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Abstract

Human motion generation is essential for fields such001
as animation, robotics, and virtual reality, requiring mod-002
els that effectively capture motion dynamics from text de-003
scriptions. Existing approaches often rely on Contrastive004
Language-Image Pretraining (CLIP)-based text encoders,005
but their training on text-image pairs constrains their abil-006
ity to understand temporal and kinematic structures in-007
herent in motion and motion generation. This work in-008
troduces MoCLIP, a fine-tuned CLIP model with an addi-009
tional motion encoding head, trained on motion sequences010
using contrastive learning and tethering loss. By explic-011
itly incorporating motion-aware representations, MoCLIP012
enhances motion fidelity while remaining compatible with013
existing CLIP-based pipelines and seamlessly integrating014
into various CLIP-based methods. Experiments demon-015
strate that MoCLIP improves Top-1, Top-2, and Top-3 ac-016
curacy while maintaining competitive FID, leading to im-017
proved text-to-motion alignment results. These results high-018
light MoCLIP’s versatility and effectiveness, establishing it019
as a robust framework for enhancing motion generation.020

1. Introduction021

Generating realistic human motion is a challenging goal in022
computer vision and graphics, with broad applications in023
fields such as animation [1, 4, 7, 51], virtual/augmented024
reality [10, 14], gaming [20, 46, 54], and robotics [40,025
44]. Human motion generation remains challenging due026
to the high diversity of possible movements [5]. Models027
must learn complex spatio-temporal dynamics and gener-028
ate physically plausible, meaningful sequences. Moreover,029
collecting large-scale datasets with rich annotations is dif-030
ficult [27], and it often requires advanced frameworks for031
automated annotating process [26]. Motion capture data is032
costly to acquire and often limited in semantic scope [42].033
Even recent datasets that pair motions with textual labels034
cover only a portion of the motion manifold and fail to cap-035

ture the full richness of natural language descriptions [42]. 036
A variety of methods have been explored to tackle hu- 037

man motion generation. Conditional generation is a com- 038
mon theme, where motion is produced in response to some 039
input like an action category, a textual description, a past 040
motion sequence, or pose [13, 29, 52]. More recent ap- 041
proaches incorporate natural language as a conditioning 042
signal, aiming to generate motions from text descriptions. 043
These text-to-motion models demonstrated encouraging re- 044
sults on short, template-like descriptions (e.g. “a person 045
walks forward”) and small datasets, but often struggle with 046
longer or more complex descriptions that go beyond the 047
training data’s distribution [29, 48]. 048

To overcome data limitations, researchers use genera- 049
tive frameworks and pre-trained models. Diffusion mod- 050
els, successful in image and audio generation, have been 051
adapted for motion generation, producing smooth and di- 052
verse motions with State-Of-The-Art (SOTA) performance 053
[9, 43]. However, while diffusion-based methods continue 054
to advance, they remain computationally demanding. 055

CLIP-based approaches leverage the rich prior knowl- 056
edge from contrastive language–image pre-training (CLIP) 057
[35] to enhance motion models with semantic understand- 058
ing. By aligning motion representations with CLIP’s vision- 059
language feature space, these methods benefit from the 060
broad semantic coverage learned from 400 million image- 061
text pairs. MotionCLIP [42] pioneered this alignment by 062
training a motion autoencoder whose latent space corre- 063
sponds directly to CLIP’s text and image embeddings, en- 064
abling motion synthesis from novel textual prompts without 065
modifying CLIP’s pre-trained representations. 066

While these approaches enhance motion generation by 067
leveraging CLIP’s semantic structure, CLIP itself is pri- 068
marily trained on text-image pairs and is not explicitly tai- 069
lored for capturing temporal progression or intricate kine- 070
matic details. Although it effectively models relationships 071
between language and static visual content, applying CLIP- 072
based representations directly to motion tasks may not fully 073
account for the temporal coherence and natural movement 074
patterns required for high-fidelity motion generation. 075
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In this work, we propose MoCLIP, a novel human mo-076
tion generation model that explicitly extends the standard077
CLIP architecture by integrating a dedicated motion en-078
coder trained via contrastive learning on motion sequences.079
Unlike MotionCLIP, which maintains CLIP’s pre-trained080
embeddings, MoCLIP fine-tunes CLIP’s text encoder to081
shift its embeddings toward motion-oriented representa-082
tions, inherently capturing the temporal dynamics and in-083
tricate kinematic details essential for realistic motion syn-084
thesis. Additionally, MoCLIP incorporates a distillation085
mechanism (tethering loss) to preserve CLIP’s rich seman-086
tic knowledge while adapting it explicitly to the motion087
domain. By constructing a joint motion-text latent space,088
MoCLIP aligns motion sequences with corresponding nat-089
ural language descriptions, enabling our transformer-based090
motion generator to produce semantically coherent, high-091
fidelity human motion.092

Our model maintains compatibility with existing CLIP-093
based pipelines, allowing seamless integration into any sys-094
tem. By systematically exposing CLIP’s encoder to motion-095
sequence data, MoCLIP refines the alignment between tex-096
tual prompts and 3D motion representations without sacri-097
ficing the model’s broad language-understanding capabili-098
ties. Quantitatively, MoCLIP achieves superior or compet-099
itive results against SOTA, and qualitatively it exhibits ro-100
bust generalization to novel inputs.101

Our research explores the following contributions:102
• Enhancing CLIP for human motion by introducing an ad-103

ditional motion head trained with contrastive learning,104
augmenting a standard CLIP encoder to encode tempo-105
ral and kinematic aspects of motion data into the textual106
latent space.107

• We demonstrate MoCLIP’s effectiveness in capturing108
motion dynamics by integrating it into three different vi-109
sion pipelines, improving Top-1, Top-2, and Top-3 accu-110
racy over standard CLIP-based models.111

• To analyze the effects of our training and contributions,112
we conduct an ablation study, comparing an advanced113
MoCLIP with a naive baseline by examining different114
training features.115

2. Related Works116

Early works primarily used recurrent neural networks117
(RNNs) for deterministic sequence generation. Approaches118
such as [2, 3, 19] employed RNN-based sequence-to-119
sequence models to map text directly to motion. However,120
these models suffered from limited diversity and struggled121
to maintain temporal coherence in longer sequences.122

Variational and Autoencoder-based Models: Varia-123
tional Autoencoders (VAEs) are being utilized in many124
computer vision fields [25, 39, 53]. As for motion genera-125
tion, models such as T2M [15] and TEMOS [29] introduced126

transformer-based VAEs to learn shared latent spaces, en- 127
abling diverse motion generation conditioned on text de- 128
scriptions. These approaches improved text-motion align- 129
ment and diversity metrics over earlier deterministic meth- 130
ods [14, 16, 29]. Furthermore, reciprocal generation ap- 131
proaches such as TM2T [16] demonstrated improved se- 132
mantic alignment through simultaneous training of text-to- 133
motion and motion-to-text tasks. 134

Autoregressive Transformer Models: recently gained 135
popularity [11, 28, 45]. In motion generation, leveraging 136
discrete latent representations obtained via vector quantized 137
variational autoencoders (VQ-VAEs) [5, 12, 37] has be- 138
come a known practice. Notably, methods such as T2M- 139
GPT [47], MMM [31], and BAMM [30] demonstrated sig- 140
nificant performance gains in realism, diversity, and seman- 141
tic alignment by modeling human motion generation as dis- 142
crete token prediction. T2M-GPT, for example, combined a 143
simple CNN-based VQ-VAE with GPT-style transformers, 144
achieving top-level fidelity scores (low FID) and compet- 145
itive semantic alignment [47]. MMM and BAMM intro- 146
duced masked autoregressive strategies to handle bidirec- 147
tional context effectively, improving controllability and se- 148
quence coherence [30, 31]. Thus VQ-VAEs, have become 149
foundational components in contemporary motion synthe- 150
sis, facilitating discrete latent representation, which signifi- 151
cantly improved diversity and semantic alignment with text 152
compared to previous approaches [16, 30, 31, 47]. 153

CLIP-based Approaches: Recent methods have utilized 154
pre-trained vision-language models such as CLIP [34] for 155
human motion generation. MotionCLIP [42] aligns mo- 156
tion latent spaces directly with CLIP’s semantic text embed- 157
dings, enabling zero-shot generalization. However, CLIP 158
embeddings primarily capture static image-text semantics, 159
which may not fully represent temporal and kinematic de- 160
tails essential for realistic motion synthesis. Additionally, 161
direct fine-tuning of CLIP embeddings can lead to catas- 162
trophic forgetting of pre-trained semantic knowledge [24]. 163
MoCLIP addresses these issues with a specialized fine- 164
tuning strategy that explicitly integrates motion-aware rep- 165
resentations into CLIP’s semantic space without requiring a 166
separate motion encoder during inference, thus effectively 167
balancing semantic retention and temporal specificity. 168

3. Methodology 169

We propose a specialized fine-tuning strategy for the CLIP 170
model to capture the spatio-temporal patterns inherent in 171
graph-based human motion data. To achieve this, we fine- 172
tune the textual embeddings using a distillation loss, which 173
constrains the adaptation process, ensuring the embeddings 174
retain the core semantics of the original CLIP representation 175
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Figure 1. Overview of our MoCLIP training framework, which fine-tunes CLIP for human motion representation. We adopt M2T-
Interpretable [36] as the motion encoder to extract spatio-temporal embeddings from a motion sequence. This encoder includes cross-limb
attention to capture fine-grained inter-limb coordination. The resulting motion embeddings M = {M0,M1, ...,MB} are aligned with text
embeddings via a contrastive loss. To preserve CLIP’s broad semantic knowledge, we introduce a distillation loss (Tethering Loss), which
constrains the student text encoder using the pre-trained teacher text encoder. The parameter λ controls the influence of this constraint,
balancing adaptation and semantic retention.

while incorporating motion-specific details. Additionally,176
we employ a cosine similarity loss to guide the embeddings177
toward preserving the directional continuity of motion, re-178
inforcing alignment between the text and motion spaces.179

M2T-Interpretable [36] introduced a guided motion en-180
coding framework that currently represents the state-of-the-181
art in human motion captioning, demonstrating its ability182
to map human motion into a rich and semantically mean-183
ingful latent space. This method captures both fine-grained184
motion details and high-level semantic structures. Given its185
performance in aligning motion with textual descriptions,186
we selected this approach as the foundation for our motion187
encoder. Its ability to generate robust motion embeddings188
with strong semantic coherence makes it the best candidate189
for converting motion data into CLIP’s latent space.190

A novel extension in our method is the introduction of191
cross-limb attention connections that extend beyond con-192
ventional skeletal adjacency constraints to [36]. Specif-193
ically, we introduce direct attention connections between194
both hands and both feet, allowing the model to better195
capture inter-limb coordination in complex human actions,196
such as clapping, jumping, or balancing. These additional197
attention pathways improve the model’s ability to recognize198
non-local interactions, as recognized in [8, 22, 33, 38].199

Finally, temporal attention mechanisms are applied to200
the encoded motion features before pooling along the tem-201
poral dimension. The resulting spatio-temporal represen-202
tations are projected into CLIP’s pre-trained multimodal203
embeddings. This structured approach preserves CLIP’s204
broad semantic knowledge while introducing a motion-205
aware adaptation.206

3.1. Loss Functions & Optimization 207

We employ a multi-term loss function to achieve effective 208
contrastive alignment, preserve original semantic represen- 209
tations via feature-space distillation (tethering), and explic- 210
itly align motion embeddings with textual semantics. 211

The primary objective is to align motion embeddings 212
zmotion with their corresponding text embeddings ztext. We 213
use a symmetric cross-entropy loss following standard con- 214
trastive learning practice: 215

Lcontrastive =
1

2

[
CE(zmotionWz⊤text, y) + CE(ztextWz⊤motion, y)

]
(1) 216

where zmotion, ztext ∈ RN×d are normalized embeddings 217
from the motion encoder and CLIP text encoder, respec- 218
tively; W ∈ Rd×d is a learnable scaling matrix derived 219
from CLIP’s logit scaling parameter; and y ∈ {1, . . . , N} 220
are the ground-truth matching indices for the N sample 221
pairs in a mini-batch. CE denotes cross-entropy loss, de- 222
fined as: 223

CE(X, y) = − 1

N

N∑
i=1

log

(
exp(Xi,yi)∑N
j=1 exp(Xi,j)

)
(2) 224

Feature Distillation Loss (Tethering Loss) Inspired by 225
recent works in CLIP fine-tuning, such as CLIP-CITE [21] 226
and LDIFS [24], we introduce a feature distillation loss. 227
This regularization loss ensures that fine-tuned CLIP text 228
embeddings remain close to their original pre-trained repre- 229
sentations, thus mitigating catastrophic forgetting. 230
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Figure 2. Example integration of the MoCLIP model into existing text-to-motion generation pipelines. MoCLIP serves as a direct replace-
ment for the standard CLIP encoder previously utilized in various established models, including MoMask [17], BAD [18], and BAMM
[30]. The figure illustrates simplified architectures of these models, demonstrating how MoCLIP seamlessly substitutes standard CLIP by
providing motion-aware text embeddings.

We employ the L2 loss between the fine-tuned CLIP em-231
beddings (student) ztext-student and the original pre-trained232
CLIP embeddings (teacher) ztext-teacher:233

Ldistill =
1

N

N∑
i=1

∥∥∥z(i)text-student − z
(i)
text-teacher

∥∥∥2
2

(3)234

We specifically select MSE for the distillation loss be-235
cause it permits the student embeddings to shift in a manner236
not strictly constrained by angular (cosine) similarity to the237
teacher embeddings. This flexibility allows the student em-238
beddings to more effectively align with the motion embed-239
dings, while still remaining within a controlled proximity to240
the original CLIP embedding space.241

The strength of the distillation term is controlled by a hy-242
perparameter λdistill. We empirically determine the optimal243
value of λdistill through a comprehensive ablation study, an-244
alyzing its impact on embedding alignment and fine-tuning245
performance per model.246

Motion-Text Cosine Alignment Loss To explicitly align247
the semantic directionality of motion embeddings to-248
ward text embeddings, we introduce an additional cosine-249
similarity alignment loss. This encourages the fine-tuned250
embeddings not only to match contrastively but to closely251
reflect motion-specific semantic relationships directly:252

Lalignment = 1− 1

N

N∑
i=1

z
(i)
motion · z

(i)
text-student

∥z(i)motion∥2∥z
(i)
text-student∥2

(4) 253

This loss term specifically encourages a direct semantic 254
alignment between text and motion representations beyond 255
the standard contrastive pairing. 256

Our total optimization objective is the weighted sum of 257
the three described loss terms: 258

Ltotal = Lcontrastive + λdistillLdistill + Lalignment (5) 259

This multi-objective approach aims for embedding align- 260
ment while preserving crucial pre-trained knowledge from 261
the original CLIP model. 262

4. Experiments 263

4.1. Datasets 264

Two major datasets are generally used for motion gener- 265
ation tasks, namely HumanML3D [14] and KIT-ML [32]. 266
The proposed model relies on pre-trained weights from 267
each chosen baseline model on these datasets. Because 268
pre-trained models for KIT-ML were unavailable, only Hu- 269
manML3D was used to demonstrate the benefits of Mo- 270
CLIP. 271
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Methods R Precision↑ FID↓ MM-Dist↓ Diversity↑ MModality↑

Top 1 Top 2 Top 3

TM2T [16] 0.424±0.003 0.618±0.003 0.729±0.002 1.501±0.017 3.467±0.011 8.589±0.076 2.424±0.093

T2M [14] 0.455±0.003 0.636±0.003 0.736±0.002 1.087±0.021 3.347±0.008 9.175±0.083 2.219±0.074

MDM [43] - - 0.611±0.007 0.544±0.044 5.566±0.027 9.559±0.086 2.799±0.072

MLD [6] 0.481±0.003 0.673±0.003 0.772±0.002 0.473±0.013 3.196±0.010 9.724±0.082 2.413±0.079

MotionDiffuse [49] 0.491±0.001 0.681±0.001 0.782±0.001 0.630±0.005 3.113±0.001 9.410±0.049 1.553±0.042

T2M-GPT [48] 0.492±0.001 0.679±0.002 0.775±0.002 0.141±0.004 3.121±0.009 9.761±0.081 1.831±0.048

ReMoDiffuse [50] 0.510±0.005 0.698±0.002 0.795±0.004 0.103±0.004 2.974±0.016 9.018±0.075 1.795±0.043

MMM [31] 0.504±0.003 0.696±0.003 0.794±0.002 0.080±0.003 2.998±0.007 9.577±0.050 1.164±0.041

MoMask [17] 0.521±0.002 0.713±0.002 0.807±0.002 0.045±0.002 2.958±0.008 - 1.241±0.040

MoMask+MoCLIP 0.533±0.002 0.730±0.002 0.823±0.001 0.047±0.002 2.868±0.006 9.619±0.082 1.242±0.040

BAMM [30] 0.522±0.003 0.715±0.003 0.808±0.003 0.055±0.002 2.936±0.077 9.636±0.009 1.732±0.051

BAMM+MoCLIP 0.531±0.003 0.724±0.003 0.819±0.002 0.064±0.003 2.871±0.008 9.713±0.083 1.749±0.054

BAD [18] 0.517±0.002 0.713±0.003 0.808±0.003 0.065±0.003 2.901±0.008 9.694±0.068 1.194±0.044

BAD+MoCLIP 0.510±0.003 0.706±0.002 0.801±0.002 0.062±0.003 2.941±0.008 9.613±0.076 1.152±0.044

Table 1. Quantitative results comparing MoCLIP-integrated models (MoMask, BAMM, and BAD) against baseline methods on the Hu-
manML3D dataset. Metrics include R-Precision (Top-1, Top-2, Top-3), Frechet Inception Distance (FID), Multimodal Distance (Multi-
Dist), Diversity, and Multimodality. Arrows (↑,↓) indicate whether higher or lower values represent better performance, respectively. Best
results for each method are bolded.

HumanML3D is a large-scale 3D motion-language272
dataset for motion understanding and generation, built from273
AMASS [23] and HumanAct12 [13] motion data. It con-274
tains 14,616 motion sequences with 44,970 textual descrip-275
tions, covering diverse activities like daily actions, sports,276
and acrobatics. Each motion lasts 2–10 seconds, downsam-277
pled to 20 FPS, totaling 28.59 hours. To enhance diversity,278
mirrored motions with adjusted descriptions are included.279
The dataset supports text-to-motion synthesis, motion re-280
trieval, and activity recognition. The dataset is split into281
80% training, 15% validation, and 5% test sets, following282
the standard setup used in previous works.283

4.2. Metrics284

R-Precision Evaluates motion-to-text retrieval accuracy by285
ranking the Euclidean distances between a given motion286
sequence and 32 text descriptions (1 ground-truth and 31287
mismatched). The retrieval performance is measured using288
Top-1, Top-2, and Top-3 accuracy, indicating the proportion289
of cases where the correct text description appears within290
the top-ranked results.291

Frechet Inception Distance (FID) is a widely used met-292
ric for evaluating the quality of generated images by com-293
paring their statistical similarity to real images. It computes294
the Fréchet distance between feature representations of real295
and generated images extracted from a pre-trained Inception296
v3 [41] network.297

Multimodal Distance is the average Euclidean distance298
between features from different modalities, such as text and299
generated motion, measured in a shared latent space to eval-300

uate cross-modal alignment quality. 301
Multimodality measures the diversity of generated mo- 302

tions from a single text description. For each description, 20 303
motion sequences are generated, forming 10 motion pairs. 304
The Euclidean distances between motion features in each 305
pair are computed, and the final score is the average distance 306
across all text descriptions, reflecting the model’s ability to 307
generate diverse outputs from the same input. 308

4.3. Experimental Setup 309

This paper investigated the effectiveness of MoCLIP em- 310
beddings in VQ-VAE-based methods. To validate this, 311
we selected the top three transformer-based VQ-VAE ap- 312
proaches to implement our MoCLIP model. We evaluated 313
across these motion generation frameworks, including Mo- 314
Mask [17], BAMM [30], and BAD [18], integrating it into 315
their architectures without modifying their core designs. 316

We begin by loading a pre-trained CLIP model as the stu- 317
dent network, modifying it to accept our motion encoder. A 318
teacher CLIP model is also loaded and kept frozen through- 319
out training. To ensure a stable adaptation process, the stu- 320
dent CLIP text encoder is initially frozen for 35 epochs, 321
allowing the motion encoder to align with the pre-trained 322
CLIP embeddings. After this phase, the student text en- 323
coder is unfrozen and trained alongside the motion encoder 324
using the loss functions described above for an additional 325
15 epochs for a total of 50 epochs. 326

All models are trained using their pre-trained weights, 327
including VQ-VAE weights. We fine-tune them with Mo- 328
CLIP at a lower learning rate of 1e-6 and without a warm- 329
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up phase. For three-stage training models like MoMask and330
BAMM, both the T2M Transformer and Residual Trans-331
former are trained separately with MoCLIP to align their332
learned embeddings with the modified CLIP space. All333
models are trained for 200 epochs on HumanML3D using334
AdamW as the optimizer, maintaining the original hyperpa-335
rameters used in their respective training pipelines. Training336
is conducted on A6000 GPUs.337

5. Results338

R-Precision Improvement MoCLIP improves retrieval339
accuracy across multiple models. In MoMask, MoCLIP340
increases Top-1 R-Precision from 0.521 to 0.533 (+1.2%),341
Top-2 from 0.713 to 0.730 (+1.7%), and Top-3 from 0.807342
to 0.823 (+1.6%). A similar trend is observed in BAMM,343
where Top-1 R-Precision rises from 0.522 to 0.531 (+0.9%),344
Top-2 from 0.715 to 0.724 (+0.9%), and Top-3 from 0.808345
to 0.819 (+1.1%). These improvements demonstrate a346
consistent enhancement in motion-text alignment across347
retrieval-based models.348

Motion Quality: FID and Multimodal Distance Mo-349
CLIP maintains perceptual quality while improving motion-350
text consistency. For MoMask, FID increases slightly from351
0.045 to 0.047 (+0.002), while Multimodal Distance de-352
creases from 2.958 to 2.868 (-0.09). This suggests a trade-353
off where improved alignment comes with a minor increase354
in perceptual difference. In BAMM, FID increases from355
0.055 to 0.064 (+0.009), whereas Multimodal Distance de-356
creases from 2.936 to 2.871 (-0.065). While FID increases357
slightly.358

Performance Drop in BAD Unlike MoMask and359
BAMM, the BAD model does not benefit from MoCLIP360
integration, exhibiting a slight decrease in retrieval accu-361
racy. While The FID score improves from 0.065 to 0.062362
(-0.003), Top-1 R-Precision moves from 0.517 to 0.510 (-363
0.7%), Top-2 from 0.713 to 0.706 (-0.7%), and Top-3 from364
0.808 to 0.801 (-0.9%). Additionally, Multimodal Distance365
increases from 2.901 to 2.941 (+0.04), suggesting a weaker366
motion-text relationship.367

This degradation is likely due to the underlying architec-368
ture of BAD. Unlike token-based generative models, BAD369
employs Bidirectional Autoregressive Diffusion, which370
combines sequential and bidirectional attention through a371
permutation-based corruption technique. While this enables372
BAD to effectively capture long-range motion dependen-373
cies, it may also make the model more sensitive to modifica-374
tions in its embedding space. MoCLIP may introduce sub-375
tle shifts in BAD’s learned dependencies, leading to weaker376
retrieval accuracy. This suggests that BAD’s autoregressive377
models with bidirectional constraints might not integrate as378

effectively with MoCLIP as with other models. 379

MoCLIP improved retrieval accuracy and motion-text 380
consistency in MoMask and BAMM, yielding a 1.2–1.7% 381
increase in R-Precision and a 2–3% reduction in Multi- 382
modal Distance. However, its integration into BAD leads to 383
minor performance drops, likely due to architectural incom- 384
patibilities. These findings suggest that MoCLIP is more 385
effective in token-based models, whereas bidirectional au- 386
toregressive architectures may require additional adaptation 387
to fully leverage its benefits. 388

6. Ablation Study 389

We conducted comprehensive ablation studies to evaluate 390
the effectiveness and importance of individual components 391
within MoCLIP, using our foundational baselines. Specif- 392
ically, we examine two types of training: a naı̈ve base- 393
line, employing basic contrastive learning without special- 394
ized positional encodings or targeted attention mechanisms, 395
and an advanced version, incorporating positional encod- 396
ings, targeted attention toward critical body parts, tethering 397
loss and cosine similarity alignment. Both studies aim to 398
quantify the impacts of these training variations and feature 399
enhancements on human motion generation performance. 400

6.1. Impact of Tethering Loss 401

To determine the optimal balance between retaining CLIP’s 402
semantic knowledge and adapting to motion-specific tasks, 403
we thoroughly examined the influence of the tethering loss 404
weight (λ). We selected multiple candidate values, specif- 405
ically λ ∈ 0, 0.2, 0.4, 0.6, 0.8, 1.0, for all three baseline 406
models. During these experiments, we maintained a consis- 407
tent experimental setup: each model was trained for a total 408
of 50 epochs using a combination of contrastive learning, 409
cosine alignment, and tethering loss. We monitored per- 410
formance metrics such as Frechet Inception Distance (FID) 411
and Multimodal Distance (MM-Dist) at regular intervals to 412
capture nuanced shifts in performance as λ varied. 413

6.2. Naı̈ve Model Training Comparison 414

We further explored the necessity and efficacy of our spe- 415
cialized fine-tuning and additional architectural enhance- 416
ments (positional encodings and targeted attention mech- 417
anisms). To this end, we developed a naı̈ve baseline 418
model that utilized only basic contrastive learning with- 419
out the specialized positional encoding or enhanced at- 420
tention toward critical body parts such as hands and feet. 421
To evaluate the effect of embedding fine-tuning sched- 422
ules, we experimented by unfreezing text embeddings for 423
varied periods—specifically for the last 2, 5, 7, and 10 424
epochs—allowing us to gauge the impact of different fine- 425
tuning durations. 426
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Figure 3. Ablation studies examining the impact of fine-tuning duration in naive training (top row) and tethering loss weight λ (bottom
row) on model performance, measured by Frechet Inception Distance (FID, green axis) and Multimodal Distance (MM-Dist, blue axis).
Each plot compares different fine-tuning epochs (2, 5, 7, and 10 epochs) for naive baseline training (top) and varying tethering strengths (λ
from 0.0 to 1.0) for advanced MoCLIP model and training (bottom). Lower values indicate improved perceptual quality (FID) and better
multimodal alignment (MM-Dist). Results are averaged over multiple runs on the HumanML3D dataset.

6.3. Experimental Setup427

All models in the ablation were evaluated under identical428
conditions using HumanML3D. Each model configuration429
was trained and then tested twenty times to ensure the reli-430
ability and statistical significance of the reported results.431

6.4. Analysis and Findings432

In Table 2 and Figure 3, we present detailed results from our433
ablation study, evaluating the impact of varying fine-tuning434
epochs and tethering loss weights (λ) on naive model of435
MoCLIP (top rows). MoMask achieves optimal FID (0.053)436
at 5 epochs, balancing performance with retrieval accuracy437
(Top-1: 0.538), while additional epochs enhance accuracy438
but negatively impact FID. BAMM achieves its best over-439
all naive MoCLIP performance at 10 epochs, presenting the440
lowest FID (0.079) and simultaneously the highest retrieval441
accuracy (Top-1: 0.541). Notably, BAD uniquely bene-442
fits from extended naive training compared to the advanced443
model and training, steadily improving across metrics and444
achieving the best naive FID (0.062) at 10 epochs. Given445
this performance relative to advanced methods, the naive-446
trained BAD model was selected for final use.447

In contrast, for the advanced models trained with teth-448
ering methods (bottom rows), model selection prioritized449
optimal FID along with consistency across metrics. Mo-450
Mask demonstrated its strongest performance at a moder-451
ate tethering weight of λ = 0.4, achieving the best over-452

all FID (0.047), accompanied by robust retrieval accuracy 453
(Top-1: 0.533) and stable performance across MM-Dist 454
and diversity metrics. Similarly, BAMM attained its lowest 455
FID (0.064) and consistently balanced performance metrics 456
at λ = 0.4, supporting this choice for final deployment. 457
However, advanced training approaches for BAD did not 458
show significant metric improvements over naive training, 459
prompting the selection of the naive-trained model at 10 460
epochs for final implementation. 461

7. Conclusion 462

We introduced MoCLIP, a straightforward to implement 463
fine-tuning strategy that directly substitutes the standard 464
CLIP encoder with minimal adjustments. MoCLIP aligns 465
CLIP’s text embeddings with motion-aware representations 466
through contrastive learning, a tethering loss to preserve se- 467
mantic consistency, and a cosine similarity alignment loss 468
to semantically align motion-text embeddings. Experiments 469
demonstrated consistent improvements in semantic align- 470
ment and retrieval accuracy, with MoMask improving Top- 471
1 R-Precision from 0.521 to 0.533 (+1.2%) and BAMM 472
improving from 0.522 to 0.531 (+0.9%), while maintain- 473
ing competitive FID scores (MoMask: from 0.045 to 0.047; 474
BAMM: from 0.055 to 0.064). MoCLIP provides immedi- 475
ate performance gains at a low implementation cost. 476

However, our results indicate that some model architec- 477
tures may not benefit equally from this fine-tuning method. 478

7



CVPR
#16

CVPR
#16

CVPR 2025 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Methods R Precision↑ FID↓ MM-Dist↓ Diversity↑
Top 1 Top 2 Top 3

MoMask (2 epochs) 0.537 0.733 0.826 0.057 2.838 9.667
MoMask (5 epochs) 0.538 0.729 0.822 0.053 2.856 9.703
MoMask (7 epochs) 0.539 0.730 0.824 0.057 2.859 9.623
MoMask (10 epochs) 0.540 0.736 0.829 0.061 2.826 9.654
MoMask (λ = 0.0) 0.532 0.727 0.822 0.049 2.875 9.645
MoMask (λ = 0.2) 0.536 0.730 0.824 0.050 2.864 9.643
MoMask (λ = 0.4) 0.533 0.730 0.823 0.047 2.868 9.619
MoMask (λ = 0.6) 0.534 0.731 0.823 0.048 2.862 9.614
MoMask (λ = 0.8) 0.536 0.732 0.824 0.048 2.864 9.654
MoMask (λ = 1.0) 0.529 0.724 0.818 0.081 2.905 9.645

BAD (2 epochs) 0.512 0.704 0.801 0.081 2.948 9.533
BAD (5 epochs) 0.518 0.710 0.805 0.070 2.929 9.578
BAD (7 epochs) 0.511 0.704 0.799 0.080 2.959 9.584
BAD (10 epochs) 0.510 0.706 0.801 0.062 2.941 9.614
BAD (λ = 0.0) 0.511 0.705 0.800 0.084 2.949 9.539
BAD (λ = 0.2) 0.512 0.701 0.797 0.077 2.964 9.609
BAD (λ = 0.4) 0.511 0.704 0.799 0.086 2.945 9.555
BAD (λ = 0.6) 0.516 0.709 0.806 0.081 2.911 9.574
BAD (λ = 0.8) 0.507 0.699 0.796 0.104 2.967 9.617
BAD (λ = 1.0) 0.517 0.709 0.805 0.070 2.928 9.577

BAMM (2 epochs) 0.531 0.733 0.829 0.086 2.839 9.825
BAMM (5 epochs) 0.526 0.724 0.819 0.106 2.894 9.832
BAMM (7 epochs) 0.515 0.712 0.808 0.096 2.960 9.808
BAMM (10 epochs) 0.541 0.740 0.835 0.079 2.805 9.759
BAMM (λ = 0.0) 0.528 0.723 0.818 0.074 2.878 9.665
BAMM (λ = 0.2) 0.527 0.720 0.814 0.091 2.917 9.734
BAMM (λ = 0.4) 0.530 0.724 0.819 0.064 2.871 9.713
BAMM (λ = 0.6) 0.534 0.728 0.824 0.071 2.855 9.721
BAMM (λ = 0.8) 0.535 0.729 0.824 0.072 2.849 9.746
BAMM (λ = 1.0) 0.520 0.712 0.808 0.065 2.917 9.669

Table 2. Ablation study results for MoMask, BAD, and BAMM with various naive fine-tuning epochs vs tethering loss strengths (λ). Best
scores are bolded, second is underlined.

For instance, BAD experienced a slight decrease in Top-1479
R-Precision (from 0.517 to 0.510) and an increase in Multi-480
modal Distance (from 2.901 to 2.941), suggesting that some481
architectures may require targeted fine-tuning approaches482
or architectural refinements to fully leverage these embed-483
dings.484

In future work, we aim to further validate MoCLIP’s ef-485
fectiveness by expanding evaluation across additional mo-486
tion generation architectures such as diffusion models, as487
well as more datasets suchs as KIT-ML. Additionally, ex-488
ploring architecture-specific fine-tuning strategies and in-489
vestigating adaptive fine-tuning techniques for individual490
models may yield further improvements in performance and491
generalization.492
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