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Abstract—In this paper, we propose a model of a Network 

Intrusion Detection System (NIDS) named E-T-GraphSAGE 

(ETG), which fuses Graph Neural Network (GNN) and 

Transformer techniques. With the widespread adoption of the 

Internet of Things (IoT) and cloud computing, network structures 

have become complex and vulnerable. The efficacy of traditional 

intrusion detection systems is limited in the context of novel and 

unconventional cyber-attacks. This paper proposes a novel 

approach to address this challenge. GNN is used to capture the 

complex relationships between network nodes and edges, analyze 

network traffic graphs, and identify anomalous behaviors. By 

introducing the Transformer, the model enhances its ability to 

handle long-range dependencies in network streaming data and to 

understand network dynamics at a macro level. The GraphSAGE-

Transformer (ETG) model is proposed to optimize the edge 

features through the self-attention mechanism to exploit the 

potential of network streaming data and improve the accuracy of 

intrusion detection. The experimental results show that the model 

outperforms the existing techniques in key performance metrics 

Tests on several standard datasets (BoT-IoT, NF-BoT-IoT, NF-

ToN-IoT) validate the broad applicability and robustness of the 

ETG model, especially in complex network environments.  

Keywords—GNN, GraphSAGE, Transformer, NIDS 

I. INTRODUCTION  

With the widespread adoption of the Internet of Things (IoT) 
and cloud computing, the structure of network systems is 
becoming more complex, and the types and numbers of devices 
are increasing dramatically. This environment provides more 
vulnerabilities and points of entry for cyber attackers, making 
traditional cyber defense systems face serious challenges[1]. 
Modern network attacks are varied, including distributed denial-
of-service (DDoS) attacks, malware spread, and data breaches  
but also more subtle and adaptable, frequently targeting multiple 
layers of the network and various nodes. In addition, with the 
rapid development of attack techniques, new and unknown zero-
day vulnerability attacks frequently appear, and these attacks are 
able to bypass the signature-based intrusion detection system  
easily[2]. Therefore, there is a need to develop new detection 
techniques that not only recognize known attack patterns but 
also can predict and adapt to unknown threats.  

 

 

 

 

 

 

To overcome these limitations, recent research has 
increasingly focused on leveraging machine learning and deep 
learning techniques. Among these, Transformer architectures 
have gained attention for their self-attention mechanism, which 
effectively captures long-range dependencies in sequential data. 
Originally developed for natural language processing, 
Transformers have been successfully adapted for cybersecurity 
applications, offering the ability to analyze complex 
interdependencies within network traffic. 

Graph neural networks (GNNs), known for their ability to 
handle graph-structured data, offer significant potential in 
cybersecurity applications. By capturing the complex 
relationships between nodes (e.g., IP addresses or devices) and 
edges (i.e., data transmissions or sessions) in a network, GNNs 
are able to efficiently map the overall pattern of network 
behavior. This capability makes GNN particularly suitable for 
identifying and analyzing complex network intrusions that are 
difficult to detect through conventional detection means[3]. 
GNNs can analyze network traffic graphs by representing hosts 
or servers as nodes and their communications as edges.  By 
learning the normal and abnormal characteristics of these 
communication patterns, the GNN is able to identify anomalous 
behavior in the network, such as unauthorized data access or 
abnormal data traffic. In addition, a key advantage of GNNs is 
their ability to integrate data from multiple sources and extract 
deep network characteristics, which is particularly important for 
detecting advanced persistent threats (APTs) and multi-stage 
attacks. 

GNN not only enhances the detection of known threats, but 
more importantly, it provides a mechanism to understand and 
predict new or variant attack behaviors that are difficult to 
identify with traditional methods. Therefore, the introduction of 
GNN into network security systems, especially network 
intrusion detection systems, will greatly enhance the system's 
ability to defend against complex network threats[4]. 

This research aims to develop an enhanced Network 
Intrusion Detection System (NIDS) by integrating Graph Neural 
Networks (GNNs) with Transformer architectures. The goal is 
to improve the efficiency and accuracy of detecting complex and 
previously unknown attack patterns by leveraging the 
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Transformer's ability to capture long-range dependencies in 
network traffic. This integration seeks to enhance the model’s 
capability to analyze network flows on both local and global 
scales, improving overall performance in detecting sophisticated 
cyber threats. 

The proposed study will use a hybrid approach, combining 
GNNs and Transformers to analyze network traffic. GNNs will 
be employed to construct graph representations of network 
entities and interactions, while the Transformer's self-attention 
mechanism will capture long-range dependencies and global 
patterns[5]. This integrated model aims to enhance understanding 
of network dynamics and improve detection and prediction of 
both known and emerging threats. The model's effectiveness 
will be evaluated through experiments on benchmark datasets, 
comparing its performance with existing intrusion detection 
systems. 

 

Fig. 1. Network flow data graph structuring.  

As shown in Fig. 1, we utilize both GNN and Transformer 
to encode the raw stream data successively to obtain the desired 
graph data structure, which is input to the model for training. 

(1) The core contribution of this research is the development 
of a NIDS model that combines GNN and Transformer. The 
edge features optimized by the self-attention mechanism fully 
exploit the potential of network streaming data and significantly 
improve the detection accuracy of network intrusion. 

(2) Tests on multiple standard datasets show that our model 
outperforms existing techniques in key performance metrics 
such as accuracy, recall, and F1 score. 

The rest of the paper's organizational sequel will detail the 
design and experimental evaluation of the E-T-GraphSAGE 
(ETG) model. Part II will explore the development of NIDS, as 
well as research related to GNNs and Transformers. Part III 
details the model architecture and key technologies. The fourth 

section shows the experimental results on a variety of 
cyberattack datasets and compares them with other methods. 
The concluding section will summarize the research results and 
discuss future research directions. 

II.  RELATED WORK  

In recent years, various approaches have been proposed to 
enhance the performance of Intrusion Detection Systems (IDS) 
Alowaidi et al.[6] proposed a hybrid Intrusion Detection System 
(IDS) combining Machine Learning (ML) and Deep Learning 
(DL) techniques, which enhances IDS performance and 
prediction accuracy while lowering computational costs. 
However, the model's generalization relies on the diversity and 
representativeness of the training data. If the training data is 
biased, it negatively impacts the model's real-world performance. 
Gupta et al.[7] proposed an anomaly-based NIDS, this approach 
considers multiple performance metrics, along with training 
time and resource usage, but remains limited by dataset 
dependency and average generalization capabilities. Kumar et 
al.[8] proposed a bi-directional long short-term memory 
(BiLSTM) based anomaly detection system for Internet of 
Things (IoT) networks. The BiLSTM model effectively 
improves the accuracy by preprocessing and feature selection 
through normalization and gain ratio. 

Suárez-Varela et al.[9] introduced the use of GNNs in the 
modeling control, and management of communication networks, 
demonstrated their advantages in terms of generalization 
capabilities and data-driven solutions, and discussed their 
potential in network modeling control and management. Hnamte 
et al.[10] proposed an approach using Deep Convolutional Neural 
Networks (DCNN) and validated its performance with the 
InSDN dataset. While DCNN achieves high accuracy, it 
demands significant data and computational resources for 
training. 

Kisanga et al.[11] proposed a new Activity and Event 
Network (AEN) graph framework that focuses on capturing 
long-term stealthy threats that are difficult to detect by 
traditional security tools, and is very promising in detecting 
long-term threats in cybersecurity. L et al.[12] proposed an end-
to-end anomalous edge detection method based on unified graph 
embedding, which enhances the model's ability to learn task-
relevant patterns by combining embedding learning and 
anomaly detection into the same objective function, and 
accurately estimates the probability distributions of edges 
through the local structure of the graph to identify anomalous 
edges. Superior accuracy and scalability are demonstrated on 
multiple publicly available datasets. 

Sun et al.[13] proposed a framework combining Graph Neural 
Network (GNN) and Transformer for self-supervised 
heterogeneous graph representation learning. The Metapath-
aware Hop2Token method is designed to efficiently convert 
neighbors with different hop counts in heterogeneous graphs 
into Token sequences, reducing the computational complexity 
in Transformer processing. GTC enhances information fusion, 
improves learning efficiency, and reduces the demand for 
computational resources by contrasting learning tasks between 
graph pattern views and hop count views. 



Nguyen et al.[14] proposed a Transformer-based GNN model 
for learning graph representation. With an unsupervised 
conduction learning approach, UGformer is able to solve the 
problem of limited category labels, but for large-scale datasets 
to construct graphs, UGformer may still need to be optimized to 
deal with extremely large graph structures, despite the sampling 
mechanism that UGformer is designed for. 

Unlike previous studies, our method focuses on extracting 
data edge features from network streams and develops E-
GraphSAGE models that incorporate transformer modules. 
Combining local and global features to achieve more accurate 
feature representations, making full use of the structural and 
topological information and inherent in network streaming data 
to achieve better feature representations and network intrusion 
detection performance. The T-E-GraphSAGE method 
introduced in this paper addresses the shortcomings of 
traditional graph embedding techniques by capturing 
topological details and edge features in network flow data, 
leading to more precise detection. while its ability to effectively 
classify samples with unseen node features. Three NIDS 
standard datasets are used to evaluate our model, which verifies 
the broad applicability accuracy, and robustness of our model in 
different types of network scenarios, which is effective in 
comparison with traditional ML methods, especially in complex 
network environments. Through these improvements, the 
performance of our system in network intrusion detection has 
been significantly improved, and it is able to effectively respond 
to various network attacks in complex network environments. 

III. THE PROPOSED METHOD 

A. GraphSAGE 

Graph Neural Networks (GNN) are becoming increasingly 
popular in the field of machine learning. Its power stems from 
the effective utilization of graph-structured data. These data are 
widely available in application areas such as social media 
networks, biological research, and telecommunication 
systems[15]. The primary reason for using GNN in NIDS is their 
capability to leverage the structural data present in network 
streams, which can be represented graphically. Although some 
conventional machine learning approaches also handle graph 
data, they usually involve intricate processes and depend heavily 
on manually crafted features, leading to more cumbersome and 
less efficient applications. 

GraphSAGE[16] is an efficient graph neural network 
technique that generates embedded representations of nodes by 
sampling and aggregating the features of their neighbors. It is 
particularly suitable for processing large-scale graph data. The 
main steps include sampling neighboring nodes, aggregating 
features, and updating node features, which effectively solve the 
computation and storage bottlenecks of traditional graph neural 
networks. As a result, GraphSAGE has been widely used in 
many fields. 

GraphSAGE : learning node representation through local 
aggregation, and its core steps include three aspects: neighbor 
node sampling, feature aggregation, and node feature update, as 
shown in Fig. 2. 

In neighbor node sampling, for each node, a fixed number of 
neighbor nodes are randomly sampled to reduce the computation 

and storage requirements. Suppose a node in the graph is 𝑣, and 
its set of neighbor nodes is 𝑁(𝑣) , and the set of neighbor nodes 

obtained from sampling is 𝑁(𝑣)  . This process can be 
represented as: 

 ( ) ( ( ), )N v Sample N v K=  (1) 

where 𝐾denotes the number of neighbor nodes sampled. This 
phase seeks to manage computational complexity by limiting the 
number of adjacent nodes for each vertex in extensive graphs. 

 

 

 

Fig. 2. GraphSAGE model diagram 

In feature aggregation, a feature aggregation operation is 

performed on the sampled set of neighbor nodes 𝑁(𝑣)  to 
generate neighbor feature representations. Common aggregation 
methods include mean value aggregation, pooling, and LSTM. 
The following are the formulas for several aggregation methods: 

1) Mean aggregation: Mean aggregation computes the 

average of neighboring node features. Its formula is: 

 
( ) ( 1)

( )
({ , ( )})k k

uN v
h mean h u N v−=    (2) 

where ℎ𝑢
(𝑘−1)

 denotes the feature representation of the 

neighboring node  at the 𝑘 − 1 th layer of 𝑢, and ℎ𝑁(𝑣)
(𝑘)

 denotes 



the representation of the node 𝑣 after aggregating the features of 

its neighboring nodes at the 𝑘 layer. 

2) Maximum pooling: Maximum pooling is used to take the 

maximum value in the features of neighboring nodes. The 

formula for this is: 

 
( ) ( 1)

( )
({ , ( )})k k

uN v
h max h u N v−=    (3) 

3) LSTM aggregation: LSTM aggregation uses LSTM 

network for neighbor node features with the formula: 

 
( ) ( 1)

( )
({ , ( )})k k

uN v
h LSTM h u N v−=    (4) 

 For node feature update, the algorithm combines the node's 
own features with the aggregated neighbor features and updates 
the node feature representation through a neural network. A 
common way of combining is a concatenation operation 
(concatenation) followed by a transformation through a fully 
connected layer. Its formula is: 

 
( ) ( ) ( 1) ( )

( )
( ( , ))k k k k

v v N v
h W concat h h −=   (5) 

where 𝜎  denotes the activation function (e.g., ReLU), 𝑊(𝑘) 

denotes the weight matrix of the 𝑘-th layer, and ℎ𝑣
(𝑘)

 denotes the 
feature representation of node 𝑣 in the 𝑘-th layer. 

In the specific process, the features are first initialized and 
each node’s feature can be its attribute vector 𝑥𝑣. Then multi-
layer sampling and aggregation is performed, for the 𝑘-th layer, 
each node 𝑣 randomly samples a fixed number of 𝐾 neighbors 

from its neighborhood to form the sampling set 𝑁(𝑣)  and 
aggregates the features of the neighboring nodes using the 
selected aggregation function (e.g., mean, maximum pooling, or 

LSTM) to obtain ℎ𝑁(𝑣)
(𝑘)

 . Then the node 𝑣  own features are 

connected to the aggregated neighboring features in a join 
operation and nonlinearly transformed through the fully 

connected layer to obtain a new node feature representation ℎ𝑣
(𝑘)

 . 
Finally, after multi-layer (usually 2 to 3 layers) sampling and 
aggregation operations, the embedding representation of each 
node is finally generated ℎ𝑣 . Through the above steps, the 
GraphSAGE algorithm is able to efficiently deal with large-
scale graph data, and generate high-quality node embedding 
representations through sampling and aggregation operations. 

B. E-Transformer-GraphSAGE Methods 

The traditional GraphSAGE method mainly focuses on the 
analysis and utilization of node features for node classification, 
but is deficient in dealing with edge features. The primary 
objective of NIDS aims to detect and identify malicious traffic. 
In our study, we focus on the application of edge features and 
improve the GraphSAGE model by using the edge embedding 
method and introducing the Transformer layer method. 

1) E-GraphSAGE: In order to handle graph structure data 

efficiently, we designed and implemented the GraphSAGE 

layer (SAGELayer). This layer updates the representation of 

each node by aggregating the features of the node's neighbors 

to capture the relationships between nodes in the graph. 

GraphSAGE accomplishes the updating of node 

representations through message passing and apply updates, 

and employs the ReLU activation function to improve the 

model's nonlinear representation[17]. The main differences from 

the original GraphSAGE algorithm are the algorithmic inputs, 

the message passing aggregation functions and the outputs. In 

the SAGE layer, edge embedding is incorporated into the 

messaging process to provide richer information. Unlike the 

traditional GraphSAGE module, the aggregated embedding of 

sampled neighboring edges is generated at the kth layer for edge 

features. using a mean aggregation function as shown in the 

following equation. 

 
( ) ( 1)

( )
({ , ( ), })k k

uvN v
h mean e u N v uv −=     (6) 

where 𝑒𝑢𝑣
(𝑘−1)

 is the feature of the edge 𝑢𝑣 in the k-1 layer of the 

sampling neighborhood 𝑁(𝑣)  of node 𝑣 , and the set {∀𝑢 ∈
𝑁(𝑣), 𝑢𝑣 ∈ 𝜀} represents the sampling edges within the 

neighborhood 𝑁(𝑣) .The edge features of the 𝑢𝑣 of the kth layer 
are spliced by the following equation, which represents the final 
result of the forward propagation phase. 

 ( , ),k k k

uv u vh CONCAT h h uv =   (7) 

In our study, we constructed a two-layer E-GraphSAGE 
model with each layer consisting of an E-SAGELayer.  

Neighboring node features are aggregated to generate the 
embedded representation of the node and a mean value 
aggregation method is used, where the features of the node are 
the mean value of the features of its neighboring nodes. The first 
layer E-SAGELayer in this model aggregates the input features 
to generate the first layer of node embedding; The second layer 
takes the first layer of node embeddings as input and again 
performs aggregation to generate the final node embeddings. 
Through this multi-layer aggregation, we are able to capture 
more complex node characteristics and neighbor relationships. 
A Dropout operation is used to avoid  overfitting. The advantage 
of stacking multiple layers of GraphSAGE is the ability to 
capture more complex node relationships and form richer node 
representations to improve the performance of the model. 

2) Transformer: The traditional GraphSAGE method 

mainly focuses on the analysis and utilization of node features 

for node classification, but is deficient in dealing with edge 

features. The primary aim of NIDS is to detect and identify 

malicious traffic, aligning with the edge classification problem 

in network flow classification. Our study emphasizes the use of 

edge features and enhances the GraphSAGE model by 

incorporating the edge embedding method and introducing the 

Transformer layer technique. 
The Transformer Encoder Layer (TEL) is the basic 

component of the Transformer model, which mainly consists of 
the MultiheadAttention mechanism, Feed-forward Neural 
Network (Linear Layer), and Normalization Layer (LayerNorm), 
and Dropout is applied between the layers to prevent overfitting. 
In the Transformer Encoder Layer, the inputs are node features 
(generated by the SAGE layer) and this layer does not explicitly 
process edge features. Its main function is to capture the 
dependencies between node features and global information 
through a multi-head attention mechanism along with a feed-
forward neural network. 

a) Multi-head attention: The self-attention mechanism 

allows the model to capture global dependencies by focusing 
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on all other elements in a sequence while processing each 

element in the sequence. The multi-head self-attention 

mechanism improves the model's sensitivity to different 

features by performing multiple self-attention computations in 

parallel. The specific formula is as follows: 

{
𝐴𝑡𝑡𝑒𝑚𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄𝐾𝑇

√𝑑𝑘
)𝑉

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ⋯ℎ𝑒𝑎𝑑𝑖 ,⋯ , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂

 (8) 

where 𝐴𝑡𝑡𝑒𝑚𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  is the single-head self-attention 
computation, Q denotes the computational query matrix, K 
denotes the key matrix, V denotes the value matrix, d denotes 
the input vector dimension, and 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) denotes 
the multi-head self-attention splicing the results of the h heads 
together and obtaining the final output by a linear transformation, 

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖) , and 𝑊𝑂 ∈ ℝℎ𝑑𝑘×𝑑𝑚𝑜𝑑𝑒𝑙  
is the output weight matrix and 𝑑𝑚𝑜𝑑𝑒𝑙  is the input feature 
dimension. 

Specifically, the MultiheadAttention mechanism captures 
the global dependencies of the input data by processing the input 
data in parallel through multiple Attention Heads. Each 
Attention Head performs self-attention computation 
independently, which is able to focus on different features in the 
input data and enhance the sensitivity of the model to multiple 
features. The multi-head attention mechanism's output is linked 
to the feed-forward neural network via a linear transformation. 

b) Feed-forward neural network: Feed-forward neural 

networks (FFN) are fully connected neural networks applied 

independently at each position in each Transformer coding 

layer. The specific formula is as follows: 

 1 1 2 2( ) (0, )FFN x max xW b W b= + +  (9) 

where 𝑊1 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑓𝑓 ,𝑊2 ∈ ℝ𝑑𝑓𝑓×𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑏1 ∈ ℝ𝑑𝑓𝑓 , 𝑏2 ∈
ℝ𝑑𝑚𝑜𝑑𝑒𝑙is the parameter of the science department and 𝑑𝑓𝑓 is the 

hidden layer dimension of the FNN. 

The feedforward neural network used in this paper includes 
two fully connected layers with a ReLU activation function and 
Dropout applied in between. The first fully connected layer 
maps the input dimension from the embedded dimension 
(embed_dim) to a higher hidden dimension (ff_hidden_dim), the 
ReLU activation function introduces a nonlinear transformation, 
and the Dropout operation is used to prevent overfitting. The 
second fully connected layer maps the hidden dimension back 
to the embedded dimension, thus keeping the dimensionality of 
the inputs and outputs the same. 

c) Normalization layer: The normalization layer is 

implemented following each sublayer, including both self-

attention and the feed-forward neural network, to ensure 

regularization and stabilize the training process. The specific 

formulas are as follows: 

 ( )
x

LayerNorm x

 

 

−
= +

+
 (10) 

where 𝜇 and 𝜎 are the mean and standard deviation of the inputs 
respectively, 𝛾  and 𝛽  are the learnable scaling and offset 
parameters and 𝜀 is a small constant. 

Each coding layer undergoes Layer Normalization and 
Residual Connection between and after the multi-head self-

attention mechanism and the feed-forward neural network. 
Layer Normalization helps to stabilize and speed up the training 
process, while Residual Connection helps to solve the problem 
of vanishing gradients in deep networks. 

d) Dropout: Dropout randomly discards a certain 

percentage of neurons during training to prevent overfitting. By 

stacking multiple such coding layers, the Transformer model is 

able to effectively capture the global dependencies of the input 

data and enhance the model's sensitivity to different features. 

The multi-head self-attention mechanism in each layer enables 

the model to focus on different features in the input data, and 

the feed-forward neural network further processes these 

features. Through the layer-by-layer processing of the multi-

layer structure, the model is able to capture more complex and 

deeper feature relationships in the input data, which improves 

its performance in various tasks. 

C. NIDS 

Fig. 3 shows how the network stream data is constructed as 
graph data and the propagation process from the source node to 
the destination node. Fig. 4 shows an overview of our E-
Transformer-GraphSAGE NIDS. Initially, a graph is created 
using the network flow data. Next, the generated network graph 
is fed into the E-Transformer-GraphSAGE model for supervised 
training. Edge embeddings are designed to classify network 
streams into benign or malicious categories. The following 
subsections explain these three steps in detail.  

 

 

Fig. 3. Network flow data conversion diagram data  

 
Fig. 4. E-Transformer-graphsage-based Network Intrusion Detection System  



1) Graph data structure: Net-Flow is a commonly used 

format for logging network communications in production 

environments and is the predominant format in Network 

Intrusion Detection System (NIDS) environments. A flow 

record typically includes fields that identify the 

communication's source and destination, along with additional 

information like packet and byte counts, and flow duration. 

Graph structures naturally model this type of data. In this study, 

we use the source IP address, source port, destination IP address, 

and destination port. The first two fields form a binary group 

identifying the source node, and the last two form the 

destination node. The remaining data are used as features for 

that edge, making the graph nodes featureless. We assign a 

vector of all 1's to all nodes in the algorithm. 

2) E-Transformer-GraphSAGE: Our proposed model 

combines the sensitivity of GNN to local structures and the 

ability of Transformer to capture global dependencies by first 

processing the graph data through E-GraphSAGE to obtain 

node representations. Then, Transformer is utilized to further 

capture global dependencies. During the training process, we 

utilize a weighted cross-entropy loss function 

(CrossEntropyLoss) to address category imbalance. We use 

Adam optimizer (Adam optimizer) for parameter updating. The 

algorithm's output is compared with the labels from the NIDS 

dataset and the model's trainable parameters are adjusted in the 

backpropagation phase. After tuning the model parameters 

during training, the performance of the model can be evaluated 

by classifying unseen test samples. The process involves 

converting the test stream records into graph data structures. 

Edge embeddings are then generated using a trained E-

Transformer-GraphSAGE layer. These edge embeddings are 

subsequently transformed into class probabilities via the 

Softmax layer. The predicted class probabilities are compared 

with the actual class labels to evaluate the classification 

performance metrics. 

IV. EXPERIMENT 

In this section, We performed binary classification and 
multiclassification task comparisons to validate the 
effectiveness of our algorithm. 

A. Experiment Setting 

We modeled using Python, Pytorch, and DGL,  and the 
server environment was performed on an Intel(R) Xeon(R) Gold 
6242 CPU @ 2.80GHz total of 32 cores, a single A100 graphics 
card, and 192G RAM. 

B. Datasets 

To evaluate our proposed GNN-based NIDS, we use three 

publicly available datasets that include various labeled attack 

flows and benign network flows. The first dataset is BoT-IoT, 

which is widely used for evaluating ML based network intrusion 

detection systems in the Internet of Things, with a proprietary 

format and feature set. The second and third datasets are NF-

ToN-IoT and NF-BoT-IoT presented in Netflow format. 

1) BoT-IoT datasets: The BoT-IoT dataset[18] was 

generated by the Cyber Range Lab at the Australian Center for 

Cyber Security (ACCS) to evaluate the performance of cyber 

security tools. It simulates real network environments 

containing normal traffic and multiple types of malicious traffic 

such as DDoS, DoS, reconnaissance, and data theft for Intrusion 

Detection System (IDS) training and testing. Avoid combining 

SI units, like current in amperes, with CGS units, such as the 

magnetic field measured in oersteds, as this can cause 

dimensional imbalance and confusion. If using mixed units, 

clearly specify the units for each quantity in the equation. 

2) NF-BoT-IoT datasets: The NF-BoT-IoT dataset[19] is a 

NetFlow characterization dataset extracted from the BoT-IoT 

dataset to provide a more concise representation of network 

traffic by summarizing IP traffic flows. The dataset includes 

information such as source and destination IP addresses, ports, 

packet counts, byte counts, and timestamps, which helps in 

large-scale data analysis and real-time intrusion detection. 

3) NF-ToN-IoT datasets: The NF-ToN-IoT dataset is a 

NetFlow characterization dataset generated based on the ToN-

IoT dataset and contains telemetry and operational network data 

from Internet of Things (IoT) devices. The dataset provides 

detailed traffic records that help detect network intrusions and 

understand traffic patterns in IoT environments and is suitable 

for IoT security research. 

C. Results Of The Experiment 

To assess the effectiveness of the proposed neural network 
model, we employed the standard metrics outlined in Table I. 
Here, TP stands for true positives, TN for true negatives, FP for 
false positives, and FN for false negatives. 

TABLE I.  EVALUATION INDICATORS 

Accuracy 
𝑻𝑷 + 𝑻𝑵

𝑻𝑷+ 𝑭𝑷+ 𝑻𝑵 + 𝑭𝑵
× 𝟏𝟎𝟎% 

Precision 
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
× 𝟏𝟎𝟎% 

FAR 
FP

𝑭𝑷 + 𝑻𝑵
× 𝟏𝟎𝟎% 

Recall 
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
× 𝟏𝟎𝟎% 

F1-Score 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
× 100% 

1) Binary classification results: The datasets employed in 

our experiments contain dual-layer labels for each data instance. 

The first layer indicates whether the network flow is benign or 

non-benign, while the second layer specifies the attack type. 

For the binary classification task, we use the first layer of labels, 

and for the multi-class classification task, we use the second 

layer of labels[20,21]. 

TABLE II.  BINARY CLASSIFFCATION RESULTS 

Dataset Accuracy Precision F1-Score Recall FAR 

BoT-IoT 99.99% 1.00 1.00 99.99% 0.00% 

NF-BoT-
IoT 

94.52% 1.00 0.99 97.32% 0.24% 

NF-ToN-

IoT 
99.93% 1.00 1.00 99.84% 0.03% 

Table Ⅱ summarizes our model’s performance metrics—
accuracy, precision, F1-Score, and False Alarm Rate (FAR)—



across three datasets: BoT-IoT, NF-BoT-IoT, and NF-ToN-IoT. 
The findings demonstrate that our method performs 
exceptionally well in binary classification, a key factor for 
successful network intrusion detection. 

In cybersecurity, datasets frequently exhibit an imbalance, 
with fewer attack samples compared to normal traffic. The F1-
Score is particularly important in such scenarios as it balances 
precision and recall, providing a more accurate assessment of 
the model's ability to differentiate between benign and malicious 
traffic than accuracy alone. 

Given the importance of precise intrusion detection, 
particularly in practical applications where the cost of missed 
detections is high, we prioritize the F1-Score as a more reliable 
indicator of our model's performance. In the following sections, 
we will compare our F1-Score with those from other studies to 
demonstrate how effectively our model handles the challenges 
of imbalanced datasets, ensuring dependable intrusion detection. 

TABLE III.  COMPARISON OF BINARY-CLASSIFICATION ALGORITHMS F1 

Method Dataset F1 

Ours 

CatBoost 
BoT-IoT 

1.00 

0.99 

Ours 
Extra Tree Classifier 

TS-IDS 

NF-BoT-IoT 
0.99 
0.97 

0.95 

Ours 

Extra Tree Classifier 
NF-ToN-IoT 

1.00 

1.00 

Table Ⅲ shows the F1 of our method compared with other 
algorithms[21,22]. The results show that our method achieves F1-
Scores that are either similar to or better than those of existing 
approaches. This indicates that our method performs effectively 
in both traffic classification and binary network intrusion 
detection. 

The comparable or superior F1-Scores demonstrate that our 
model is not only accurate in identifying malicious network 
traffic but also maintains a balanced performance across 
different datasets. This balance is crucial in practical 
applications, where high precision and recall are necessary to 
minimize false positives and ensure reliable intrusion detection. 

In summary, the data in Table III confirms that our method 
is competitive with, and in some cases superior to, other leading 
algorithms, highlighting its effectiveness in traffic classification 
and network intrusion detection tasks. 

2) Multiclass classiffcation results: Table IV presents the 

multi-classification results of our method across three standard 

datasets, where the classifier is tasked with distinguishing 

between various attack types. The multi-classification problem 

is more complex than binary classification, as it requires the 

model to accurately identify not just whether an attack is 

present, but also to specify the type of attack. The results in 

Table IV indicate that our model demonstrates strong 

performance, particularly on the BoT-IoT dataset. This superior 

performance is indicative of the model’s capability to 

effectively differentiate between the distinct attack types within 

this dataset. 
Table Ⅴ provides further insight into the model's 

performance by showing the recall and F1-Score values for 

different attacks in the multi-classification task, specifically 
focusing on the ToN-IoT dataset. These metrics are crucial for 
understanding the model's ability to correctly identify each 
attack type. High recall values suggest that the model is effective 
in identifying the majority of true positive instances for most 
attack types, minimizing the risk of undetected threats. Similarly, 
strong F1-Score values indicate a good balance between 
precision and recall, reinforcing the model's robustness in 
handling diverse attack scenarios. 

TABLE IV.  COMPARISON OF BOT-IOT AND NF-BOT-IOT MULTI-
CLASSIFICATION ALGORITHMS F1 

 BoT-IoT NF-BoT-IoT 

Class Name Recall 
F1-

Score 
Class Name Recall 

Benign 100.00% 0.99 Benign 100.00% 

DDos 99.99% 1.00 DDos 99.99% 

Dos 99.99% 1.00 Dos 99.99% 

Reconnaissance 99.99% 1.00 Reconnaissance 99.99% 

Theft 94.52% 0.98 Theft 94.52% 

Weighted 

Average 
99.99 1.00 

Weighted 

Average 
99.99 

TABLE V.  COMPARISON OF NF-TON-IOT MULTI-CLASSIFICATION 

ALGORITHMS 

 NF-ToN-IoT 

Class Name Recall F1-Score 

Benign 98.33% 0.99 

Backdoor 98.46% 0.99 

DDos 57.47% 0.73 

Dos 99.72 0.46 

Injection 30.59 0.46 

MIMT 55.02 0.25 

Ransomware 80.28 0.42 

Password 100.00 0.99 

Scanning 25.92 0.15 

XSS 40.70% 0.28 

Weighted Average 68.65% 0.67 

However, the experimental plots of confusion matrices 
shown in Figures 5 and 6 for the NF-BoT-IoT and NF-ToN-IoT 
datasets reveal some nuances in the model’s performance. While 
the recognition rate is extremely high for several attack types, 
the model struggles with accurately classifying DDoS attacks. 
This issue likely stems from the fact that during model training, 
DDoS and DoS attacks shared similar features, leading to a 
significant overlap in their learned representations. As a result, 
the model occasionally misclassifies DDoS attacks as DoS 
attacks, which suggests that the feature extraction process may 
need refinement to better distinguish between these two attack 
types. 

The observed difficulty in separating DDoS from DoS 
attacks highlights a potential area for improvement. One 
possible solution could involve enhancing the feature 
engineering process to capture more distinctive characteristics 



of these attack types. Additionally, adjusting the training process 
to emphasize the differences between DDoS and DoS attacks, 
perhaps through the use of more advanced techniques like 
adversarial training or ensemble learning, could further improve 
classification accuracy. 

In summary, while our model excels in the multi-
classification of several attack types, especially within the BoT-
IoT dataset, there remains room for improvement in the 
classification of closely related attacks such as DDoS and DoS. 
Addressing these challenges will be crucial for further 
enhancing the model's overall reliability and effectiveness in 
real-world network security applications. 

 

Fig. 5. NF-BoT-IoT multiclassification results 

 

Fig. 6. NF-ToN-IoT multiclassification results 

As with binary classification, we compared the performance 
of our model's Network Intrusion Detection System (NIDS) with 
other classifiers, as shown in studies [23,24] . Table VI presents the 
results of this comparison, focusing on the multi-classification 
task. 

The findings reveal that our algorithm consistently achieves 
higher average F1-Score values compared to all existing 
methods. This is particularly important in multi-classification, 
where the ability to accurately distinguish between multiple 

types of network attacks is crucial. The superior F1-Score 
suggests that our model not only identifies attacks effectively 
but also excels in correctly classifying the different types of 
attacks, a challenge where other classifiers often fall short. 

These results underscore the effectiveness of our approach 
in handling the complexities of multi-class network intrusion 
detection, proving that our model outperforms current leading 
methods in this critical area. 

TABLE VI.  COMPARISON OF MULTI-CLASSIFICATION ALGORITHMS F1 

Method Dataset W-F1 

Ours 

CatBoost 
BoT-IoT 

1.00 

0.99 

Ours 

Extra Tree Classifier 

TS-IDS 

NF-BoT-IoT 

0.88 

0.77 

0.83 

Ours 

Extra Tree Classifier 
NF-ToN-IoT 

0.67 

0.60 

Overall, our method demonstrates superior performance 
compared to other Network Intrusion Detection System (NIDS) 
approaches across both binary and multi-classification tasks, as 
evidenced by the results from the three datasets utilized in our 
study. Our model not only achieves higher accuracy and F1-
Scores but also shows remarkable robustness and 
generalizability. This indicates that it is well-equipped to handle 
various types of network traffic and detect both known and 
emerging threats effectively. 

The model's ability to consistently outperform other methods 
highlights its advanced capabilities in accurately identifying and 
classifying different types of network attacks, whether it's 
simply distinguishing between benign and malicious traffic or 
correctly categorizing specific attack types. This robust 
performance across diverse datasets suggests that our method is 
adaptable to different network environments and can maintain 
its effectiveness even when faced with the complexities and 
variabilities of real-world data. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have introduced a novel GNN-based 
network intrusion detection method called E-T-GraphSAGE, 
which has enhanced attack flow detection by capturing edge 
features and topology patterns within network flow graphs. Our 
focus has been on applying E-T-GraphSAGE to detect malicious 
network flows in the context of network intrusion detection. 
Experimental evaluations have shown that our model performs 
very well on the three NIDS benchmark datasets and generally 
outperforms currently available network intrusion detection 
methods. In the future, we plan to build unsupervised graph 
neural network intrusion detection models, as well as lighten the 
E-T-GraphSAGE model and apply it to edge network servers, 
especially small and medium-sized network devices, for better 
timely network intrusion detection at the edge. 
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