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ABSTRACT

A key theme in the past decade has been that when large neural networks and
large datasets combine they can produce remarkable results. In deep reinforce-
ment learning (RL), this paradigm is commonly made possible through experi-
ence replay, whereby a dataset of past experiences is used to train a policy or
value function. However, unlike in supervised or self-supervised learning, an RL
agent has to collect its own data, which is often limited. Thus, it is challenging
to reap the benefits of deep learning, and even small neural networks can overfit
at the start of training. In this work, we leverage the tremendous recent progress
in generative modeling and propose Synthetic Experience Replay (SYNTHER), a
diffusion-based approach to arbitrarily upsample an agent’s collected experience.
We show that SYNTHER is an effective method for training RL agents across
offline and online settings. In offline settings, we observe drastic improvements
both when upsampling small offline datasets and when training larger networks
with additional synthetic data. Furthermore, SYNTHER enables online agents to
train with a much higher update-to-data ratio than before, leading to a large in-
crease in sample efficiency, without any algorithmic changes. We believe that
synthetic training data could open the door to realizing the full potential of deep
learning for replay-based RL algorithms from limited data.

1 INTRODUCTION

In the past decade, the combination of large datasets (Deng et al., 2009; Schuhmann et al., 2022)
and ever deeper neural networks (Krizhevsky et al., 2012; He et al., 2015; Vaswani et al., 2017;
Devlin et al., 2018) has led to a series of more generally capable models (Radford et al., 2019;
Brown et al., 2020; Ramesh et al., 2022). In reinforcement learning (RL, Sutton & Barto (2018)),
agents typically learn online from their own experience. Thus, to leverage sufficiently rich datasets,
RL agents typically make use of experience replay (Mnih et al., 2015; Fedus et al., 2020), where
training takes place on a dataset of recent experiences. However, this experience is typically limited,
unless an agent is distributed over many workers which requires both expensive computational cost
and sufficiently fast simulation (Espeholt et al., 2018; Kapturowski et al., 2019).
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Figure 1: Upsampling data using SYNTHER greatly outperforms explicit data augmentation schemes for
small offline datasets and data-efficient algorithms in online RL without any algorithmic changes. Moreover,
synthetic data from SYNTHER may readily be added to any algorithm utilizing experience replay. Full results
are presented in Section 4.
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Figure 2: SYNTHER allows any RL agent using experience replay to arbitrarily upsample their experiences
and train with synthetic data. By leveraging this increased data, agents can learn more effectively from smaller
datasets and can achieve higher sample efficiency.

Another approach for leveraging broad datasets for training RL policies is offline RL (Agarwal et al.,
2020; Levine et al., 2020), whereby behaviors may be distilled from previously collected data either
via behavior cloning (Schaal, 1996), off-policy learning (Kumar et al., 2020; Fujimoto & Gu, 2021)
or model-based methods (Yu et al., 2020; Kidambi et al., 2020; Lu et al., 2022a). Offline data can
also significantly bootstrap online learning (Hester et al., 2017; Wagenmaker & Pacchiano, 2022;
Ball et al., 2023), however, it is a significant challenge to apply these methods when there is a
mismatch between offline data and online environment. Thus, many of the successes rely on toy
domains with transfer from specific behaviors in a simple proprioceptive environment.

Whilst strong results have been observed in re-using prior data in RL, appropriate data for particu-
lar behaviors may simply not exist and thus this approach falls short in generality. We consider an
alternative approach—rather than passively reusing data, we leverage tremendous progress in gener-
ative modeling to generate a large quantity of new, synthetic data. While prior work has considered
upsampling online RL data with VAEs or GANs (Huang et al., 2017; Imre, 2021; Ludjen, 2021),
we propose making use of diffusion generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Karras et al., 2022), which unlocks significant new capabilities.

Our approach, which we call Synthetic Experience Replay, or SYNTHER, is conceptually simple,
whereby given a limited initial dataset, we can arbitrarily upsample the data for an agent to use
as if it was real experience. Therefore, in this paper, we seek to answer a simple question: Can
the latest generative models replace or augment traditional datasets in reinforcement learning? To
answer this, we consider the following settings: offline RL where we entirely replace the original
data with data produced by a generative model, and online RL where we upsample experiences
to broaden the training data available to the agent. In both cases, SYNTHER leads to a drastic
improvement by utilizing synthetic data, obtaining performance comparable to that of agents trained
with substantially more real data. Furthermore, in certain offline settings, the additional data enables
effective training of larger policy and value networks, resulting in higher performance by alleviating
the representational bottleneck. We thus believe this paper presents sufficient evidence that given
additional scale, our approach could enable entirely new efficient training strategies for RL agents.

To summarize, the contributions of this paper are:

• We propose SYNTHER in Section 3, a diffusion-based approach that allows one to generate
synthetic experiences and thus arbitrarily upsample data for any reinforcement learning
algorithm utilizing experience replay.

• We validate the synthetic data generated by SYNTHER in offline settings in Section 4.1,
presenting the first generative approach to show parity with real data on the standard D4RL
offline datasets with a wide variety of algorithms. Furthermore, we observe considerable
improvements from upsampling for small offline datasets in Section 4.1.1 and scaling up
network sizes in Section 4.1.2.

• We show how SYNTHER can arbitrarily upsample an online agent’s training data in Sec-
tion 4.2 by continually training the diffusion model. This allows us to significantly increase
an agent’s update-to-data (UTD) ratio matching the efficiency of specially designed data-
efficient algorithms without any algorithmic changes.
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Figure 3: SYNTHER generates synthetic samples using a diffusion model which we visualize on the walker2d
environment. On the top row, we render the state component of the transition tuple on a subset of samples; and
on the bottom row, we visualize a t-SNE (Van der Maaten & Hinton, 2008) projection of 100,000 samples.
The denoising process creates cohesive and plausible transitions whilst also remaining diverse, as seen by the
multiple clusters that form at the end of the process in the bottom row.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

We model the environment as a Markov Decision Process (MDP, Sutton & Barto (2018)), defined
as a tuple M = (S,A, P,R, ρ0, γ), where S and A denote the state and action spaces respectively,
P (s′|s, a) the transition dynamics, R(s, a) the reward function, ρ0 the initial state distribution, and
γ ∈ (0, 1) the discount factor. The goal in reinforcement learning is to optimize a policy π(a|s) that
maximizes the expected discounted return Eπ,P,ρ0

[
∑∞

t=0 γ
tR(st, at)].

2.2 OFFLINE REINFORCEMENT LEARNING

In offline RL (Levine et al., 2020), the policy is not deployed in the environment until test time.
Instead, the algorithm only has access to a static dataset Denv = {(st, at, rt, st+1)}Tt=1, collected by
one or more behavioral policies πb. We refer to the distribution from which Denv was sampled as the
behavioral distribution (Yu et al., 2020). In some of the environments we consider, the environment
may be finite horizon or have early termination. In that case, the transition tuple also contains a
terminal flag dt where dt = 1 indicates the episode ended early at timestep t and dt = 0 otherwise.

2.3 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a class of generative models in-
spired by non-equilibrium thermodynamics that learn to iteratively reverse a forward noising process
and generate samples from noise. Given a data distribution p(x) with standard deviation σdata, we
consider noised distributions p(x;σ) obtained by adding i.i.d. Gaussian noise of standard deviation
σ to the base distribution. The forward noising process is defined by a sequence of noised distribu-
tions following a fixed noise schedule σ0 = σmax > σ1 > · · · > σN = 0. When σmax ≫ σdata, the
final noised distribution p(x;σmax) is essentially indistinguishable from random noise.

Karras et al. (2022) consider a probability-flow ODE with the corresponding continuous noise sched-
ule σ(t) that maintains the desired distribution as x evolves through time given by Equation (1).

dx = −σ̇(t)σ(t)∇x log p(x;σ(t))dt (1)

where the dot indicates a time derivative and ∇x log p(x;σ(t)) is the score function (Hyvärinen,
2005), which points towards the data at a given noise level. Infinitesimal forward or backward steps
of this ODE either nudge a sample away or towards the data. Karras et al. (2022) consider training
a denoiser Dθ(x;σ) on an L2 denoising objective:

min
θ

Ex∼p,σ,ϵ∼N (0,σ2I) ∥Dθ(x+ ϵ;σ)− x∥22 (2)

and then use the connection between score-matching and denoising (Vincent, 2011) to obtain
∇x log p(x;σ) = (Dθ(x;σ) − x)/σ2. We may then apply an ODE (or SDE as a generalization
of Equation (1)) solver to reverse the forward process. In this paper, we train our diffusion models
to approximate the online or offline behavioral distribution.
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Algorithm 1 SYNTHER for online replay-based algorithms. Our additions are highlighted in blue.

1: Input: real data ratio r ∈ [0, 1]
2: Initialize: Dreal = ∅ real replay buffer, π agent, Dsynthetic = ∅ synthetic replay buffer, M diffusion model
3: for t = 1, . . . , T do
4: Collect data with π in the environment
5: Update diffusion model M with samples from Dreal
6: Generate samples from M and add them to Dsynthetic
7: Train π on samples from Dreal ∪ Dsynthetic mixed with ratio r
8: end for

3 SYNTHETIC EXPERIENCE REPLAY

In this section, we introduce Synthetic Experience Replay (SYNTHER), our approach to upsampling
an agent’s collected experience using diffusion. We begin by describing the simpler training process
used for offline reinforcement learning and then how that may be adapted to the online setting by
continually training the diffusion model.

3.1 OFFLINE SYNTHER

For offline reinforcement learning, we take the data distribution of the diffusion model p(x) to
simply be the offline behavioral distribution. For the proprioceptive environments we consider,
the full transition is low-dimensional compared with typical pixel-based applications of diffusion.
Therefore, the network architecture is an important design choice; we elect to use a residual MLP
denoising (Tolstikhin et al., 2021) network, with detailed hyperparameters given in Appendix B.
We visualize the denoising process when trained on a representative D4RL (Fu et al., 2020) offline
dataset, walker2d medium-replay, in Figure 3. We further validate our diffusion model on the D4RL
datasets in Figure 7 in Appendix A by showing that the synthetic data closely matches the original
data when comparing the marginal distribution over each dimension.

Next, we conduct a quantitative analysis and show that the quality of the samples from the dif-
fusion model is significantly better than with prior generative models such as VAEs (Kingma &
Welling, 2014) and GANs (Goodfellow et al., 2014). We consider the state-of-the-art Tabular VAE
(TVAE) and Conditional Tabular GAN (CTGAN) models proposed by Xu et al. (2019) for low-
dimensional data with the default hyperparameters, and evaluate on the D4RL halfcheetah medium-
replay dataset. As proposed in Patki et al. (2016), we compare the following two high-level statistics
on the synthetic data:

• Marginal: (Number between 0-1) Aggregate Kolmogorov-Smirnov (Massey Jr, 1951)
statistic, measuring the maximum distance between cumulative distribution functions, for
each individual dimension of the data.

• Correlation: (Number between 0-1) Aggregate pairwise Pearson rank correlation (Fieller
et al., 1957) between the dimensions of the data.

We also assess down-stream offline RL performance using the synthetic data with two state-of-the-
art offline RL algorithms, TD3+BC (Fujimoto & Gu, 2021) and IQL (Kostrikov et al., 2022), in
Table 1. The full evaluation protocol is described in Section 4.1.

Table 1: SYNTHER is better at capturing both the high-level statistics of the dataset (halfcheetah medium-
replay) than prior generative models and also leads to far higher downstream performance. Metrics (left)
computed from 100K samples from each model, offline RL performance (right) computed using 5M samples
from each model. We show the mean and standard deviation of the final performance averaged over 4 seeds.

Model Metrics Eval. Return
Marginal Correlation TD3+BC IQL

Diffusion (Ours) 0.989 0.998 45.4±0.4 46.7±0.1
VAE 0.941 0.976 12.3±5.6 6.7±1.0
GAN 0.947 0.979 11.0±3.3 4.6±2.4
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Table 2: A comprehensive evaluation of SYNTHER on a wide variety of D4RL (Fu et al., 2020) datasets
and selection of state-of-the-art offline RL algorithms. We show that synthetic data from SYNTHER faithfully
reproduces the original performance, which allows us to completely eschew the original training data. We
show the mean and standard deviation of the final performance averaged over 4 seeds. Highlighted aggregated
results show at least parity over each group of results.

Environment Behavioral
Policy

TD3+BC IQL EDAC
Original SYNTHER Original SYNTHER Original SYNTHER

halfcheetah-v2

random 11.3±0.8 10.9±0.4 15.2±1.2 19.4±0.3 -
mixed 44.8±0.7 45.4±0.4 43.5±0.4 46.7±0.1 62.1±1.3 62.9±1.8
medium 48.1±0.2 48.8±0.3 48.3±0.1 49.9±0.2 67.7±1.2 64.2±1.2
medexp 90.8±7.0 85.9±8.2 94.6±0.2 93.6±1.7 104.8±0.7 94.0±8.3

walker2d-v2

random 0.6±0.3 3.4±1.8 4.1±0.8 4.8±0.7 -
mixed 85.6±4.6 91.9±1.4 82.6±8.0 90.2±4.8 87.1±3.2 84.9±1.6
medium 82.7±5.5 85.2±1.1 84.0±5.4 83.2±5.6 93.4±1.6 88.2±1.6
medexp 110.0±0.4 110.1±0.3 111.7±0.6 111.8±0.7 114.8±0.9 113.6±0.5

hopper-v2

random 8.6±0.3 17.8±11.2 7.2±0.2 7.5±0.5 -
mixed 64.4±24.8 54.0±10.8 84.6±13.5 102.8±0.3 99.7±0.9 97.6±1.6
medium 60.4±4.0 63.0±4.3 62.8±6.0 71.8±4.3 101.7±0.3 101.0±0.7
medexp 101.1±10.5 102.5±10.9 106.2±6.1 97.5±8.8 105.2±11.6 109.7±0.2

locomotion average 59.0±4.9 59.9±4.3 62.1±3.5 64.9±2.3 92.9±2.4 90.7±1.9

maze2d-v1
umaze 29.4±14.2 40.5±9.8 37.7±2.0 40.5±1.0 95.3±7.4 101.5±20.6
medium 59.5±41.9 67.1±36.6 35.5±1.0 34.1±0.2 57.0±4.0 69.4±8.0
large 97.1±29.3 128.0±41.3 49.6±22.0 48.7±4.6 95.6±26.5 161.6±9.7

maze average 62.0±28.2 78.5±29.2 40.9±8.3 41.1±1.9 82.6±12.6 110.8±12.8

We see that the diffusion model is more faithful to the original data than prior generative models and
thus the synthetic data leads to substantially higher returns on both the TD3+BC and IQL algorithms.
Thus, we hypothesize a large part of the failure of prior methods (Imre, 2021; Ludjen, 2021) is due
to the use of a weaker generative model.

3.2 ONLINE SYNTHER

SYNTHER may be used to upsample an online agent’s experiences by continually training the diffu-
sion model on new experiences. We provide pseudocode for how to incorporate SYNTHER into any
online replay-based RL agent in Algorithm 1 and visualize this in Figure 2. Concretely, a diffusion
model is periodically updated on the real transitions and then used to populate a second synthetic
buffer. The agent may then be trained on a mixture of real and synthetic data sampled with ratio
r. For the results in Section 4.2, we simply set r = 0.5 following Ball et al. (2023). The synthetic
replay buffer may also be configured with a finite capacity to prevent overly stale data.

4 EMPIRICAL EVALUATION

In our empirical evaluation, we evaluate SYNTHER across a wide variety of offline and online set-
tings. We first validate our approach on offline RL, where we entirely replace the original data,
and further show large benefits from upsampling small offline datasets. Next, we show that SYN-
THER leads to large improvements in sample efficiency in online RL where we upsample recent
experiences to broaden the training data available to the agent.

4.1 OFFLINE D4RL EVALUATION

We first verify that synthetic samples from SYNTHER faithfully model the underlying distribution
from the original D4RL (Fu et al., 2020) datasets. To do this, we evaluate SYNTHER in com-
bination with 3 distinct SOTA offline RL algorithms: TD3+BC (Fujimoto & Gu (2021), explicit
policy regularization), IQL (Kostrikov et al. (2022), expectile regression), and EDAC (An et al.
(2021), uncertainty-based regularization) on an extensive selection of D4RL datasets. We consider
the MuJoCo (Todorov et al., 2012) locomotion (halfcheetah, walker2d, and hopper) and maze2d
environments. For these experiments, we use a residual MLP denoising network with full hyper-
parameters given in Appendix B. All datasets share the same training hyperparameters, with some
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Figure 4: SYNTHER is a powerful method for upsampling reduced variants of the walker2d datasets and
vastly improves on competitive explicit data augmentation approaches for both the TD3+BC (top) and IQL
(bottom) algorithms. The subsampling levels are scaled proportionally to the original size of each dataset. We
show the mean and standard deviation of the final performance averaged over 4 seeds.

larger datasets using a wider network. For every dataset, we upsample the original dataset to 5M
samples; we justify this choice in Appendix C.1. We show the final performance in Table 2.

Our results show that we achieve at least parity for all groups of environments and algorithms as
highlighted in the table, regardless of the precise details of each algorithm. We note significant
improvements to maze2d environments, which are close to the ‘best’ performance as reported in
CORL (Tarasov et al., 2022) (i.e., the best iteration during offline training) rather than the final per-
formance. We hypothesize this improvement is largely due to increased data from SYNTHER, which
leads to less overfitting and increased stability. For the locomotion datasets, we largely reproduce
the original results, which we attribute to the fact that most D4RL datasets are at least 1M in size and
are already sufficiently large. However, as detailed in Table 4 in Appendix A.1, SYNTHER allows
the effective size of the dataset to be compressed significantly, up to 12.9× on some datasets.

4.1.1 UPSAMPLING FOR SMALL DATASETS

Next, we investigate the benefit of SYNTHER for small offline datasets and compare it to canonical
‘explicit’ data augmentation approaches (Laskin et al., 2020; Ball et al., 2021). Concretely, we
wish to understand whether SYNTHER generalizes and generates synthetic samples that improve
policy learning compared with explicitly augmenting the data with hand-designed inductive biases.
We focus on the walker2d (medium, medium-replay/mixed, medium-expert) datasets in D4RL and
uniformly subsample each at the transition level. We subsample each dataset proportional to the
original dataset size so that the subsampled datasets approximately range from 20K to 200K samples.
As in Section 4.1, we then use SYNTHER to upsample each dataset to 5M transitions. Our denoising
network uses the same hyperparameters as for the original evaluation in Section 4.1.

In Figure 4, we can see that for all datasets, SYNTHER leads to a significant gain in performance and
vastly improves on explicit data augmentation approaches. For explicit data augmentation, we select
the overall most effective augmentation scheme from Laskin et al. (2020) (adding Gaussian noise
of the form ϵ ∼ N (0, 0.1)). Notably, with SYNTHER we can achieve close to the original levels of
performance on the walker2d-medium-expert datasets starting from only 3% of the original data.
In Figure 1a, we methodically compare across both additive and multiplicative versions of RAD,
as well as dynamics augmentation (Ball et al., 2021) on the 15% reduced walker medium-replay
dataset.

Why is SYNTHER better than explicit augmentation? To provide intuition into the effi-
cacy of SYNTHER over canonical explicit augmentation approaches, we compare the data gen-
erated by SYNTHER to that generated by the best-performing data augmentation approach in
Figure 1a, namely additive noise. We wish to evaluate two properties: 1) How diverse is
the data? 2) How accurate is the data for the purposes of learning policies? To measure di-
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versity, we measure the minimum L2 distance of each datapoint from the dataset, which al-
lows us to see how far the upsampled data is from the original data. To measure the valid-
ity of the data, we follow Lu et al. (2022a) and measure the MSE between the reward and
next state proposed by SYNTHER with the true next state and reward defined by the simulator.
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Figure 5: Comparing L2 distance from
training data and dynamics accuracy un-
der SYNTHER and augmentations.

We plot both these values in a joint scatter plot to com-
pare how they vary with respect to each other. For this, we
compare specifically on the reduced 15% subset of walker2d
medium-replay as in Figure 1a. As we see in Figure 5, SYN-
THER generates a significantly wider marginal distribution
over the distance from the dataset, and generally produces
samples that are further away from the dataset than explicit
augmentations. Remarkably, however, we see that these sam-
ples are far more consistent with the true environment dy-
namics. Thus, SYNTHER generates samples that have sig-
nificantly lower dynamics MSE than explicit augmentations,
even for datapoints that are far away from the training data.
This implies that a high level of generalization has been
achieved by the SYNTHER model, resulting in the ability to
generate novel, diverse, yet dynamically accurate data that
can be used by policies to improve performance.

4.1.2 SCALING NETWORK SIZE

A further benefit we observe from SYNTHER on the TD3+BC algorithm is that upsampled data can
enable scaling of the policy and value networks leading to improved performance. As is typical for
RL algorithms, TD3+BC uses a small value and policy network with two hidden layers, and width
of 256, and a batch size of 256. We consider increasing the size of both networks to be three hidden
layers and width 512 (approximately 6× more parameters), and the batch size to 1024 to better make
use of the upsampled data in Table 3.

We observe a large overall improvement of 12.2% for the locomotion datasets when using a larger
network with synthetic data (Larger Network + SYNTHER). Notably, when using the original data
(Larger Network + Original Data), the larger network performs the same as the baseline. This sug-
gests that the bottleneck in the algorithm lies in the representation capability of the neural network
and synthetic samples from SYNTHER enables effective training of the larger network. This could
alleviate the data requirements for scaling laws in reinforcement learning (Adaptive Agent Team
et al., 2023; Hilton et al., 2023). However, for the IQL and EDAC algorithms, we did not observe
an improvement by increasing the network size which suggests that the bottleneck there lies in the
data or algorithm rather than the architecture.

Table 3: SYNTHER enables effective training of larger policy and value networks for TD3+BC leading to
a 12.2% gain on the offline MuJoCo locomotion datasets. In comparison, simply increasing the network size
with the original data does not improve performance. We show the mean and standard deviation of the final
performance averaged over 4 seeds.

Environment Behavioral
Policy Baseline Larger Network

Original Data SYNTHER

halfcheetah-v2

random 11.3±0.8 11.0±0.6 12.8±0.7
mixed 44.8±0.7 44.9±0.5 48.1±0.4
medium 48.1±0.2 48.5±0.2 53.4±0.1
medexp 90.8±7.0 91.0±3.8 101.4±1.1

walker2d-v2

random 0.6±0.3 1.8±1.8 3.5±2.0
mixed 85.6±4.6 82.5±7.3 93.6±2.3
medium 82.7±5.5 84.5±1.0 88.0±0.4
medexp 110.0±0.4 110.2±0.4 110.3±0.2

hopper-v2

random 8.6±0.3 8.2±0.8 17.0±11.3
mixed 64.4±24.8 66.2±17.5 88.8±10.8
medium 60.4±4.0 58.7±5.7 65.6±4.1
medexp 101.1±10.5 97.8±7.9 111.5±0.5

locomotion average 59.0±4.9 58.8±4.0 66.2±2.8
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Figure 6: SYNTHER greatly improves the sample efficiency of online RL algorithms by enabling an agent
to train on upsampled data. This allows an agent to use an increased update-to-data ratio (UTD=20 compared
to 1 for regular SAC) without any algorithmic changes. We show the mean and standard deviation of the
online return over 4 seeds. DeepMind Control Suite environments are shown in the top row, and OpenAI Gym
environments are shown in the bottom.

4.2 ONLINE EVALUATION

Finally, we show that SYNTHER can effectively upsample an online agent’s continually collected
experiences on 3 environments from the DeepMind Control Suite (DMC, Tunyasuvunakool et al.
(2020)) (cheetah-run, quadruped-walk, and reacher-hard) and 3 environments the OpenAI Gym
Suite (Brockman et al., 2016) (walker2d, halfcheetah, and hopper). We choose the base algorithm to
be SAC (Haarnoja et al., 2018), a popular off-policy entropy-regularized algorithm, and benchmark
against a SOTA data-efficient variant of itself, REDQ (Chen et al., 2021). REDQ uses an ensemble
of 10 Q-functions and computes target values across a randomized subset of them during training.
By default, SAC uses an update-to-data ratio of 1 (1 update for each transition collected); the modifi-
cations to SAC in REDQ enable this to be raised to 20. Our method, ‘SAC (SYNTHER)’, augments
the training data by generating 1M new samples for every 10K real samples collected and samples
them with a ratio r = 0.5. We then match REDQ and train with a UTD ratio of 20. We evaluate our
algorithms over 200K online steps for the DMC environments and 100K for OpenAI Gym.

In Figure 6, we see that SAC (SYNTHER) matches or outperforms REDQ on the majority of the
environments with particularly strong results on the quadruped-walk and halfcheetah-v2 environ-
ments. This is particularly notable as D’Oro et al. (2023) found that UTD=20 on average decreased
performance for SAC compared with the default value of 1, attributable to issues with overestima-
tion and overfitting (Chen et al., 2021; Li et al., 2023). We aggregate the final performance on the
environments in Figure 1b, normalizing the DMC returns following Lu et al. (2022b) and OpenAI
returns as in D4RL. Moreover, due to the fast speed of training our diffusion models and fewer Q-
networks, our approach is in fact faster than REDQ based on wall-clock time, whilst also requiring
fewer algorithmic design choices, such as large ensembles and random subsetting. Full details on
run-time are given in Appendix D.2.

5 RELATED WORK

Whilst generative training data has been explored in reinforcement learning; in general, synthetic
data has not previously performed as well as real data on standard RL benchmarks.

Generative Training Data. Imre (2021); Ludjen (2021) had both considered using VAEs and GANs
to generate synthetic data for online reinforcement learning. However, we note that both works failed
to match the original performance on simple environments such as CartPole—this is likely due to
the use of a weaker class of generative models which we explored in Section 3.1. Huang et al.
(2017) considered using GAN samples to pre-train an RL policy, observing a modest improvement
in sample efficiency for CartPole. Yu et al. (2023); Chen et al. (2023) consider augmenting the image
observations of robotic control data using a text-guided diffusion model whilst maintaining the same
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action. This differs from our approach which models the entire transition and can synthesize novel
action and reward labels.

Outside of reinforcement learning, He et al. (2022) consider generative training data for image clas-
sification and pre-training. They also find that synthetic data is useful for data-scarce settings which
are especially prevalent in reinforcement learning. Sehwag et al. (2022) consider generative training
data to improve adversarial robustness in image classification. In continual learning, “generative
replay” (Shin et al., 2017) has been considered to compress examples from past tasks to prevent
forgetting.

Generative Modeling in RL. Prior work in diffusion modeling for offline RL has largely sought
to supplant traditional reinforcement learning with “upside-down RL” (Schmidhuber, 2019). Dif-
fuser (Janner et al., 2022) models long sequences of transitions or full episodes and can bias the
whole trajectory with guidance towards high reward or a particular goal. It then takes the first action
and re-plans by receding horizon control. Decision Diffuser (Ajay et al., 2022) similarly operates
at the sequence level but instead uses conditional guidance on rewards and goals. (Du et al., 2023)
present a similar trajectory-based algorithm for visual data. In contrast, SYNTHER operates at the
transition level and seeks to be readily compatible with existing reinforcement learning algorithms.

Pearce et al. (2023) consider a diffusion-based approach to behavioral cloning, whereby a state-
conditional diffusion model may be used to sample actions that imitate prior data. Azar et al. (2012);
Li et al. (2020) provide theoretical sample complexity bounds for model-based reinforcement learn-
ing given access to a generative model.

Model-Based Reinforcement Learning. We note the parallels between the synthetic data we gen-
erate and model-based reinforcement learning (Janner et al., 2019; Yu et al., 2020; Lu et al., 2022a);
model-based methods generate synthetic samples by rolling out from previously seen states. Two
key differences to our method are: SYNTHER synthesizes new experiences without the need to start
from a real state and the generated experiences are distributed exactly according to the data, rather
than subject to compounding model errors due to inaccuracies and policy exploitation. Further-
more, SYNTHER is an orthogonal approach and could in fact be combined with model-based RL by
sampling initial states to rollout from, which could lead to increased diversity.

6 CONCLUSION

In this paper, we proposed SYNTHER, a powerful and general method for upsampling agent expe-
riences in any reinforcement learning algorithm using experience replay. We integrated SYNTHER
with ease on four distinct algorithms, each fine-tuned for its own use case, with no algorithmic
modification. Our results show the potential of synthetic training data when combined with mod-
ern diffusion models. In offline reinforcement learning, SYNTHER allows training from extremely
small datasets, scaling up policy and value networks, and high levels of data compression. In online
reinforcement learning, the additional data allows online agents to use higher update-to-data ratios
leading to increased sample efficiency.

We believe that scaling SYNTHER to more settings would unlock exciting new capabilities for RL
agents. SYNTHER could readily be extended to n-step formulations of experience replay by simply
expanding the input space of the diffusion model. Furthermore, as diffusion models have to date
been largely applied in the visual domain, we expect the findings of this paper to transfer to an even
greater extent in the visual setting. One could leverage the generalization capability of image-based
diffusion models to synthesize novel views and configurations of a pixel-based environment. Finally,
by leveraging guidance for diffusion models (Ho & Salimans, 2021), the generated synthetic data
could be biased towards certain modes, resulting in new, transferable, and composable sampling
strategies for RL algorithms.
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SUPPLEMENTARY MATERIAL

A DATA MODELING

In this section, we provide further details for our data modeling. Our diffusion model generates full
environment transitions i.e., a concatenation of states, actions, rewards, next states, and terminals
where they are present. For the purposes of modeling, we normalize each continuous dimension
(non-terminal) to have 0 mean and 1 std. We visualize the marginal distributions over the state,
action, and reward dimensions on the standard halfcheetah medium-replay dataset in Figure 7 and
observe that the synthetic samples accurately match the high-level statistics of the original dataset.

We note the difficulties of appropriately modeling the terminal variable which is a binary variable
compared to the rest of the dimensions which are continuous for the environments we investigate.
This is particularly challenging for “expert” datasets where early termination is rare. For example,
walker2d-expert only has ≈ 0.0001% terminals. In practice, we find it sufficient to leave the ter-
minals un-normalized and round them to 0 or 1 by thresholding the continuous diffusion samples
in the middle at 0.5. A cleaner treatment of this variable could be achieved by leveraging work on
diffusion with categorical variables (Hoogeboom et al., 2021).

Figure 7: Histograms of the empirical marginal distribution of samples from SYNTHER in blue on the
halfcheetah medium-replay dataset against the original data in orange. Dashed lines indicate the mean ±
one standard deviation in the original dataset. SYNTHER faithfully reproduces the high-level statistics of the
dataset.

16



Reincarnating Reinforcement Learning Workshop at ICLR 2023

A.1 DATA COMPRESSION

An immediate advantage of sampling data from a generative model is compression. In Table 4, we
compare the memory requirements of SYNTHER and the original data by the number of 32-bit float-
ing point numbers used by each for some sample D4RL (Fu et al., 2020) datasets. For the original
data, this simply scales linearly with the size of the dataset. On other hand, SYNTHER amortizes
this in the number of parameters in the denoising network, resulting in a high level of dataset com-
pression, at the cost of sampling speed. This property was also noted in the continual learning
literature with generative models summarizing previous tasks (Shin et al., 2017). As we discuss
in Appendix B.2, sampling is fast with 100K transitions taking around 90 seconds to generate.

Table 4: SYNTHER provides high levels of dataset compression without sacrificing downstream performance
in offline reinforcement learning. Statistics shown are for the standard D4RL MuJoCo walker2d datasets which
has a transition dimension of 42, and the residual denoiser used for evaluation on these environments in Sec-
tion 4.1. Figures are given to 1 decimal place.

Dataset # FP32s in
Original Dataset

# Diffusion
Parameters Compression

mixed 12.6M
6.5M

1.9×
medium 42M 6.5×
medium-expert 84M 12.9×

B HYPERPARAMETERS

The formulation of diffusion we use in our paper is the Elucidated Diffusion Model (EDM, Karras
et al. (2022)). We parametrize the denoising network Dθ as a simple residual MLP.

B.1 DENOISING NETWORK

Our denoising network Dθ is an MLP with skip connections from the previous layer as in Tolstikhin
et al. (2021). Thus each layer has the form given in Equation (3).

xL+1 = linear(activation(xL)) + xL (3)

The hyperparameters are listed in Table 5. The noise level of the diffusion process is encoded by a
Random Fourier Feature (Rahimi & Recht, 2007) embedding. The base size of the network uses a
width of 1024 and depth of 6 and thus has ≈ 6M parameters. We adjust the batch size for training
based on dataset size. For online training and offline datasets with fewer than 1 million samples
(medium-replay datasets) we use a batch size of 256, and 1024 otherwise.

For the following offline datasets, we observe more performant samples by increasing the width up
to 2048: halfcheetah medium-expert, hopper medium, and hopper medium-expert. This raises the
network parameters to ≈ 25M, which remains fewer parameters than the original data as in Table 4.
We provide ablations on the depth and type of network used in Table 7.

Table 5: Default Residual MLP Denoiser Hyperparameters.

Parameter Value(s)
no. layers 6
width 1024
batch size { 256 for online and medium-replay, 1024 otherwise }
RFF dimension 16
activation relu
optimizer Adam
learning rate 3× 10−4

learning rate schedule cosine annealing
model training steps 100K
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B.2 ELUCIDATED DIFFUSION MODEL

For the diffusion sampling process, we use the stochastic SDE sampler of Karras et al. (2022) with
the default hyperparameters used for the ImageNet, given in Table 6. We use a higher number of
diffusion timesteps at 128 for improved sample fidelity. We use the implementation at https://
github.com/lucidrains/denoising-diffusion-pytorch which is released under
an Apache license.

Table 6: Default ImageNet-64 EDM Hyperparameters.

Parameter Value
no. diffusion steps 128
σmin 0.002
σmax 80
Schurn 80
Stmin 0.05
Stmax 50
Snoise 1.003

The diffusion model is fast to train, taking approximately 17 minutes for 100K training steps on a
standard V100 GPU. It takes approximately 90 seconds to generate 100K samples with 128 diffusion
timesteps.

C SYNTHER ABLATIONS

We consider ablations on the number of generated samples and type of denoiser used for our offline
evaluation in Section 4.1.

C.1 SIZE OF UPSAMPLED DATASET
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Figure 8: Ablations on the number of samples generated by SYNTHER for the offline walker medium-replay
dataset. We choose 10 levels log-uniformly from the range [50K, 5M]. We find that performance eventually
saturates at around 5M samples.

In our main offline evaluation in Section 4.1, we upsample each dataset to 5M. We investigate this
choice for the walker medium-replay dataset in Figure 8 and choose 10 levels log-uniformly from
the range [50K, 5M]. Similarly to He et al. (2022), we find that performance gains with synthetic
data eventually saturate and that 5M is a reasonable heuristic for all our offline datasets.
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C.2 NETWORK ABLATIONS

We ablate the hyperparameters of the denoising network, comparing 3 settings of depth from
{2, 4, 6} and analyze the importance of skip connections. The remaining hyperparameters fol-
low Appendix B.1. We choose the hopper medium-expert dataset as it is a large dataset of 2M.
As we can see in Table 7, we see a positive benefit from the increased depth and skip connections
which leads to our final choice in Table 5.

Table 7: Ablations on the denoiser network used for SYNTHER on the hopper medium-expert dataset. We
observe that greater depth and residual connections are beneficial for downstream offline RL performance. We
show the mean and standard deviation of the final performance averaged over 4 seeds.

Network Depth Final Performance

MLP
2 86.8±18.7
4 89.9±17.9
6 100.4± 6.9

Residual MLP
2 78.5±11.3
4 99.3±14.7
6 101.1±10.5

D RL IMPLEMENTATION

For the algorithms in the offline RL evaluation in Section 4.1, we use the ‘Clean Offline Rein-
forcement Learning’ (CORL, Tarasov et al. (2022)) codebase. We take the final performance they
report for the baseline offline evaluation. Their code can be found at https://github.com/
tinkoff-ai/CORL and is released under an Apache license.

For the online evaluation, we consider Soft Actor-Critic (SAC, Haarnoja et al. (2018)) and use the
implementation from the REDQ (Chen et al., 2021) codebase. This may be found at https://
github.com/watchernyu/REDQ and is released under an MIT license. We use the ‘dmcgym’
wrapper for the DeepMind Control Suite (Tunyasuvunakool et al., 2020). This may be found at
https://github.com/ikostrikov/dmcgym and is released under an MIT license.

D.1 DATA AUGMENTATION HYPERPARAMETERS

For the data augmentation schemes we visualize in Figure 1a, we define:

1. Additive Noise (Laskin et al., 2020): adding ϵ ∼ N (0, 0.1) to st and st+1.
2. Multiplicative Noise (Laskin et al., 2020): multiplying st and st+1 by single number ϵ ∼

Unif([0.8, 1.2]).
3. Dynamics Noise (Ball et al., 2021): multiplying the next state delta st+1 − st by ϵ ∼

Unif([0.5, 1.5]) so that st+1 = st + ϵ · (st+1 − st).

D.2 ONLINE RUNNING TIMES

Our online implementation in Section 4.2 uses the default training hyperparameters in Appendix B.1
to train the diffusion model every 10K online steps, and generates 1M transitions each time. On the
200K DMC experiments, ‘SAC (SynthER)’ takes ≈ 21.1 hours compared to ≈ 22.7 hours with
REDQ on a V100 GPU. Both running times are dominated by the use of an update-to-data ratio
(UTD) of 20. We expect that this may be heavily sped-up with early stopping on the diffusion
training, and leave this to future work. The default SAC algorithm with UTD=1 takes ≈ 2 hours.
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