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ABSTRACT

Accurate and robust wireless localization is a critical enabler for emerging 5G/6G
applications, including autonomous driving, extended reality, and smart manu-
facturing. Despite its importance, achieving precise localization across diverse
environments remains challenging due to the complex nature of wireless signals
and their sensitivity to environmental changes. Existing data-driven approaches
often suffer from limited generalization capability, requiring extensive labeled
data and struggling to adapt to new scenarios. To address these limitations, we
propose SigMap, a multimodal foundation model that introduces two key inno-
vations: (1) A cycle-adaptive masking strategy that dynamically adjusts masking
patterns based on channel periodicity characteristics to learn robust wireless repre-
sentations; (2) A novel ”map-as-prompt” framework that integrates 3D geographic
information through lightweight soft prompts for effective cross-scenario adapta-
tion. Extensive experiments demonstrate that our model achieves state-of-the-art
performance across multiple localization tasks while exhibiting strong zero-shot
generalization in unseen environments, significantly outperforming both super-
vised and self-supervised baselines by considerable margins.

1 INTRODUCTION

Wireless localization has evolved from classical model-based approaches to data-driven deep learn-
ing methods, and more recently, to foundation models and large language model (LLM)-based
paradigms. Despite these advances, existing methods still face significant challenges in complex
environments, particularly under non-line-of-sight (NLoS) conditions and in scenarios with rich
multipath propagation.

Traditional localization techniques rely on geometric or signal-strength measurements such as time-
of-arrival (ToA), time-difference-of-arrival (TDoA), angle-of-arrival (AoA), and received signal
strength (RSS) (Chen et al., 2022a). Classical algorithms like MUSIC and OMP are widely used for
parameter estimation (Keskin et al., 2021). However, these methods assume idealized signal prop-
agation conditions and perform poorly in urban environments with significant multipath and NLoS
effects, often resulting in errors exceeding 100 meters (Chen et al., 2024). While some works at-
tempt to mitigate NLoS through filtering or hardware enhancements (Huang et al., 2023; Zhou et al.,
2019), they do not fully exploit environmental semantics from maps or channel characteristics.

To overcome the limitations of model-based methods, data-driven approaches have been extensively
explored. Supervised learning models, including MLPs (Gao et al., 2023), CNNs (Wu et al., 2021),
and LSTMs (Chen et al., 2023), learn direct mappings from channel state information (CSI) to user
positions. While effective in specific settings, these models require large labeled datasets and lack
generalization across environments and configurations (Pan et al., 2025).

To reduce labeling costs, semi-supervised and unsupervised methods have been proposed. Autoen-
coders and GANs are used for CSI reconstruction or data augmentation (Ruan et al., 2023; Chen
et al., 2022b; Junoh & Pyun, 2024). Transfer learning and domain adaptation techniques aim to
bridge distribution gaps (Li et al., 2021). However, these approaches often fail to learn robust,
transferable representations that capture high-level semantic features of the wireless environment.
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Another line of research focuses on error compensation using deep learning. For instance, Chen et al.
(2024) propose a CNN-based method to predict TDoA localization errors from map data, achieving
a 75% error reduction. While promising, such methods typically treat maps as binary obstruction
masks and ignore richer semantic information (e.g., building materials, vegetation, terrain elevation),
limiting their adaptability to diverse and dynamic urban layouts.

Inspired by success in NLP and vision, foundation models pre-trained with self-supervised learn-
ing (SSL) have been introduced to wireless communications. Methods like LWM (Alikhani et al.,
2024) and WirelessGPT (Yang et al., 2025) use masked channel modeling to learn general-purpose
representations. Contrastive learning approaches (Salihu et al., 2024) learn invariant channel fea-
tures. However, these models are not specifically designed for localization and often lack task-aware
semantics.

Several SSL-based pre-training frameworks target localization tasks. CrowdBERT (Han et al., 2024)
and signal-guided masked autoencoders (Wang et al., 2025) use masking strategies for RSS or CIR
reconstruction. However, they are limited to specific tasks and configurations, and often rely on a
single SSL objective, which restricts the diversity of learned representations.

Concurrently, LLMs have been adapted to wireless domains. Shao et al. (2024) propose Wireless-
LLM, integrating domain knowledge via prompt engineering, retrieval-augmented generation, and
tool usage. While effective for protocol understanding and optimization tasks, LLMs struggle with
low-level physical signal processing and are prone to hallucinations when applied to channel-level
reasoning.

1.1 RESEARCH GAPS

Current wireless localization methods face two fundamental limitations:

• Inadequate Handling of Signal Periodicity: Existing self-supervised approaches employ
generic masking strategies that ignore the inherent cyclic patterns in Channel State Infor-
mation (CSI). This allows models to exploit local periodic shortcuts rather than learning
meaningful global representations of signal propagation.

• Superficial Geographic Integration: While some methods incorporate basic map data,
they fail to capture the rich spatial-topological relationships in 3D environments. The fu-
sion between geometric constraints and channel representations remains shallow and lacks
interpretability.

1.2 CONTRIBUTIONS

This work addresses these gaps through three key contributions:

• Cycle-Adaptive Masked Modeling: We introduce a novel masking strategy that dynam-
ically adapts to CSI periodicity by computing row-wise cross-correlation and generating
shift-aware patterns. This disrupts periodic shortcuts and forces learning of globally mean-
ingful signal representations.

• Map-Conditioned Prompt Tuning: We develop a geographic prompt mechanism that en-
codes 3D map information via graph neural networks. These prompts enable interpretable
fusion of environmental constraints during fine-tuning, enhancing accuracy in complex
multipath scenarios.

• Parameter-Efficient Generalization: Our foundation model achieves state-of-the-art per-
formance with limited labeled data and demonstrates strong zero-shot generalization to
unseen environments and base station configurations.

2 PRELIMINARIES

This section introduces the core concepts of wireless channel modeling and formally defines the lo-
calization problem. The physical principles explained here are directly leveraged by our geographic
prompt tuning method.
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2.1 WIRELESS CHANNEL MODELING FOR LOCALIZATION

The fundamental premise of our work is that Channel State Information (CSI) contains geometric
relationships between transmitters and receivers. As shown in Figure 1, wireless signals propagate
through Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) paths, creating unique spatial finger-
prints in the CSI data.

Figure 1: Wireless propagation paths in urban environments. LoS represents direct propagation,
while NLoS paths result from reflections and diffractions.

For a MIMO-OFDM system with Nt transmit antennas and Nr receive antennas, the CSI matrix
H[k] ∈ CNr×Nt at subcarrier k can be expressed as the superposition of both LoS and NLoS
components:

H[k] = αLoSe
−j2πτLoSfkar(θ

r
LoS)at(θ

t
LoS)

H︸ ︷︷ ︸
LoS component

+

LNLoS∑
l=1

αle
−j2πτlfkar(θ

r
l )at(θ

t
l )

H

︸ ︷︷ ︸
NLoS components

(1)

where LNLoS denotes the number of NLoS multipath components, αl and τl represent the complex
gain and delay of the l-th path, fk is the frequency of the k-th subcarrier, and ar(θ

r
l ), at(θ

t
l ) are the

array steering vectors at receiver and transmitter, respectively.

The key insight for localization is that each path in equation equation 1 carries geometric infor-
mation. Single-base station localization is possible because CSI contains time delay (related to
distance) and angle information that can define a spatial vector. Multipath effects provide multiple
such constraints, enabling rough positioning even without precise time measurements. Multi-base
station setups provide richer information by offering diverse spatial perspectives.

2.2 RAY-TRACING AND MAP ALIGNMENT

We use ray-tracing to generate realistic training data that captures the mapping between physical
geometry and wireless channels. The process can be abstracted as:

(pBS,pUE,M)
Ray-tracing−−−−−−→ HCSI (2)

where pBS is the base station position, pUE is the user position, and M is the 3D environment map.

The map M serves two crucial purposes: 1) generating physically realistic training data, and 2)
providing geometric constraints during inference to resolve multipath ambiguity. This alignment
process helps decompose raw CSI into its constituent LoS and NLoS components, which is learned
implicitly by our model through geographic prompt tuning.
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2.3 PROBLEM FORMULATION: WIRELESS LOCALIZATION

We define the wireless localization problem as estimating user equipment position from channel
measurements and environmental context.

Inputs:

• Channel State Information H ∈ CNr×Nt×Nsc from one or multiple base stations
• 3D environment map M containing building geometries

• Base station positions PBS = {p(1)
BS , . . . ,p

(T )
BS }

Output: Estimated user position p̂UE ∈ R3.

Objective: Learn a mapping function fθ that minimizes:

E
[
∥fθ(H,M,PBS)− pUE∥2

]
(3)

The inclusion of map information M differentiates our approach from conventional CSI-only meth-
ods, enabling more accurate and physically consistent localization.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK

Our proposed wireless localization foundation model addresses the fundamental challenge of achiev-
ing accurate positioning across diverse environments with minimal labeled data requirements. The
framework follows a two-stage learning paradigm consisting of self-supervised pre-training on un-
labeled CSI data followed by prompt-based fine-tuning for specific localization tasks. This approach
enables the model to learn general-purpose representations of wireless signal propagation that can
be efficiently adapted to new environments.

As illustrated in Figure 2, the framework integrates three core components: (1) a transformer-based
backbone network that captures long-range dependencies in CSI data, (2) a novel cycle-adaptive
masked modeling strategy that prevents shortcut learning in periodic signals, and (3) a geographic
prompt tuning mechanism that incorporates environmental constraints during fine-tuning. The key
innovation lies in our cycle-aware masking approach that dynamically adapts to signal periodicity,
combined with map-conditioned prompts that enable efficient adaptation with minimal parameter
updates.

Wireless Large Model with Map-Signal Joint Modeling

Data Pretrain and Finetune

Pretrain

Finetune

Tasks

Decoder1: Single-Loc
Decoder2: Multi-Loc

… …

Decoder1: Strip-Mask
Decoder2: Grid-MaskBackbone

3D Map
with BSLoc

Origin
Channel

Prompt Tokens

GNN

Masking

Backbone

Head

Head

Figure 2: Overall architecture of our wireless localization foundation model, showing the two-stage
learning process with self-supervised pre-training and prompt-based fine-tuning.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 SIGNAL REPRESENTATION AND PREPROCESSING

Wireless Channel State Information (CSI) provides a rich characterization of the propagation envi-
ronment by capturing multipath effects, fading characteristics, and spatial diversity. In multi-antenna
OFDM systems, we represent the channel frequency response as a complex-valued tensor:

H ∈ CNr×Nt×Ns (4)

where Nr, Nt, and Ns denote the number of receive antennas, transmit antennas, and subcarriers
respectively. Each element hi,j [k] represents the complex channel gain between specific antenna
pairs at different subcarriers.

To facilitate deep learning processing while preserving critical phase information, we transform the
complex CSI data into a real-valued representation through channel-wise separation:

X = [ℜ(H),ℑ(H)] ∈ R2×Nr×Nt×Ns (5)

This representation maintains the spatial and frequency diversity essential for accurate localization
while being compatible with standard neural network operations.

3.3 CYCLE-ADAPTIVE MASKED MODELING

Traditional masked autoencoding approaches often struggle with wireless signals due to their in-
herent periodic patterns, which can be exploited as learning shortcuts. Our cycle-adaptive mask-
ing strategy addresses this limitation by dynamically generating mask patterns that disrupt periodic
structures while preserving semantically meaningful information.

The core insight is to detect dominant periodicities in the CSI data and generate masks that prevent
simple interpolation-based reconstruction. For each input sample, we compute shift patterns using
cross-correlation analysis and generate adaptive mask patterns:

Mcycle[i, j] =

{
0 if |j − (j0 + i · dfinal)| ≤ w

1 otherwise
(6)

where dfinal represents the detected periodicity shift, j0 is the starting offset, and w controls the
mask width. This approach ensures that the model must learn meaningful signal representations
rather than relying on pattern repetition, as illustrated in Figure 3.

Adaptive mask

Original CFR

Strip-Masked CFR

Grid-Masked CFR

Figure 3: Illustration of our cycle-adaptive masking strategy. The mask pattern (right) is dynamically
generated based on the detected periodicity in the CSI amplitude data (left), preventing the model
from exploiting simplistic periodic shortcuts.

The reconstruction objective trains the model to recover the original signal from masked inputs:

LMAE = EX

[
∥X− fθdec(Xmasked)∥2

]
(7)
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3.4 GEOGRAPHIC PROMPT TUNING

Following pre-training, we employ a parameter-efficient fine-tuning strategy that leverages geo-
graphic information from 3D environment models. The core innovation is the transformation of
spatial relationships between buildings and base stations into a set of learnable prompt tokens that
guide the pre-trained model without updating its core parameters.

Algorithm 1 Geographic Prompt Generation
1: procedure GENERATEGEOPROMPT(M,PBS)
2: h

(0)
v = MLPvert(v;Wvert) ▷ Encode vertex positions

3: h
(0)
BS = MLPBS(pBS;Wbs) ▷ Encode BS positions

4: Vinit = {h(0)
v } ∪ {h(0)

BS }
5: for l = 1 to 2 do ▷ 2 Graph convolution layers
6: for i ∈ V do
7: h

(l)
i = σ

(
W(l)h

(l−1)
i +

∑
j∈N (i) U

(l)h
(l−1)
j

)
8: end for
9: end for

10: g = GlobalMeanPool({h(2)
i }|V|

i=1) ▷ Aggregate graph information
11: gprompt = MLPproj(g;Wproj) ▷ Project to prompt dimension
12: return gprompt
13: end procedure

The process begins with the construction of a heterogeneous graph G = (V, E) that encodes the spa-
tial configuration of a given scene. The scene is defined by a 3D building mesh M, represented by a
set of vertices {vi}Vi=1 where each vi ∈ R3, and the positions of T base stations, denoted as PBS =
{pt}Tt=1 where each pt ∈ R3. The node set of the graph is the union of these building vertices and
base station positions: V = {v1, . . . ,vV } ∪ {p1, . . . ,pT }. To capture the inherent proximity rela-
tionships in 3D space, the edge set E is constructed using Delaunay triangulation over the node set V ,
formally defined as E = {(i, j) | nodes i and j are connected in the Delaunay triangulation of V}.

The GCN update rule for each layer is formally defined as:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
where Ã = A + I is the adjacency matrix with self-connections, D̃ is the degree matrix of Ã, and
W(l) are the trainable weights of layer l.

The generated geographic prompt gprompt ∈ RDp is integrated into the pre-trained Transformer’s
input sequence. The complete input sequence Tinput ∈ R(1+1+L)×D is constructed by prepending
the prompt to the existing sequence. It consists of the frozen classification token tcls, the trainable
geographic prompt token Tgeo = gprompt (for a single prompt), and the frozen sequence of CSI
measurement tokens TCSI. This combined sequence is then added to the frozen positional encoding
Epos:

Tinput = [tcls;Tgeo;TCSI] +Epos

The self-attention mechanism then operates on this extended sequence. The Query (Q), Key (K),
and Value (V) matrices are derived by projecting the input sequence with the frozen pre-trained
weight matrices WQ, WK , and WV :

Q = TinputW
Q, K = TinputW

K , V = TinputW
V

The attention output is computed as Attention(Q,K,V) = softmax
(

QKT

√
dk

)
V.

The parameter efficiency of this approach is a key advantage. The only parameters updated during
fine-tuning are those of the GNN (θgnn), the projection MLP (θproj), and the task-specific head (θtask).
The optimization process is formulated as:

min
θgnn,θproj,θtask

E(X,M,PBS,y)∼Dtask [Ltask(f(X,M,PBS),y)]

where the complete forward pass is defined as f(X,M,PBS) = fθtask (fθenc ([Tgeo;TCSI])).
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3.5 TASK-SPECIFIC ADAPTATION

We design specialized output heads to handle different localization scenarios. For single-base station
localization, the user equipment position is directly predicted from the final [CLS] token using a
simple MLP head:

p̂UE = MLPsingle(tcls;Wsingle) (8)

For multi-base station scenarios, we employ an attention-based fusion mechanism that dynamically
integrates information from all available base stations. The process begins by extracting the [CLS]
tokens from all T base stations and stacking them into a tensor B ∈ RT×D. We then compute
attention weights αt for each base station using a learned attention function:

αt =
exp(vT tanh(Wattnt

(t)
cls ))∑T

j=1 exp(v
T tanh(Wattnt

(j)
cls ))

(9)

Each base station’s [CLS] token is processed independently through dedicated MLP heads to gen-
erate preliminary position estimates p̂(t)

UE. The final position estimate is obtained through weighted
fusion:

p̂UE =

T∑
t=1

αt · MLP(t)
multi(t

(t)
cls ;W

(t)
multi) (10)

This attention mechanism allows the model to dynamically prioritize contributions from different
base stations based on their signal quality and geometric configuration, with stations having stronger
signals or more favorable geometric relationships receiving higher weights. The comprehensive
framework demonstrates how self-supervised pre-training combined with geographic-aware prompt
tuning can achieve robust wireless localization across diverse environments while maintaining pa-
rameter efficiency and practical deployability.

4 EXPERIMENTS

We conduct comprehensive experiments to evaluate our wireless localization foundation model
across diverse scenarios. The experiments address four key questions: (1) How does our method
compare to state-of-the-art approaches? (2) What is the impact of geographic information? (3)
How effective is our cycle-adaptive masking? (4) How well does our method generalize to new
environments?

4.1 DATASETS AND EVALUATION METRICS

We evaluate our method on the DeepMIMO dataset (Alkhateeb, 2019), using the O1 3p5 urban
scenario for both pre-training and fine-tuning. The dataset provides realistic CSI data generated
through ray-tracing simulations. Detailed configuration parameters are provided in Appendix B.3.

Evaluation metrics include Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Cu-
mulative Distribution Function at 1 meter (CDF@1m). All results are averaged over 5 independent
runs.

4.2 MAIN RESULTS

We compare against OMP (compressed sensing), CNN-based, SWiT (Salihu et al., 2024), and
LWLM (Pan et al., 2025).

Single-BS localization under NLoS represents one of the most challenging scenarios. As shown in
Table 1, SIGMAP with geographic information achieves an MAE of 1.564m, RMSE of 5.675m,

7
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and CDF@1m of 60.5%, outperforming the best baseline (LWLM) by 34.4% in MAE and more
than doubling the CDF@1m.

The key advantage stems from our NLoS-aware attention mechanism that explicitly models multi-
path propagation:

αi =
exp

(
ϕ
(
o
(i)
s ·WNLoS

))∑
j exp

(
ϕ
(
o
(j)
s ·WNLoS

)) , (11)

which allows the model to differentiate between direct and reflected paths, significantly reducing
positioning ambiguity.

Table 1: Single-BS localization under NLoS.
Method MAE (m) RMSE (m) CDF@1m (%)
SIGMAP (w/ map) 1.564 5.675 60.5
SIGMAP (w/o map) 2.275 8.532 31.0
LWLM 2.382 5.822 25.3
SWiT 2.586 8.967 24.3
CNN 2.943 9.423 21.7
OMP 3.287 9.851 15.4

Multi-BS collaboration leverages spatial diversity to overcome NLoS limitations. Table 2 shows
that SIGMAP with map achieves 0.673m MAE, 1.099m RMSE and 84.5% CDF@1m, improv-
ing the second-best result (SIGMAP w/o map) by 14.7% in MAE and 7.0 percentage-points in
CDF@1m.As further visualized in Figure 4, SIGMAP dominates accuracy, robustness and preci-
sion simultaneously. The CDF curves are shown in B.5

Table 2: Multi-BS (4-BS) collaborative localization.
Method MAE (m) RMSE (m) CDF@1m (%)
SIGMAP (w/ map) 0.673 1.099 84.5
SIGMAP (w/o map) 0.789 1.285 77.5
LWLM 0.828 1.178 75.6
SWiT 1.102 1.368 68.1
CNN 1.398 1.731 59.3
OMP 1.685 2.089 50.6

Figure 4: Comprehensive performance comparison across metrics. Our method shows consistent
superiority in accuracy and robustness.

4.3 EFFECTIVENESS OF CYCLE-ADAPTIVE MASKING

Table 3 compares masking strategies. Cycle-adaptive masking (last row) yields the best trade-off:
0.673m MAE and 84.5% CDF@1m, outperforming fixed grid or strip masking. Dynamic dis-

8
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ruption of periodic CSI patterns forces the model to learn generalizable features instead of shortcut
interpolation.

Table 3: Effect of cycle-adaptive masking strategy.
Method MAE (m) RMSE (m) CDF@1m (%)
Grid-masking only 0.770 1.176 80.3
Strip-masking only 0.753 0.972 75.3
Adaptive masking 0.673 1.099 84.5

4.4 GENERALIZATION TO NEW ENVIRONMENTS

We evaluate the generalization capability of our method on completely unseen ray-tracing scenarios
that were not encountered during pre-training. This represents a challenging cross-domain transfer
learning setting where the model must adapt to new environmental characteristics with minimal
fine-tuning data.

Transfer results on three distinct unseen scenarios are summarized in Table 4. In all experiments,
only the downstream task heads are fine-tuned using limited target samples (approximately 100
instances per scenario), while the self-supervised backbone remains frozen. This few-shot learning
setup demonstrates the method’s ability to rapidly adapt to new environments.

Table 4: Generalization performance on unseen ray-tracing scenarios with minimal fine-tuning.
Method MAE (m) RMSE (m) CDF@1m
SIGMAP (w/ map) 1.026 1.551 66.43%
SIGMAP (w/o map) 1.282 5.824 63.91%
LWLM 2.213 11.837 63.22%

Our method equipped with geographic prompts achieves 1.026m MAE on the most favorable un-
seen scenario, representing a 28.7% improvement over the strong LWLM baseline (2.213m →
1.026m) while updating merely 0.4% of parameters. The geographic-aware variant also surpasses
the map-free version by 21.6% (1.282m → 1.026m), demonstrating the critical role of 3D environ-
mental information in cross-scenario adaptation.

Notably, the method maintains robust performance across varying environmental challenges, with
CDF@3m exceeding 92% in all scenarios. This consistent reliability, combined with the exceptional
parameter efficiency, confirms that our approach learns environment-agnostic yet structure-aware
representations that transfer effectively to completely new wireless environments.

5 CONCLUSION

This paper presents a wireless localization foundation model that achieves state-of-the-art perfor-
mance through cycle-adaptive masking and geographic prompt tuning. Our approach delivers strong
and consistent accuracy in both single-BS and multi-BS tasks, and generalizes robustly across pre-
viously unseen geographic scenarios.

Future work will explore two key directions: extending beyond localization to develop general-
purpose wireless foundation models for channel estimation, beamforming and signal processing
tasks; and integrating visual modalities such as images and point clouds with wireless signals to
create richer environmental representations when 3D maps are incomplete or unavailable.

These advances will lead to more versatile and practical wireless perception systems for emerging
applications in smart infrastructure and mobile computing.
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A STATEMENTS

A.1 USE OF LLMS STATEMENT

We employed large-language-model tools primarily for language polishing and phrasing sugges-
tions. All technical content, experimental designs, and scientific interpretations were conceived,
reviewed, and approved by the authors.

A.2 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we have consolidated the complete pipeline—dataset generation, model
pre-training, fine-tuning, and evaluation scripts—in an anonymous GitHub repository (https:
//anonymous.4open.science/r/SigMap_anonymous-838D)

B DETAILED SETUPS OF OUR EXPERIMENTS

B.1 COMPUTE RESOURCES

Our experiments were conducted on a computing server equipped with the following specifications:

• GPUs: 6 × NVIDIA A800 80GB PCIe
• GPU Memory: 80 GB per GPU (480 GB total)
• Driver Version: 550.144.03
• CUDA Version: 12.4

The A800 GPUs provided the necessary computational power for training large-scale transformer
models and processing high-dimensional CSI data with complex shift pattern augmentations.

B.2 GENERAL CONFIGURATIONS

The input to the model is the complex CFR matrix Hs. To facilitate neural network processing, we
decompose it into its magnitude and phase components, denoted as Hs, and rewrite it as

Hs = [|Hs|,∠Hs] ∈ R2×Nant×Nsubc . (12)

The input Hs is a 3D tensor of shape (2, Nant, Nsubc), with the first dimension corresponding to
the amplitude and phase, respectively. Although Hs represents a specific format of the channel
input, for notational consistency throughout the paper, we will still use Hs to refer to the general
representation of the input channel data in all subsequent discussions.

We employed a transformer-based encoder-decoder framework specifically designed for wireless
channel modeling and localization tasks. The key architectural components include:

• Input Dimensions: B × C × T × F where:
– B: Batch size (32)
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– C: Channel dimensions (2 for real/imaginary components)
– T : Time/Antenna dimension (128)
– F : Frequency/Subcarrier dimension (32)

• Encoder: Multi-head self-attention layers with positional encoding

• Decoder: Cross-attention mechanisms for coordinate prediction

• Feature Dimension: 512-dimensional latent representations

Table 5: Training Hyperparameters
Parameter Value
Batch Size 32
Optimizer Adam
Learning Rate 1× 10−4

Weight Decay 1× 10−5

Training Epochs 300
Gradient Clipping 1.0
Learning Rate Schedule Cosine Annealing
Warm-up Epochs 10

B.3 DATASET PARAMETERS

Table 6: Detailed DeepMIMO dataset configuration parameters
Parameter Pre-training Fine-tuning
Scenario O1 3p5 O1 3p5
Number of BSs 4 4
BS IDs [3, 4, 9, 10] [3, 4, 9, 10]
Frequency bands (MHz) [10, 20, 50] 10
Bandwidth (GHz) [0.01, 0.02, 0.05] 0.01
Subcarriers 128 128
Antenna elements 32 32
User distribution Uniform Random
User subsampling 100% 2%
Number of paths 5 5
CSI samples 480,000 12,000
Train/Val/Test split - 10,000/1,000/10,00

The pre-training data was generated using the following key parameters:

• Scenario: O1 3p5 (urban outdoor environment)

• Active base stations: 3, 4, 9, 10

• Frequency bands: 10MHz, 20MHz, 50MHz

• Antenna configuration: 32-element uniform linear array

• Subcarrier configuration: 128 subcarriers, all selected

• User coverage: Complete row coverage (5200 users)

Each sample contains complex channel data (real and imaginary components), user and base station
locations, line-of-sight status, distance information, and angle-of-departure parameters.

The fine-tuning dataset shares the same environmental scenario but with different sampling strategy:

• Single frequency band: 10MHz

• User subsampling: 2% of available users

• Data split: 10,000 training, 1,000 validation, 1,000 test samples

12
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• Quality filtering: Only samples with valid path information are included

The dataset ensures comprehensive coverage of the environment while maintaining realistic user
distribution patterns for effective model evaluation.

B.4 DETAILS OF DATA AUGMENTATION EXPERIMENTS

CSI amplitude data often exhibits periodicity due to hardware properties of RF chains, such as
antenna spacing and carrier frequency. For instance, in wireless systems with uniform linear arrays,
channel responses between antennas may repeat periodically after a fixed number of antennas.

In the process of reconstructing masked channel data using a Vision Transformer (ViT)-based
Masked Autoencoder (MAE), masking only individual rows or columns could allow the model to
easily learn superficial periodic patterns, thereby failing to capture global features from redundant
information.

To address this, we adopted a classical time-series method: computing the cross-correlation coeffi-
cient between each row of the Channel Frequency Response (CFR) matrix and the next row. Given
that each row has the same length, significant boundary effects emerge. To mitigate this, we re-
stricted comparisons only to valid regions, avoiding boundary artifacts. In the example provided,
row shifts vary (e.g., d = 8, d = -3, d = 0, see Fig. 5), which can be positive, negative, or zero. This
motivated our adaptive masking strategy.

When the bandwidth equals the row-wise shift amount, adjacent masked bands connect end-to-end,
forming visually continuous diagonal strips without gaps. This represents the minimum critical
width required to achieve solid and continuous masking. The shift pattern augmentation technique
is mathematically formulated as follows:

Mshift = GenerateShiftMask(d,Na, Ns, T, F ) (13)

where:

• d: Slope parameter controlling shift direction and magnitude
• Na: Number of antenna-based masks (8)
• Ns: Number of subcarrier-based masks (32)
• T : Time dimension size (128)
• F : Frequency dimension size (32)

The shift pattern generation algorithm proceeds through these steps:

1. Parameter Initialization:

Bandwidth bw = |d|
Half-bandwidth hw = ⌊bw/2⌋

Padding P = hw

2. Matrix Padding: Expand frequency dimension to accommodate shifts:

Fpadded = F + 2P (14)

3. Antenna-based Mask Generation: For i = 1 to Na:

Start column c0 ∼ U(0, F ) (15)
Column positions c(t) = c0 − t · d+ P (16)

Mask band B(t) = [c(t)− hw, c(t) + hw] ∩ [0, Fpadded] (17)

4. Subcarrier-based Mask Generation: For j = 1 to Ns:

Start row r0 ∼ U(0, T ) (18)
Column positions c(t) = (t− r0) · (−d) + P (19)

Mask band B(t) = [c(t)− hw, c(t) + hw] ∩ [0, Fpadded] (20)
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5. Mask Application: The final augmented input is computed as:

Xaugmented = X ⊙M + (1−M)⊙ Tmask (21)

where Tmask represents learnable mask tokens.

Figure 5: CSI Amplitude Heatmaps for Different Shift Patterns

B.5 LOCALIZATION ERROR CDF CURVES

The Cumulative Distribution Function (CDF) of localization error measures the probability that the
positioning error is less than or equal to a given distance. It is the key metric used in Section 4.2
(Main Results) to compare accuracy and robustness across methods. Figures 6 and 7 plot these CDFs
for single-BS and 4-BS collaborative scenarios, respectively. A steeper curve and higher value at
1 m indicate better performance; SIGMAP (w/ map) reaches 60.5% and 84.5% CDF@1m in the two
settings, clearly outperforming all baselines.

Figure 6: Single-Base Station Localization Performance Comparison

C CHARACTERISTICS OF CHANNEL DATA

Wireless Channel State Information (CSI) data exhibits unique characteristics that distinguish it from
conventional vision or language modalities and even from generic time series and spatio-temporal
data. These traits motivated the antenna–subcarrier joint masking used in SigMap.
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Figure 7: Multi-Base Station Localization Performance Comparison

C.1 UNIQUE DIMENSIONALITY: SPATIAL-TEMPORAL-SPECTRAL STRUCTURE

A CSI tensor H captured by a multi-antenna OFDM system is inherently multi-dimensional, span-
ning three critical domains:

• Spectral Domain (Subcarriers): Represents the frequency-selective fading of the channel.
The correlation across subcarriers k is a function of the delay spread τmax of the multipath
environment, often modeled by the channel’s frequency correlation function.

• Spatial Domain (Antennas): Captures the geometric aspects of the propagation. The
correlation across antenna elements n is a function of the angle spread θspread and array
geometry, described by the spatial correlation matrix Rspatial = E[HfH

H
f ].

• Temporal Domain (Snapshots): Represents the time-varying nature of the channel due to
mobility or environmental changes, characterized by the Doppler spread fd.

This structure can be formalized as a 3D tensor H ∈ CNant×Nsc×Ntime , making it a Spatial-Temporal-
Spectral data cube. This is distinct from:

• Time Series: Which are typically 1D (Ntime) and lack explicit spatial and spectral structure.
• Spatio-Temporal Data (e.g., traffic grids, videos): Which are often 2D+Time (Height×
Width×Time) with spatial homogeneity. The spatial dimensions in CSI are non-grid-like
(antenna array geometry) and coupled with the spectral domain.

C.2 IMPLICATIONS FOR FOUNDATION MODEL DESIGN

The aforementioned characteristics necessitate specialized adaptations in foundation model archi-
tecture and pre-training strategies, moving beyond direct applications of models designed for other
modalities.

• Beyond Standard ViT Patches: While Vision Transformers (ViTs) process images by
splitting them into regular 2D patches, this is suboptimal for CSI. Our cycle-adaptive mask-
ing strategy (Sec. 3.2) is a direct response to this, designed to respect the inherent period-
icity and structure within the spatial-spectral planes of the CSI tensor, rather than treating
it as a generic image.

• Beyond Standard MAE for Images: Masked Autoencoding (MAE) for images relies on
the intuition that adjacent pixels are highly correlated. In CSI, the correlation structure
is more complex and governed by wireless physics. A random masking strategy fails to
exploit the known structure along the antenna and subcarrier dimensions. Our method
explicitly leverages this domain knowledge to create a more challenging and meaningful
pre-training task.

• Beyond NLP and Time Series Models: While models for natural language (e.g., GPT)
or time series may handle 1D sequences, they are not equipped to natively handle the
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intertwined 3D correlations present in CSI. The success of SigMap hinges on its ability to
simultaneously learn representations across these three domains through its tailored pre-
training objectives.

In conclusion, the design of SigMap is a principled approach to building a foundation model that
respects the unique inductive biases of wireless signal data, rather than forcing the data to conform
to architectures designed for fundamentally different modalities.
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