompt”, three 334

[MASK] are directly used without any contextual 335

words. It is mainly used for comparison. 336

The cueing strategies listed in Table 1 are con- 337

catenated with both “PTR prompt” and “Naive 338

prompt”, where ⊕ denotes to the concatenating 339

operation. For example, “Cueinght(ek)+PTR” 340

means that, given a relation instance ⟨r, e1, e2⟩, 341

we first replace e1 and e2 in r by two string 342

“{(head) e1}” and “⟨⌈tail⌋ e2⟩”. Then, the re- 343

vised relation mention (r̈|ek/Cueinght(ek),k={1,2}) 344

is concatenated with the PTR prompt. The output 345

is fed into a PLM to predict type tokens in each 346

[MASK]. If a PLM outputs “person”, “is paren- 347

t of”, “person”, then a “person:parent“ relation is 348

identified between e1 and e2. 349

4 Experiments 350

In this section, our strategies are verified on two 351

popular evaluation datasets. Then, it is compared 352

with several SOTA models. Experiments are also 353

conducted to show the advantage of cueing strate- 354

gies in few-shot learning. 355

4.1 Datasets and Experimental Settings 356

Our experiments are conducted on two evalua- 357

tion datasets: SemEval 2010 Task 8 (Hendrickx 358

et al., 2019) and ReTACRED (Stoica et al., 2021). 359
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Figure 1: Examples of Cueing Strategies

The SemEval corpus is a classic and widely used360

dataset, which contains 8000 train data and 2717361

test data, annotated with 19 relation types. The362

ReTACRED is a large relation extraction dataset,363

annotated with 40 relation types. ReTACRED of-364

ficially divided the whole relation instances into365

58465, 19584 and 13418 for training, developing366

and testing.367

In our experiments, the RoBERTaLARGE (Liu368

et al., 2019) is adopted as our PLMs. The max369

length for each input is set as 128. The “Adam”370

is used as the model optimizer. The dropout is set371

to 0.1 to avoid the overfitting. Epochs, learning372

rate and batch size are set as 20, 2e-5, 32, respec-373

tively. To compare with related work, we follow374

experiment settings in Han et al. (2021). All per-375

formance is reported micro-averaged F1-score on376

positive relation types.377

4.2 Comparing with Related Work378

In this experiment, we adopt the Cueinght(ek)379

strategy in Table 1, where entities e1 and e2380

in a relation mention are replaced by string381

“{(head) e1}” and “⟨⌈tail⌋ e2⟩”, respectively.382

The revised relation mention is concatenated with383

the PTR prompt. An example is illustrated in Fig-384

ure 1. Every concatenated string is fed into a PLM385

to predict type tokens in masked slots. Our cue-386

ing strategy is compared with several related work.387

The first four are fine tuning models. The latter t-388

wo are prompt tuning models. They are introduced389

as follows.390

MTB (Soares et al., 2019): This model takes391

in pairs of relation statements in which two enti-392

ty mentions are replaced by blanks. In the train-393

ing process, relation representations are learned to394

be similar to themselves if these statements range395

over the same pairs of entities. 396

R-BERT (Wu and He, 2019): This model in- 397

corporates information from two considered enti- 398

ties to support the relation extraction task. It first 399

locates considered entities. Then, encodings of en- 400

tities are transferred through a pre-trained archi- 401

tecture for classification. 402

REDN (Li and Tian, 2020): This model propos- 403

es a special loss function to serve as a downstream 404

task of PLMs for supervised relation extraction. It 405

has the advantage to extract complicated relations, 406

such as long-distance relation or overlapped rela- 407

tions on entity-pairs. 408

QA (Cohen et al., 2020): This is a span- 409

prediction based system. In stead of using a single 410

embedding to represent the relation, the extraction 411

task is implemented as a span-prediction problem, 412

the same as a Question Answering model. 413

PTR (Han et al., 2021): It is a prompt tun- 414

ing based model, which applies logic rules to en- 415

code prior knowledge about the relation extraction 416

task. In the ReTACRED, they reversed some rela- 417

tion types for predicting. To make a fair compar- 418

ison, we only list their performance reported on 419

unchanged dataset. 420

KnowPrompt (Xiang et al., 2020): This model 421

focuses on incorporating knowledge into promp- 422

t tuning. It presents a knowledge-ware prompt- 423

tuning approach with synergistic optimization and 424

learnable template words. 425

Table 2 gives the performance of our strategy 426

and related work. All performance is reported in 427

F1 score (%). 428

Unlike fine tuning that outputs a class label for 429

each input, in prompt tuning models, extracting a 430

relation requires three type tokens to be correctly 431

identified. In prompt tuning, the process to extract 432
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Tuning Methods SemEval ReTACRED
Fi

ne
MTB 89.2 -
R-BERT 89.25 -
REDN 91.0 -
QA 91.9 -

Pr
om

pt PTR 89.9 90.9
KnowPrompt 90.1 89.8
Ours 96.77 92.36

Table 2: Comparing with Related Work

relation is the same as to train PLMs, it is help-433

ful to bridge the gap between PLMs training and434

downstream tasks. As Table 2 showing, promp-435

t tuning still achieves competitive performance.436

Furthermore, prompt tuning outputs type tokens437

based contextual features and semantic dependen-438

cies of a sentence, it is effective to take full use of439

rich knowledge in PLMs.440

ReTACRED has a lot of relation types (40 re-441

lation types). Because the corpus contains a large442

number of training data, comparing with the Se-443

mEval corpus (19 relation types), it also achieved444

competitive performance. For related work in the445

SemEval corpus, fine tuning model REDN and446

QA has achieved the best performance. The rea-447

son is that both the REDN and QA models also448

address the gap between PLMs and downstream449

tasks. Therefore, they are also effective to use450

knowledge in PLMs.451

Comparing with related work, our model452

achieves the state-of-the-art performance. It con-453

siderably outperforms related working exceeding454

state-of-the-art performance by more than 4.8%455

and 1.4% in terms of F1-score on the SemEval cor-456

pus and the ReTACRED corpus, respectively. The457

result shows that, instead of directly implementing458

prompt tuning on the raw input, implanting entity459

cues is valuable to support relation extraction. The460

conclusion reveals the mechanism of prompt tun-461

ing. It is significant to support future studies on462

both relation extraction and prompt tuning.463

4.3 Ablation Study464

Several cueing strategies have been presented in465

Table 1. In order to demonstrate the effective-466

ness of cueing strategies, we combine them with467

the naive prompt and PTR prompt to show the in-468

fluence of cueing strategies on the performance.469

The sentence “Mark Twain was born in Florida"470

is used as an example to illustrate the combina-471

tions, in which "Mark Twain" is person entity and 472

"Florida" is location entity. There is a “was born 473

in” relation between them. The performance of d- 474

ifferent combinations was listed in Table 4. In the 475

following, each of them is discussed separately. 476

(1) In Cueingo(ek)+Naive, every original in- 477

put is directly concatenated with a naive prompt, 478

which is composed with only tree masked token 479

without any contextual words. This combination is 480

mainly conducted for comparison. It can be seen 481

as the baseline of prompt tuning. Because there 482

is no “fixed” word in both the input and prompt, 483

it is difficult to learn semantic dependencies be- 484

tween them. The result shows that it achieved the 485

worst performance, especially in the ReTACRED 486

corpus. 487

(2) Cueingo(ek)+PTR is the strategy used in 488

Han et al. (2021). Every input is directly concate- 489

nated with the PTR prompt and fed into a PLM for 490

predicting type tokens that can be filled in template 491

slots. Because the PRT prompt contains contextu- 492

al words, it encodes semantic information about 493

the prompt which is helpful to take use of PLMs. 494

Comparing with its naive version, it considerably 495

improves the performance. 496

(3) In Cueinga(ek)+Naive, entity cues proposed 497

in Chen et al. (2021) are implanted into the input 498

to indicate the position of entities ei (i ∈ {1, 2}). 499

The performance is clearly improved in the Se- 500

mEval corpus, in which, comparing with (1), enti- 501

ty cues improve the performance above 10% in F1 502

score. Comparing with related work in Table 2, it 503

already achieved the state of the art performance. 504

The result indicates that entity cues are every pow- 505

erful in prompt tuning based models. In the ReTA- 506

CRED corpus, comparing (2) and (3) with (1), we 507

can see that both entity cues and prompts are valu- 508

able to support relation extraction. 509

(4) Cueinga(ek)+PTR also outperforms its 510

naive version. The different between (3) and (4) 511

is that the PTR prompt contains contextual words. 512

They are meaningful to encode semantic informa- 513

tion of the prompt. It also enables PLMs encoding 514

semantic dependencies between type tokens and 515

contextual words. 516

(5) Cueinge(ek) is a novel entity cues proposed 517

in this paper. In this strategy, each ek (k ∈ {1, 2}) 518

is replaced by a string {(entity)ek}, where al- 519

l braces and parentheses are also used as tokens. 520

They are used to indicate the position of named 521

entities. In this setting, e1 and e2 use the same 522
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ID Cueing+Prompt Example SemEval ReTACRED

(1) Cueingo(ek)+Naive
[CLS] Mark Twain was born in Florida. [MASK]1 [MASK]2
[MASK]3 [SEP]

82.77 43.37

(2) Cueingo(ek)+PTR
[CLS] Mark Twain was born in Florida. the [MASK]1 Mark

Twain [MASK]2 [MASK]3 Florida [SEP]
89.91 90.46

(3) Cueinga(ek)+Naive
[CLS] ⟨c1⟩ Mark Twain ⟨/c1⟩ was born in ⟨c2⟩ Florida ⟨/c2⟩.
[MASK]1 [MASK]2 [MASK]3 [SEP]

93.37 90.62

(4) Cueinga(ek)+PTR
[CLS] ⟨c1⟩ Mark Twain ⟨/c1⟩ was born in ⟨c2⟩ Florida ⟨/c2⟩.
the [MASK]1 Mark Twain [MASK]2 [MASK]3 Florida [SEP]

93.63 91.12

(5) Cueinge(ek)+Naive
[CLS] { ( entity ) Mark Twain } was born in { ( entity ) Florida

}. [MASK]1 [MASK]2 [MASK]3 [SEP]
88.75 87.09

(6) Cueinge(ek)+PTR
[CLS] { ( entity ) Mark Twain } was born in { ( entity ) Florida }.

the [MASK]1 Mark Twain [MASK]2 [MASK]3 Florida [SEP]
93.55 90.89

(7) Cueinght(ek)+Naive
[CLS] { ( head ) Mark Twain } was born in ⟨⌈ tail ⌋ Florida ⟩ .

[MASK]1 [MASK]2 [MASK]3 [SEP]
95.23 90.43

(8) Cueinght(ek)+PTR
[CLS] { ( head ) Mark Twain } was born in ⟨⌈ tail ⌋ Florida ⟩ .

the [MASK]1 Mark Twain [MASK]2 [MASK]3 Florida [SEP]
96.77 92.36

Table 3: Performance with Different Cueing Strategies

ID Cueing
SemEval ReTACRED

8 16 32 mean 8 16 32 mean
(1) Cueingo(ek)+PTR 69.20 79.08 83.21 77.16 52.34 58.05 61.83 57.41
(2) Cueinga(ek)+PTR 54.79 78.58 85.38 72.92 52.85 55.20 63.58 57.21
(3) Cueinge(ek)+PTR 61.19 80.46 85.94 75.86 50.13 57.13 63.52 56.93
(4) Cueinght(ek)+PTR 62.26 89.80 92.07 81.38 50.36 57.98 63.70 57.35

Table 4: Performance of Few-shot

entity cues. It is ineffective to let PLMs to dis-523

tinguish different entities. Comparing with (3), it524

worsens the performance.525

(6) This cueing strategy also suffers from the526

same problem as its naive version in Row (5),527

where the same entity cues are used in e1 and e2.528

However, an interesting phenomenon is that the P-529

TR prompt is helpful to compensate the problem.530

It considerably outperforms its naive version.531

(7) In this cueing strategy, different entity cues532

are used to make a distinction between entities. In533

stead of specific tags (e.g., ⟨ck⟩ or ⟨/ck⟩), contex-534

tual words are also used as entity cues (“head” and535

“tail”). The result in SemEval shows that it has536

substantial influence on the performance. Howev-537

er, its performance is not robust. Comparing with538

the same naive version in Row (3), it achieves low-539

er performance in the ReTACRED corpus.540

(8) In this cueing strategy, both entity cues and541

prompts contains contextual words. They are ef-542

fective to encode contextual features and seman-543

tic dependencies of a relation instance, especially544

in ReTACRED. This setting achieves the highest 545

performance in our experiments. 546

In all experiments, we also found that enti- 547

ty cues are more useful in the SemEval corpus. 548

The reason is that, comparing with the relation 549

definition in ReTACRED, entity types in the Se- 550

mEval corpus are more discriminative for relation 551

extraction. When both entity cues and prompt- 552

s are used simultaneously, the relation extraction 553

achieves more robust and superior performance. 554

4.4 Performance on Few-shot 555

Because PLMs encode rich knowledge of a sen- 556

tence, which is valuable to support few-shot learn- 557

ing. In this experiment, we evaluate the ability of 558

our method in few-shot learning. 559

We randomly sample K-shot (K ∈ {8, 16, 32}) 560

from each relation class the training dataset. They 561

are used to tune PLMs, then evaluated on the w- 562

hole testing dataset. In this experiment, we com- 563

bine our cueing strategies with the PTR prompt. 564

The result is shown in Table 4. 565
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(c) K=32
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(f) K=32

Figure 2: Influence of Training Epochs on Few-shot Learning

From the Table 4, we can see that few-shot566

learning still has competitive performance in the567

SemEval corpus. However, the performance is568

degenerated considerably in the ReTACRED cor-569

pus, because the latter has large number of relation570

types which are heavily depends semantic features571

of a relation instance.572

Comparing strategy (2) with strategy (1), we573

found that, in few-shot learning, when the num-574

ber of shot is small (K ∈ {8, 16}), implanting575

entity cues into the input may worsens the perfor-576

mance. The reason is that PLMs are initialized577

without implanted entity cues. Therefore, a few578

shots is incapable to tune PLMs for downstream579

tasks. In contrast, due to the incompatibility prob-580

lem, it worsens the performance. When the value581

of K is increasing, benefiting from entity cues and582

prompts, the performance is improved rapidly.583

In all experiments, when the number of shots is584

increased, the performance is improved steadily.585

In SemEval, few-shot learning has impressive per-586

formance. When K = 32, it has achieved compet-587

itive performance. However, in ReTACRED, com-588

paring with Row (8) in Table 4, its performance589

degraded considerably. The reason is that the re-590

lation extraction task in ReTACRED is more chal-591

lenging. Its performance heavily depends on the 592

number of training data. 593

In Figure 2, the influence of training epochs on 594

few-shot learning is demonstrated. In SemEval, 595

the cueing strategy can lead to faster convergence. 596

It has stable performance in the training process. 597

However, in ReTACRED, the performance is un- 598

stable. The conclusion is the same as in Table 4. 599

5 Conclusion 600

Prompt tuning has shown great potential to sup- 601

port natural language processing. However, infor- 602

mation extraction usually focuses on identifying 603

specific semantic elements in a sentence. There- 604

fore, in the tuning process, let PLMs attention to 605

targeted elements is important to learn contextual 606

features and semantic dependencies of a sentence. 607

In this paper, we propose several cueing strategies 608

to control the attention of a deep network. In our 609

experiments, they achieve the state of the art per- 610

formance in relation extraction. The result reveals 611

the mechanism of prompt tuning in relation extrac- 612

tion. In our future work, the cueing strategy can 613

be extended to support other NLP tasks. Further- 614

more, more studies can be conducted to reveal the 615

mechanism of cueing strategies. 616

8



References617

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie618
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind619
Neelakantan, Pranav Shyam, Girish Sastry, Amanda620
Askell, et al. 2020. Language models are few-shot621
learners. arXiv preprint arXiv:2005.14165.622

Yanping Chen, Kai Wang, Weizhe Yang, Yongbin623
Qing, Ruizhang Huang, and Ping Chen. 2020. A624
multi-channel deep neural network for relation ex-625
traction. IEEE Access, 8:13195–13203.626

Yanping Chen, Weizhe Yang, Kai Wang, Yongbin Qin,627
Ruizhang Huang, and Qinghua Zheng. 2021. A neu-628
ralized feature engineering method for entity rela-629
tion extraction. NN, 141:249–260.630

Yanping Chen, Qinghua Zheng, and Ping Chen. 2015.631
Feature assembly method for extracting relations in632
chinese. AI, 228:179–194.633

Amir DN Cohen, Shachar Rosenman, and Yoav Gold-634
berg. 2020. Relation classification as two-way span-635
prediction. arXiv preprint arXiv:2010.04829.636

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and637
Kristina Toutanova. 2018. Bert: Pre-training of deep638
bidirectional transformers for language understand-639
ing. arXiv preprint arXiv:1810.04805.640

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.641
Making pre-trained language models better few-shot642
learners. arXiv preprint arXiv:2012.15723.643

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and644
Maosong Sun. 2021. Ptr: Prompt tuning with645
rules for text classification. arXiv preprint arX-646
iv:2105.11259.647

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,648
Preslav Nakov, Diarmuid O Séaghdha, Sebastian649
Padó, Marco Pennacchiotti, Lorenza Romano, and650
Stan Szpakowicz. 2019. Semeval-2010 task 8:651
Multi-way classification of semantic relations be-652
tween pairs of nominals. arXiv preprint arX-653
iv:1911.10422.654

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,655
Kevin Gimpel, Piyush Sharma, and Radu Soricut.656
2019. Albert: A lite bert for self-supervised learn-657
ing of language representations. arXiv preprint arX-658
iv:1909.11942.659

Cheng Li and Ye Tian. 2020. Downstream model de-660
sign of pre-trained language model for relation ex-661
traction task. arXiv preprint arXiv:2004.03786.662

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,663
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-664
train, prompt, and predict: A systematic survey of665
prompting methods in natural language processing.666
arXiv preprint arXiv:2107.13586.667

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 668
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 669
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 670
Roberta: A robustly optimized bert pretraining ap- 671
proach. arXiv preprint arXiv:1907.11692. 672

Shengfei Lyu and Huanhuan Chen. 2021. Relation 673
classification with entity type restriction. arXiv 674
preprint arXiv:2105.08393. 675

Thien Huu Nguyen and Ralph Grishman. 2015. Rela- 676
tion extraction: Perspective from convolutional neu- 677
ral networks. In Proceedings of ACL, pages 39–48. 678

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt 679
Gardner, Christopher Clark, Kenton Lee, and Luke 680
Zettlemoyer. 2018. Deep contextualized word rep- 681
resentations. arXiv preprint arXiv:1802.05365. 682

Yongbin Qin, Weizhe Yang, Kai Wang, Ruizhang 683
Huang, Feng Tian, Shaolin Ao, and Yanping Chen. 684
2021. Entity relation extraction based on entity in- 685
dicators. Symmetry, 13(4):539. 686

Timo Schick and Hinrich Schütze. 2020. Exploit- 687
ing cloze questions for few shot text classification 688
and natural language inference. arXiv preprint arX- 689
iv:2001.07676. 690

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Er- 691
ic Wallace, and Sameer Singh. 2020. Autoprompt: 692
Eliciting knowledge from language models with au- 693
tomatically generated prompts. arXiv preprint arX- 694
iv:2010.15980. 695

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey 696
Ling, and Tom Kwiatkowski. 2019. Matching the 697
blanks: Distributional similarity for relation learn- 698
ing. arXiv:1906.03158. 699

George Stoica, Emmanouil Antonios Platanios, and 700
Barnabás Póczos. 2021. Re-tacred: Addressing 701
shortcomings of the tacred dataset. Proceedings of 702
AAAI, 35(15):13843–13850. 703

Amirsina Torfi, Rouzbeh A Shirvani, Yaser Keneshloo, 704
Nader Tavaf, and Edward A Fox. 2020. Natural lan- 705
guage processing advancements by deep learning: A 706
survey. arXiv preprint arXiv:2003.01200. 707

Linlin Wang, Zhu Cao, Gerard De Melo, and Zhiyuan 708
Liu. 2016. Relation classification via multi-level at- 709
tention cnns. In Proceedings of ACL, pages 1298– 710
1307. 711

Shanchan Wu and Yifan He. 2019. Enriching pre- 712
trained language model with entity information for 713
relation classification. In Proceedings of CIKM, 714
pages 2361–2364. 715

Chen Xiang, Zhang Ningyu, Xie Xin, Deng Shumin, 716
Yao Yunzhi, Tan Chuanqi, Huang Fei, Si Luo, and 717
Chen Huajun. 2020. Knowprompt: Knowledge- 718
aware prompt-tuning with synergistic optimiza- 719
tion for relation extraction. arXiv preprint arX- 720
iv:2104.07650. 721

9



Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.722
2015. Distant supervision for relation extraction via723
piecewise convolutional neural networks. In Pro-724
ceedings of EMNLP, pages 1753–1762.725

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,726
and Jun Zhao. 2014. Relation classification via con-727
volutional deep neural network. In Proceedings of728
COLING, pages 2335–2344.729

Kang Zhao, Hua Xu, Yue Cheng, Xiaoteng Li, and Kai730
Gao. 2021. Representation iterative fusion based on731
heterogeneous graph neural network for joint entity732
and relation extraction. KBS, 219:106888.733

Shubin Zhao and Ralph Grishman. 2005. Extracting734
relations with integrated information using kernel735
methods. In Proceedings of ACL, pages 419–426.736

Zexuan Zhong and Danqi Chen. 2020. A frustratingly737
easy approach for joint entity and relation extraction.738
arXiv:2010.12812.739

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen740
Li, Hongwei Hao, and Bo Xu. 2016. Attention-741
based bidirectional long short-term memory net-742
works for relation classification. In Proceedings of743
ACL, pages 207–212.744

Wenxuan Zhou and Muhao Chen. 2021. An improved745
baseline for sentence-level relation extraction. arXiv746
preprint arXiv:2102.01373.747

10


