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Abstract

Language models achieved remarkable perfor-
mance gains across multiple natural language
processing and understanding tasks. They were
shown to capture many high-level aspects of
natural human language. However, the com-
plexity of these models and their black-box
nature make it difficult to understand their be-
havior based on fine-grained explanations. In
this paper, we present high-level concept-based
explanations for neural language models with
a classification task setup using the quanti-
tative testing with concept activation vectors
(TCAVQ). TCAVQ explains a neural model
based on its activations in response to concepts
present in the data. We propose a pipeline that
automates the discovery of these concepts by
clustering the model’s activations. The pipeline
was tested on one architecture (BERT) but can
be applied to different neural architectures. We
perform ablation and injection studies to evalu-
ate the causality and importance of the expla-
nations provided with regards to the model’s
predictions. The ablation studies show a 2%
reduction in the model’s sensitivity while injec-
tion shows up to a 13% reduction in specificity
attributed to the top scoring concepts. This il-
lustrates the potential of using concept-based
explanations to verify model’s alignment with
human values and ethics by examining the con-
cepts and how they contribute to the model’s
predictions.

1 Introduction

With the advent of neural language models, their
growing complexity and available data volume
enable them to model many features of natural
language, achieving remarkable performance on
a wide range of tasks. However, due to the size
and complexity of these models, they are consid-
ered black boxes. Their lack of interpretability
undermines their trustworthiness and reliability, es-
pecially in contexts where decisions are critical
or where implicit biases can arise. These risks

mandate directing effort to exploring explainabil-
ity methods for natural language models that scale
well and offer faithful insights into the model’s
decisions.

At a large scale, large language models (LLMs)
have been shown to develop emergent abilities (Wei
et al., 2022) that can mimic human language use to
a great extent. LLMs also pass many knowledge
and cognitive test despite lacking explicit reason-
ing mechanisms (Huang and Chang, 2023). his can
lead to an impression of sound reasoning which
has been shown to be false in some. Anthropic’s re-
cent explainability research (Ameisen et al., 2025)
demonstrated that discrepancy between the con-
cepts that the model learns and uses for its output
and what is expected as sound reasoning.

There are various methods used to interpret lan-
guage models. Some of these methods are more
mechanism oriented, aiming to explain how the
internal components of the model work towards
the output or learning. Others are data oriented,
assigning attributions to input features or learned
features in the model’s latent space. Bills et al.
(2023) proposed an approach to explain LLM neu-
rons individually and attribute their activations to
patterns in the input text. Another approach pre-
sented by (Arous et al., 2021) trains models with
manually annotated explanations to use attention
mechanisms to learn to self-explain. Lindsey et al.
(2025) develop a concept-based approach by build-
ing a replacement model that simulates the model’s
response to high level features.

In this paper, we develop an approach for gener-
ating global explanations of neural language mod-
els based on high-level concepts. Our main contri-
butions are the following:

* Automated concept discovery for neural lan-
guage models.

* Ad-hoc pipeline for concept-based explana-
tion generation.



* Causality and importance analysis for concept-
based explanations in the natural language
processing domain.

The following sections will discuss the state of the
art and existing challenges, the components of the
pipeline, the methods use to evaluate each of them
and the results of these evaluations.

2 Related Work

High-level concepts present a good candidate for
explaining complex language models as they can
encapsulate the details of the model’s inner rep-
resentation and provide an accessible view of
its workings allowing an evaluator to assess the
model’s alignment with human expectations and
values (Ameisen et al., 2025; Lindsey et al., 2025;
Yu et al., 2024).

The main inspiration for our approach is the
work by Kim et al. (2018) which presents a frame-
work for explaining models in terms of high-level
concepts by introducing quantitative testing with
concept activation vectors (TCAVq). This ap-
proach measures how user-defined concepts rep-
resented by collections of images contribute to the
model’s decisions in an image classification task.
This is achieved through concept activation vec-
tors (CAVs). For each concept/layer pair, a TCAVq
score expresses the degree of alignment between
this concept vector and a given class. We try to
draw on their approach and transfer it to the lan-
guage domain.

Subsequent works including (Ghorbani et al.,
2019) further developed this by automating the dis-
covery of concepts to improve scalability and gain
insights into the model’s learning. Works such as
(Dalvi et al., 2022), (Coenen et al., 2019) and (Bills
et al., 2023) have shown language models to be ca-
pable of representing linguistic features at various
levels ranging from low-level syntactic features to
high level abstractions in their latent space. Several
works have shown that these concepts can discov-
ered using clustering of model embeddings such as
(Yu et al., 2024). By combining these components
of concept discovery and concept attribution, we
derive a neural language model global explanation
method.

A key challenge in concept-based explanations
in the language field is the intensive labor and com-
putation required for a global view of the model
due to the wide array of concepts a model is ca-
pable of representing. Another open area in the

field of explainable artificial intelligence (XAI) is
the development of reliable evaluation methods of
explanations. This is particularly challenging due
to the lack of ground truth labels and the need for
human validation while ensuring model faithful-
ness.

3 ACD-EG Methodology

Our methodology has two main components which
are automated concept discovery (ACD) and expla-
nation generation (EG). These components can be
broken down into the following steps:

1. Logging the activations of the layer of interest
in the subject model.

2. Clustering of activations to discover concepts.
3. Calculating concept activation vectors.

4. Calculating the TCAVq scores of the classes
to these samples.

e begin with a trained subject model and a layer
of interest within that model. The first step is to log
the activations of the layer of interest in response
to input data. Concepts are by definition sets of
samples that the user thinks represent a single se-
mantic idea, but as opposed to manually procuring
them, we automate their discovery by clustering
the layer activations to find common patterns in
its responses to inputs. Afterwards, the concept
activation vectors are calculated for each of these
concept clusters, and finally they are multiplied by
the layer gradients in response to each class and
TCAVqscore is the explanation for the layer with
respect to each class and concept. This pipeline is
illustrated in Fig. 1.

3.1 Automated Concept Discovery

The goal of this stage is the automated discovery
of concepts. In the TCAVq paper by (Kim et al.,
2018), concepts are manually created by the system
user by obtaining a collection of images that they
give a certain label, such as a collection of spotted
images representing the concept of dots. This task
is labor intensive and difficult to scale to cover
a wide range of concepts. It is also susceptible
to biases stemming from the user’s specific idea
of the concept. Therefore, present this method to
automate the discovery of concepts and generating
the concept sets. One further reason is to allow us
to discover what concepts the model has learned
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Figure 1: The methodology pipeline with each module
as a solid box and intermediate outputs as dotted boxes.

by observing what inputs trigger similar patterns of
activations. To this end, we first define a concept
for the purposes of this work as a set of model
activations that must meet two criteria:

* It constitutes a single cohesive semantic idea
identifiable to humans as a concept.

* It shares common behaviors that its represen-
tative points trigger inside the model.

Concepts are created by clustering the input to-
kens by the model’s activation in response to them
from the layer of interest.In this case, the activa-
tions of the later layers of the model are logged for
each token from a random subset of the input data.
This choice was made as later layers of the model
usually contain higher level semantic features (Bills
et al., 2023). However, the same method could be
applied to any layer. Stop words are removed to
limit the data to words that might carry richer se-
mantic information that would be more informative
as explanation.

These activations are clustered to detect the dif-
ferent patterns of the model’s response to input.
Agglomerative clustering is used due to a work that
used clustering of the layer activations to find the
concepts represented in its embedding space (Dalvi
et al., 2022). The metric used is cosine distance
with average linkage. Average linkage is used as
the more computationally affordable alternative to
complete linkage used by Dalvi et al. (2022). Sam-
ples from each class are clustered separately to
allow class-specific concepts to develop separate
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Figure 2: Example of a concept cluster: a word cloud
showing the tokens in the cluster, and some of the sen-
tences from which they originated.

clusters and not be lost due to their relatively small
size.

The number of clusters to be used is selected
based on several metrics of two types. The first
type of metric were classical clustering metrics
such as the silhouette score and Davies-Bouldin
which evaluates the embeddings clustering quality.
The second type of metric is semantic evaluation of
the concepts formed by these clusters. A good con-
cept cluster would contain words all of which are
semantically related. To assess the level of seman-
tic relation within a cluster, we use the linguistic
ontology WordNet (Miller, 1994) as a ground truth
for the relations between terms.

3.2 Concept Activation Vectors

As per the TCAVq methodology, a concept activa-
tion vector is calculated by training a linear model
on the activations of the layer of interest to obtain
the decision boundary coefficients as the vector that
points in the direction of the concept.

The training classes for the linear SVM are the
activations resulting from the layer in response to
the tokens labeled as the concept set and another
set labeled the neutral set which is a random set
of activations collected from different concepts as
well as evenly from both positive and negative as to
ensure it is not biased towards any specific concept.
The volume of data for each concept varied, as it
depended on the size of the concept cluster. How-
ever, for each concept, the corresponding neutral
dataset was set to the same size as it. For each
concept, different neutral sets are used to eliminate
any potential bias that might result from a specific
choice of the neutral set.

3.3 Calculating TCAVq scores

TCAVq scores are the main explanation presented
by this methodology. They show how sensitive a
class is to each of concepts present in the data. To
first obtain the sensitivity score of a layer [ to a
given concept C with respect to one class k, we



compute the dot product of the layer’s gradient
vectors in response to inputs of the class k£ and
each concept’s activation vector as shown in Eqn.
1. This resulting dot product is higher when the
layer’s change and the concept are more aligned
and lower or negative if they are less similar.

The gradient attributions of the layer of interest
in response to a subset from each class are com-
puted using a slightly modified version of the Cap-
tum explainability library’s interpret function
that only returns the gradient attributions without
going through the rest of the explanation pipeline.
(Kokhlikyan et al., 2020). The bigger the subset
used, the better, to ensure the gradient is as rep-
resentative as possible of the class. Since each
sample was a sequence of tokens, the gradient per
sample was computed as the average layer gradient
across tokens.

Sepa(x) = lny hy i (fi(x) + evlf) — h(fi(x))
= Vhe(fi(x)) - v
(D

The percentage of class samples for which this
dot product is positive is then TCAVq calculated
using Eqn. 2. Concepts which score higher for a
given class are considered to be more important to
the detecting this class and this layer’s decisions.
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The original work introducing the TCAVq calcu-
lated it only based on the sign of the sensitivity
score as shown in Eqn. 2 by setting ¢ = 0. How-
ever, in our work, we add a minor modification by
experimenting with thresholding the sensitivity at
a value higher than zero to examine a more even
distribution of scores to better differentiate degrees
of importance of concepts in cases where result-
ing scores are very concentrated around a discrete
set of values. The threshold we set is at t = 10712
based on the distribution of sensitivity score values.

3.4 Computational Cost

One of the design objectives for this approach is to
maintain a lightweight pipeline that would make
it sustainable as an ad-hoc portable explanation
module to use with various architectures on a wide
range of scales. Most of the computations going

into executing this approach goes to running the
preexisting target model on some input samples
and clustering the concepts activations. We will
refer to the inference time of the model per sam-
ple as Ips and the number of samples used in any
particular stage of the pipeline as n . The embed-
ding dimension of the model is also a factor so it
will be accounted, we will refer to it as m. Table
1 provides a breakdown of all the stages and an
estimate of their computational cost. Stages in the
table are given labels for readability (A: Activation
Logging, B: CAV calculation,C: Concept Discov-
ery, D: TCAVq Score). The variable n 4 appearing
the last row of the table refers to the number of
samples previously used for stage A.

Stage Time Space Storage
A O(mnl,,) O(mn) O(mn)
B O(mn) O(mn) O(mn)
C O(n?) O(n3)  O(n)

D O(nam+ Lyn) O(mn) O(mn)

Table 1: Breakdown of time and space complexity of
each stage as well as storage requirements for storing
the results.

4 Experimental Evaluation and Results

This section will discuss the evaluation criteria and
results for each stage in the pipeline followed by a
discussion of the findings.

4.1 Dataset and Model Details

The subject model trained was BERT-uncased from
the Hugging Face transformers library with 4 fully
connected layers added on top for the classifica-
tion(Devlin et al., 2018).

The dataset used in this work is the Reddit post
suicidal ideation classification dataset obtained
from Kaggle (Komati, 2021) provided under (CC
BY-SA 4.0) license. The dataset is composed of
232074 Reddit posts collected from r/SuicideWatch
and r/Teenagers. It is prepared for the task of clas-
sifying a post as either expressing suicidal ideation
or not with r/SuicideWatch posts representing the
positive class and r/Teenagers posts representing
the negative one. The class sizes were balanced
with 116037 samples for each class.

Preprocessing steps:

1. Train-test split

2. Tokenisation using bert tokeniser



3. Truncating long samples
4. One-hot label encoding.

The data was split into 80% for fine-tuning and 20%
testing. The tokeniser used was bert tokeniser from
the PyTorch library with truncation for samples
longer than 512 tokens (Ansel et al., 2024). This
truncation only affected 4% of the data. Finally the
labels were one-hot encoded.

For the following stages, the activations for the
12th layer are then logged for each input sample.
Each log entry is a token and its corresponding
activation.

4.2 Experimental Environment

The experiments discussed in this section were all
run on a personal computer. Model training and
inference utilized the GPU (NVIDIA GeForce RTX
3070 Laptop GPU).

Agglomerative clustering and support vector
machine implementations used were provided by
Scikit-learn (Pedregosa et al., 2011) and the Py-
Torch was used for the neural network implementa-
tion (Ansel et al., 2024).

4.3 Hyperparameters

For the fine-tuning process, the first eleven layer of
BERT layers were frozen but the twelfth and the
fully connected layers were allowed to train for 10
epochs with stochastic gradient descent optimizer
and binary cross-entropy loss. The final testing
accuracy obtained was 97% and an F1 score of
0.97.

The learning rates for the trainable layers were
set as follows:BERT layer 11 : 5e — 2, Dense layers
1,2, 3: 1e — 1 and Dense layer 4: 5e — 1.

4.4 Concepts Discovery and Clustering
Results

Clusters define the concepts used in the explana-
tion, n example of a cluster can be shown in figure
2 visualized as a word cloud and the associated
sentences. It is important to find the best num-
ber and size of clusters to form. Too few clusters
could result in multiple concepts blending into the
same cluster making it heterogeneous and more
difficult to interpret as a single concept. On the
other hand, if the cluster number is too small, a
concept could be diluted over multiple clusters and
the explanation provided would be less abstract
and comparable to token-based explanations. The
level of granularity required varies depending on

the application, the target audience of the explana-
tion, and the nature of concepts in the data with
some applications requiring broader concepts and
others requiring specific concepts. The method of
evaluation and acceptable scores would then vary
across use cases, but in this work we propose a
set of methods and share their outcomes for this
particular experiment.

4.4.1 Clustering Quality Metrics

The first approach to evaluating clusters was using
classical cluster quality metrics to evaluate the inter-
cluster and intra-cluster distances based on the

The score used were the silhouette score and
Davies-Bouldin index. The silhouette score is a
measure of how similar an object is to its own clus-
ter compared to other clusters. The higher the score,
the better the clustering. The Davies-Bouldin in-
dex is the average ratio of within-cluster scatter
to between-cluster dissimilarity. The lower the
score, the better. The scores are shown for cluster
numbers ranging from 100 to 1000 in Fig. 3 for
concepts belonging to both classes. Clusters of size
smaller than 10 samples were considered outliers
and were discarded.

gggggggg

nnnnn

Figure 3: Silhouette score and Davies-Bouldin index
plotted against cluster number for both positive and
negative class concept clusters.

The scores were low but both showed a similar
trend. higher cluster numbers could be tested as
well but it was decided against to avoid forming
clusters with a small sample size as that would
break down high-level concepts. At manually in-
specting the clusters created at each of these num-
bers, the word clouds and sentences belonging to
these concepts seemed to give a sufficiently coher-
ent impression. The work by Dalvi et al. (2022) has
also referred to the challenge of applying cluster-
ing metrics to high-dimensional embeddings and
provided the basis for setting the ratio of samples
to cluster. These low scores could be attributed to
distance concentration; with a space of 768 dimen-
sions, the difference between distances is minimal



which makes the silhouette score less informative.
The final cluster numbers selected for further exper-
iments were 600 positive clusters and 400 negative
ones.

4.4.2 Semantic Concept Evaluation

To evaluate the clusters in terms of semantic cohe-
siveness, two semantic evaluation methods were de-
vised. These methods are based on lexical database
WordNet. These first measure was the mean pair-
wise path similarity (MPS) within each cluster cal-
culated as shown in Eqn. 3. For the cluster numbers
selected from the previous evaluation stage, the av-
erage score across positive concepts clusters was
0.435 and 0.129 for negative clusters.

S{path_sim(a,b)|(a,b) € C @ C
wips(c) = Zimth sineDie.h €0 o0)
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Another method to estimate semantic homogene-
ity within a cluster was the proportion of pairs of
tokens with common synonyms, hyponyms or hy-
pernyms provided in Equation 5 where a term’s
neighborhood is the set of related terms as defined
by Equation 4. The mean across positive concept
clusters was 0.062 and 0.041 for negative concept
clusters.

N (term) = term.synonyms

U term.hyponyms U term.hypernyms (4)

common_synsets(C) =
{(a,b)|(a,b) € C® C,|N(a) N N(b)| > 0}
|C®C|

(&)

4.5 Results of TCAVq Scoring

TCAVq scores of concepts were highly polarized
with most of the concepts falling into either the
range above 0.9 or below 0.1. The ranking of the
concepts withe highest and lowest scores for each
class are shown in Appendix A. To better exam-
ine the differences in alignment between concepts
and classes, sensitivity scores below a the thresh-
old of 10~ '2 were to be discarded. The threshold
was selected by observing samples with mostly
zZero sensitivity scores, as their remaining positive
scores still fell below this point. In the case of
TCAVqgbeing calculated with the threshold ¢ = 0
where the top 194 positive ranking concepts has
scores above 0.9. After applying thresholding at

t = 1072, concepts were more distributed along
the score range with only the top 135 being above
0.9.

4.6 Causality Evaluation and Results

We designed experiments to evaluate the causal-
ity and importance of the explanations generated
to the model’s predictions. Importance refers to
the degree to which a model’s decisions can be
attributed to a feature (Lundberg and Lee, 2017).
We conducted two types of experiments; ablation
and injection to observe the effect of removing con-
cepts or adding them to data on the model’s perfor-
mance. Larger change in the model’s performance
indicated greater importance of the concepts.

4.6.1 Concept Ablation

The first type of experiment was to test the con-
tribution of concepts to a sample being classified
as positive. First, the concepts with the highest
TCAVq with respect to the positive class were se-
lected. Any tokens contained in the data represent-
ing these concepts was removed from the test data
set. The model was then re-evaluated on the posi-
tive data to calculate the change its sensitivity score
(TP/TP+FN) to the positive class. This experiment
was repeated for the top 10, 20, 30 and 100 scoring
concepts. Two sets of concepts rankings were eval-
uated, the set ranked according to TCAVq scores
calculated when setting the sensitivity score thresh-
old to ¢ = 0 and the ranking given by ¢t = 1072
experiment. The control was set up for each exper-
iment by removing tokens belonging to the same
number of lowest scoring positive concepts. The
results showing the model’s performance for differ-
ent treatments in Table 2 show a slight impact on
the model’s performance. despite being slight, it
is distinguishable from the results of running the
same experiments with low scoring concepts.

Table 2: Ablation results

# Concepts Sensitivity score

t= t = 10712 | Control
0 0.986 0.986 0.986
10 0.979 0.968 0.986
20 0.978 0.960 0.986
30 0.970 0.960 0.985
100 0.957 0.959 0.986



4.6.2 Concept Injection

The second approach to examining the explana-
tions was to assess the reduction in the model’s
specificity (TN/TN1+FP) after injecting tokens be-
longing to the most positive concepts into negative
samples. The number of injected tokens was set to
10, 15 and 20. For each experiment with real con-
cepts, a random control counterpart was carried out
for reference by adding the same number of tokens
but from a random set generated by an online tool.
Results for this experiment are shown in Table 3
showing the impact on performance is much more
notable than in the case of ablation. The number
of concepts from which the tokens were selected
at random was fixed to the top 30 concepts. The
results show a consistent decay in performance as
more of the positive concepts were added to nega-
tive samples as opposed to the much smaller impact
of injecting random tokens. Thresholding sensitiv-
ity scores above zero seems to aid with selecting
more impactful concepts as indicated by the steeper
performance decline.

Table 3: Injection results

# Tokens Specificity score

t=0 t=10"12 Control
0 0.958 0.958 0.958
10 0.934 0.873 0.944
15 0.866 0.870 0.944
20 0.848 0.822 0.944

4.7 Discussion
4.7.1 Human Intelligibility

The final form of explanations presented are a clus-
ter of activations from a layer and the sensitivity
of a class to the concept represented by this clus-
ter. The presentation of this cluster determines how
intelligible and informative it is. Each cluster has
three pieces of information per sample: the token,
the layer embedding for it and the sentence from
which is was taken.

The embeddings while are the key for this whole
explanation pipeline are not very intelligible to hu-
mans due to their high dimensionality and the lack
of intrinsic meaning of their dimensions. However,
lower dimension visualizations can help demon-
strate relative positions which can sometimes con-
vey semantic or syntactic information as shown in
the work by Coenen et al. (2019).

cluster no.: 85, size: 116
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Figure 4: An example of a misguiding word cloud due
to lack of context.

The word clouds are an easy to process visual
presentation that allows for viewing all tokens at
once. However, word clouds can be misguiding
due to loss of context such as Fig. 4 where the
tokens themselves convey one meaning but in fact
they were all obtained from sentences where the
token was mentioned in a negated context such as
"I’ve got no motivation". another form of this prob-
lem is the loss of word sense information but this
usually less impactful as clustering algorithms have
been shown to perform well in terms of clustering
words with similar sense together (Chronis and Erk,
2020) making it possible to disambiguate a word’s
sense through the rest of the words in the cluster as
shown.

Viewing sentences can provide context but is not
considered scalable due to the huge volume to data.
A hybrid approach combining all three elements of
the concept would provide a balanced presentation
similar to Fig. 2.

4.7.2 Concept Discovery

Cluster discovery is a key step to avoiding biases
and for scaling for use with large textual datasets.
Evaluating these concepts is crucial but challeng-
ing as it requires capturing high level semantic
relations and abstractions and requires determining
the required level of cohesion within the concepts.

Semantic relations can sometimes be difficult
to capture using general-purpose ontologies since
they only recognize a predefined set of relations.
One example of the concepts not captured suffi-
ciently by WordNet evaluation was the cluster with
tokens including : ’eleven’, *four’, ’second’, 'two’
which had no pairs with common synonyms, hy-
ponyms or hypernyms despite all its tokens fitting
easily into one recognizable category such as "num-
bers". Another issue is the rigidity and slow change
of ontologies compared to the constant and rapid
change in language use due to linguistic drift. This
can cause terms to have different meanings in live



data rendering the ontology entry irrelevant.

These discussed factors can lead to missing
many connections either by measuring mean path-
way similarity or common synsets and hence, an
insufficient quantitative assessment of concepts.
Manual evaluation or annotation could potentially
guide this process to ensure alignment between
metrics and data, but it is not a substitute as it is
labor intensive and liable to biases.

4.7.3 TCAVq Scores

The TCAVq scores for each concept discovered
with respect to the classes can provide insights into
how the CAYV aligns with the layer gradients in re-
sponse to a class. Higher TCAVq scores indicate
a higher similarity between the concept and this
class. The rankings of concepts can be compared
to some references such as expert evaluation, dif-
ferent modes of analysis, or be presented to an end
user to establish common grounding between them
and the model. For this experiment for example,
there are several exploratory data analysis note-
books on Kaggle that analyze linguistic patterns in
this dataset observed across the two classes such as
the work by the user Tranglt.

Our analysis revealed a highly polarized dis-
tribution of sensitivity scores. Upon closely in-
specting the sensitivity scores, it was observed that
they fall into one of two categories: (1) high dot
products of the sample and most of the gradient
vectors,(2) mostly zero dot products mixed with
smaller dot products. In the second case, it seemed
that the concepts do not align well with the class but
the TCAVQq score is overestimated due to counting
these small dot product values. To better distin-
guish different levels of concept alignments, mag-
nitude was taken into account and a threshold was
introduced. The misaligned but high scoring to-
kens mostly included small clusters of frequently
used words such as "let" which might only get a
positive sensitivity score due to being present in
the sentence despite not being given a significant
weight. The following section can further elaborate
on the effect of thresholding on concept rankings
and consequently the model’s performance.

4.7.4 Ablation and Injection Experiments

Synthetically removing the tokens associated with
the explanation concepts to the samples possibly
does not show the full extent of the concept’s contri-
bution to the explanation since the original context
is maintained to a large extent while the newly

added tokens are placed within a relatively small
window with no related sentence structure to pro-
vide context. In models that are sensitive to context
and position such as BERT, this could result in
these injected features being assigned a lower im-
portance in the predictions as opposed to the occur-
rence of these same tokens in organic samples with
relevant context. Similarly, context could interfere
with the results of the ablation study as the original
context is mostly maintained with the exception of
removing a few key tokens. Additionally, BERT
is very robust to ablation as demonstrated by Jin
et al. (2020) which could explain why injection had
a more significant impact.

5 Conclusion and Future Work

We have presented an ad-hoc pipeline to discover
concepts represented within a model’s embedding
space and generate explanations based on these
concepts using TCAVq scores to measure how con-
cepts and classes align. We have also presented
semantic evaluation approaches to evaluating these
concepts and explanations. This approach was ap-
plied to a BERT-based model on a Reddit post
dataset. The results regarding the cohesiveness of
discovered concepts have been mixed calling for
further investigation into how to better evaluate
high-level abstractions and semantic concepts in
linguistic data. As to the explanations generated,
their impact was evaluated by removing their asso-
ciated text from the data and a reduction in model’s
sensitivity of up to 2.8% was observed. Injecting
words related to these concepts into negative sam-
ples also led to a confusion in the model predictions
reducing its specificity by up to 13.5% . These re-
sults indicate the contribution of these explanations
to the prediction.

This work can be extended to more model archi-
tectures and to be used for explaining models in
generative tasks by focusing on the next token as
the target class. Other future work could include
investigation into applying these explanations to
correct model misalignment and bias.

Limitations

One of the limitations of this work is not accounting
for word senses while running the ablation exper-
iments due to the added computational cost. Dis-
regarding the word sense could lead to incorrectly
removing tokens that do not relate to the concept.
Setting a threshold for sensitivity scores ap-



peared to result in a significant change in results
which warrants further investigation into the opti-
mal value for this threshold or other approaches to
softening the distribution curve.

Attempting to explain an entire layer might be
limiting the effectiveness of the explanation by a
coarse view of the model. It might prove more
informative to investigate smaller sections of the
model separately such as neurons or pathways in
the computational graph.
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Figure 5: The word clouds for the 15 positive concepts
with the highest TCAVQ with respect to the positive

class
““cheered T oht ma under stand
might may v
explain
calm maybe
Warm cool perhaps
té):b 0 na g clll‘fi.éufléegxhange }Efflstéh]_ngs
1?; ri °,E| Vlr‘US na enum zyear
[‘umnc,;uvox l(-; gfhrsem Cals learmngn eW
explode li!c"k‘expelled
PLAmEL, b“gf e Teked
bralns &¢
Sy I “etehing:
CLb CC 'Feelstuck experlence
pm go1ng s o SkiLls

best _intelligent

progress 32 il anguagé steam.played
e contest “en 1ish FAN1Mm
pStepmh‘ ational vr?mngcgpfoymat gr Mngg
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