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Abstract001

Language models achieved remarkable perfor-002
mance gains across multiple natural language003
processing and understanding tasks. They were004
shown to capture many high-level aspects of005
natural human language. However, the com-006
plexity of these models and their black-box007
nature make it difficult to understand their be-008
havior based on fine-grained explanations. In009
this paper, we present high-level concept-based010
explanations for neural language models with011
a classification task setup using the quanti-012
tative testing with concept activation vectors013
(TCAVQ). TCAVQ explains a neural model014
based on its activations in response to concepts015
present in the data. We propose a pipeline that016
automates the discovery of these concepts by017
clustering the model’s activations. The pipeline018
was tested on one architecture (BERT) but can019
be applied to different neural architectures. We020
perform ablation and injection studies to evalu-021
ate the causality and importance of the expla-022
nations provided with regards to the model’s023
predictions. The ablation studies show a 2%024
reduction in the model’s sensitivity while injec-025
tion shows up to a 13% reduction in specificity026
attributed to the top scoring concepts. This il-027
lustrates the potential of using concept-based028
explanations to verify model’s alignment with029
human values and ethics by examining the con-030
cepts and how they contribute to the model’s031
predictions.032

1 Introduction033

With the advent of neural language models, their034

growing complexity and available data volume035

enable them to model many features of natural036

language, achieving remarkable performance on037

a wide range of tasks. However, due to the size038

and complexity of these models, they are consid-039

ered black boxes. Their lack of interpretability040

undermines their trustworthiness and reliability, es-041

pecially in contexts where decisions are critical042

or where implicit biases can arise. These risks043

mandate directing effort to exploring explainabil- 044

ity methods for natural language models that scale 045

well and offer faithful insights into the model’s 046

decisions. 047

At a large scale, large language models (LLMs) 048

have been shown to develop emergent abilities (Wei 049

et al., 2022) that can mimic human language use to 050

a great extent. LLMs also pass many knowledge 051

and cognitive test despite lacking explicit reason- 052

ing mechanisms (Huang and Chang, 2023). his can 053

lead to an impression of sound reasoning which 054

has been shown to be false in some. Anthropic’s re- 055

cent explainability research (Ameisen et al., 2025) 056

demonstrated that discrepancy between the con- 057

cepts that the model learns and uses for its output 058

and what is expected as sound reasoning. 059

There are various methods used to interpret lan- 060

guage models. Some of these methods are more 061

mechanism oriented, aiming to explain how the 062

internal components of the model work towards 063

the output or learning. Others are data oriented, 064

assigning attributions to input features or learned 065

features in the model’s latent space. Bills et al. 066

(2023) proposed an approach to explain LLM neu- 067

rons individually and attribute their activations to 068

patterns in the input text. Another approach pre- 069

sented by (Arous et al., 2021) trains models with 070

manually annotated explanations to use attention 071

mechanisms to learn to self-explain. Lindsey et al. 072

(2025) develop a concept-based approach by build- 073

ing a replacement model that simulates the model’s 074

response to high level features. 075

In this paper, we develop an approach for gener- 076

ating global explanations of neural language mod- 077

els based on high-level concepts. Our main contri- 078

butions are the following: 079

• Automated concept discovery for neural lan- 080

guage models. 081

• Ad-hoc pipeline for concept-based explana- 082

tion generation. 083
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• Causality and importance analysis for concept-084

based explanations in the natural language085

processing domain.086

The following sections will discuss the state of the087

art and existing challenges, the components of the088

pipeline, the methods use to evaluate each of them089

and the results of these evaluations.090

2 Related Work091

High-level concepts present a good candidate for092

explaining complex language models as they can093

encapsulate the details of the model’s inner rep-094

resentation and provide an accessible view of095

its workings allowing an evaluator to assess the096

model’s alignment with human expectations and097

values (Ameisen et al., 2025; Lindsey et al., 2025;098

Yu et al., 2024).099

The main inspiration for our approach is the100

work by Kim et al. (2018) which presents a frame-101

work for explaining models in terms of high-level102

concepts by introducing quantitative testing with103

concept activation vectors (TCAVQ). This ap-104

proach measures how user-defined concepts rep-105

resented by collections of images contribute to the106

model’s decisions in an image classification task.107

This is achieved through concept activation vec-108

tors (CAVs). For each concept/layer pair, a TCAVQ109

score expresses the degree of alignment between110

this concept vector and a given class. We try to111

draw on their approach and transfer it to the lan-112

guage domain.113

Subsequent works including (Ghorbani et al.,114

2019) further developed this by automating the dis-115

covery of concepts to improve scalability and gain116

insights into the model’s learning. Works such as117

(Dalvi et al., 2022), (Coenen et al., 2019) and (Bills118

et al., 2023) have shown language models to be ca-119

pable of representing linguistic features at various120

levels ranging from low-level syntactic features to121

high level abstractions in their latent space. Several122

works have shown that these concepts can discov-123

ered using clustering of model embeddings such as124

(Yu et al., 2024). By combining these components125

of concept discovery and concept attribution, we126

derive a neural language model global explanation127

method.128

A key challenge in concept-based explanations129

in the language field is the intensive labor and com-130

putation required for a global view of the model131

due to the wide array of concepts a model is ca-132

pable of representing. Another open area in the133

field of explainable artificial intelligence (XAI) is 134

the development of reliable evaluation methods of 135

explanations. This is particularly challenging due 136

to the lack of ground truth labels and the need for 137

human validation while ensuring model faithful- 138

ness. 139

3 ACD-EG Methodology 140

Our methodology has two main components which 141

are automated concept discovery (ACD) and expla- 142

nation generation (EG). These components can be 143

broken down into the following steps: 144

1. Logging the activations of the layer of interest 145

in the subject model. 146

2. Clustering of activations to discover concepts. 147

3. Calculating concept activation vectors. 148

4. Calculating the TCAVQ scores of the classes 149

to these samples. 150

e begin with a trained subject model and a layer 151

of interest within that model. The first step is to log 152

the activations of the layer of interest in response 153

to input data. Concepts are by definition sets of 154

samples that the user thinks represent a single se- 155

mantic idea, but as opposed to manually procuring 156

them, we automate their discovery by clustering 157

the layer activations to find common patterns in 158

its responses to inputs. Afterwards, the concept 159

activation vectors are calculated for each of these 160

concept clusters, and finally they are multiplied by 161

the layer gradients in response to each class and 162

TCAVQscore is the explanation for the layer with 163

respect to each class and concept. This pipeline is 164

illustrated in Fig. 1. 165

3.1 Automated Concept Discovery 166

The goal of this stage is the automated discovery 167

of concepts. In the TCAVQ paper by (Kim et al., 168

2018), concepts are manually created by the system 169

user by obtaining a collection of images that they 170

give a certain label, such as a collection of spotted 171

images representing the concept of dots. This task 172

is labor intensive and difficult to scale to cover 173

a wide range of concepts. It is also susceptible 174

to biases stemming from the user’s specific idea 175

of the concept. Therefore, present this method to 176

automate the discovery of concepts and generating 177

the concept sets. One further reason is to allow us 178

to discover what concepts the model has learned 179
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Figure 1: The methodology pipeline with each module
as a solid box and intermediate outputs as dotted boxes.

by observing what inputs trigger similar patterns of180

activations. To this end, we first define a concept181

for the purposes of this work as a set of model182

activations that must meet two criteria:183

• It constitutes a single cohesive semantic idea184

identifiable to humans as a concept.185

• It shares common behaviors that its represen-186

tative points trigger inside the model.187

Concepts are created by clustering the input to-188

kens by the model’s activation in response to them189

from the layer of interest.In this case, the activa-190

tions of the later layers of the model are logged for191

each token from a random subset of the input data.192

This choice was made as later layers of the model193

usually contain higher level semantic features (Bills194

et al., 2023). However, the same method could be195

applied to any layer. Stop words are removed to196

limit the data to words that might carry richer se-197

mantic information that would be more informative198

as explanation.199

These activations are clustered to detect the dif-200

ferent patterns of the model’s response to input.201

Agglomerative clustering is used due to a work that202

used clustering of the layer activations to find the203

concepts represented in its embedding space (Dalvi204

et al., 2022). The metric used is cosine distance205

with average linkage. Average linkage is used as206

the more computationally affordable alternative to207

complete linkage used by Dalvi et al. (2022). Sam-208

ples from each class are clustered separately to209

allow class-specific concepts to develop separate210

Figure 2: Example of a concept cluster: a word cloud
showing the tokens in the cluster, and some of the sen-
tences from which they originated.

clusters and not be lost due to their relatively small 211

size. 212

The number of clusters to be used is selected 213

based on several metrics of two types. The first 214

type of metric were classical clustering metrics 215

such as the silhouette score and Davies-Bouldin 216

which evaluates the embeddings clustering quality. 217

The second type of metric is semantic evaluation of 218

the concepts formed by these clusters. A good con- 219

cept cluster would contain words all of which are 220

semantically related. To assess the level of seman- 221

tic relation within a cluster, we use the linguistic 222

ontology WordNet (Miller, 1994) as a ground truth 223

for the relations between terms. 224

3.2 Concept Activation Vectors 225

As per the TCAVQ methodology, a concept activa- 226

tion vector is calculated by training a linear model 227

on the activations of the layer of interest to obtain 228

the decision boundary coefficients as the vector that 229

points in the direction of the concept. 230

The training classes for the linear SVM are the 231

activations resulting from the layer in response to 232

the tokens labeled as the concept set and another 233

set labeled the neutral set which is a random set 234

of activations collected from different concepts as 235

well as evenly from both positive and negative as to 236

ensure it is not biased towards any specific concept. 237

The volume of data for each concept varied, as it 238

depended on the size of the concept cluster. How- 239

ever, for each concept, the corresponding neutral 240

dataset was set to the same size as it. For each 241

concept, different neutral sets are used to eliminate 242

any potential bias that might result from a specific 243

choice of the neutral set. 244

3.3 Calculating TCAVQ scores 245

TCAVQ scores are the main explanation presented 246

by this methodology. They show how sensitive a 247

class is to each of concepts present in the data. To 248

first obtain the sensitivity score of a layer l to a 249

given concept C with respect to one class k, we 250
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compute the dot product of the layer’s gradient251

vectors in response to inputs of the class k and252

each concept’s activation vector as shown in Eqn.253

1. This resulting dot product is higher when the254

layer’s change and the concept are more aligned255

and lower or negative if they are less similar.256

The gradient attributions of the layer of interest257

in response to a subset from each class are com-258

puted using a slightly modified version of the Cap-259

tum explainability library’s interpret function260

that only returns the gradient attributions without261

going through the rest of the explanation pipeline.262

(Kokhlikyan et al., 2020). The bigger the subset263

used, the better, to ensure the gradient is as rep-264

resentative as possible of the class. Since each265

sample was a sequence of tokens, the gradient per266

sample was computed as the average layer gradient267

across tokens.268

SC,k,l(x) = lim
ϵ→0

hl,k(fl(x) + ϵvlC)− hl,k(fl(x))

ϵ

= ∇hl,k(fl(x)) · vlC
(1)

269

The percentage of class samples for which this270

dot product is positive is then TCAVQ calculated271

using Eqn. 2. Concepts which score higher for a272

given class are considered to be more important to273

the detecting this class and this layer’s decisions.274

TCAVQC,k,l =
|{x ∈ Xk : SC,k,l(x) > t}|

|Xk|
(2)275

The original work introducing the TCAVQ calcu-276

lated it only based on the sign of the sensitivity277

score as shown in Eqn. 2 by setting t = 0. How-278

ever, in our work, we add a minor modification by279

experimenting with thresholding the sensitivity at280

a value higher than zero to examine a more even281

distribution of scores to better differentiate degrees282

of importance of concepts in cases where result-283

ing scores are very concentrated around a discrete284

set of values. The threshold we set is at t = 10−12285

based on the distribution of sensitivity score values.286

3.4 Computational Cost287

One of the design objectives for this approach is to288

maintain a lightweight pipeline that would make289

it sustainable as an ad-hoc portable explanation290

module to use with various architectures on a wide291

range of scales. Most of the computations going292

into executing this approach goes to running the 293

preexisting target model on some input samples 294

and clustering the concepts activations. We will 295

refer to the inference time of the model per sam- 296

ple as IM and the number of samples used in any 297

particular stage of the pipeline as n . The embed- 298

ding dimension of the model is also a factor so it 299

will be accounted, we will refer to it as m. Table 300

1 provides a breakdown of all the stages and an 301

estimate of their computational cost. Stages in the 302

table are given labels for readability (A: Activation 303

Logging, B: CAV calculation,C: Concept Discov- 304

ery, D: TCAVQ Score). The variable nA appearing 305

the last row of the table refers to the number of 306

samples previously used for stage A. 307

Stage Time Space Storage

A O(mnIm) O(mn) O(mn)
B O(mn) O(mn) O(mn)
C O(n3) O(n3) O(n)
D O(nAm+ Imn) O(mn) O(mn)

Table 1: Breakdown of time and space complexity of
each stage as well as storage requirements for storing
the results.

4 Experimental Evaluation and Results 308

This section will discuss the evaluation criteria and 309

results for each stage in the pipeline followed by a 310

discussion of the findings. 311

4.1 Dataset and Model Details 312

The subject model trained was BERT-uncased from 313

the Hugging Face transformers library with 4 fully 314

connected layers added on top for the classifica- 315

tion(Devlin et al., 2018). 316

The dataset used in this work is the Reddit post 317

suicidal ideation classification dataset obtained 318

from Kaggle (Komati, 2021) provided under (CC 319

BY-SA 4.0) license. The dataset is composed of 320

232074 Reddit posts collected from r/SuicideWatch 321

and r/Teenagers. It is prepared for the task of clas- 322

sifying a post as either expressing suicidal ideation 323

or not with r/SuicideWatch posts representing the 324

positive class and r/Teenagers posts representing 325

the negative one. The class sizes were balanced 326

with 116037 samples for each class. 327

Preprocessing steps: 328

1. Train-test split 329

2. Tokenisation using bert tokeniser 330
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3. Truncating long samples331

4. One-hot label encoding.332

The data was split into 80% for fine-tuning and 20%333

testing. The tokeniser used was bert tokeniser from334

the PyTorch library with truncation for samples335

longer than 512 tokens (Ansel et al., 2024). This336

truncation only affected 4% of the data. Finally the337

labels were one-hot encoded.338

For the following stages, the activations for the339

12th layer are then logged for each input sample.340

Each log entry is a token and its corresponding341

activation.342

4.2 Experimental Environment343

The experiments discussed in this section were all344

run on a personal computer. Model training and345

inference utilized the GPU (NVIDIA GeForce RTX346

3070 Laptop GPU).347

Agglomerative clustering and support vector348

machine implementations used were provided by349

Scikit-learn (Pedregosa et al., 2011) and the Py-350

Torch was used for the neural network implementa-351

tion (Ansel et al., 2024).352

4.3 Hyperparameters353

For the fine-tuning process, the first eleven layer of354

BERT layers were frozen but the twelfth and the355

fully connected layers were allowed to train for 10356

epochs with stochastic gradient descent optimizer357

and binary cross-entropy loss. The final testing358

accuracy obtained was 97% and an F1 score of359

0.97.360

The learning rates for the trainable layers were361

set as follows:BERT layer 11 : 5e−2, Dense layers362

1, 2, 3: 1e− 1 and Dense layer 4: 5e− 1.363

4.4 Concepts Discovery and Clustering364

Results365

Clusters define the concepts used in the explana-366

tion, n example of a cluster can be shown in figure367

2 visualized as a word cloud and the associated368

sentences. It is important to find the best num-369

ber and size of clusters to form. Too few clusters370

could result in multiple concepts blending into the371

same cluster making it heterogeneous and more372

difficult to interpret as a single concept. On the373

other hand, if the cluster number is too small, a374

concept could be diluted over multiple clusters and375

the explanation provided would be less abstract376

and comparable to token-based explanations. The377

level of granularity required varies depending on378

the application, the target audience of the explana- 379

tion, and the nature of concepts in the data with 380

some applications requiring broader concepts and 381

others requiring specific concepts. The method of 382

evaluation and acceptable scores would then vary 383

across use cases, but in this work we propose a 384

set of methods and share their outcomes for this 385

particular experiment. 386

4.4.1 Clustering Quality Metrics 387

The first approach to evaluating clusters was using 388

classical cluster quality metrics to evaluate the inter- 389

cluster and intra-cluster distances based on the 390

The score used were the silhouette score and 391

Davies-Bouldin index. The silhouette score is a 392

measure of how similar an object is to its own clus- 393

ter compared to other clusters. The higher the score, 394

the better the clustering. The Davies-Bouldin in- 395

dex is the average ratio of within-cluster scatter 396

to between-cluster dissimilarity. The lower the 397

score, the better. The scores are shown for cluster 398

numbers ranging from 100 to 1000 in Fig. 3 for 399

concepts belonging to both classes. Clusters of size 400

smaller than 10 samples were considered outliers 401

and were discarded. 402

Figure 3: Silhouette score and Davies-Bouldin index
plotted against cluster number for both positive and
negative class concept clusters.

The scores were low but both showed a similar 403

trend. higher cluster numbers could be tested as 404

well but it was decided against to avoid forming 405

clusters with a small sample size as that would 406

break down high-level concepts. At manually in- 407

specting the clusters created at each of these num- 408

bers, the word clouds and sentences belonging to 409

these concepts seemed to give a sufficiently coher- 410

ent impression. The work by Dalvi et al. (2022) has 411

also referred to the challenge of applying cluster- 412

ing metrics to high-dimensional embeddings and 413

provided the basis for setting the ratio of samples 414

to cluster. These low scores could be attributed to 415

distance concentration; with a space of 768 dimen- 416

sions, the difference between distances is minimal 417
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which makes the silhouette score less informative.418

The final cluster numbers selected for further exper-419

iments were 600 positive clusters and 400 negative420

ones.421

4.4.2 Semantic Concept Evaluation422

To evaluate the clusters in terms of semantic cohe-423

siveness, two semantic evaluation methods were de-424

vised. These methods are based on lexical database425

WordNet. These first measure was the mean pair-426

wise path similarity (MPS) within each cluster cal-427

culated as shown in Eqn. 3. For the cluster numbers428

selected from the previous evaluation stage, the av-429

erage score across positive concepts clusters was430

0.435 and 0.129 for negative clusters.431

MPS(C) =
Σ{path_sim(a, b)|(a, b) ∈ C ⊗ C}

| C ⊗ C|
(3)432

Another method to estimate semantic homogene-433

ity within a cluster was the proportion of pairs of434

tokens with common synonyms, hyponyms or hy-435

pernyms provided in Equation 5 where a term’s436

neighborhood is the set of related terms as defined437

by Equation 4. The mean across positive concept438

clusters was 0.062 and 0.041 for negative concept439

clusters.440

N(term) = term.synonyms441

∪ term.hyponyms ∪ term.hypernyms (4)442

443

common_synsets(C) =444

|{(a, b)|(a, b) ∈ C ⊗ C, |N(a) ∩N(b)| > 0}|
| C ⊗ C|

(5)

445

4.5 Results of TCAVQ Scoring446

TCAVQ scores of concepts were highly polarized447

with most of the concepts falling into either the448

range above 0.9 or below 0.1. The ranking of the449

concepts withe highest and lowest scores for each450

class are shown in Appendix A. To better exam-451

ine the differences in alignment between concepts452

and classes, sensitivity scores below a the thresh-453

old of 10−12 were to be discarded. The threshold454

was selected by observing samples with mostly455

zero sensitivity scores, as their remaining positive456

scores still fell below this point. In the case of457

TCAVQbeing calculated with the threshold t = 0458

where the top 194 positive ranking concepts has459

scores above 0.9. After applying thresholding at460

t = 10−12, concepts were more distributed along 461

the score range with only the top 135 being above 462

0.9. 463

4.6 Causality Evaluation and Results 464

We designed experiments to evaluate the causal- 465

ity and importance of the explanations generated 466

to the model’s predictions. Importance refers to 467

the degree to which a model’s decisions can be 468

attributed to a feature (Lundberg and Lee, 2017). 469

We conducted two types of experiments; ablation 470

and injection to observe the effect of removing con- 471

cepts or adding them to data on the model’s perfor- 472

mance. Larger change in the model’s performance 473

indicated greater importance of the concepts. 474

4.6.1 Concept Ablation 475

The first type of experiment was to test the con- 476

tribution of concepts to a sample being classified 477

as positive. First, the concepts with the highest 478

TCAVQ with respect to the positive class were se- 479

lected. Any tokens contained in the data represent- 480

ing these concepts was removed from the test data 481

set. The model was then re-evaluated on the posi- 482

tive data to calculate the change its sensitivity score 483

(TP/TP+FN) to the positive class. This experiment 484

was repeated for the top 10, 20, 30 and 100 scoring 485

concepts.Two sets of concepts rankings were eval- 486

uated, the set ranked according to TCAVQ scores 487

calculated when setting the sensitivity score thresh- 488

old to t = 0 and the ranking given by t = 10−12 489

experiment. The control was set up for each exper- 490

iment by removing tokens belonging to the same 491

number of lowest scoring positive concepts. The 492

results showing the model’s performance for differ- 493

ent treatments in Table 2 show a slight impact on 494

the model’s performance. despite being slight, it 495

is distinguishable from the results of running the 496

same experiments with low scoring concepts. 497

Table 2: Ablation results

# Concepts Sensitivity score

t = 0 t = 10−12 Control

0 0.986 0.986 0.986
10 0.979 0.968 0.986
20 0.978 0.960 0.986
30 0.970 0.960 0.985
100 0.957 0.959 0.986
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4.6.2 Concept Injection498

The second approach to examining the explana-499

tions was to assess the reduction in the model’s500

specificity (TN/TN1+FP ) after injecting tokens be-501

longing to the most positive concepts into negative502

samples. The number of injected tokens was set to503

10, 15 and 20. For each experiment with real con-504

cepts, a random control counterpart was carried out505

for reference by adding the same number of tokens506

but from a random set generated by an online tool.507

Results for this experiment are shown in Table 3508

showing the impact on performance is much more509

notable than in the case of ablation. The number510

of concepts from which the tokens were selected511

at random was fixed to the top 30 concepts. The512

results show a consistent decay in performance as513

more of the positive concepts were added to nega-514

tive samples as opposed to the much smaller impact515

of injecting random tokens. Thresholding sensitiv-516

ity scores above zero seems to aid with selecting517

more impactful concepts as indicated by the steeper518

performance decline.519

Table 3: Injection results

# Tokens Specificity score

t = 0 t = 10−12 Control

0 0.958 0.958 0.958
10 0.934 0.873 0.944
15 0.866 0.870 0.944
20 0.848 0.822 0.944

4.7 Discussion520

4.7.1 Human Intelligibility521

The final form of explanations presented are a clus-522

ter of activations from a layer and the sensitivity523

of a class to the concept represented by this clus-524

ter. The presentation of this cluster determines how525

intelligible and informative it is. Each cluster has526

three pieces of information per sample: the token,527

the layer embedding for it and the sentence from528

which is was taken.529

The embeddings while are the key for this whole530

explanation pipeline are not very intelligible to hu-531

mans due to their high dimensionality and the lack532

of intrinsic meaning of their dimensions. However,533

lower dimension visualizations can help demon-534

strate relative positions which can sometimes con-535

vey semantic or syntactic information as shown in536

the work by Coenen et al. (2019).537

Figure 4: An example of a misguiding word cloud due
to lack of context.

The word clouds are an easy to process visual 538

presentation that allows for viewing all tokens at 539

once. However, word clouds can be misguiding 540

due to loss of context such as Fig. 4 where the 541

tokens themselves convey one meaning but in fact 542

they were all obtained from sentences where the 543

token was mentioned in a negated context such as 544

"I’ve got no motivation". another form of this prob- 545

lem is the loss of word sense information but this 546

usually less impactful as clustering algorithms have 547

been shown to perform well in terms of clustering 548

words with similar sense together (Chronis and Erk, 549

2020) making it possible to disambiguate a word’s 550

sense through the rest of the words in the cluster as 551

shown. 552

Viewing sentences can provide context but is not 553

considered scalable due to the huge volume to data. 554

A hybrid approach combining all three elements of 555

the concept would provide a balanced presentation 556

similar to Fig. 2. 557

4.7.2 Concept Discovery 558

Cluster discovery is a key step to avoiding biases 559

and for scaling for use with large textual datasets. 560

Evaluating these concepts is crucial but challeng- 561

ing as it requires capturing high level semantic 562

relations and abstractions and requires determining 563

the required level of cohesion within the concepts. 564

Semantic relations can sometimes be difficult 565

to capture using general-purpose ontologies since 566

they only recognize a predefined set of relations. 567

One example of the concepts not captured suffi- 568

ciently by WordNet evaluation was the cluster with 569

tokens including : ’eleven’, ’four’, ’second’, ’two’ 570

which had no pairs with common synonyms, hy- 571

ponyms or hypernyms despite all its tokens fitting 572

easily into one recognizable category such as "num- 573

bers". Another issue is the rigidity and slow change 574

of ontologies compared to the constant and rapid 575

change in language use due to linguistic drift. This 576

can cause terms to have different meanings in live 577
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data rendering the ontology entry irrelevant.578

These discussed factors can lead to missing579

many connections either by measuring mean path-580

way similarity or common synsets and hence, an581

insufficient quantitative assessment of concepts.582

Manual evaluation or annotation could potentially583

guide this process to ensure alignment between584

metrics and data, but it is not a substitute as it is585

labor intensive and liable to biases.586

4.7.3 TCAVQ Scores587

The TCAVQ scores for each concept discovered588

with respect to the classes can provide insights into589

how the CAV aligns with the layer gradients in re-590

sponse to a class. Higher TCAVQ scores indicate591

a higher similarity between the concept and this592

class. The rankings of concepts can be compared593

to some references such as expert evaluation, dif-594

ferent modes of analysis, or be presented to an end595

user to establish common grounding between them596

and the model. For this experiment for example,597

there are several exploratory data analysis note-598

books on Kaggle that analyze linguistic patterns in599

this dataset observed across the two classes such as600

the work by the user Tranglt.601

Our analysis revealed a highly polarized dis-602

tribution of sensitivity scores. Upon closely in-603

specting the sensitivity scores, it was observed that604

they fall into one of two categories: (1) high dot605

products of the sample and most of the gradient606

vectors,(2) mostly zero dot products mixed with607

smaller dot products. In the second case, it seemed608

that the concepts do not align well with the class but609

the TCAVQ score is overestimated due to counting610

these small dot product values. To better distin-611

guish different levels of concept alignments, mag-612

nitude was taken into account and a threshold was613

introduced. The misaligned but high scoring to-614

kens mostly included small clusters of frequently615

used words such as "let" which might only get a616

positive sensitivity score due to being present in617

the sentence despite not being given a significant618

weight. The following section can further elaborate619

on the effect of thresholding on concept rankings620

and consequently the model’s performance.621

4.7.4 Ablation and Injection Experiments622

Synthetically removing the tokens associated with623

the explanation concepts to the samples possibly624

does not show the full extent of the concept’s contri-625

bution to the explanation since the original context626

is maintained to a large extent while the newly627

added tokens are placed within a relatively small 628

window with no related sentence structure to pro- 629

vide context. In models that are sensitive to context 630

and position such as BERT, this could result in 631

these injected features being assigned a lower im- 632

portance in the predictions as opposed to the occur- 633

rence of these same tokens in organic samples with 634

relevant context. Similarly, context could interfere 635

with the results of the ablation study as the original 636

context is mostly maintained with the exception of 637

removing a few key tokens. Additionally, BERT 638

is very robust to ablation as demonstrated by Jin 639

et al. (2020) which could explain why injection had 640

a more significant impact. 641

5 Conclusion and Future Work 642

We have presented an ad-hoc pipeline to discover 643

concepts represented within a model’s embedding 644

space and generate explanations based on these 645

concepts using TCAVQ scores to measure how con- 646

cepts and classes align. We have also presented 647

semantic evaluation approaches to evaluating these 648

concepts and explanations. This approach was ap- 649

plied to a BERT-based model on a Reddit post 650

dataset. The results regarding the cohesiveness of 651

discovered concepts have been mixed calling for 652

further investigation into how to better evaluate 653

high-level abstractions and semantic concepts in 654

linguistic data. As to the explanations generated, 655

their impact was evaluated by removing their asso- 656

ciated text from the data and a reduction in model’s 657

sensitivity of up to 2.8% was observed. Injecting 658

words related to these concepts into negative sam- 659

ples also led to a confusion in the model predictions 660

reducing its specificity by up to 13.5% . These re- 661

sults indicate the contribution of these explanations 662

to the prediction. 663

This work can be extended to more model archi- 664

tectures and to be used for explaining models in 665

generative tasks by focusing on the next token as 666

the target class. Other future work could include 667

investigation into applying these explanations to 668

correct model misalignment and bias. 669

Limitations 670

One of the limitations of this work is not accounting 671

for word senses while running the ablation exper- 672

iments due to the added computational cost. Dis- 673

regarding the word sense could lead to incorrectly 674

removing tokens that do not relate to the concept. 675

Setting a threshold for sensitivity scores ap- 676
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peared to result in a significant change in results677

which warrants further investigation into the opti-678

mal value for this threshold or other approaches to679

softening the distribution curve.680

Attempting to explain an entire layer might be681

limiting the effectiveness of the explanation by a682

coarse view of the model. It might prove more683

informative to investigate smaller sections of the684

model separately such as neurons or pathways in685

the computational graph.686
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