
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

 A Hybrid Approach to Network Intrusion Detection

Based On Graph Neural Networks and Transformer

Architectures

Abstract—In this paper, we propose a model of a Network

Intrusion Detection System (NIDS) named E-T-GraphSAGE

(ETG), which fuses Graph Neural Network (GNN) and

Transformer techniques. With the widespread adoption of the

Internet of Things (IoT) and cloud computing, network structures

have become complex and vulnerable. The efficacy of traditional

intrusion detection systems is limited in the context of novel and

unconventional cyber-attacks. This paper proposes a novel

approach to address this challenge. GNN is used to capture the

complex relationships between network nodes and edges, analyze

network traffic graphs, and identify anomalous behaviors. By

introducing the Transformer, the model enhances its ability to

handle long-range dependencies in network streaming data and to

understand network dynamics at a macro level. The GraphSAGE-

Transformer (ETG) model is proposed to optimize the edge

features through the self-attention mechanism to exploit the

potential of network streaming data and improve the accuracy of

intrusion detection. The experimental results show that the model

outperforms the existing techniques in key performance metrics

Tests on several standard datasets (BoT-IoT, NF-BoT-IoT, NF-

ToN-IoT) validate the broad applicability and robustness of the

ETG model, especially in complex network environments.

Keywords—GNN, GraphSAGE, Transformer, NIDS

I. INTRODUCTION

With the widespread adoption of the Internet of Things (IoT)
and cloud computing, the structure of network systems is
becoming more complex, and the types and numbers of devices
are increasing dramatically. This environment provides more
vulnerabilities and points of entry for cyber attackers, making
traditional cyber defense systems face serious challenges[1].
Modern network attacks are varied, including distributed denial-
of-service (DDoS) attacks, malware spread, and data breaches
but also more subtle and adaptable, frequently targeting multiple
layers of the network and various nodes. In addition, with the
rapid development of attack techniques, new and unknown zero-
day vulnerability attacks frequently appear, and these attacks are
able to bypass the signature-based intrusion detection system
easily[2]. Therefore, there is a need to develop new detection
techniques that not only recognize known attack patterns but
also can predict and adapt to unknown threats.

To overcome these limitations, recent research has
increasingly focused on leveraging machine learning and deep
learning techniques. Among these, Transformer architectures
have gained attention for their self-attention mechanism, which
effectively captures long-range dependencies in sequential data.
Originally developed for natural language processing,
Transformers have been successfully adapted for cybersecurity
applications, offering the ability to analyze complex
interdependencies within network traffic.

Graph neural networks (GNNs), known for their ability to
handle graph-structured data, offer significant potential in
cybersecurity applications. By capturing the complex
relationships between nodes (e.g., IP addresses or devices) and
edges (i.e., data transmissions or sessions) in a network, GNNs
are able to efficiently map the overall pattern of network
behavior. This capability makes GNN particularly suitable for
identifying and analyzing complex network intrusions that are
difficult to detect through conventional detection means[3].
GNNs can analyze network traffic graphs by representing hosts
or servers as nodes and their communications as edges. By
learning the normal and abnormal characteristics of these
communication patterns, the GNN is able to identify anomalous
behavior in the network, such as unauthorized data access or
abnormal data traffic. In addition, a key advantage of GNNs is
their ability to integrate data from multiple sources and extract
deep network characteristics, which is particularly important for
detecting advanced persistent threats (APTs) and multi-stage
attacks.

GNN not only enhances the detection of known threats, but
more importantly, it provides a mechanism to understand and
predict new or variant attack behaviors that are difficult to
identify with traditional methods. Therefore, the introduction of
GNN into network security systems, especially network
intrusion detection systems, will greatly enhance the system's
ability to defend against complex network threats[4].

This research aims to develop an enhanced Network
Intrusion Detection System (NIDS) by integrating Graph Neural
Networks (GNNs) with Transformer architectures. The goal is
to improve the efficiency and accuracy of detecting complex and
previously unknown attack patterns by leveraging the

1st Hongrun Zhang

College of Computer Technology

and Applications

Qinghai University

QingHai, China

ys220854040277@qhu.edu.cn

2nd Tengfei Cao

College of Computer Technology

and Applications

Qinghai University

QingHai, China

caotf@qhu.edu.cn

Transformer's ability to capture long-range dependencies in
network traffic. This integration seeks to enhance the model’s
capability to analyze network flows on both local and global
scales, improving overall performance in detecting sophisticated
cyber threats.

The proposed study will use a hybrid approach, combining
GNNs and Transformers to analyze network traffic. GNNs will
be employed to construct graph representations of network
entities and interactions, while the Transformer's self-attention
mechanism will capture long-range dependencies and global
patterns[5]. This integrated model aims to enhance understanding
of network dynamics and improve detection and prediction of
both known and emerging threats. The model's effectiveness
will be evaluated through experiments on benchmark datasets,
comparing its performance with existing intrusion detection
systems.

Fig. 1. Network flow data graph structuring.

As shown in Fig. 1, we utilize both GNN and Transformer
to encode the raw stream data successively to obtain the desired
graph data structure, which is input to the model for training.

(1) The core contribution of this research is the development
of a NIDS model that combines GNN and Transformer. The
edge features optimized by the self-attention mechanism fully
exploit the potential of network streaming data and significantly
improve the detection accuracy of network intrusion.

(2) Tests on multiple standard datasets show that our model
outperforms existing techniques in key performance metrics
such as accuracy, recall, and F1 score.

The rest of the paper's organizational sequel will detail the
design and experimental evaluation of the E-T-GraphSAGE
(ETG) model. Part II will explore the development of NIDS, as
well as research related to GNNs and Transformers. Part III
details the model architecture and key technologies. The fourth

section shows the experimental results on a variety of
cyberattack datasets and compares them with other methods.
The concluding section will summarize the research results and
discuss future research directions.

II. RELATED WORK

In recent years, various approaches have been proposed to
enhance the performance of Intrusion Detection Systems (IDS)
Alowaidi et al.[6] proposed a hybrid Intrusion Detection System
(IDS) combining Machine Learning (ML) and Deep Learning
(DL) techniques, which enhances IDS performance and
prediction accuracy while lowering computational costs.
However, the model's generalization relies on the diversity and
representativeness of the training data. If the training data is
biased, it negatively impacts the model's real-world performance.
Gupta et al.[7] proposed an anomaly-based NIDS, this approach
considers multiple performance metrics, along with training
time and resource usage, but remains limited by dataset
dependency and average generalization capabilities. Kumar et
al.[8] proposed a bi-directional long short-term memory
(BiLSTM) based anomaly detection system for Internet of
Things (IoT) networks. The BiLSTM model effectively
improves the accuracy by preprocessing and feature selection
through normalization and gain ratio.

Suárez-Varela et al.[9] introduced the use of GNNs in the
modeling control, and management of communication networks,
demonstrated their advantages in terms of generalization
capabilities and data-driven solutions, and discussed their
potential in network modeling control and management. Hnamte
et al.[10] proposed an approach using Deep Convolutional Neural
Networks (DCNN) and validated its performance with the
InSDN dataset. While DCNN achieves high accuracy, it
demands significant data and computational resources for
training.

Kisanga et al.[11] proposed a new Activity and Event
Network (AEN) graph framework that focuses on capturing
long-term stealthy threats that are difficult to detect by
traditional security tools, and is very promising in detecting
long-term threats in cybersecurity. L et al.[12] proposed an end-
to-end anomalous edge detection method based on unified graph
embedding, which enhances the model's ability to learn task-
relevant patterns by combining embedding learning and
anomaly detection into the same objective function, and
accurately estimates the probability distributions of edges
through the local structure of the graph to identify anomalous
edges. Superior accuracy and scalability are demonstrated on
multiple publicly available datasets.

Sun et al.[13] proposed a framework combining Graph Neural
Network (GNN) and Transformer for self-supervised
heterogeneous graph representation learning. The Metapath-
aware Hop2Token method is designed to efficiently convert
neighbors with different hop counts in heterogeneous graphs
into Token sequences, reducing the computational complexity
in Transformer processing. GTC enhances information fusion,
improves learning efficiency, and reduces the demand for
computational resources by contrasting learning tasks between
graph pattern views and hop count views.

Nguyen et al.[14] proposed a Transformer-based GNN model
for learning graph representation. With an unsupervised
conduction learning approach, UGformer is able to solve the
problem of limited category labels, but for large-scale datasets
to construct graphs, UGformer may still need to be optimized to
deal with extremely large graph structures, despite the sampling
mechanism that UGformer is designed for.

Unlike previous studies, our method focuses on extracting
data edge features from network streams and develops E-
GraphSAGE models that incorporate transformer modules.
Combining local and global features to achieve more accurate
feature representations, making full use of the structural and
topological information and inherent in network streaming data
to achieve better feature representations and network intrusion
detection performance. The T-E-GraphSAGE method
introduced in this paper addresses the shortcomings of
traditional graph embedding techniques by capturing
topological details and edge features in network flow data,
leading to more precise detection. while its ability to effectively
classify samples with unseen node features. Three NIDS
standard datasets are used to evaluate our model, which verifies
the broad applicability accuracy, and robustness of our model in
different types of network scenarios, which is effective in
comparison with traditional ML methods, especially in complex
network environments. Through these improvements, the
performance of our system in network intrusion detection has
been significantly improved, and it is able to effectively respond
to various network attacks in complex network environments.

III. THE PROPOSED METHOD

A. GraphSAGE

Graph Neural Networks (GNN) are becoming increasingly
popular in the field of machine learning. Its power stems from
the effective utilization of graph-structured data. These data are
widely available in application areas such as social media
networks, biological research, and telecommunication
systems[15]. The primary reason for using GNN in NIDS is their
capability to leverage the structural data present in network
streams, which can be represented graphically. Although some
conventional machine learning approaches also handle graph
data, they usually involve intricate processes and depend heavily
on manually crafted features, leading to more cumbersome and
less efficient applications.

GraphSAGE[16] is an efficient graph neural network
technique that generates embedded representations of nodes by
sampling and aggregating the features of their neighbors. It is
particularly suitable for processing large-scale graph data. The
main steps include sampling neighboring nodes, aggregating
features, and updating node features, which effectively solve the
computation and storage bottlenecks of traditional graph neural
networks. As a result, GraphSAGE has been widely used in
many fields.

GraphSAGE : learning node representation through local
aggregation, and its core steps include three aspects: neighbor
node sampling, feature aggregation, and node feature update, as
shown in Fig. 2.

In neighbor node sampling, for each node, a fixed number of
neighbor nodes are randomly sampled to reduce the computation

and storage requirements. Suppose a node in the graph is 𝑣, and
its set of neighbor nodes is 𝑁(𝑣) , and the set of neighbor nodes

obtained from sampling is 𝑁(𝑣) . This process can be
represented as:

 () ((),)N v Sample N v K= (1)

where 𝐾denotes the number of neighbor nodes sampled. This
phase seeks to manage computational complexity by limiting the
number of adjacent nodes for each vertex in extensive graphs.

Fig. 2. GraphSAGE model diagram

In feature aggregation, a feature aggregation operation is

performed on the sampled set of neighbor nodes 𝑁(𝑣) to
generate neighbor feature representations. Common aggregation
methods include mean value aggregation, pooling, and LSTM.
The following are the formulas for several aggregation methods:

1) Mean aggregation: Mean aggregation computes the

average of neighboring node features. Its formula is:

() (1)

()
({ , ()})k k

uN v
h mean h u N v−=   (2)

where ℎ𝑢
(𝑘−1)

 denotes the feature representation of the

neighboring node at the 𝑘 − 1 th layer of 𝑢, and ℎ𝑁(𝑣)
(𝑘)

 denotes

the representation of the node 𝑣 after aggregating the features of

its neighboring nodes at the 𝑘 layer.

2) Maximum pooling: Maximum pooling is used to take the

maximum value in the features of neighboring nodes. The

formula for this is:

() (1)

()
({ , ()})k k

uN v
h max h u N v−=   (3)

3) LSTM aggregation: LSTM aggregation uses LSTM

network for neighbor node features with the formula:

() (1)

()
({ , ()})k k

uN v
h LSTM h u N v−=   (4)

 For node feature update, the algorithm combines the node's
own features with the aggregated neighbor features and updates
the node feature representation through a neural network. A
common way of combining is a concatenation operation
(concatenation) followed by a transformation through a fully
connected layer. Its formula is:

() () (1) ()

()
((,))k k k k

v v N v
h W concat h h −=  (5)

where 𝜎 denotes the activation function (e.g., ReLU), 𝑊(𝑘)

denotes the weight matrix of the 𝑘-th layer, and ℎ𝑣
(𝑘)

 denotes the
feature representation of node 𝑣 in the 𝑘-th layer.

In the specific process, the features are first initialized and
each node’s feature can be its attribute vector 𝑥𝑣. Then multi-
layer sampling and aggregation is performed, for the 𝑘-th layer,
each node 𝑣 randomly samples a fixed number of 𝐾 neighbors

from its neighborhood to form the sampling set 𝑁(𝑣) and
aggregates the features of the neighboring nodes using the
selected aggregation function (e.g., mean, maximum pooling, or

LSTM) to obtain ℎ𝑁(𝑣)
(𝑘)

 . Then the node 𝑣 own features are

connected to the aggregated neighboring features in a join
operation and nonlinearly transformed through the fully

connected layer to obtain a new node feature representation ℎ𝑣
(𝑘)

 .
Finally, after multi-layer (usually 2 to 3 layers) sampling and
aggregation operations, the embedding representation of each
node is finally generated ℎ𝑣 . Through the above steps, the
GraphSAGE algorithm is able to efficiently deal with large-
scale graph data, and generate high-quality node embedding
representations through sampling and aggregation operations.

B. E-Transformer-GraphSAGE Methods

The traditional GraphSAGE method mainly focuses on the
analysis and utilization of node features for node classification,
but is deficient in dealing with edge features. The primary
objective of NIDS aims to detect and identify malicious traffic.
In our study, we focus on the application of edge features and
improve the GraphSAGE model by using the edge embedding
method and introducing the Transformer layer method.

1) E-GraphSAGE: In order to handle graph structure data

efficiently, we designed and implemented the GraphSAGE

layer (SAGELayer). This layer updates the representation of

each node by aggregating the features of the node's neighbors

to capture the relationships between nodes in the graph.

GraphSAGE accomplishes the updating of node

representations through message passing and apply updates,

and employs the ReLU activation function to improve the

model's nonlinear representation[17]. The main differences from

the original GraphSAGE algorithm are the algorithmic inputs,

the message passing aggregation functions and the outputs. In

the SAGE layer, edge embedding is incorporated into the

messaging process to provide richer information. Unlike the

traditional GraphSAGE module, the aggregated embedding of

sampled neighboring edges is generated at the kth layer for edge

features. using a mean aggregation function as shown in the

following equation.

() (1)

()
({ , (), })k k

uvN v
h mean e u N v uv −=    (6)

where 𝑒𝑢𝑣
(𝑘−1)

 is the feature of the edge 𝑢𝑣 in the k-1 layer of the

sampling neighborhood 𝑁(𝑣) of node 𝑣 , and the set {∀𝑢 ∈
𝑁(𝑣), 𝑢𝑣 ∈ 𝜀} represents the sampling edges within the

neighborhood 𝑁(𝑣) .The edge features of the 𝑢𝑣 of the kth layer
are spliced by the following equation, which represents the final
result of the forward propagation phase.

 (,),k k k

uv u vh CONCAT h h uv =  (7)

In our study, we constructed a two-layer E-GraphSAGE
model with each layer consisting of an E-SAGELayer.

Neighboring node features are aggregated to generate the
embedded representation of the node and a mean value
aggregation method is used, where the features of the node are
the mean value of the features of its neighboring nodes. The first
layer E-SAGELayer in this model aggregates the input features
to generate the first layer of node embedding; The second layer
takes the first layer of node embeddings as input and again
performs aggregation to generate the final node embeddings.
Through this multi-layer aggregation, we are able to capture
more complex node characteristics and neighbor relationships.
A Dropout operation is used to avoid overfitting. The advantage
of stacking multiple layers of GraphSAGE is the ability to
capture more complex node relationships and form richer node
representations to improve the performance of the model.

2) Transformer: The traditional GraphSAGE method

mainly focuses on the analysis and utilization of node features

for node classification, but is deficient in dealing with edge

features. The primary aim of NIDS is to detect and identify

malicious traffic, aligning with the edge classification problem

in network flow classification. Our study emphasizes the use of

edge features and enhances the GraphSAGE model by

incorporating the edge embedding method and introducing the

Transformer layer technique.
The Transformer Encoder Layer (TEL) is the basic

component of the Transformer model, which mainly consists of
the MultiheadAttention mechanism, Feed-forward Neural
Network (Linear Layer), and Normalization Layer (LayerNorm),
and Dropout is applied between the layers to prevent overfitting.
In the Transformer Encoder Layer, the inputs are node features
(generated by the SAGE layer) and this layer does not explicitly
process edge features. Its main function is to capture the
dependencies between node features and global information
through a multi-head attention mechanism along with a feed-
forward neural network.

a) Multi-head attention: The self-attention mechanism

allows the model to capture global dependencies by focusing

Identify applicable funding agency here. If none, delete this text box.

on all other elements in a sequence while processing each

element in the sequence. The multi-head self-attention

mechanism improves the model's sensitivity to different

features by performing multiple self-attention computations in

parallel. The specific formula is as follows:

{
𝐴𝑡𝑡𝑒𝑚𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄𝐾𝑇

√𝑑𝑘
)𝑉

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ⋯ℎ𝑒𝑎𝑑𝑖 ,⋯ , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂

 (8)

where 𝐴𝑡𝑡𝑒𝑚𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) is the single-head self-attention
computation, Q denotes the computational query matrix, K
denotes the key matrix, V denotes the value matrix, d denotes
the input vector dimension, and 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) denotes
the multi-head self-attention splicing the results of the h heads
together and obtaining the final output by a linear transformation,

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖) , and 𝑊𝑂 ∈ ℝℎ𝑑𝑘×𝑑𝑚𝑜𝑑𝑒𝑙
is the output weight matrix and 𝑑𝑚𝑜𝑑𝑒𝑙 is the input feature
dimension.

Specifically, the MultiheadAttention mechanism captures
the global dependencies of the input data by processing the input
data in parallel through multiple Attention Heads. Each
Attention Head performs self-attention computation
independently, which is able to focus on different features in the
input data and enhance the sensitivity of the model to multiple
features. The multi-head attention mechanism's output is linked
to the feed-forward neural network via a linear transformation.

b) Feed-forward neural network: Feed-forward neural

networks (FFN) are fully connected neural networks applied

independently at each position in each Transformer coding

layer. The specific formula is as follows:

 1 1 2 2() (0,)FFN x max xW b W b= + + (9)

where 𝑊1 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑓𝑓 ,𝑊2 ∈ ℝ𝑑𝑓𝑓×𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑏1 ∈ ℝ𝑑𝑓𝑓 , 𝑏2 ∈
ℝ𝑑𝑚𝑜𝑑𝑒𝑙is the parameter of the science department and 𝑑𝑓𝑓 is the

hidden layer dimension of the FNN.

The feedforward neural network used in this paper includes
two fully connected layers with a ReLU activation function and
Dropout applied in between. The first fully connected layer
maps the input dimension from the embedded dimension
(embed_dim) to a higher hidden dimension (ff_hidden_dim), the
ReLU activation function introduces a nonlinear transformation,
and the Dropout operation is used to prevent overfitting. The
second fully connected layer maps the hidden dimension back
to the embedded dimension, thus keeping the dimensionality of
the inputs and outputs the same.

c) Normalization layer: The normalization layer is

implemented following each sublayer, including both self-

attention and the feed-forward neural network, to ensure

regularization and stabilize the training process. The specific

formulas are as follows:

 ()
x

LayerNorm x

 

 

−
= +

+
 (10)

where 𝜇 and 𝜎 are the mean and standard deviation of the inputs
respectively, 𝛾 and 𝛽 are the learnable scaling and offset
parameters and 𝜀 is a small constant.

Each coding layer undergoes Layer Normalization and
Residual Connection between and after the multi-head self-

attention mechanism and the feed-forward neural network.
Layer Normalization helps to stabilize and speed up the training
process, while Residual Connection helps to solve the problem
of vanishing gradients in deep networks.

d) Dropout: Dropout randomly discards a certain

percentage of neurons during training to prevent overfitting. By

stacking multiple such coding layers, the Transformer model is

able to effectively capture the global dependencies of the input

data and enhance the model's sensitivity to different features.

The multi-head self-attention mechanism in each layer enables

the model to focus on different features in the input data, and

the feed-forward neural network further processes these

features. Through the layer-by-layer processing of the multi-

layer structure, the model is able to capture more complex and

deeper feature relationships in the input data, which improves

its performance in various tasks.

C. NIDS

Fig. 3 shows how the network stream data is constructed as
graph data and the propagation process from the source node to
the destination node. Fig. 4 shows an overview of our E-
Transformer-GraphSAGE NIDS. Initially, a graph is created
using the network flow data. Next, the generated network graph
is fed into the E-Transformer-GraphSAGE model for supervised
training. Edge embeddings are designed to classify network
streams into benign or malicious categories. The following
subsections explain these three steps in detail.

Fig. 3. Network flow data conversion diagram data

Fig. 4. E-Transformer-graphsage-based Network Intrusion Detection System

1) Graph data structure: Net-Flow is a commonly used

format for logging network communications in production

environments and is the predominant format in Network

Intrusion Detection System (NIDS) environments. A flow

record typically includes fields that identify the

communication's source and destination, along with additional

information like packet and byte counts, and flow duration.

Graph structures naturally model this type of data. In this study,

we use the source IP address, source port, destination IP address,

and destination port. The first two fields form a binary group

identifying the source node, and the last two form the

destination node. The remaining data are used as features for

that edge, making the graph nodes featureless. We assign a

vector of all 1's to all nodes in the algorithm.

2) E-Transformer-GraphSAGE: Our proposed model

combines the sensitivity of GNN to local structures and the

ability of Transformer to capture global dependencies by first

processing the graph data through E-GraphSAGE to obtain

node representations. Then, Transformer is utilized to further

capture global dependencies. During the training process, we

utilize a weighted cross-entropy loss function

(CrossEntropyLoss) to address category imbalance. We use

Adam optimizer (Adam optimizer) for parameter updating. The

algorithm's output is compared with the labels from the NIDS

dataset and the model's trainable parameters are adjusted in the

backpropagation phase. After tuning the model parameters

during training, the performance of the model can be evaluated

by classifying unseen test samples. The process involves

converting the test stream records into graph data structures.

Edge embeddings are then generated using a trained E-

Transformer-GraphSAGE layer. These edge embeddings are

subsequently transformed into class probabilities via the

Softmax layer. The predicted class probabilities are compared

with the actual class labels to evaluate the classification

performance metrics.

IV. EXPERIMENT

In this section, We performed binary classification and
multiclassification task comparisons to validate the
effectiveness of our algorithm.

A. Experiment Setting

We modeled using Python, Pytorch, and DGL, and the
server environment was performed on an Intel(R) Xeon(R) Gold
6242 CPU @ 2.80GHz total of 32 cores, a single A100 graphics
card, and 192G RAM.

B. Datasets

To evaluate our proposed GNN-based NIDS, we use three

publicly available datasets that include various labeled attack

flows and benign network flows. The first dataset is BoT-IoT,

which is widely used for evaluating ML based network intrusion

detection systems in the Internet of Things, with a proprietary

format and feature set. The second and third datasets are NF-

ToN-IoT and NF-BoT-IoT presented in Netflow format.

1) BoT-IoT datasets: The BoT-IoT dataset[18] was

generated by the Cyber Range Lab at the Australian Center for

Cyber Security (ACCS) to evaluate the performance of cyber

security tools. It simulates real network environments

containing normal traffic and multiple types of malicious traffic

such as DDoS, DoS, reconnaissance, and data theft for Intrusion

Detection System (IDS) training and testing. Avoid combining

SI units, like current in amperes, with CGS units, such as the

magnetic field measured in oersteds, as this can cause

dimensional imbalance and confusion. If using mixed units,

clearly specify the units for each quantity in the equation.

2) NF-BoT-IoT datasets: The NF-BoT-IoT dataset[19] is a

NetFlow characterization dataset extracted from the BoT-IoT

dataset to provide a more concise representation of network

traffic by summarizing IP traffic flows. The dataset includes

information such as source and destination IP addresses, ports,

packet counts, byte counts, and timestamps, which helps in

large-scale data analysis and real-time intrusion detection.

3) NF-ToN-IoT datasets: The NF-ToN-IoT dataset is a

NetFlow characterization dataset generated based on the ToN-

IoT dataset and contains telemetry and operational network data

from Internet of Things (IoT) devices. The dataset provides

detailed traffic records that help detect network intrusions and

understand traffic patterns in IoT environments and is suitable

for IoT security research.

C. Results Of The Experiment

To assess the effectiveness of the proposed neural network
model, we employed the standard metrics outlined in Table I.
Here, TP stands for true positives, TN for true negatives, FP for
false positives, and FN for false negatives.

TABLE I. EVALUATION INDICATORS

Accuracy
𝑻𝑷 + 𝑻𝑵

𝑻𝑷+ 𝑭𝑷+ 𝑻𝑵 + 𝑭𝑵
× 𝟏𝟎𝟎%

Precision
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
× 𝟏𝟎𝟎%

FAR
FP

𝑭𝑷 + 𝑻𝑵
× 𝟏𝟎𝟎%

Recall
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
× 𝟏𝟎𝟎%

F1-Score 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
× 100%

1) Binary classification results: The datasets employed in

our experiments contain dual-layer labels for each data instance.

The first layer indicates whether the network flow is benign or

non-benign, while the second layer specifies the attack type.

For the binary classification task, we use the first layer of labels,

and for the multi-class classification task, we use the second

layer of labels[20,21].

TABLE II. BINARY CLASSIFFCATION RESULTS

Dataset Accuracy Precision F1-Score Recall FAR

BoT-IoT 99.99% 1.00 1.00 99.99% 0.00%

NF-BoT-
IoT

94.52% 1.00 0.99 97.32% 0.24%

NF-ToN-

IoT
99.93% 1.00 1.00 99.84% 0.03%

Table Ⅱ summarizes our model’s performance metrics—
accuracy, precision, F1-Score, and False Alarm Rate (FAR)—

across three datasets: BoT-IoT, NF-BoT-IoT, and NF-ToN-IoT.
The findings demonstrate that our method performs
exceptionally well in binary classification, a key factor for
successful network intrusion detection.

In cybersecurity, datasets frequently exhibit an imbalance,
with fewer attack samples compared to normal traffic. The F1-
Score is particularly important in such scenarios as it balances
precision and recall, providing a more accurate assessment of
the model's ability to differentiate between benign and malicious
traffic than accuracy alone.

Given the importance of precise intrusion detection,
particularly in practical applications where the cost of missed
detections is high, we prioritize the F1-Score as a more reliable
indicator of our model's performance. In the following sections,
we will compare our F1-Score with those from other studies to
demonstrate how effectively our model handles the challenges
of imbalanced datasets, ensuring dependable intrusion detection.

TABLE III. COMPARISON OF BINARY-CLASSIFICATION ALGORITHMS F1

Method Dataset F1

Ours

CatBoost
BoT-IoT

1.00

0.99

Ours
Extra Tree Classifier

TS-IDS

NF-BoT-IoT
0.99
0.97

0.95

Ours

Extra Tree Classifier
NF-ToN-IoT

1.00

1.00

Table Ⅲ shows the F1 of our method compared with other
algorithms[21,22]. The results show that our method achieves F1-
Scores that are either similar to or better than those of existing
approaches. This indicates that our method performs effectively
in both traffic classification and binary network intrusion
detection.

The comparable or superior F1-Scores demonstrate that our
model is not only accurate in identifying malicious network
traffic but also maintains a balanced performance across
different datasets. This balance is crucial in practical
applications, where high precision and recall are necessary to
minimize false positives and ensure reliable intrusion detection.

In summary, the data in Table III confirms that our method
is competitive with, and in some cases superior to, other leading
algorithms, highlighting its effectiveness in traffic classification
and network intrusion detection tasks.

2) Multiclass classiffcation results: Table IV presents the

multi-classification results of our method across three standard

datasets, where the classifier is tasked with distinguishing

between various attack types. The multi-classification problem

is more complex than binary classification, as it requires the

model to accurately identify not just whether an attack is

present, but also to specify the type of attack. The results in

Table IV indicate that our model demonstrates strong

performance, particularly on the BoT-IoT dataset. This superior

performance is indicative of the model’s capability to

effectively differentiate between the distinct attack types within

this dataset.
Table Ⅴ provides further insight into the model's

performance by showing the recall and F1-Score values for

different attacks in the multi-classification task, specifically
focusing on the ToN-IoT dataset. These metrics are crucial for
understanding the model's ability to correctly identify each
attack type. High recall values suggest that the model is effective
in identifying the majority of true positive instances for most
attack types, minimizing the risk of undetected threats. Similarly,
strong F1-Score values indicate a good balance between
precision and recall, reinforcing the model's robustness in
handling diverse attack scenarios.

TABLE IV. COMPARISON OF BOT-IOT AND NF-BOT-IOT MULTI-
CLASSIFICATION ALGORITHMS F1

 BoT-IoT NF-BoT-IoT

Class Name Recall
F1-

Score
Class Name Recall

Benign 100.00% 0.99 Benign 100.00%

DDos 99.99% 1.00 DDos 99.99%

Dos 99.99% 1.00 Dos 99.99%

Reconnaissance 99.99% 1.00 Reconnaissance 99.99%

Theft 94.52% 0.98 Theft 94.52%

Weighted

Average
99.99 1.00

Weighted

Average
99.99

TABLE V. COMPARISON OF NF-TON-IOT MULTI-CLASSIFICATION

ALGORITHMS

 NF-ToN-IoT

Class Name Recall F1-Score

Benign 98.33% 0.99

Backdoor 98.46% 0.99

DDos 57.47% 0.73

Dos 99.72 0.46

Injection 30.59 0.46

MIMT 55.02 0.25

Ransomware 80.28 0.42

Password 100.00 0.99

Scanning 25.92 0.15

XSS 40.70% 0.28

Weighted Average 68.65% 0.67

However, the experimental plots of confusion matrices
shown in Figures 5 and 6 for the NF-BoT-IoT and NF-ToN-IoT
datasets reveal some nuances in the model’s performance. While
the recognition rate is extremely high for several attack types,
the model struggles with accurately classifying DDoS attacks.
This issue likely stems from the fact that during model training,
DDoS and DoS attacks shared similar features, leading to a
significant overlap in their learned representations. As a result,
the model occasionally misclassifies DDoS attacks as DoS
attacks, which suggests that the feature extraction process may
need refinement to better distinguish between these two attack
types.

The observed difficulty in separating DDoS from DoS
attacks highlights a potential area for improvement. One
possible solution could involve enhancing the feature
engineering process to capture more distinctive characteristics

of these attack types. Additionally, adjusting the training process
to emphasize the differences between DDoS and DoS attacks,
perhaps through the use of more advanced techniques like
adversarial training or ensemble learning, could further improve
classification accuracy.

In summary, while our model excels in the multi-
classification of several attack types, especially within the BoT-
IoT dataset, there remains room for improvement in the
classification of closely related attacks such as DDoS and DoS.
Addressing these challenges will be crucial for further
enhancing the model's overall reliability and effectiveness in
real-world network security applications.

Fig. 5. NF-BoT-IoT multiclassification results

Fig. 6. NF-ToN-IoT multiclassification results

As with binary classification, we compared the performance
of our model's Network Intrusion Detection System (NIDS) with
other classifiers, as shown in studies [23,24] . Table VI presents the
results of this comparison, focusing on the multi-classification
task.

The findings reveal that our algorithm consistently achieves
higher average F1-Score values compared to all existing
methods. This is particularly important in multi-classification,
where the ability to accurately distinguish between multiple

types of network attacks is crucial. The superior F1-Score
suggests that our model not only identifies attacks effectively
but also excels in correctly classifying the different types of
attacks, a challenge where other classifiers often fall short.

These results underscore the effectiveness of our approach
in handling the complexities of multi-class network intrusion
detection, proving that our model outperforms current leading
methods in this critical area.

TABLE VI. COMPARISON OF MULTI-CLASSIFICATION ALGORITHMS F1

Method Dataset W-F1

Ours

CatBoost
BoT-IoT

1.00

0.99

Ours

Extra Tree Classifier

TS-IDS

NF-BoT-IoT

0.88

0.77

0.83

Ours

Extra Tree Classifier
NF-ToN-IoT

0.67

0.60

Overall, our method demonstrates superior performance
compared to other Network Intrusion Detection System (NIDS)
approaches across both binary and multi-classification tasks, as
evidenced by the results from the three datasets utilized in our
study. Our model not only achieves higher accuracy and F1-
Scores but also shows remarkable robustness and
generalizability. This indicates that it is well-equipped to handle
various types of network traffic and detect both known and
emerging threats effectively.

The model's ability to consistently outperform other methods
highlights its advanced capabilities in accurately identifying and
classifying different types of network attacks, whether it's
simply distinguishing between benign and malicious traffic or
correctly categorizing specific attack types. This robust
performance across diverse datasets suggests that our method is
adaptable to different network environments and can maintain
its effectiveness even when faced with the complexities and
variabilities of real-world data.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel GNN-based
network intrusion detection method called E-T-GraphSAGE,
which has enhanced attack flow detection by capturing edge
features and topology patterns within network flow graphs. Our
focus has been on applying E-T-GraphSAGE to detect malicious
network flows in the context of network intrusion detection.
Experimental evaluations have shown that our model performs
very well on the three NIDS benchmark datasets and generally
outperforms currently available network intrusion detection
methods. In the future, we plan to build unsupervised graph
neural network intrusion detection models, as well as lighten the
E-T-GraphSAGE model and apply it to edge network servers,
especially small and medium-sized network devices, for better
timely network intrusion detection at the edge.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant 62101299.

REFERENCES

[1] Chaabouni N, Mosbah M, Zemmari A, et al. Network intrusion detection
for IoT security based on learning techniques[J]. IEEE Communications
Surveys & Tutorials, 2019, 21(3): 2671-2701.

[2] Naeem H. Analysis of Network Security in IoT-based Cloud Computing
Using Machine Learning[J]. International Journal for Electronic Crime
Investigation, 2023, 7(2).

[3] Deng X, Zhu J, Pei X, et al. Flow topology-based graph convolutional
network for intrusion detection in label-limited IoT networks[J]. IEEE
Transactions on Network and Service Management, 2022, 20(1): 684-
696.

[4] Zhong X, Wan G. Six-GraphSecurity: Industrial Internet Intrusion
Detection Based On Graph Neural Network[C]//2023 IEEE 7th
Information Technology and Mechatronics Engineering Conference
(ITOEC). IEEE, 2023, 7: 1340-1344.

[5] Sukhbaatar S, Grave E, Bojanowski P, et al. Adaptive attention span in
transformers[J]. arXiv preprint arXiv:1905.07799, 2019.

[6] Alowaidi M. Modified Intrusion Detection Tree with Hybrid Deep
Learning Framework based Cyber Security Intrusion Detection
Model[J]. International Journal of Advanced Computer Science and
Applications, 2022, 13(10).

[7] Gupta N, Jindal V, Bedi P. LIO-IDS: Handling class imbalance using
LSTM and improved one-vs-one technique in intrusion detection
system[J]. Computer Networks, 2021, 192: 108076.

[8] Kumar P J, Neduncheliyan S, Adnan M M, et al. Anomaly-Based
Intrusion Detection System Using Bidirectional Long Short-Term
Memory for Internet of Things[C]//2024 Third International Conference
on Distributed Computing and Electrical Circuits and Electronics
(ICDCECE). IEEE, 2024: 01-04..

[9] Suárez-Varela J, Almasan P, Ferriol-Galmés M, et al. Graph neural
networks for communication networks: Context, use cases and
opportunities[J]. IEEE network, 2022, 37(3): 146-153.

[10] Hnamte and J. Hussain, "Network Intrusion Detection using Deep
Convolution Neural Network," 2023 4th International Conference for
Emerging Technology (INCET), Belgaum, India, 2023, pp. 1-6, doi:
10.1109/INCET57972.2023.10170202.

[11] Kisanga P, Woungang I, Traore I, et al. Network anomaly detection
using a graph neural network[C]//2023 International Conference on
Computing, Networking and Communications (ICNC). IEEE, 2023: 61-
65..

[12] Ouyang L, Zhang Y, Wang Y. Unified graph embedding-based
anomalous edge detection[C]//2020 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2020: 1-8.

[13] Sun Y, Zhu D, Wang Y, et al. GTC: GNN-Transformer Co-contrastive
Learning for Self-supervised Heterogeneous Graph Representation[J].

arXiv preprint arXiv:2403.15520, 2024.
[14] Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung. 2022. Universal

Graph Transformer Self-Attention Networks. In Companion
Proceedings of the Web Conference 2022 (WWW ’22 Companion),
April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY,
USA,.

[15] Zhou J, Cui G, Hu S, et al. Graph neural networks: A review of methods
and applications[J]. AI open, 2020, 1: 57-81.

[16] Hamilton W, Ying Z, Leskovec J. Inductive representation learning on
large graphs[J]. Advances in neural information processing systems,
2017, 30.

[17] Lo W W, Layeghy S, Sarhan M, et al. E-graphsage: A graph neural
network based intrusion detection system for iot[C]//NOMS 2022-2022
IEEE/IFIP Network Operations and Management Symposium. IEEE,
2022: 1-9.

[18] Koroniotis N, Moustafa N, Sitnikova E, et al. Towards the development
of realistic botnet dataset in the internet of things for network forensic
analytics: Bot-iot dataset[J]. Future Generation Computer Systems, 2019,
100: 779-796.

[19] Sarhan M, Layeghy S, Moustafa N, et al. Netflow datasets for machine
learning-based network intrusion detection systems[C]//Big Data
Technologies and Applications: 10th EAI International Conference,
BDTA 2020, and 13th EAI International Conference on Wireless
Internet, WiCON 2020, Virtual Event, December 11, 2020, Proceedings
10. Springer International Publishing, 2021: 117-135.

[20] Sarhan M, Layeghy S, Portmann M. Evaluating standard feature sets
towards increased generalisability and explainability of ML-based
network intrusion detection[J]. Big Data Research, 2022, 30: 100359.

[21] Tanha J, Abdi Y, Samadi N, et al. Boosting methods for multi-class

imbalanced data classification: an experimental review[J]. Journal of

Big data, 2020, 7: 1-47.
[22] Lawal M A, Shaikh R A, Hassan S R. An anomaly mitigation framework

for iot using fog computing[J]. Electronics, 2020, 9(10): 1565.

[23] Churcher A, Ullah R, Ahmad J, et al. An experimental analysis of attack
classification using machine learning in IoT networks[J]. Sensors, 2021,
21(2): 446.

[24] Nguyen H, Kashef R. TS-IDS: Traffic-aware self-supervised learning
for IoT Network Intrusion Detection[J]. Knowledge-Based Systems,
2023, 279: 110966.

