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Abstract

Multimodal Large Language Models (MLLMs)001
are advanced in handling complex visual-002
textual tasks, but their application to narrative-003
driven contexts remains underexplored. In this004
work, we evaluate the ability of MLLMs to005
identify relevant visual segments and generate006
descriptions for segments in illustrated digi-007
tal storybooks. We curate a dataset of 14,162008
segments, extracted from 32 Arabic children’s009
digital storybooks through the Segment Any-010
thing Model (SAM), with human annotations011
for segment relevance and descriptive labels.012
We evaluate five state-of-the-art MLLMs across013
zero-shot prompting conditions, and evaluate014
the two best-performing models through few-015
shot. Our results show that few-shot prompting016
of GPT-4o achieves the best results for seg-017
ment relevance classification. While all models018
struggle with fine-grained contextual reasoning,019
our findings provide insights for developing AI-020
powered interactive digital storybooks and help021
advance multimodal methodologies in narrative022
understanding tasks.023

1 Introduction024

As Large Language Models (LLMs) become more025

adept at handling complex tasks, the recent shift026

towards Multimodal LLMs (MLLMs) extends their027

processing capabilities beyond text so that they en-028

compass different modalities of information. This029

expansion widens the range of tasks they can030

cover and better mimics human multimodal sens-031

ing abilities (Fu et al., 2024; Huang and Zhang,032

2024). However, several gaps remain. While033

these MLLMs can be advanced in single-image034

tasks, they struggle with tasks involving multiple035

related images (Wang et al., 2024a) in addition036

to fine-grained details within illustrations (Wang037

et al., 2024a; Fu et al., 2024). Moreover, exist-038

ing MLLM evaluations primarily focus on vision-039

language tasks like visual question answering but040

neglect tasks that require deeper contextual under- 041

standing (Yang et al., 2023). 042

This gap in deeper contextual understanding and 043

fine-grained visual perception is salient in appli- 044

cations like digital storytelling. Within this work, 045

illustrations in digital storybooks have played a 046

major role in children’s story comprehension and 047

engagement by providing visual reinforcement to 048

the storybook narrative (Bus et al., 2019). Features 049

that include interactive, clickable visual elements 050

can especially help with introducing more interac- 051

tivity beyond passive reading (Kamil et al., 2023). 052

The use of Artificial Intelligence (AI) has been in- 053

creasingly integrated into digital story-telling for 054

immersive interactions (Sun et al., 2024); however, 055

there is a lack of research in exploring AI-driven 056

illustration segment (objects within a storybook 057

page image) interaction in digital storybooks. This 058

segment interaction requires not only object recog- 059

nition but also narrative comprehension, which is 060

under-explored in MLLM benchmarks (Yang et al., 061

2023). 062

Therefore, in this work, we introduce an ap- 063

proach for evaluating visual segments in digital sto- 064

rybooks using MLLMs to enhance interaction. We 065

utilize and assess MLLMs (GPT-4o, GPT-4o-mini, 066

Gemini 1.5 Pro, Gemini 2.0 Flash, and Claude 3 067

Opus) in identifying relevant auto-generated seg- 068

ments from storybook illustrations based on the nar- 069

rative context. To analyze model behavior across 070

varying levels of contextual support, we evalu- 071

ate performance under both zero-shot and few- 072

shot prompting conditions (using 2-shot examples 073

through dynamic and fixed example selection strate- 074

gies). Our goal is to advance narrative-driven multi- 075

modal evaluation by comparing model performance 076

to human perception of segment relevance based 077

on the story’s context. 078

Our research question is as follows: How well 079

do state-of-the-art multimodal language models 080

(MLLMs) identify relevant segments from story- 081
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book illustrations based on the storybook narrative?082

We investigate whether current MLLMs can ac-083

curately determine the relevance of segment illus-084

trations within a story’s context by comparing their085

performance to human evaluation. Insights from086

this study can inform large-scale applications in-087

volving digital books, reducing the effort required088

to identify interactive segments that can bolster089

engagement and comprehension.090

Our contribution to digital storytelling research091

and MLLM evaluation also extends to providing a092

benchmark comparison of MLLMs for visual seg-093

ment relevance in narrative multimodal tasks and094

introducing a novel evaluation framework lever-095

aging storybook context. While we applied our096

method to children’s storybooks written in Arabic,097

the findings have broader implications for narrative-098

driven visual interaction in other domains.099

2 Related Work100

AI in Storybooks: Storytelling and Visuals AI101

in the realm of storytelling has supported the cre-102

ation of interactive and personalized narratives and103

enhancement of readers’ engagement. For instance,104

AI has shown potential in managing fluid narrative105

structures (Cavazza and Charles, 2003; Bostan and106

Marsh, 2012), adapting stories to user interactions107

in gamified storytelling and education (Riedl, 2012;108

Katifori et al., 2018; van Druten-Frietman et al.,109

2016), and fostering creativity in collaborative sto-110

rytelling platforms (Garzotto et al., 2010; Burten-111

shaw, 2023). AI-supported tools like AI Stories112

and Storypark offer structured narrative assistance113

that has shown improvements in language skills and114

comprehension (Ye et al., 2024; Burtenshaw, 2023).115

However, many of these systems rely on rule-based116

mechanisms, emphasizing narrative coherence over117

open-ended creativity (Cavazza and Charles, 2003;118

Bostan and Marsh, 2012). While interactive sto-119

rytelling in education enables user agency, it op-120

erates within predefined limits (Riedl, 2012; van121

Druten-Frietman et al., 2016). Few studies address122

AI’s role in less structured creative domains, such123

as poetry-based or ethically nuanced storytelling124

(Świerczyńska Kaczor, 2024), and there is limited125

discussion on integrating automation with artistic126

intent. There is a gap in unstructured, context-rich127

storytelling settings, especially within a children’s128

digital storybooks format, highlights the need for129

AI systems that interpret visual-narrative relation-130

ships dynamically, which we aim to address in this131

work. 132

Multimodal LLMs Recent advances in MLLMs 133

target an amalgam of concetps from text, to images 134

and structured data, extending LLMs with visual 135

reasoning for tasks such as image-text retrieval, 136

VQA, and document understanding (Zhang et al., 137

2024; Wang et al., 2024b). Vision-language mod- 138

els like ImageBERT strengthen cross-modal align- 139

ment through large-scale pre-training, impacting 140

domains such as healthcare (Qi et al., 2020; Wang 141

et al., 2023). Binary image-text relevance classi- 142

fication remains a core challenge for validation- 143

intensive settings. Approaches like LLaVA-RE cat- 144

egorize pairs as ’relevant’ vs. ’not relevant’ (Sun 145

et al., 2025), while ImageBERT employs image- 146

text matching losses to enhance classification pre- 147

cision (Qi et al., 2020). Parallel work on Arabic- 148

English cross-lingual prompting shows systematic 149

gains in translation and multimodal retrieval, yet 150

multilingual evaluation protocols are few (Nagi 151

et al., 2024). In healthcare, GPT-RadScore was 152

studied to assess MLLM’s ability in fine-grained, 153

task specific medical assessments (Zhu et al., 2024). 154

Building on this work, we shift the focus from pair- 155

wise image-text relevance and domain-specific re- 156

porting to narrative-driven, segment-level visual 157

relevance in children’s digital storybooks, targeting 158

the space of context-sensitive, multilingual, fine- 159

grained illustration segmentation aligned with story 160

narratives. 161

Applications of Segment Anything Model The 162

Segment Anything Model 1 (SAM) enables flexi- 163

ble, zero-shot image segmentation across domains 164

like medical imaging, agriculture, and geology (Ma 165

et al., 2023; Zhang and Wang, 2023; Carraro et al., 166

2023). Its strength lies in minimizing fine-tuning 167

while maintaining high accuracy, yet challenges re- 168

main with low-contrast images (Huang et al., 2024). 169

This existing work focuses on static tasks to as- 170

sess technical precision in various fields. However, 171

there has not been work on SAM’s applications in 172

a user interaction design context. Our work aims 173

to bridge the gap between automated segmentation 174

and interactive digital storybooks design. 175

3 Method 176

3.1 Dataset Preparation 177

To analyze storybook illustration segments, we 178

curate a dataset for segments from 32 illustrated 179

1https://segment-anything.com/
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Figure 1: Dataset Preparation Process Per Storybook Page for Extracting Transcript, Context, and Segments

Arabic children’s storybooks provided in digital-180

ized PDF format and converted to images. The181

preparation pipeline consists of the following: text182

extraction, image conversion, contextual augmen-183

tation, and segmentation processing, with semi-184

automated techniques to handle each story. Each185

story’s dataset is structured per page, including186

page-level transcripts, extracted images, context187

description, and segmentation outputs in order to188

provide a rich context for MLLM evaluation. Fig-189

ure 1 summarizes the data collection process. We190

support MLLM’s evaluation of segment relevance191

by both segment-level (local) and narrative-level192

(global) contexts for each analysis step by provid-193

ing page-level transcripts as local context for the ex-194

tracted image segments, along with story-extracted195

contextualized narrative descriptions that offer a196

broader understanding of the story.197

Storybook Preprocessing Due to limitations of198

existing Arabic OCR tools in extracting illustrated199

Arabic text correctly with diacritics, we utilize200

Azure’s Document Intelligence model 2 for text201

extraction. Since children’s illustrated storybooks202

rely heavily on visual and textual interplay, provid-203

ing robust contextual information is crucial. Thus,204

we use GPT-4o’s vision capability to generate Ara-205

bic contextual descriptions of each page by taking206

into account visual elements and referencing prior207

pages for narrative coherence. The prompt used208

for this process is included in the Appendix (Sec-209

tion A.2). Finally, to extract individual illustrated210

2https://azure.microsoft.com/en-us/products/
ai-services/ai-document-intelligence

segments from each storybook page, we employ 211

Meta’s SAM to automate the process. For each 212

illustrated page, segments were extracted into PNG 213

files with their polygon data in JSON format. All of 214

this data is then organized hierarchically per page 215

then per story. 216

3.2 Segment Annotation 217

To establish a ground truth for evaluating MLLMs 218

on illustrated storybook segments, two bilingual 219

annotators proficient in Arabic and English were 220

recruited from Fiverr and were informed that their 221

labeling work would be used for research purposes. 222

No personal or sensitive information was collected 223

or retained. Annotators were asked to assess the 224

relevance of each segment to the narrative (i.e., the 225

story’s context on that specific page, as provided by 226

the textual transcript and contextualized narrative 227

description) on a binary scale, as well as assign a 228

one-word description in English for relevant seg- 229

ments, or ’nothing’ otherwise. Annotators were 230

compensated 5 cents per segment. The annotator 231

guidelines mirrored the instructions given to the 232

MLLMs through our prompts. 233

We first measure Inter-Annotor Agreement 234

(IAA) on a subset of three randomly selected stories 235

from 32 stories (996 segments in total), using Co- 236

hen’s kappa (κ) for binary relevance classification 237

and SpaCy’s pre-trained model en_core_web_md, 238

with a threshold of 0.8, for semantic similarity of 239

the one-word descriptions (Honnibal et al., 2020; 240

AI, 2020a). Cohen’s kappa, accounted for agree- 241

ment by chance beyond simple accuracy, while 242
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the SpaCy model was chosen because it includes243

tagging, parsing, lemmatization and named entity244

recognition (AI, 2020b), which makes it useful245

for calculating semantic similarity. We chose the246

pipeline that is trained on written web text. Given247

that storybook segments involve objects, actions,248

or concepts needing contextual understanding, the249

model is well-suited for our evaluation.250

A preliminary Zoom session was conducted to251

clarify guidelines. The guidelines are given in de-252

tail in the Appendix (Section A.3). For the first253

round, Cohen’s kappa was 0.72 (substantial agree-254

ment (Cohen, 1960; McHugh, 2012)) and average255

semantic similarity was 94.2%. To improve agree-256

ment, a follow-up discussion addressing annotation257

discrepancies was held. A second annotation round258

on the three stories improved Cohen’s kappa to259

0.97 and one-word description semantic similarity260

to 97.2%. The remaining disagreements for this261

subset were resolved by a super-annotator (the task262

designer), and the remaining 29 stories (13,166 seg-263

ments) were evenly distributed between annotators264

independently. This curated dataset provides the265

ground truth for evaluation of MLLM performance.266

3.3 Experimental Setup and Implementation267

We collect results from all MLLMs through stan-268

dardized API calls in a Google Colab environment269

through batch processing. All outputs are parsed270

into JSON format. We split our dataset (14,162271

illustrated segments from 32 children’s Arabic sto-272

ries) into an 80/20 split, where 80% is used for273

evaluation, and 20% is used for few-shot training.274

The split is done on a story-level so that all seg-275

ments from the selected stories are either in the276

training or evaluation set. The 80% part includes277

22 stories (with a total of 10,921 segments). The278

20% part has the remaining 10 stories (3,241 seg-279

ments).280

The experiments are structured into two distinct281

phases: zero-shot and few-shot prompting. In the282

zero-shot phase, we evaluate MLLMs on the 80%283

part of the dataset, to make results directly compa-284

rable to the few-shot’s, using macro-F1 for binary285

classification of relevance and semantic similar-286

ity of descriptions across the following models:287

GPT-4o, GPT-4o-mini, Gemini 1.5 Pro, Gemini288

2.0 Flash, and Claude-3 Opus. For the few-shot289

experiments, the 20% part of the dataset is used290

for extracting examples. In this setup, each prompt291

provides the model with two annotated examples292

alongside the test segment from the evaluation293

dataset. Each of those examples includes a seg- 294

ment image, its corresponding full-page image, the 295

page-level transcript, contextual description, binary 296

relevance (true/false), and a one-word description. 297

We explore two approaches for selecting few- 298

shot examples. 299

• Fixed method: Two examples, one labeled 300

relevant (true) and the other labeled irrelevant 301

(false), are randomly selected from the train- 302

ing set and used consistently across all few- 303

shot prompts. 304

• Dynamic method: For each test instance, se- 305

lect the two most semantically and visually 306

similar segments from the example pool by 307

generating and comparing multimodal em- 308

beddings, using the CLIP model (Radford 309

et al., 2021). Each segment is encoded into 310

a 1536-dimensional vector by concatenating 311

embeddings of the segment image, the full- 312

page illustration, and combined textual inputs 313

(page transcript and context). Cosine similar- 314

ity is used to retrieve the top two most rele- 315

vant examples, thus enabling tailored few-shot 316

prompts for each instance. The algorithm in 317

detail is in the Appendix (Section A.4). 318

We conduct prompt engineering iteratively by using 319

held-out examples from the training data until all 320

models achieve consistent adherence to the guide- 321

lines given to annotators. The final prompt is ref- 322

erenced in the Appendix(Section A.1. To prepare 323

for evaluation, we normalize the outputs for casing 324

and formatting. Invalid responses like multi-word 325

descriptions or punctuated outputs are cleaned. For 326

segments that are missed within the batch process- 327

ing output, we issue single API calls to recover 328

the missing predictions. We then run evaluation 329

scripts to process the outputs to compute binary 330

relevance accuracy for the segments and semantic 331

similarity between model-predicted and annotated 332

descriptions. 333

3.4 Evaluation 334

Relevance Classification The first evaluation 335

task requires MLLMs to classify storybook illustra- 336

tion segments based on their contextual relevance 337

within the story’s narrative. Each segment would 338

receive a binary relevance label (True/False), in- 339

formed by visual and textual context provided in 340

the prompt. Given the dataset’s class imbalance 341

(approximately 20% relevant and 80% irrelevant 342
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Table 1: Zero-Shot Evaluation Results: F1-Score, Relevance Accuracy, and Semantic Similarity for
Binary Classification of Contextual Relevance Across MLLMs

Model Claude-3 Opus GPT-4o-mini GPT-4o Gemini 1.5 Pro Gemini 2.0 Flash

Relevance Accuracy 32.44% 73.4% 81.3% 62.16% 44.29%

F1 Score 0.3239 0.572 0.624 0.5645 0.4411

Semantic Similarity 33.8% 76.7% 83.9% 64.94% 45.69%

segments), we use the macro-averaged F1-score343

(Pedregosa et al., 2011; Opitz and Burst, 2019) as344

the primary metric as it considers the performance345

on both classes while penalizing poor performance346

on the minority class (Leung, 2022). We also report347

accuracy for completeness which is calculated as348

follows:349

Accuracy =
Number of Correct Predictions

Total Number of Segments/Predictions
(1)350

The evaluation results are computed across the351

32 stories to show a comprehensive assessment of352

MLLM performance on the relevance classification353

task within a narrative-driven context.354

Description Generation The second task is as-355

signing single-word English descriptions to each356

segment. We compute semantic similarity between357

the model-generated outputs and ground truth us-358

ing SpaCy’s pre-trained model (en_core_web_md),359

similar to the approach used for IAA described in360

Section 3.2. We prioritize semantic similarity for361

evaluating this task since the main objective is to362

identify the object in the segment with a single-363

word description, where synonymous similarity is364

sufficient. The final reported measure is the average365

semantic similarity across all segments.366

4 Results367

The results from all models reveal remarkable368

discrepancies in the models’ agreement with the369

ground truth, which may potentially be due to how370

these models handle Arabic textual input and pro-371

duce English outputs in a multimodal setting.372

4.1 Zero-Shot Experiments373

In the first phase, we assess the model performance374

across the two tasks (binary classification and de-375

scription generation) across the five MLLMs for376

the evaluation dataset. The results are encapsulated377

in Table 1, where relevance accuracy and F1 score378

are used for assessing the binary classification task379

while the semantic similarity metric is used to as- 380

sess the descriptions provided. 381

Relevance Classification To establish a baseline, 382

we include a majority baseline, which is a naive 383

predictor that assigns the most frequent class ("not 384

relevant") to all inputs. Since 80% of the ground 385

truth annotations are negative (i.e., not relevant), 386

this majority baseline achieves a relevance accu- 387

racy of 80% and a macro-averaged F1 score of 388

50%. We utilize these values for our baseline 389

comparison. As summarized in Table 1, we uti- 390

lize the macro-averaged F1 score as the princi- 391

pal evaluation metric for this task. This evalua- 392

tion is conducted on 80% of the annotated dataset. 393

Among all five models, GPT-4o (F1 = 0.624), 394

GPT-4o-mini (F1 = 0.572), and Gemini-1.5-Pro 395

(F1 = 0.5645%) achieved performance levels that 396

surpass the random-choice baseline of 50%, sug- 397

gesting that these MLLMs are capable of capturing 398

contextual relevance even under class imbalance. 399

With respect to accuracy, while none of the models 400

consistently exceeded the baseline across all con- 401

ditions, GPT-4o (Accuracy = 81.3%) and GPT- 402

4o-mini (Accuracy = 73.4%) demonstrated rela- 403

tively stronger performance compared to the other 404

evaluated systems. Claude-3 Opus exhibited the 405

weakest results in this task compared to all models 406

with an F-1 score of 0.3239 and an accuracy level 407

of 32.44%, suggesting that the model may struggle 408

with fine-grained relevance judgment when tasked 409

with multimodal reasoning that involves both vi- 410

sual and linguistic context with multilingual con- 411

tent. These findings highlight challenges MLLMs 412

face in nuanced classification scenarios especially 413

when relevance judgments could hinge on narrative 414

coherence and intermodal alignment. 415

Description Generation We utilize seman- 416

tic similarity to measure alignment between 417

model-predicted descriptions and human-annotated 418

ground truth for identifying segments, aggregated 419

over the evaluation dataset. As shown in Ta- 420
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Table 2: Few-Shot Evaluation Results: F1-Score, Relevance Accuracy, and Semantic Similarity with
Fixed and Dynamic Prompting Strategies Across MLLMs

Prompt Setting Metric GPT-4o-mini GPT-4o

Few-Shot (Fixed)
Relevance Accuracy (%) 77.7 79.5

Relevance F1-score 0.661 0.708
Semantic Similarity (%) 79.1 78.5

Few-Shot (Dynamic)
Relevance Accuracy (%) 75.7 77.0

Relevance F1-score 0.666 0.654
Semantic Similarity (%) 76.5 78.2

ble 1, GPT-4o has the highest semantic similar-421

ity (83.9%), followed closely by GPT-4o-mini422

(76.7%), and Gemini-1.5-Pro (64.94%). These423

results indicate the models’ ability to effectively424

generate one-word descriptions for segments in425

a multimodal, context-driven task. On the other426

hand, Claude-3-Opus (33.8%) and Gemini-2.0-427

Flash (45.69%) yielded lower alignment scores.428

4.2 Few-Shot Experiments429

In the second phase of our study, we examine the430

impact of few-shot prompting strategies on the per-431

formance of the two top-performing MLLMs from432

Phase 1: GPT-4o and GPT-4o-mini. We narrow433

down the models for Phase 2 to preserve computa-434

tional resources while enabling a direct comparison435

in a few-shot setting. We evaluate two example436

strategies in few-shot in this phase: (1) fixed exam-437

ples utilizing two pre-selected reference samples;438

and (2) dynamically selected examples chosen in439

real-time based on contextual similarity to the input440

segment. At this stage, we run the experiment on441

the evaluation dataset, while the training dataset is442

used for example selection.443

Relevance Classification Table 2 summarizes444

the accuracy and F1-scores for GPT-4o and GPT-445

4o-mini across the two few-shot prompting strate-446

gies. GPT-4o demonstrated superior performance447

in the fixed few-shot setting, achieving higher accu-448

racy (Accuracy = 79.5%) and a notably stronger449

F1-score (F1 = 0.708). On the other hand, the450

dynamic few-shot strategy showed slightly reduced451

performance (Accuracy = 77.0%, F1 = 0.654).452

This suggests that for GPT-4o, the consistent use453

of carefully pre-selected examples is more effec-454

tive than dynamically retrieved examples, which455

may introduce redundancy or noise that hinders the456

model’s generalization. As for GPT-4o-mini, the457

fixed few-shot setting yielded the highest accuracy458

Figure 2: Example of a page containing sign language
illustrations (left) and an extracted segment of white
squares (right).

(Accuracy = 77.7%), but the highest F1-score 459

was achieved using dynamically selected examples 460

(F1 = 0.666). Although the differences between 461

the two few-shot strategies are subtle for this model, 462

it might gain more balanced precision and recall 463

from examples tailored dynamically to input con- 464

text rather than predetermined examples. 465

Description Generation Table 2 reports the se- 466

mantic similarity scores under few-shot settings. 467

GPT-4o showed minimal variation between fixed 468

(78.5%) and dynamic (78.2%) prompting, indi- 469

cating stable performance regardless of example 470

selection strategy. GPT-4o-mini achieved the 471

highest similarity with fixed examples (79.1%) 472

which dropped slightly under dynamic prompting 473

(76.5%). This indicates that larger models like GPT- 474

4o remain robust across few-shot configurations in 475

terms of identifying objects within images. 476

4.3 Error Analysis 477

A key challenge encountered in this study is the 478

misclassification of irrelevant segments as rele- 479

vant by multiple MLLMs. A notable case, shown 480
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in Figure 2, is described for the several empty481

white squares extracted as segments from pages,482

showing hand gestures of Arabic sign language483

letters. In the zero-shot experiment phase, Gem-484

ini 1.5 misclassified them as “hand,” while Gem-485

ini 2.0 described them as “sign”. Claude showed486

inconsistent descriptions like “chart,” “hands,” or487

“blank”, and GPT-4o-mini described them as “sig-488

nal,” “hand,” or “communication". These models489

associated the segments with page image rather490

than each individual segment’s content. GPT-4 was491

most accurate, usually identifying those squares as492

irrelevant. These mistakes stemmed from models493

overemphasizing key objects from the full-page im-494

age without critically analyzing segments indepen-495

dently. Repeated exposure to relevant elements in496

addition to the whole page while batch processing497

biased the models toward assuming all segments498

are meaningful. In the few-shot experiment phase,499

both GPT-4o and GPT-4o-mini, for the same case,500

correctly identified these empty white squares as501

irrelevant in dynamic and static settings; hence,502

providing examples enhanced the assessment. In503

the dynamic setting, there was only one segment of504

this case where GPT-4o identified the white square505

as "hand" while GPT-4o-mini identified it as "sig-506

nal". Other examples of discrepancies between507

the ground truth and MLLMs are included in the508

Appendix (Section A.5).509

5 Discussion510

In this study, we investigate the effectiveness of511

MLLMs in identifying relevant segments extracted512

from storybook illustrations throughout the con-513

textual narrative of the storybooks, particularly in514

an Arabic-English multimodal context. Our find-515

ings offer insights into the current capabilities of516

MLLMs and the potential integration of MLLMs517

into digital illustrated storybook tools.518

Effectiveness of MLLMs Our results reveal that,519

although several MLLMs surpassed the baseline ap-520

proach, performance still fell short of being robust521

enough for the given task. Among all the models522

we used, GPT-4o with static few-shot prompting523

achieved the best results (F1=0.708) and gener-524

ated descriptions that most closely aligned with525

the ones assigned by human annotators’ evalua-526

tion. This evaluation framework thus provides527

a structured benchmark for assessing how well528

MLLMs can handle narrative-driven multimodal529

tasks which is under-explored in current MLLM530

research. Our findings provide empirical evidence 531

on whether state-of-the-art MLLMs can accurately 532

identify relevant illustration segments based on a 533

story’s context. While GPT-4o and GPT-4O-mini 534

exhibit the strongest performance, the overall per- 535

formance remains inconsistent for other MLLMs. 536

Since Claude-3 Opus underperformed significantly, 537

especially in semantic similarity measures, we pre- 538

sume that the model struggles to handle the cross- 539

linguistic and multimodal aspects of the given task, 540

especially where a nuanced contextual inference in 541

Arabic storybooks is required. Similarly, Gemini 542

2.0 Flash performed marginally better than Claude 543

3 Opus but demonstrated weaker performance than 544

its predecessor model, Gemini 1.5 Pro in both bi- 545

nary segment relevance classification and semantic 546

similarity. Those findings reveal potential gaps in 547

how these much newer MLLMs handle context- 548

sensitive, narrative-driven tasks in addition to fine- 549

grained reasoning, aligning with concerns about 550

multilingual evaluation in multimodal tasks (Nagi 551

et al., 2024). Based on our observations, most 552

MLLMs rely on global context from entire illus- 553

trations or pages, rather than focusing on specific 554

visual segments. This leads to overgeneralization 555

and weak fine-grained reasoning. Using narrative- 556

driven visual interaction as a benchmark, we ex- 557

pose limitations in current MLLM architectures 558

that standard vision-language evaluations overlook. 559

The high class imbalance in our dataset further chal- 560

lenges models, especially in identifying less com- 561

mon but crucial segments—key for applications 562

like interactive storybooks. While some models 563

(e.g., GPT-4o) handled minority segments better, 564

most achieved macro F1-scores at or below 0.5, 565

with Claude 3 dropping below the random baseline 566

at 0.3272. These findings highlight the need for 567

more robust, narrative-aware multimodal training 568

and evaluation. These findings show the need to 569

evaluate MLLMs on narrative-specific and cross- 570

linguistic tasks that reflect real-world diversity in 571

digital storytelling. Inconsistent results from mod- 572

els like Claude 3 and Gemini 2.0 Flash highlight 573

the lack of reliable solutions for context-rich, mul- 574

timodal reasoning. Current benchmarks overlook 575

the complexities of narrative-driven tasks; thus, fu- 576

ture MLLM development must prioritize structured, 577

multimodal benchmarks that support continuity and 578

fine-grained reasoning in storytelling applications. 579
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5.1 Potential for Interactive Digital580

Storybooks581

Our results offer implications for seamlessly inte-582

grating interactive segments into digital illustrated583

storybook pipelines. Before integrating interac-584

tive segments from SAM, these segments can first585

be evaluated through MLLMs in a context-driven586

process. GPT-4o and GPT-4o-mini’s strong seg-587

ment identification through descriptions capabili-588

ties and binary classification can streamline this589

process while taking the story’s narrative and com-590

prehension into account, which enhances engage-591

ment in storytelling applications as highlighted by592

the existing digital storytelling work (Bus et al.,593

2019; Kamil et al., 2023; Sun et al., 2024). This594

effort helps in reducing manual annotation efforts595

required for developing rich and immersive story-596

book tools.597

Future research should focus on finding meth-598

ods to improve visual-textual reasoning in MLLMs,599

refining data across different languages, and devel-600

oping new ways to evaluate narratives for accuracy601

and context sensitivity. Expanding evaluation to602

other storytelling contexts, languages, or domains603

would also deepen our understanding of MLLM604

capacities.605

6 Conclusion and Future work606

The study evaluated the ability of MLLMs to clas-607

sify segment relevance in illustrated storybooks.608

Among the evaluated models, GPT-4o achieved the609

best results, and Claude-3 Opus had the lowest per-610

formanceThe two-phase evaluation revealed that611

incorporating few-shot prompting significantly en-612

hances performance over zero-shot baselines. This613

finding underscores the importance of contextual614

alignment in example selection and highlights the615

role of prompt design in guiding multimodal rea-616

soning. Throughout the experiments, we observed617

that GPT-4o and GPT-4o-mini could integrate both618

visual and textual cues to make coherent judgments.619

This opens up opportunities for developing inter-620

active storytelling systems powered by intelligent621

visual-textual understanding.622

The study had limitations, including a small623

dataset of 32 Arabic-language storybooks, which624

can affect generalizability across languages and625

narrative styles. Using Arabic narratives to assess626

English outputs could also introduce cultural or lin-627

guistic bias. Future work should explore prompt628

engineering, fine-tuning, and larger, more diverse629

datasets, including English content. Further re- 630

search could integrate SAM-2 for enhanced seg- 631

mentation and multimodal understanding. Overall, 632

this benchmark and evaluation framework lays the 633

groundwork for more robust and interactive digital 634

storytelling systems. 635

7 Limitations 636

Several key limitations exist in this study. First, our 637

evaluation was conducted using Arabic-language 638

narratives, while model outputs were in English. 639

This cross-linguistic setup may introduce cultural 640

or semantic mismatches that influence model com- 641

prehension. Future research could assess whether 642

MLLMs perform better when both input and output 643

share a consistent linguistic and cultural context, 644

such as English-English evaluation. Second, the 645

dataset consisted of 32 digital storybooks tailored 646

for children, which limits generalizability across 647

age groups and genres. Expanding the evaluation to 648

a broader range of digital storybooks targeting dif- 649

ferent age groups could yield a more holistic under- 650

standing of MLLM capabilities. Third, while we 651

highlight the promise of using auto-segmentation 652

tools like SAM, this study did not directly evaluate 653

their integration with MLLMs. Investigating how 654

segmentation quality interacts with downstream 655

reasoning tasks remains a valuable future direc- 656

tion. Additionally, future work can involves train- 657

ing MLLMs specifically on storybook illustrations 658

and related data to assess their performance on 659

complex multimodal tasks which can potentially 660

enhance their effectiveness and usability in inter- 661

active digital storytelling applications. Moreover, 662

we only utilized the two best performing models 663

from the zero-shot experiments in the few-shot ex- 664

periments for conserving computational resources, 665

so the few-shot experiment results cannot be gen- 666

eralized to Claude-3 Opus and the Gemini models. 667

Finally, one methodological constraint involves the 668

instruction framework provided to both human an- 669

notators and the models. Despite careful prompt 670

design, it remains challenging to equate human vi- 671

sual interpretation and contextual reasoning with 672

the model’s pattern recognition and embedding- 673

based understanding. This mismatch can lead to 674

inconsistencies in relevance judgments. Future re- 675

search can explore the development of differenti- 676

ated annotation protocols and evaluation criteria 677

that explicitly account for the distinct cognitive and 678

perceptual mechanisms of humans and machines. 679
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A Appendix832

A.1 Final Prompt833

Final Prompt:834

System Role: You are a helpful storybook reader.835

You are given context and story text for a page:836

page_context and page_text. Prompt: Based on the837

context and text of the given story’s page, is the838

image segment extracted important to the context839

of the story where the segment is the second image840

and the first image is the page illustration? ONLY841

respond with True if yes or False if no. And then842

give ONLY a one ENGLISH word description of843

the object describing the segment object in the seg-844

ment after the true or false. if the segment contains845

more than one object or less than an object (part846

of the object) consider it as a false and describe it847

‘nothing’. Do not respond with any explanations.848

If the object represents nothing important, return849

the description as ‘nothing’. If it represents some-850

thing relevant to the context, describe something in851

one word. So ONLY include true or false in your852

response along with the one word description.853

A.2 Storybook Page-level Context Retrieval854

Prompt855

Final Prompt:856

System Role: You are a helpful assistant that ex-857

tracts story context from an image in Arabic. 858

Prompt: In Arabic, describe what is happening in 859

this image, considering the context from the previ- 860

ous page: {context}. 861

A.3 Human Annotator Guidelines 862

Instructions: 863

You will be shown a storybook page and an im- 864

age segment extracted from it. For each segment, 865

perform the following: 866

Relevance: Mark as True if the segment shows 867

a complete, meaningful object relevant to the story 868

context. Mark as False if it: 869

• contains more than one object 870

• shows only part of an object that and does not 871

suffice as a stand-alone segment 872

• is not meaningful or not relevant to the story 873

description: If relevant, write a single English 874

word describing the object. If irrelevant, use the 875

description nothing. 876

Do not include multiple words in the descrip- 877

tions and format the results into CSV format 878

A.4 Dynamic Examples Selection 879

The flowchart in Figure 3, shows the dynamic few- 880

shot example selection process using CLIP em- 881

Figure 3: Dynamic Examples Selection Flowchart
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beddings. First, the training set embeddings are882

precomputed once and stored in a JSON file. For883

each test segment, the pipeline begins by extracting884

the page image, segment image, text, and context.885

These inputs are embedded using the CLIP model886

to generate a test segment embedding. The test em-887

bedding is then compared against the precomputed888

training embeddings using cosine similarity. The889

top-k most similar training examples are retrieved.890

These examples, along with the test segment, are891

formatted into a dynamic prompt. The prompt is892

used to guide the model’s classification. This pro-893

cess repeats for each test segment.894

A.5 Error Analysis895

To better understand the limitations and behavior896

of the evaluated multimodal large language models897

(MLLMs), we conducted a qualitative error analy-898

sis on five representative cases of misclassification.899

Each case highlights a unique challenge in visual900

reasoning, contextual interpretation, or annotation901

consistency.902

The selected examples illustrate different types 903

of failure modes, such as incorrect relevance judg- 904

ments, misaligned desciptor predictions, and dis- 905

crepancies between human and model understand- 906

ing of visual segments. For each case, we present 907

the full segment context—including the original 908

page image, the extracted segment, textual content, 909

and model predictions alongside an explanation of 910

the observed error and its possible causes. 911

This analysis aims to shed light on the nuanced 912

performance characteristics of MLLMs and pro- 913

vide insights into how such models may support, 914

or even challenge, human annotation practices. 915

Case 1 916

In case 1, as shown in Table 3, the segment was 917

annotated by the human annotator as relevant to 918

the story and identified it as “planet”. However, 919

all evaluated models (GPT-4o and GPT-4o-mini) 920

correctly predicted the segment as not relevant as 921

shown in Table 4. Upon closer inspection, the seg- 922

ment corresponds to the circular window of the 923

Table 3: Segment Information for Case 1

Story Name: A strange story in arabic answered

Page: 30 Segment: 01

Page Image Segment Image

Page Text Page Context

Segment Relevance: True Segment description: Planet
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rocket, which the annotator had mistakenly iden-924

tified as a celestial body. This misinterpretation925

likely stemmed from the segment’s shape, color,926

and position within the illustrated page, which vi-927

sually resemble a planet, especially when viewed928

in isolation.929

Table 4: Classification Results for Segment Con-
textual Relevance (Case 1)

Experiment GPT-4o-mini GPT-4o

Zero-shot FALSE, nothing FALSE, nothing

Few-Shot (Fixed) FALSE, nothing FALSE, nothing

Few-Shot (Dynamic) FALSE, nothing FALSE, nothing

While the annotator judged this object as rele-930

vant, assuming it represented a narrative element (a931

planet supporting the child’s dream of space travel),932

the models correctly identified its true semantic933

context, a minor structural detail (the rocket win- 934

dow) that is not central to the story’s progression. 935

Moreover, the segment is part of a larger object 936

(the rocket), and the prompt explicitly instructed 937

that any part of an object should be considered 938

irrelevant. 939

This case highlights the sensitivity of vision- 940

language models to object–context relationships 941

and underscores how human biases or misinter- 942

pretations in visual descriptions can lead to mis- 943

matches in evaluation. It also suggests that model 944

predictions, when systematically consistent, can 945

serve as a valuable tool for flagging ambiguous 946

or potentially incorrect annotations during dataset 947

refinement. 948

Case 2 949

In case 2, as shown in Table 5, the human annotator 950

identified the segment as irrelevant and assigned it 951

the description ’nothing’, according to the annota- 952

Table 5: Segment Information for Case 2

Story Name: Mess in the kitchen

Page: 38 Segment: 05

Page Image Segment Image

Page Text Page Context

Segment Relevance: False Segment description: nothing
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tion guideline that any segment containing multiple953

objects should be considered irrelevant. However,954

all models (GPT-4o and GPT-4o-mini) incorrectly955

predicted the segment as relevant, assigning vari-956

ous descriptions such as plates, pot, and dishes as957

shown in Table 6.958

Table 6: Classification Results for Segment Con-
textual Relevance (Case 2)

Experiment GPT-4o-mini GPT-4o

Zero-shot TRUE, plates TRUE, dishes

Few-Shot (Fixed) TRUE, pot TRUE, dishes

Few-Shot (Dynamic) TRUE, pot TRUE, pot

Upon visual inspection, the segment clearly con-959

tains a cluster of kitchen-related items, including960

a bowl, plate, rolling pin, whisk, and some left-961

overs. While these objects are semantically related962

to the kitchen context, the segment does not isolate963

a single, clearly identifiable object. The annota-964

tion prompt explicitly stated that segments with965

multiple overlapping objects should be treated as ir-966

relevant, given the difficulty in assigning a specific967

description and their reduced narrative clarity.968

This case highlights a potential failure mode in969

model behavior, the inability to correctly follow970

annotation rules that require recognizing the pres-971

ence of multiple objects and adhering to a “noth-972

ing” description policy. The models appear to973

have focused on semantic plausibility (recognizing974

kitchenware relevant to the page topic) rather than975

structural annotation rules, suggesting that they976

rely more on content familiarity than task-specific977

constraints.978

The example demonstrates the importance of in-979

cluding rule-based reasoning in vision-language980

modeling and reveals a gap between visual compre-981

hension and annotation policy adherence. It also982

underscores the necessity for training or prompting983

strategies that explicitly reinforce domain-specific984

rules, especially in tasks requiring fine-grained dif-985

ferentiation between object count and semantic rel-986

evance.987

Case 3988

In case 3, as shown in Table 7, the segment was989

annotated as irrelevant and identified as “nothing”,990

consistent with annotation guidelines, as it repre-991

sents only the grass floor in the background of the992

illustrated scene. GPT-4o-mini aligned with the993

ground truth, correctly classifying the segment as 994

irrelevant. However, GPT-4o misclassified the seg- 995

ment as relevant, assigning descriptions such as 996

feet or butterfly across different prompting strate- 997

gies as shown in Table 8. 998

Upon examination, the segment itself does not in- 999

clude any meaningful object central to the narrative. 1000

However, GPT-4o appeared to infer the presence of 1001

a human character’s feet, which are partially visible 1002

in the original page but not explicitly part of the 1003

extracted segment. This suggests that the model 1004

may have leveraged contextual cues from the page 1005

image or its prior understanding of human posture 1006

and composition to extrapolate beyond the visible 1007

content. 1008
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Table 7: Segment Information for Case 3

Story Name: The secret to the world of harmony

Page: 28 Segment: 15

Page Image Segment Image

Page Text Page Context

Segment Relevance: False Segment description: nothing
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Table 8: Classification Results for Segment Con-
textual Relevance (Case 3)

Experiment GPT-4o-mini GPT-4o

Zero-shot FALSE, nothing TRUE, feet

Few-Shot (Fixed) FALSE, nothing TRUE, butterfly

Few-Shot (Dynamic) FALSE, nothing TRUE, feet

This behavior points to a form of overextension1009

in visual reasoning, where the model attempts to1010

“complete” the visual scene based on what it ex-1011

pects rather than what is actually visible. While1012

such inference can be powerful in some applica-1013

tions, it poses a challenge in annotation-driven1014

tasks that require strict attention to segmentation1015

boundaries and adherence to explicit description1016

rules.1017

The case reveals an important limitation in eval-1018

uation: even highly capable models like GPT-4o 1019

may introduce false positives by detecting plausi- 1020

ble content that lies outside the designated segment. 1021

It underscores the importance of reinforcing spatial 1022

precision in prompt design and training, especially 1023

in settings where models must operate under local- 1024

ized input constraints. 1025

Case 4 1026

In case 4, as shown in Table 9, the segment was 1027

annotated by the human annotator as relevant to the 1028

story and identified as “face”. During evaluation, 1029

both GPT-4o and GPT-4o-mini initially misclassi- 1030

fied the segment as irrelevant in the zero-shot and 1031

fixed few-shot settings. However, under the dy- 1032

namic few-shot prompting strategy, both models 1033

successfully recognized the segment as relevant 1034

and described it more precisely ’father’ as shown 1035

in Table 10. 1036

The segment visually represents the father’s face, 1037

Table 9: Segment Information for Case 4

Story Name: Tomorrow I will be

Page: 42 Segment: 09

Page Image Segment Image

Page Text Page Context

Segment Relevance: True Segment description: face
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a meaningful narrative element within the page,1038

where the story shows the child nestled in his fa-1039

ther’s arms. While the human annotator conserva-1040

tively described the segment as face, the models in1041

the dynamic setting went beyond pure visual iden-1042

tification and inferred the character role using the1043

surrounding visual and textual context, effectively1044

linking the segment with its narrative identity.1045

Table 10: Classification Results for Segment
Contextual Relevance (Case 4)

Experiment GPT-4o-mini GPT-4o

Zero-shot FALSE, nothing FALSE, nothing

Few-Shot (Fixed) FALSE, nothing FALSE, nothing

Few-Shot (Dynamic) TRUE, father TRUE, father

This case underlines the semantic sensitivity of1046

large vision-language models when given proper1047

prompting, and emphasizes the importance of align-1048

ing model objectives with annotation criteria, espe- 1049

cially in tasks where the description traction may 1050

vary between annotators and models. 1051

Case 5 1052

In case 5, as shown in Table 11, the human annota- 1053

tor classified the segment as irrelevant and identi- 1054

fied it as "nothing". This judgment was consistent 1055

with most of the model predictions in all prompt 1056

strategies, except GPT-4o-mini, which classified 1057

the segment as relevant in both fixed and dynamic 1058

few-shot settings and described it as "smoke" as 1059

shown in Table 12. 1060

Notably, this description is semantically accu- 1061

rate. The segment is part of a larger illustrated 1062

smoke cloud depicted in the full-page image. Al- 1063

though the segment in isolation may not exhibit 1064

strong visual features typically associated with 1065

smoke, the model’s prediction appears to rely on 1066

contextual and spatial cues derived from its training 1067

or from its ability to reason across the full visual- 1068

Table 11: Segment Information for Case 5

Story Name: Lily

Page: 26 Segment: 15

Page Image Segment Image

Page Text Page Context

Segment Relevance: False Segment description: nothing
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Table 12: Classification Results for Segment
Contextual Relevance (Case 5)

Experiment GPT-4o-mini GPT-4o

Zero-shot FALSE, nothing FALSE, nothing

Few-Shot (Fixed) TRUE, smoke FALSE, nothing

Few-Shot (Dynamic) TRUE, smoke FALSE, nothing

textual context.1069

This case demonstrates the importance of refin-1070

ing annotation guidelines to accommodate frag-1071

mented but semantically valid visual elements,1072

and suggests that model outputs in such situations1073

should not be penalized without considering con-1074

textual correctness.1075
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