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ABSTRACT

Constrained policy search (CPS) is a fundamental problem in offline reinforce-
ment learning, which is generally solved by advantage weighted regression
(AWR). However, previous methods may still encounter out-of-distribution ac-
tions due to the limited expressivity of Gaussian-based policies. On the other
hand, directly applying the state-of-the-art models with distribution expression
capabilities (i.e., diffusion models) in the AWR framework is insufficient since
AWR requires exact policy probability densities, which is intractable in diffu-
sion models. In this paper, we propose a novel approach called Diffusion-based
Constrained Policy Search (DiffCPS), which tackles the diffusion-based con-
strained policy search without resorting to AWR. The theoretical analysis reveals
our key insights by leveraging the action distribution of the diffusion model to
eliminate the policy distribution constraint in the CPS and then utilizing the Ev-
idence Lower Bound (ELBO) of diffusion-based policy to approximate the KL
constraint. Consequently, DiffCPS admits the high expressivity of diffusion mod-
els while circumventing the cumbersome density calculation brought by AWR.
Extensive experimental results based on the D4RL benchmark demonstrate the
efficacy of our approach. We empirically show that DiffCPS achieves better or
at least competitive performance compared to traditional AWR-based baselines as
well as recent diffusion-based offline RL methods.

1 INTRODUCTION

Offline Reinforcement Learning (offline RL) aims to seek an optimal policy without environmental
interactions (Fujimoto et al., 2019; Levine et al., 2020). This is compelling for having the potential
to transform large-scale datasets into powerful decision-making tools and avoids costly and risky
online data collection, which offers significant application prospects in fields such as healthcare (Nie
et al., 2021; Tseng et al., 2017) and autopilot (Yurtsever et al., 2020; Rhinehart et al., 2018).

Notwithstanding its promise, applying contemporary off-policy RL algorithms (Lillicrap et al.,
2015; Fujimoto et al., 2018; Haarnoja et al., 2018a;b) directly into the offline context presents chal-
lenges due to distribution shift (Fujimoto et al., 2019; Levine et al., 2020). Previous methods to
mitigate this issue under the model-free offline RL setting generally fall into three categories: 1)
value function-based approaches, which implement pessimistic value estimation by assigning low
values to out-of-distribution actions (Kumar et al., 2020; Fujimoto et al., 2019), 2) sequential mod-
eling approaches, which casts offline RL as a sequence generation task with return guidance (Chen
et al., 2021; Janner et al., 2022; Liang et al., 2023; Ajay et al., 2022), and 3) constrained policy
search (CPS) approaches, which regularizes the discrepancy between the learned policy and behav-
ior policy (Peters et al., 2010; Peng et al., 2019; Nair et al., 2020). We focus on the CPS-based
offline RL due to its convergence guarantee and outstanding performance in a wide range of tasks.

Prior solutions for CPS (Peters et al., 2010; Peng et al., 2019; Nair et al., 2020) primarily train a pa-
rameterized unimodal Gaussian policy through weighted regression. However, recent works (Chen
et al., 2022; Hansen-Estruch et al., 2023; Shafiullah et al., 2022) show such unimodal Gaussian
models in weighted regression will impair the policy performance due to limited distributional ex-
pressivity. For example, if we fit a multi-modal distribution with an unimodal Gaussian distribution,
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it will unavoidably result in covering the low-density area between peaks. Intuitively, we can choose
a more expressive model to eliminate this issue. Nevertheless, Ghasemipour et al. (2020) shows
that VAEs (Kingma & Welling, 2013) in BCQ (Fujimoto et al., 2019) do not align well with the
behavior dataset, which will introduce the biases in generated actions. Chen et al. (2022) utilizes the
diffusion probabilistic model (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019)
to generate actions and select the action through the action evaluation model under the well-studied
AWR framework. However, AWR requires an exact probability density of behavior policy, which
is still intractable for the diffusion-based one. Alternatively, they leverage Monte Carlo sampling
to approximate the probability density of behavior policy, which inevitably introduces estimation
biases and increases the cost of inference. According to motivating examples in Section 3.1, we
visually demonstrate how these issues are pronounced even on a simple bandit task.

To solve the above issues, we present Diffusion-based Constrained Policy Search (DiffCPS)
which directly solves the constrained policy search problem with a diffusion-based policy. Thereby,
we can solve the limited policy expressivity problem and avoid the sampling errors caused by di-
rectly using diffusion in AWR. Our proposed method consists of three key parts: 1) We demonstrate
that if we use the diffusion model as our policy, we can eliminate the policy distribution constraint
in the CPS through the action distribution of the diffusion model; 2) We transform the CPS prob-
lem to a convex optimization problem and solve it via Lagrange dual method. We also prove the
equivalence between the Lagrange dual problem and the primal convex optimization problem; 3) We
approximate the entropy calculation in the Lagrange dual problem with the ELBO of the diffusion-
based policy to circumvent the intractable density calculation. Finally, we solve the Lagrange dual
problem with gradient descent.

The main contributions of this paper are as follows: 1) We present DiffCPS, which tackles the
diffusion-based constrained policy search without resorting to AWR. Thereby, DiffCPS solves the
limited policy expressivity problem while avoiding the cumbersome density calculation brought by
AWR. 2) We prove that the policy distribution constraint always holds for diffusion-based policy.
3) We prove that the policy constraint can be approximated through the ELBO of diffusion-based
policy. 4) Our experimental results illustrate superior or competitive performance compared to ex-
isting offline RL methods in D4RL tasks. Even when compared to other diffusion-based methods,
DiffCPS also achieves state-of-the-art performance in D4RL MuJoCo locomotion and AntMaze
average score. These outcomes substantiate the effectiveness of our method.

2 PRELIMINARIES

Notation: In this paper, we use µθ(a|s) or µ to denote the learned policy with parameter θ and πb

to denote behavior policy that generated the offline data. We use superscripts i to denote diffusion
timestep and subscripts t to denote RL trajectory timestep. For instance, ait denotes the t-th action
in i-th diffusion timestep.

2.1 CONSTRAINED POLICY SEARCH IN OFFLINE RL

Consider a Markov decision process (MDP): M = {S,A, P,R, γ, d0}, with state space S, action
space A, environment dynamics P(s′|s,a) : S × S × A → [0, 1], reward function R : S ×
A → R, discount factor γ ∈ [0, 1), and initial state distribution d0. The action-value or Q-value
of policy µ is defined as Qµ(st,at) = Eat+1,at+2,...∼µ

[∑∞
j=0 γ

jr(st+j ,at+j)
]
. Our goal is to

get a policy to maximize the cumulative discounted reward J(θ) =
∫
S d0(s)Q

µ(s,a)ds, where
ρµ(s) =

∑∞
t=0 γ

tpµ(st = s) is the unnormalized discounted state visitation frequencies induced
by the policy µ and pµ(st = s) is the likelihood of the policy being in state s after following µ for
t timesteps (Sutton & Barto, 2018; Peng et al., 2019).

In offline setting (Fujimoto et al., 2019), environmental interaction is not allowed, and a static dataset
D ≜ {(s,a, r, s′, done)} is used to learn a policy. To avoid out-of-distribution actions, we need to
restrict the learned policy µ to be not far away from the behavior policy πb by the KL divergence
constraint. Prior works (Peters et al., 2010; Peng et al., 2019) formulate the above offline RL opti-
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mization problem as a constrained policy search and its standard form is as follows

µ∗ = argmax
µ

J(µ) = argmax
µ

∫
S
d0(s)

∫
A
Qµ(s,a)dads

s.t. DKL(πb(·|s)∥µ(·|s)) ≤ ϵ, ∀s∫
a

µ(a|s)da = 1, ∀s,

(1)

Previous works (Peters et al., 2010; Peng et al., 2019; Nair et al., 2020) solved Equation 1 through
KKT conditions and get the optimal policy π∗:

π∗(a|s) = 1

Z(s)
πb(a|s) exp (αQϕ(s,a)) , (2)

where Z(s) is the partition function. Intuitively we can use Equation 2 to optimize policy π. How-
ever, the behavior policy may be very diverse and hard to model. To avoid modeling the behavior
policy, prior works (Peng et al., 2019; Wang et al., 2020; Chen et al., 2020) optimize π∗ through a
parameterized policy πθ:

arg min
θ

Es∼Dµ [DKL (π
∗(·|s)||πθ(·|s))]

= arg max
θ

E(s,a)∼Dµ

[
1

Z(s)
log πθ(a|s) exp (αQϕ(s,a))

]
. (3)

Equation 3 is known as AWR, with exp(αQϕ(s,a)) being the regression weights. However, AWR
requires the exact probability density of policy, which restricts the use of generative models like
diffusion models. In this paper, we directly utilize the diffusion-based policy to address Equation 1.
Therefore, our method not only avoids the need for explicit probability densities but also solves the
limited policy expressivity problem in AWR.

2.2 DIFFUSION PROBABILISTIC MODEL

Diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) is a new type
of generative model, which has achieved SOTA results in image generation, outperforming other
generative models like GAN (Goodfellow et al., 2020; Dhariwal & Nichol, 2021), VAE(Kingma
& Welling, 2013) and Flow-based models (Rezende & Mohamed, 2015). Diffusion models are
composed of two processes: the forward diffusion process and the reverse process. In the forward
diffusion process, we gradually add Gaussian noise to the data x0 ∼ q(x0) in T steps. The step
sizes are controlled by a variance schedule βi:

q(x1:T |x0) :=
∏T

i=1 q(xi |xi−1), q(xi |xi−1) := N (xi;
√
1− βixi−1, βiI). (4)

In the reverse process, we can recreate the true sample x0 through p(xi−1|xi):

p(x) =

∫
p(x0:T )dx1:T =

∫
N (xT ;0, I)

T∏
i=1

p(xi−1|xi)dx1:T . (5)

The training objective is to maximize the ELBO of Eqx0
[log p(x0)]. Following DDPM (Ho et al.,

2020), we use the simplified surrogate loss Ld(θ) = Ei∼[1,T ],ϵ∼N (0,I),x0∼q

[
||ϵ− ϵθ(xi, i)||2

]
to

approximate the ELBO. After training, sampling from the diffusion model is equivalent to running
the reverse process.

2.3 CONDITIONAL DIFFUSION PROBABILISTIC MODEL

There are two kinds of conditioning methods: classifier-guided (Dhariwal & Nichol, 2021) and
classifier-free (Ho & Salimans, 2021). The former requires training a classifier on noisy data
xi and using gradients ∇x log fϕ(y|xi) to guide the diffusion sample toward the conditioning
information y. The latter does not train an independent fϕ but combines a conditional noise
model ϵθ(xi, i, s) and an unconditional model ϵθ(xi, i) for the noise. The perturbed noise
wϵθ(xi, i) + (w + 1)ϵθ(xi, i, s) is used to later generate samples. However Pearce et al. (2023)
shows this combination will degrade the policy performance in offline RL. Following Pearce et al.
(2023); Wang et al. (2022) we solely employ a conditional noise model ϵθ(xi, i, s) to construct our
noise model (w = 0).
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Figure 1: Toy offline experiment on a simple bandit task. We test the performance of AWR and other
diffusion-based offline RL algorithms (DQL (Wang et al., 2022) and SfBC (Chen et al., 2022)). The
first row displays the actions taken by the trained policy where T denotes diffusion steps. We note
that the AWR fails to capture the multi-modal actions in the offline dataset due to the limited policy
expressivity of unimodal Gaussian. The second row shows the effect of different diffusion steps T .

3 METHOD

We propose Diffusion-based Constrained Policy Search (DiffCPS) to address the limited expres-
sivity problem in AWR. Below we first show that the limited policy expressivity in the AWR will
degrade the policy performance through a bandit toy experiment. Next, we demonstrate that the
sampling errors caused by directly using diffusion within the AWR framework will degrade the
performance of the diffusion model. Then we derive our solution to solve this problem from the
diffusion model perspective without resorting to AWR. (All proofs are given in Appendix A )

3.1 TOY EXPERIMENT

Before showing our method, we first present that the limited policy expressivity in previous Advan-
tage Weighted Regression (AWR) (Peters et al., 2010; Peng et al., 2019; Nair et al., 2020) methods
may degrade the performance through a sample 2-D bandit toy experiment with real-valued actions.
Our offline dataset is constructed by a unit circle with noise (The first panel of Figure 1). Data on the
noisy circle have a positive reward of 1. Note that this offline dataset exhibits strong multi-modality
since there are many actions (points on the noisy circle) that can achieve the same reward of 1 if a
state is given. However, if we use unimodal Gaussian to represent the policy, although the points on
the noisy circle can all receive the same reward of 1, the actions taken by AWR will move closer to
the center of the noisy circle (AWR in Figure 1), due to the incorrect unimodal assumption. Exper-
iment results in Figure 1 illustrate that AWR performs poorly in the bandit experiments compared
to other diffusion-based methods. We also notice that compared to other diffusion-based methods,
actions generated by SfBC include many points that differ significantly from those in the dataset,
when T = 15. This is due to the sampling error introduced by incorporating diffusion into AWR.

Therefore, we conclude that policy expressivity is important in offline RL since most offline RL
datasets are collected from multiple behavior policies or human experts, which exhibit strong multi-
modality. To better model behavior policies, we need more expressive generative models to model
the policy distribution, rather than using unimodal Gaussians. Furthermore, we also need to avoid
the sampling errors caused by using diffusion in AWR, which is the motivation behind our algorithm.

3.2 APPLY DIFFUSION BASED POLICY IN CPS

Firstly, we present the form of constrained policy search:

µ∗ = argmax
µ

J(µ) = argmax
µ

∫
S
d0(s)

∫
A
Qµ(s,a)dads (6)

s.t. Es∼ρπb (s) [DKL(πb(·|s)∥µ(·|s))] ≤ ϵ, (7)∫
a

µ(a|s)da = 1, ∀s, (8)
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where µ(a|s) denotes our diffusion-based policy, πb denotes the behavior policy. Here we represent
our policy µ(a|s) via the conditional diffusion model:

µ(a|s) =
∫

µ(a0:T |s)da1:T =

∫
N (aT ;0, I)

T∏
i=1

µ(ai−1|ai, s)da1:T , (9)

where the end sample of the reverse chain a0 is the action used for the policy’s output and µ(a0:T )
is the joint distribution of all noisy samples. According to DDPM, we can approximate the reverse
process µ(ai−1|ai, s) with a Gaussian distributionN (ai−1;µθ(a

i, s, i),Σθ(a
i, s, i)). The training

of the diffusion model needs a dataset D ∼ µ(a|s), which is intractable in practice. However, the
KL constraint in Equation 7 allows us to train the µ(a|s) with D ∼ πb(a|s) because the difference
between two policies is small. We also follow the DDPM to fix the covariance matrix and predict
the mean with a conditional noise model ϵθ(ai, s, i):

µθ(a
i, s, i) = 1√

αi

(
ai − βi√

1−ᾱi
ϵθ(a

i, s, i)
)
. (10)

During the reverse process, aT ∼ N (0, I) and then follow the reverse diffusion chain parameterized
by θ as

N
{
ai−1|ai

}
∼ N

{
ai−1; ai

√
αi
− βi√

αi(1−ᾱi)
ϵθ(a

i, s, I), βi

}
for i = T, . . . , 1. (11)

The reverse sampling in Equation 11 requires iteratively predicting ϵ T times. When T is large,
it will consume much time during the sampling process. To work with small T (T = 5 in our
experiment), we follow the previous works (Xiao et al., 2021; Wang et al., 2022) to define

βi = 1− αi = 1− e−βmin(
1
T )−0.5(βmax−βmin)

2i−1

T2 ,

which is a noise schedule obtained under the variance preserving SDE of Song et al. (2020).
Theorem 3.1. Let µ(a|s) be a diffusion-based policy and πb be the behavior policy. Then, we have

(1) There exists κ0 ∈ R such that Es∼ρπb (s) [DKL(πb(·|s)∥µ(·|s))] ≤ ϵ can be transformed to

H(πb, µ) = −Es∼ρπb (s),a∼πb(·|s) [logµ(·|s)] ≤ κ0,

which is a convex function of µ.

(2) ∀s,
∫
a
µ(a|s)da ≡ 1.

Corollary 3.1.1. The primal problem (Equation 6-Equation 8) can be transformed into the following
optimization problem:

µ∗ = argmax
µ

J(µ) = argmax
µ

∫
S
d0(s)

∫
A
Qµ(s,a)dads

s.t. H(πb, µ) ≤ κ0.

(12)

3.3 DIFFUSION-BASED CONSTRAINED POLICY SEARCH

In this section, the duality is used to solve the Equation 12 and derive our method. The Lagrangian
of Equation 12 is

L(µ, λ) = J(µ) + λ(κ0 −H(πb, µ)). (13)
The Lagrange dual problem associated with the Equation 12 is

min
λ≥0

max
µ

J(µ) + λ(κ0 −H(πb, µ)). (14)

Theorem 3.2. Suppose that r is bounded and that Slaters’ condition holds for our offline RL setting.
Then, strong duality holds for Equation 12, which has the same optimal policy µ∗ with Equation 14.

According to Theorem 3.2, we can get the optimal policy by solving Equation 14, where λ is the
dual variable. We can solve the optimal dual variable λ as

argmin
λ≥0

λ(κ0 −H(πb, µ
∗)), (15)

where µ∗ denotes
argmax

µ
Es∼d0(s),a∼µ(·|s) [Q

µ(s,a)]− λH(πb, µ). (16)

In Equation 16, we need to calculate the cross entropy H(πb, µ), which is intractable in practice.
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Proposition 3.1. In the diffusion model, we can approximate the entropy with an MSE-like loss
Lc(πb, µ) through ELBO:

H(πb, µ) ≈ c+ Lc(πb, µ), (17)

where c is a constant.

Let κ = κ0 − c, according to Proposition 3.1, the Equation 16 and Equation 15 can be transformed
to

argmax
µ

Es∼d0(s),a∼µ(·|s) [Q
µ(s,a)]− λLc(πb, µ), (18)

argmin
λ≥0

J (λ) = λ(κ− Lc(πb, µ
∗)). (19)

In practice, the Qµ(s,a) varies in different environments. To normalize Qµ(s,a), we follow Fuji-
moto & Gu (2021); Wang et al. (2022) to divide it by the target Q-net’s value. We also clip the λ to
keep the constraint λ ≥ 0 holding by λclip = max(c, λ), c ≥ 0. So actually µ∗ is

argmax
µ

J (µ) = Es∼d0(s),a∼µ(·|s)

[
Qµ(s,a)

Qµ
target(s,a)

]
− λclipLc(πb, µ). (20)

Theoretically, we need to precisely solve the Equation 20 and Equation 19, but in practice, we
can resort to stochastic gradient descent to solve the equations. In this way, we can recursively
optimize Equation 12 through Equation 20 and Equation 19. The policy improvement described in
Equation 20 and the solution of Equation 19 constitute the core of DiffCPS.

We also find that we can improve the performance of the policy by delaying the policy update (Fu-
jimoto et al., 2018). Finally, we summarize our method in Algorithm 1:

Algorithm 1 DiffCPS
Initialize policy network µθ, critic networks Qϕ1

, Qϕ2
, and target networks µθ′ , Qϕ′

1
, Qϕ′

2
,

policy evaluation interval d and step size η.
for t = 1 to T do

Sample transition mini-batch B = {(st,at, rt, st+1)} ∼ D.
# Critic updating
Sample at+1 ∼ µθ(·|st+1) according to Equation 11.
y = rt + γmini=1,2 Qϕ′

i
{st+1,at+1}.

Update critic ϕi ← argminϕi
N−1

∑
(y −Qϕi

(st,at))
2 .

if t mod d then
Sample a ∼ µθ(·|s) according to Equation 11.
# Policy updating through Equation 20
µi ← µi + η∇θJ (µ).
# Lagrange multiplier λ updating through Equation 19
λi ← λi − η∇λJ (λ).
λi ← λclip = max(c, λi), c ≥ 0.

end if
# Target Networks updating
θ′ = ρθ′ + (1− ρ)θ, ϕ′

i = ρϕ′
i + (1− ρ)ϕi for i = {1, 2}.

end for

4 EXPERIMENTS

We evaluate our DiffCPS on the D4RL (Fu et al., 2020) benchmark in Section 4.1. Further, we
conduct an ablation experiment to assess the contribution of different parts in DiffCPS in Section 4.2.

4.1 COMPARISON TO OTHER METHODS

In Table 1, we compare the performance of DiffCPS to other offline RL methods in D4RL (Fu et al.,
2020) tasks. We only focus on the MuJoCo locomotion and AntMaze tasks due to the page limit.
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Dataset Environment CQL IDQL-A QGPO SfBC DD Diffuser Diffuison-QL IQL DiffCPS(ours)

Medium-Expert HalfCheetah 62.4 95.9 93.5 92.6 90.6 79.8 96.8 86.7 100.3± 4.1
Medium-Expert Hopper 98.7 108.6 108.0 108.6 111.8 107.2 111.1 91.5 112.1± 0.6
Medium-Expert Walker2d 110.1 112.7 110.7 109.8 108.8 108.4 110.1 109.6 113.1± 1.8

Medium HalfCheetah 44.4 51.0 54.1 45.9 49.1 44.2 51.1 47.4 71.0± 0.5
Medium Hopper 58.0 65.4 98.0 57.1 79.3 58.5 90.5 66.3 100.1± 3.5
Medium Walker2d 79.2 82.5 86.0 77.9 82.5 79.7 87.0 78.3 90.9± 1.6

Medium-Replay HalfCheetah 46.2 45.9 47.6 37.1 39.3 42.2 47.8 44.2 50.5± 0.6
Medium-Replay Hopper 48.6 92.1 96.9 86.2 100 96.8 101.3 94.7 101.1± 0.2
Medium-Replay Walker2d 26.7 85.1 84.4 65.1 75.0 61.2 95.5 73.9 91.3± 0.7

Average (Locomotion) 63.9 82.1 86.6 75.6 81.8 75.3 87.9 76.9 92.26

Default AntMaze-umaze 74.0 94.0 96.4 92.0 - - 93.4 87.5 97.4± 3.7
Diverse AntMaze-umaze 84.0 80.2 74.4 85.3 - - 66.2 62.2 87.4± 3.8

Play AntMaze-medium 61.2 84.5 83.6 81.3 - - 76.6 71.2 88.2± 2.2
Diverse AntMaze-medium 53.7 84.8 83.8 82.0 - - 78.6 70.0 87.8± 6.5

Play AntMaze-large 15.8 63.5 66.6 59.3 - - 46.4 39.6 65.6± 3.6
Diverse AntMaze-large 14.9 67.9 64.8 45.5 - - 57.3 47.5 63.6± 3.9

Average (AntMaze) 50.6 79.1 78.3 74.2 - - 69.8 63.0 81.67

# Diffusion steps - 5 15 15 100 100 5 - 5

Table 1: The performance of DiffCPS and other SOTA baselines on D4RL tasks. The mean and
standard deviation of DiffCPS are obtained by evaluating the trained policy on five different random
seeds. We report the performance of baseline methods using the best results reported from their
paper. “-A” refers to any number of hyperparameters allowed. Results within 3 percent of the
maximum in every D4RL task and the best average result are highlighted in boldface.

D4RL Tasks DiffCPS (T=5) DiffCPS (T=15) DiffCPS (T=20) SfBC (T=10) SfBC (T=15) SfBC (T=25)

Locomotion 92.0 87.5 87.6 72.9 75.6 74.4

AntMaze 80.0 60.7 66.7 65.7 74.2 73.0

Table 2: Ablation study of diffusion steps. We conduct an ablation study to investigate the impact
of diffusion steps on different algorithms. We only show the average score due to the page limit.
The results of DiffCPS are obtained from three random seeds, while the results of SfBC are derived
from the original SfBC paper.

In traditional MuJoCo tasks, DiffCPS outperforms other methods as well as recent diffusion-based
method (Wang et al., 2022; Lu et al., 2023; Hansen-Estruch et al., 2023) by large margins in most
tasks, especially in the HalfCheetah medium. Note the medium datasets are collected by an online
SAC (Haarnoja et al., 2018a) agent trained to approximately 1/3 the performance of the expert.
Hence, the medium datasets contain a lot of suboptimal trajectories, which makes the offline RL
algorithms hard to learn.

Compared to the locomotion tasks, the AntMaze tasks are more challenging since the datasets con-
sist of sparse rewards and suboptimal trajectories. Even so, DiffCPS also achieves competitive or
SOTA results compared with other methods. In relatively simpler tasks like umaze, DiffCPS can
achieve a 100 ± 0% success rate on some seeds, which shows the powerful ability to learn from
suboptimal trajectories of our method. In other AntMaze tasks, DiffCPS also shows competitive
performance compared to other state-of-the-art diffusion-based approaches. Overall, DiffCPS out-
performs the state-of-the-art algorithms, even the recent diffusion-based state-of-the-art algorithms
by a very significant margin.

4.2 ABLATION STUDY

In this section, we analyze why DiffCPS outperforms the other methods quantitatively on D4RL
tasks. We conduct an ablation study to investigate the impact of three parts in DiffCPS, i.e. diffusion
steps, the minimum value of Lagrange multiplier λclip, and policy evaluation interval.

Diffusion Steps. We show the effect of diffusion steps T , which is a vital hyperparameter in all
diffusion-based methods. In SfBC the best T is 15, while T = 5 is best for our DiffCPS. Table 2
shows the average performance of different diffusion steps. Figure 2 shows the training curve of
selected D4RL tasks over different diffusion steps T .

We also note that large T works better for the bandit experiment. However, for D4RL tasks, a large T
will lead to a performance drop. The reason is that compared to bandit tasks, D4RL datasets contain
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Figure 2: Ablation studies of diffusion steps T on selected Gym tasks (three random seeds). We
observe that as T increases, the training stability improves, but the final performance drops.
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Figure 3: Ablation studies of the λclip in AntMaze and MuJoCo tasks. We can observe that λclip
has little impact on MuJoCo tasks but significantly influences AntMaze tasks, especially as the
AntMaze datasets become larger. The reason is that the sparse rewards and suboptimal trajectories
in the AntMaze datasets make the critic network prone to error estimation, leading to learning poor
policy. Therefore, there is a need to enhance learning from the original dataset which means we
should increase λ or enhance the KL constraint. We find that increasing λclip while maintaining a
moderate KL constraint achieves the best results. All the results are obtained by evaluating three
random seeds.

a significant amount of suboptimal trajectories. A larger T implies stronger behavior cloning ability,
which can indeed lead to policy overfitting to the suboptimal data, especially when combined with
actor-critic methods. Poor policies result in error value estimates, and vice versa, creating a vicious
cycle that leads to a drop in policy performance with a large T .

The Minimum value of Lagrange multiplier λclip. In our method, λ serves as the coefficient for
the policy constraint term, where a larger λ implies a stronger policy constraint. Although we need
to restrict the λ ≥ 0 according to the definition of Lagrange multiplier, we notice that we could get
better results through clip λ ≥ c in AntMaze tasks, where c is a positive number, see full λ ablation
results in Figure 3 for details.

Policy evaluation interval. We include the ablation of policy evaluation interval in Figure 4. We
find that the policy delayed update (Fujimoto et al., 2018) has significant impacts on AntMaze large
tasks. However, for other tasks, it does not have much effect and even leads to a slight performance
decline. The reason is that infrequent policy updates reduce the variance of value estimates, which
is more effective in tasks where sparse rewards and suboptimal trajectories lead to significant errors
in value function estimation like AntMaze large tasks.

In a nutshell, the ablation study shows that the combination of these three parts, along with DiffCPS,
collectively leads to producing good performance.
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Figure 4: Ablation studies of the policy evaluation interval in AntMaze and MuJoCo tasks. Delayed
policy updates have a relatively minor impact on the MuJoCo locomotion tasks. However, for large-
scale sparse reward datasets like AntMaze Large, choosing an appropriate update frequency can
greatly increase the final optimal results. The MuJoCo task results are obtained with 2 million
training steps (three random seeds), while AntMaze results are obtained with 1 million training
steps (three random seeds).

5 RELATED WORK

Offline Reinforcement Learning. Offline RL algorithms need to avoid extrapolation error. Prior
works usually solve this problem through policy regularization (Fujimoto et al., 2019; Kumar et al.,
2019; Wu et al., 2019; Fujimoto & Gu, 2021), value pessimism about unseen actions (Kumar et al.,
2020; Kostrikov et al., 2021a), or implicit TD backups (Kostrikov et al., 2021b; Ma et al., 2021)
to avoid the use of out-of-distribution actions. Another line of research solves the offline RL prob-
lem through weighted regression (Peters et al., 2010; Peng et al., 2019; Nair et al., 2020) from the
perspective of CPS. Our DiffCPS derivation is related but features with a diffusion model form.

Diffusion models in RL. Our model introduces the diffusion model to RL. To that end, we review
works that use the diffusion model in RL. Diffuser (Janner et al., 2022) uses the diffusion model
to directly generate trajectory guided with gradient guidance or reward. DiffusionQL (Wang et al.,
2022) uses the diffusion model as an actor and optimizes it through the TD3+BC-style objective
with a coefficient η to balance the two terms. AdaptDiffuser (Liang et al., 2023) uses a diffusion
model to generate extra trajectories and a discriminator to select desired data to add to the training
set to enhance the adaptability of the diffusion model. DD (Ajay et al., 2022) uses a conditional
diffusion model to generate trajectory and compose skills. Unlike Diffuser, DD diffuses only states
and trains inverse dynamics to predict actions. QGPO (Lu et al., 2023) uses the energy function to
guide the sampling process and proves that the proposed CEP training method can get an unbiased
estimation of the gradient of the energy function under unlimited model capacity and data samples.
IDQL (Hansen-Estruch et al., 2023) reinterpret IQL as an Actor-Critic method and extract the policy
through sampling from a diffusion-parameterized behavior policy with weights computed from the
IQL-style critic. DiffCPS is distinct from these methods because we derive it from CPS.

Closest to our work is the method that combines AWR and diffusion models. SfBC (Chen et al.,
2022) uses the diffusion model to generate candidate actions and uses the regression weights to
select the best action. Our method differs from it as we directly solve the limited policy expressivity
problem through the diffusion-based policy without resorting to AWR. This makes DiffCPS simple
to implement and tune hyperparameters. As shown in Table 4 we can only tune one hyperparameter
to get SOTA results in most tasks.

6 CONCLUSION

In our work, we solve the limited expressivity problem in the weighted regression through the diffu-
sion model. We first simplify the CPS problem with the action distribution of diffusion-based policy.
Then we reformulate the CPS problem as a convex optimization problem and solve it by using the
Lagrange dual method. Finally, we approximate the entropy with the ELBO of the diffusion model
to circumvent the intractable density calculation and approximate solve the Lagrange dual problem
by iteratively gradient descent. Experimental results on the D4RL benchmark illustrate the superior-
ity of our method which outperforms previous SOTA algorithms in most tasks, and DiffCPS is easy
to tune hyperparameters, which only needs to tune the constraint κ in most tasks. We hope that our
work can inspire relative researchers to utilize powerful generative models, especially the diffusion
model, for offline reinforcement learning and decision-making.
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A PROOFS

A.1 THEOREM 3.1

We provide the proof of Theorem 3.1.

Proof. (1): Since the pointwise KL constraint in Equation 1 at all states is intractable, we follow
the Peng et al. (2019) to relax the constraint by enforcing it only in expectation

Es∼ρπb (s) [DKL(πb(·|s)∥µ(·|s))] ≤ ϵ.

The LHS can be transformed to

Es∼ρπb (s) [DKL(πb(·|s)∥µ(·|s))] = Es∼ρπb (s),a∼πb(·|s) [log πb(·|s)− logµ(·|s)] , (21)

where
Es∼ρπb (s),a∼πb(·|s) [log πb(·|s)]

is the negative entropy of πb is a constant for µ. So the constraint in Equation 7 can be transformed
to

H(πb, µ) = −Es∼ρπb (s),a∼πb(·|s) [logµ(·|s)] ≤ κ0, (22)

where κ0 = ϵ− Es∼ρπb (s),a∼πb(·|s) [log πb(·|s)].
(2): According to the definition of the diffusion model in Equation 9:∫

a

µ(a|s)da =

∫
a

µ(a0|s)da0

=

∫ ∫
µ(a0:T |s)da1:T da0

=

∫
µ(a0:T )da0:T

= 1.

(23)

Equation 23 implies the constraint Equation 8 always holds for the diffusion model, so we can omit
this constraint.

According to the above two properties, we can rewrite the diffusion-based CPS problem Equation 6-
Equation 8 as

µ∗ = argmax
µ

J(µ) = argmax
µ

∫
S
d0(s)

∫
A
Qµ(s,a)dads

s.t. H(πb, µ) ≤ κ0.

(24)

A.2 THEOREM 3.2

Then we prove the Theorem 3.2.

According to Theorem 3.1, the primal problem of DiffCPS is expressed as Equation 24.We first
transform the Equation 24 to a more tractable form, and then we prove that the strong duality holds
for the simplified Equation 29 via the Fenchel-Moreau perturbation theory. Next, we will transform
Equation 24 into a more tractable form. Before we proceed, let’s introduce some important concepts.

Defining the occupation measure ρµ(s,a) = (1 − γ)
∑∞

t=0 γ
tpµ(st = s)µ(a|s), it follows that

ρµ(s,a) = (1 − γ)ρµ(s)µ(a|s), where 1 − γ is the normalized factor and ρµ(s) denotes state
visitation probabilities with the following properties

ρµ(s′) = d0(s
′) + γ

∫
S×A

T (s′|s,a)µ(a|s)ρµ(s)dads (25)
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Then we can get for all µ1, µ2,

Es′ [|ρ1(s′)− ρ2(s
′)|]

= E
[
γ

[∫
S×A

T (s′|s,a)|µ1(a|s)ρ1(s)− µ2(a|s)ρ2(s)|dads
]]

=
γ

1− γ
E
[[∫

S×A
T (s′|s,a)|ρ1(s,a)− ρ2(s,a)|dads

]]
≤ γ

1− γ
max
s,a

ρ̄(s,a),

(26)

where ρ̄(s,a) = |ρ1(s,a)− ρ2(s,a)|.
Because all feasible policies satisfy the KL divergence constraint, when the KL divergence constraint
is sufficiently strong, the differences between the occupancy measures for different policies are
small. Therefore, based on Equation 26, we can approximately assume that for all feasible policies
ρπb(s) ≈ ρµ1(s) ≈ ρµ2(s). Thus, Constraint H(πb, µ) can be simplified to

−H(πb, µ) = Es∼ρπb (s),a∼πb(·|s) [logµ(·|s)]

=

∫
S×A

ρπb(s)πb(a|s) logµ(a|s)dads

=
1

1− γ

∫
S×A

ρπb(s,a) log
ρµ(s,a)

ρµ(s)
dads− 1

1− γ

∫
S×A

ρπb(s,a) log(1− γ)dads︸ ︷︷ ︸
C0

≈ 1

1− γ

∫
S×A

ρπb(s,a) log
ρµ(s,a)

ρπb(s)
dads︸ ︷︷ ︸

−H̄(πb,µ)

− 1

1− γ

∫
S×A

ρπb(s,a) log(1− γ)dads︸ ︷︷ ︸
C0

,

(27)

where C0 is the constant about µ. So we can approximate the constraint in Equation 24 with

−H̄(πb, µ) ≥ −κ̄0, (28)

where κ̄0 = κ0 − C0. So we can transform the Equation 24 to

µ∗ = argmax
µ

J(µ) = argmax
µ

∫
S
d0(s)

∫
A
Qµ(s,a)dads

s.t. − H̄(πb, µ) ≥ −κ̄0.

(29)

The perturbation function associated to Equation 29 is defined as

P (ξ) =max
µ
J (µ) = max

µ

∫
S
d0(s)

∫
A
Qµ(s,a)dads

s.t. − H̄(πb, µ) ≥ −κ̄0 + ξ.

(30)

Lemma A.1. If (i) r is bounded; (ii) Slater’s condition holds for Equation 29 and (iii) its perturba-
tion function P (ξ) is concave, then strong duality holds for Equation 29.

Proof. See, e.g., Rockafellar (1970)[Cor. 30.2.2]

Proof. (The proof skeleton is essentially based on Paternain et al. (2019) Theorem 1)

Condition (i) and (ii) are satisfied by the hypotheses of Theorem 3.2. To prove the strong duality of
Equation 24, it suffices then to show the perturbation function is concave [(iii)], i.e., that for every
ξ1, ξ2 ∈ R, and t ∈ (0, 1),

P
[
tξ1 + (1− t)ξ2

]
≥ tP

(
ξ1
)
+ (1− t)P

(
ξ2
)

. (31)

If for either perturbation ξ1 or ξ2 the problem becomes infeasible then P (ξ1) = −∞ or P (ξ2) =
−∞ and thus Equation 31 holds trivially. For perturbations which keep the problem feasible, sup-
pose P (ξ1) and P (ξ2) are achieved by the policies µ1 ∈ P(S) and µ2 ∈ P(S) respectively. Then,
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P (ξ1) = J (µ1) with −H̄(πb, µ1)+ κ0 ≥ ξ1 and P (ξ2) = J (µ2) with −H̄(πb, µ2)+ κ0 ≥ ξ2. To
establish Equation 31 it suffices to show that for every t ∈ (0, 1) there exists a policy µt such that
−H̄(πb, µt) + κ0 ≥ tξ1 + (1− t)ξ2 and J (µt) = tJ (µ1) + (1− t)J (µ2). Notice that any policy
µt satisfying the previous conditions is a feasible policy for the slack−κ0+ tξ1+(1− t)ξ2. Hence,
by definition of the perturbed function Equation 31, it follows that

P
[
tξ1 + (1− t)ξ2

]
≥ J (µt) = tJ (µ1) + (1− t)J (µ2) = tP

(
ξ1
)
+ (1− t)P

(
ξ2
)
. (32)

If such a policy exists, the previous equation implies Equation 31. Thus, to complete the proof of
the result we need to establish its existence. To do so we start by formulating the objective J (µ) as
a linear function.

After sufficient training, we can suppose Qϕ(s,a) as an unbiased approximation of Qµ(s,a),

Qϕ(s,a) ≈ Qµ(s,a) = Eτ∼d0,µ,T

 J∑
j=0

γjr(sj ,aj |s0 = s,a0 = a)

 , (33)

where τ denotes the trajectory generated by policy µ(a|s), start state distribution d0 and environ-
ment dynamics T (s′|s,a).
So the objective function Equation 6 can be written as

J(µ) =

∫
S
d0(s)

∫
A
Qµ(s,a)dads

=

∞∑
t=0

γtEst∼pµ(st=s)

[
Ea∼µ(at|st)r(st,at)

]
=

∞∑
t=0

γt

[∫
S×A

pµ(st = s)µ(at = a|st = s)r(s,a)dads

]

=

∫
S×A

[ ∞∑
t=0

γtpµ(st = s)µ(at = a|st = s)r(s,a)dads

]

=
1

1− γ
Es,a∼ρµ(s,a) [r(s,a)]

=
1

1− γ

∫
S×A

ρµ(s,a)r(s,a)dads,

(34)

which implies the objective function Equation 6 equivalent to

max
ρ∈R

1

1− γ

∫
S×A

ρµ(s,a)r(s,a)dads, (35)

whereR is the set of occupation measures, which is convex and compact.[ Borkar (1988), Theorem
3.1]

So Equation 35 is a linear function on ρ(s,a). Let ρ1(s,a), ρ2(s,a) ∈ R be the occupa-
tion measures associated to µ1 and µ2. Since, R is convex, there exists a policy µt such that
its corresponding occupation measure is ρt(s,a) = tρ1(s,a) + (1 − t)ρ2(s,a) ∈ R and
J (µt) = tJ (µ1) + (1 − t)J (µ2). To prove Equation 31, it suffices to show such µt satisfies
−H̄(πb, µ) + κ0 ≥ tξ1 + (1− t)ξ2.
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−H̄(πb, µ) =
1

1− γ

∫
S×A

ρπb(s,a) log
ρµt (s,a)

ρπb(s)
dads

=
1

1− γ

∫
S×A

ρπb(s,a) log
tρ1(s,a) + (1− t)ρ2(s,a)

ρπb(s)
dads

≥ 1

1− γ
t

∫
S×A

ρπb(s,a) log
ρ1(s,a)

ρπb(s)
dads+︸ ︷︷ ︸

Jensen’s inequality.

1

1− γ
(1− t)

∫
S×A

ρπb(s,a) log
ρ2(s,a)

ρπb(s)
dads︸ ︷︷ ︸

Jensen’s inequality.

≥ tξ1 + (1− t)ξ2 − κ0

(36)

This completes the proof that the perturbation function is concave and according to Lemma A.1
strong duality for Equation 12 holds.

Next, we show that Slater’s condition in Theorem 3.2 is a mild condition, since for all κ0 >
−Es∼ρπb (s),a∼πb(·|s) [log πb(·|s)], we can get µ = πb is strictly feasible, which meets Slater’s
conditions.

Finally, we prove Equation 12, which has the same optimal policy µ with Equation 14.

For Equation 14, if strong duality holds and a dual optimal solution λ∗ exists, then any primal
optimal point of Equation 12 is also a maximizer of L(µ, λ∗), this is obvious through the KKT
conditions.[ Boyd & Vandenberghe (2004) Ch.5.5.5.]

So if we can prove that the solution of the L(µ, λ∗) is unique, we can compute the optimal policy of
Equation 12 from a dual problem Equation 14:

L(µ, λ∗) = J(µ) + λ∗(κ0 − H̄(πb, µ))

=
1

1− γ


∫
S×A

ρµ(s,a)r(s,a)dads︸ ︷︷ ︸
Using Equation 34.

+λ∗(κ̄0 −
∫
S×A

ρπb(s,a) log
ρµ(s,a)

ρπb(s)
dads)

 .

(37)
According to Equation 34 J(µ) is a linear function, and negative relative entropy is concave, this
implies that L(µ, λ∗) is a strictly concave function of ρµ with only a unique maximum value and
since we have that the occupancy measure ρµ(s,a) has a one-to-one relationship with policy µ, we
can obtain the unique µ corresponding to ρµ.

A.3 PROPOSITION 3.1

Finally, we prove the Proposition 3.1.

Proof.
H(πb, µ) = −Es∼ρπb (s),a∼πb(·|s) [logµ(·|s)]

= −Es∼ρπb (s)

[∫
πb(a|s)da log

∫
πb(a

1:T |a, s) µ(a0:T |s)
πb(a1:T |a, s)

da1:T

]

≤ Es∼ρπb (s)


∫

πb(a
0:T ) log[

πb(a
1:T |a, s)

µ(a0:T |s)
]da0:T︸ ︷︷ ︸

Jensen’s inequality

 = K.

(38)

H(πb, µ) = K is true if and only if πb(a
1:T |a0, s) = µ(a1:T |a0, s). By letting the KL divergence

between πb and µ be small enough, we can approximate the H(πb, µ) with K. Furthermore, we can
use the variational lower bound K to approximate the KL divergence (Ho et al., 2020):
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H(πb, µ) ≈ K = Es∼ρπb (s)

[
Eπb(a0:T )

[
log

πb(a
1:T |a, s)

µ(a0:T |s)

]]
= Es∼ρπb (s)

[
Eπb(a0:T )

[
log

πb(a
1:T |a0, s)

µ(a0:T |s)

]]
= Eρπb (s,a)

[
log

∏T
t=1 πb(a

t|at−1)

µ(aT )
∏T

t=1 µ(a
t−1|at)

]
= Eρπb (s,a)

[
− logµ(aT ) +

T∑
t=1

log
πb(a

t|at−1)

µ(at−1|at)

]
= Eρπb (s,a)

[
− logµ(aT ) +

T∑
t=2

log
πb(a

t|at−1)

µ(at−1|at)
+ log

πb(a
1|a0)

µ(a0|a1)

]
= Eρπb (s,a)

[
− logµ(aT ) +

T∑
t=2

log
(πb(a

t−1|at,a0)

µ(at−1|at)
· πb(a

t|a0)

πb(at−1|a0)

)
+ log

πb(a
1|a0)

µ(a0|a1)

]
= Eρπb (s,a)

[
− logµ(aT ) +

T∑
t=2

log
πb(a

t−1|at,a0)

µ(at−1|at)
+

T∑
t=2

log
πb(a

t|a0)

πb(at−1|a0)
+ log

πb(a
1|a0)

µ(a0|a1)

]
= Eρπb (s,a)

[
− logµ(aT ) +

T∑
t=2

log
πb(a

t−1|at,a0)

µ(at−1|at)
+ log

πb(a
T |a0)

πb(a1|a0)
+ log

πb(a
1|a0)

µ(a0|a1)

]
= Eρπb (s,a)

[
log

πb(a
T |a0)

µ(aT )
+

T∑
t=2

log
πb(a

t−1|at,a0)

µ(at−1|at)
− logµ(a0|a1)

]
= Eρπb (s,a)[DKL(πb(a

T |a0) ∥ µ(aT ))︸ ︷︷ ︸
LT

+

T∑
t=2

DKL(πb(a
t−1|at,a0) ∥ µ(at−1|at))︸ ︷︷ ︸

Lt−1

− logµ(a0|a1)︸ ︷︷ ︸
L0

].

So we can approximate the entropy constraint in Equation 12:

H(πb, µ) ≈ K = LT +

T∑
t=2

Lt−1 + L0. (39)

Following DDPM (Ho et al., 2020) use the random sample to approximate the
∑T

t=2 Lt−1+L0, we
have

T∑
t=2

Lt−1 + L0 ≈ Lc(πb, µ)

= Ei∼[1:N ],ϵ∼N (0,I),(s,a)∼D
[
||ϵ− ϵθ(

√
ᾱia+

√
1− ᾱiϵ, s, i)||2

]
.

(40)

Let LT = c, combining Equation 39 and Equation 40 we can get

H(πb, µ) ≈ c+ Lc(πb, µ). (41)

B NOTATION TABLE

C EXPERIMENTAL DETAILS

We follow the Wang et al. (2022) to build our policy with an MLP-based conditional diffusion model.
Following the DDPM, we recover the action from a residual network ϵ(ai, s, i), and we model the
ϵθ as a 3-layers MLPs with Mish activations. All the hidden units have been set to 256. We also
follow the Fujimoto et al. (2018) to build two Q networks with the same MLP setting as our critic
network. All the networks are optimized through Adam (Kingma & Ba, 2014). We provide all the
hyperparameters in Table 4.

17



Under review as a conference paper at ICLR 2024

H(πb, µ) ≜ −Es∼ρπb (s),a∼πb(·|s) [logµ(·|s)].
µ, µ(a|s) or µ(·|s) ≜ policy.

πb, πb(a|s) or πb(·|s) ≜ behavior policy.
pµ(st = s) ≜ Probability of landing in state s at time t, when following policy µ

from an initial state sampled from d0, in an environment with transition
dynamics T .

T , P(s′|s,a) or p(s′|s,a) ≜ transition dynamics.
d0(s) ≜ initial state distribution of behavior policy.
ρµ(s) ≜ ρµ(s) =

∑∞
t=0 γ

tpµ(st = s) is the unnormalized discounted state vis-
itation frequencies.

ρµ(s,a) ≜ ρµ(s,a) = (1− γ)
∑∞

t=0 γ
tpµ(st = s)µ(a|s) = (1− γ)ρµ(s)µ(a|s)

is the occupation measure of policy µ.
Qϕ(s,a) ≜ parameterized state action function.
Qϕ′ (s,a) ≜ parameterized target state action function.
µθ(a|s) ≜ parameterized policy.
µθ′ (a|s) ≜ parameterized target policy.
ϵθ(xi, i) ≜ parameterized Gaussian noise predict network in diffusion model.
fϕ(y|xi) ≜ parameterized classifier.

Table 3: Table of Notation in paper

Dataset Environment Learning Rate κ Reward Tune max Q backup Policy evaluation interval λclip

Medium-Expert HalfCheetah 3e-4 0.04 None False 2 0
Medium-Expert Hopper 3e-4 0.03 None False 2 0
Medium-Expert Walker2d 3e-4 0.04 None False 2 0

Medium HalfCheetah 3e-4 0.06 None False 2 0
Medium Hopper 3e-4 0.05 None False 2 0
Medium Walker2d 3e-4 0.03 None False 2 0

Medium-Replay HalfCheetah 3e-4 0.06 None False 2 0
Medium-Replay Hopper 3e-4 0.03 None False 2 0
Medium-Replay Walker2d 3e-4 0.03 None False 2 0

Default AntMaze-umaze 3e-4 0.2 CQL False 2 0.3
Diverse AntMaze-umaze 3e-4 0.09 CQL True 2 0.3

Play AntMaze-medium 1e-3 0.3 CQL True 2 0.3
Diverse AntMaze-medium 3e-4 0.2 CQL True 2 0.3

Play AntMaze-large 3e-4 0.2 CQL True 4 0.3
Diverse AntMaze-large 3e-4 0.2 CQL True 4 0.3

Table 4: Hyperparameter settings of all selected tasks. Reward Tune with CQL means that we use the reward
tuning method in Kumar et al. (2020). We also use max Q backup to improve performance in AntMaze tasks. In
offline reinforcement learning, it’s common to fine-tune rewards for the AntMaze tasks. Additionally, we have
observed that some other diffusion-based methods, such as SfBC, perform more reward engineering compared
to our method. λclip in our paper means that λ ≥ λclip.

We train for 1000 epochs (2000 for Gym tasks). Each epoch consists of 1000 gradient steps with
batch size 256. The training in MuJoCo locomotion is usually quite stable as shown in Figure 2.
However, the training for AntMaze is relatively unstable due to its sparse reward setting and subop-
timal trajectories in the offline datasets.

Runtime. We test the runtime of DiffCPS on a RTX 3050 GPU. For algorithm training, the runtime
cost of training the gym Locomotion tasks is about 4h26min for 2000 epochs (2e6 gradient steps),
see Table 5 for details.

D4RL Tasks DiffCPS (T=5) DiffusionQL (T=5) SfBC (T=5)

Locomotion Runtime (1 epoch) 7.68s 5.1s 8.42s

AntMaze Runtime (1 epoch) 9.96s 10.5s 10.53s

Table 5: Runtime of different diffusion-based offline RL methods.
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Figure 5: Evaluation performance of DiffCPS and other baselines on toy bandit experiments. The
dashed line represents the score of AWR. We also observe that as T increases, diffusion-based
algorithms all experience a certain degree of performance decline, especially SfBC. The reason
could be that as T increases, the increased model capacity leads to overfitting the data in the dataset.
In the case of SfBC, the presence of sampling errors exacerbates this phenomenon.

Figure 6: Evaluation effect of different diffusion steps on diffusion-based algorithms.

From Table 5, it’s evident that the runtime of DiffCPS is comparable to other diffusion model-based
methods. Further optimization like using Jax and incorporating other diffusion model acceleration
tricks can improve the runtime of DiffCPS.

D MORE TOY EXPERIMENTS

In this chapter, we provide further detailed information about the toy experiments. The noisy circle
is composed of a unit circle with added Gaussian noiseN (0, 0.05). The offline dataD = {(ai)}5000i=1
are collected from the noisy circle. We train all methods with 20,000 steps to ensure convergence.
The network framework of SfBC remains consistent with the original SfBC paper. Both DQL and
DiffCPS use the same MLP architecture. The code for DQL and SfBC is sourced from the official
code provided by the authors, while the code for AWR is adopted from a PyTorch implementation
available on GitHub.

In Figure 6, we put the full results of diffusion-based methods and Figure 5 displays the scores
of diffusion-based algorithms under different diffusion steps, denoted as T . The score calculation
involves a modified Jaccard Index, which computes how many actions fall into the offline dataset
(the minimum distance is less than 1e-8). The dashed line represents the score of AWR.
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Figure 7: Evaluation effect of prior offline methods.

Figure 8: Results of diffusion behavior clone.

In Figure 7, we compare DiffCPS with prior offline RL methods, including the TD3+BC (Fujimoto
& Gu, 2021) with Gaussian policy, BCQ (Fujimoto et al., 2019), and BEAR (Kumar et al., 2019).
Note that both BCQ and BEAR use the VAE to model behavior policy, and then get the policy by
regularizing the cloned behavior policy. However, results in Figure 7 show that VAE cannot exactly
model the multi-modal data in offline datasets. TD3+BC with Gaussian policy also fails to model
the optimal behavior due to the limited policy expressivity described in Section 3.1.

In Figure 8, we show the results of diffusion-based behavior clone. The results in Figure 8 and
Figure 7 show that the diffusion model can model multi-modal distribution while other methods
struggle to capture the multi-modal behavior policy.

E EXTRA RELATED WORK

Offline Model-based RL. Model-based RL methods represent another approach to address offline
reinforcement learning. Similar to model-free offline RL, model-based RL also needs to address
extrapolation error. Kidambi et al. (2020); Yu et al. (2020) perform pessimistic planning in the
learned model, which penalizes the reward for uncertainty. BREMEN (Matsushima et al.) uses trust
region constraint to update policy in an ensemble of dynamic models to avoid the extrapolation error.
VL-LCB (Rashidinejad et al., 2021) employs offline value iteration with lower confidence bound to
address the extrapolation error. SGP (Suh et al., 2023) uses the score function of the diffusion model
to approximate the gradient of the proposed uncertainty estimation. Our method differs from them
for DiffCPS tackles the diffusion-based constrained policy search problem in offline RL through
Lagrange dual and recursive optimization.

F EXTRA EXPERIMENTS

F.1 TRAJECTORY STITCHING

The offline dataset is depicted in the Figure 9. The reward function is the sum of the negative
Euclidean distance from the point (1, 1) and a constant, with both actions and states represented as
2D coordinates. The dataset consists only of trajectories forming an X shape. During the evaluation,
the starting point is at (−1, 1). To achieve maximum reward, the policy needs to stitch together
offline data to reach the goal. The trajectories generated by our policy are shown in Figure 10. We
note that DiffCPS successfully combines trajectories from the dataset to reach the vicinity of the
target point (1, 1) while avoiding low-reward areas.

F.2 TRIFINGER DATASET EXPERIMENT

The TriFinger dataset (Gürtler et al.) is an offline dataset for the TriFinger robotic arm that includes
both real and simulated data. The dataset primarily focuses on two tasks: Push and Lift. We utilize
the Push-Sim-Expert dataset to train our DiffCPS, and the network architecture is consistent with the
details provided in Appendix C. The goal of the push task is to move the cube to a target location.
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Figure 9: Offline Dataset.
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Figure 10: Trajectory of DiffCPS.

This task does not require the agent to align the orientation of the cube; the reward is based only on
the desired and the achieved position.

When trained with 2e6 training steps (gradient steps) on the sim-expert dataset, DiffCPS (T = 45,
target kl = 0.01, λmin = 0) achieves a success rate of 0.906 ± 0.001 in the push task based on 100
evaluation episodes and 5 random seeds, as detailed in the Table 6.

TriFinger-Push BC CRR IQL DiffCPS (Ours)

Sim-Expert 0.83± 0.02 0.94± 0.04 0.88± 0.04 0.906± 0.001

Table 6: The success rate of DiffCPS and other baselines on TriFinger Push task. Results for other
baselines are sourced from Gürtler et al. and have been carefully tuned. It’s worth noting that our
DiffCPS still utilizes a simple MLP to represent the policy, suggesting potential benefits from more
powerful network architectures.

G AUGMENTED LAGRANGIAN METHOD

In Algorithm 1, we utilize alternating optimization (dual ascent) to solve the dual problem in Equa-
tion 14. In practice, we can employ the Augmented Lagrangian Method (ALM) to enhance the
stability of the algorithm. ALM introduces a strongly convex term (penalty function) into the La-
grangian function to improve convergence. Our experimental results suggest that ALM can enhance
training stability but may lead to a performance decrease. This could be attributed to (i) the in-
troduction of the penalty function altering the optimal KL divergence constraint value and (ii) the
penalty function making the policy too conservative, thereby preventing the adoption of high-reward
actions. We believe that further research will benefit our algorithm by incorporating ALM and other
optimization algorithms.
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