
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING-DOMAIN DECOMPOSITION: INTERPRET-
ING TRAINING DYNAMICS VIA LOSS VECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks achieve high performance, but it is still not well under-
stood how they learn during training and when they forget what has been learned.
In this study, we propose Learning-Domain Decomposition (LDD), a method
that analyzes training dynamics based on per-sample loss vectors. LDD applies
sparse dictionary learning to the differences of loss vectors across training steps.
This enables the extraction of learning-domains, which represent common pat-
terns learned by the model, and clarifies when they are acquired or forgotten in a
bottom-up manner. We further evaluate the contribution of each domain to gener-
alization by quantifying its effect on validation loss. Experiments on the MNIST
dataset with a simple CNN show that easy samples are learned early but later
degrade generalization, while ambiguous samples are repeatedly forgotten and
relearned and ultimately contribute to generalization. In addition, data pruning
based on the degree of contribution to multiple domains (domain multiplicity) al-
lows training with 5% of the data while achieving performance comparable to or
better than training with the full dataset. These findings demonstrate that LDD
provides both an interpretable perspective on training dynamics and a practical
tool for efficient data selection.

1 INTRODUCTION

Research on the interpretability of machine learning models has mainly focused on analyzing static,
trained models (Ribeiro et al., 2016; Lundberg & Lee, 2017; Sundararajan et al., 2017; Belinkov,
2022; Huben et al., 2024). While these approaches provide valuable post-hoc explanations of model
behavior, a trained model is not a static artifact but rather the result of a dynamic optimization
process shaped by data. To understand how model behaviors are formed, it is essential to analyze
not just the final model, but also the data and the evolution of the model’s responses to that data
during training. This motivates a data-centric approach to interpretability that focuses on the training
dynamics. In particular, understanding which data are learned or forgotten and when this happens
would also inform appropriate selection of training data (Toneva et al., 2019; Swayamdipta et al.,
2020).

Such an analysis, however, presents practical challenges. Analyzing training dynamics ideally re-
quires saving model checkpoints throughout training, but this quickly becomes prohibitive for large
models. A lighter alternative is to infer dynamics from training logs such as loss and accuracy. How-
ever, training logs in machine learning typically record only per-step averages of loss and accuracy,
discarding information at the level of individual samples.

We therefore analyze training dynamics via a loss vector, a sequence of per-sample loss calculated
with fixed data samples on a specific checkpoint. The trajectory of loss vectors captures not only the
evolution of overall performance but also the local behavior of the model as a function of input.

Concretely, we store the loss vector at every training step and decompose it using sparse dictionary
learning (Olshausen & Field, 1996; Lee et al., 2006). We call this procedure Learning-Domain
Decomposition (LDD). LDD identifies learning-domains (LDs), defined as task regions that share
common patterns the model acquires. We then analyze the obtained LDs to determine when the
model learns/forgets specific characteristics during training. We estimate each domain’s contribution
to model generalization by simulating ablations: measuring validation losses by excluding samples
associated with a specific LD.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

+ +≈

timesteps

total
loss

...

×

domain
loss

1d1a

×

domain
loss

2da2

×

domain
loss

3da3

l(0) l(T)

timesteps timesteps timesteps

DL

≈

A

1a

a2

a3

(0)

(0)

(0)

1a

a2

a3

(1)

(1)

(1)

1a

a2

a3

(2)

(2)

(2)

1a

a2

a3

(3)

(3)

(3)

Learning-Domain 1 Learning-Domain 2 Learning-Domain 3

Figure 1: Conceptual overview of Learning-Domain Decomposition (LDD). We log per-sample loss
vectors across training steps, form a loss matrix, and apply sparse dictionary learning to decompose
it into a set of learning-domains (LDs), which are task regions that share common patterns the model
acquires. Decomposed losses of LDs indicate when the model learns/forgets specific patterns.

Additionally, we investigate applicability of LDD for data selection. Based on our observation on
MNIST, the model can maintain or improve its performance with fewer training examples selected
to cover as many LDs with significant contribution as possible. Figure 1 shows the conceptual
overview of LDD.

2 PRELIMINARIES

Let X := {xi}Ni=1 be a pre-specified dataset (reference set) of sample size N . Denote the model
parameters at optimization step t ∈ {0, 1, . . . , T} by θ(t), with θ(0) the initialization. The loss vector
at step t is defined by calculating loss values for each example in X :

ℓ(t) :=
[
ℓ(x1; θ

(t)), . . . , ℓ(xN ; θ(t))
]⊤ ∈ RN , (1)

where ℓ(x; θ) is the per-sample loss under parameters θ. The sequence
(
ℓ(0), . . . , ℓ(T)

)
evolves over

training, and its trajectory reflects the model’s learning dynamics observed through X .

Collecting these column vectors yields the loss matrix

L := [ℓ(0), . . . , ℓ(T)] ∈ RN×(T+1). (2)
To emphasize changes during training, we focus on loss differences between successive steps. De-
fine the loss-difference vector1

∆ℓ(t) := ℓ(t−1) − ℓ(t) ∈ RN (t = 1, . . . , T), (3)
and the corresponding loss-difference matrix

L∆ := [∆ℓ(1), . . . ,∆ℓ(T)] ∈ RN×T . (4)

By construction, a positive i-th component of ∆ℓ(t) indicates that the loss on sample xi decreased
at step t, which we interpret as learning, whereas a negative component indicates an increase of the
loss, which we interpret as forgetting.

3 PROBLEM SETUP

Our goal is to determine (1) what the model learns/forgets and (2) when such events occurs based on
a time series of loss vectors L or its difference L∆. We formalize the problem by separating these
two questions and then unifying them.

1Note that we define ∆ℓ(t) = ℓ(t−1) − ℓ(t), whose sign is opposite to the standard backward difference
ℓ(t) − ℓ(t−1). We adopt this convention so that positive values indicate loss decreases (learning) and negative
values indicate loss increases (forgetting).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3.1 WHAT DOES THE MODEL LEARN?

We define a learning-domain (LD) as a task subregion characterized by a common pattern that the
model acquires from the reference set. Samples belonging to the same domain should exhibit similar
loss trajectories during training. To identify LDs, we approximate each loss vector ℓ(t) by a linear
combination of basis vectors dk (k = 1, . . . ,K):

ℓ(t) ≈
K∑

k=1

a
(t)
k dk, (5)

where a
(t)
k ∈ R are coefficients specifying the contribution of dk at the time step t, and K is a hy-

perparameter determining the number of LDs. The i-th component of dk quantifies how strongly the
sample xi contributes to the k-th LD. A group of high-contribution samples within an LD explains
the characteristics of that LD.

Let D := [d1, . . . ,dK] ∈ RN×K , A := [a(0), . . . ,a(T)] ∈ RK×(T+1), and a(t) :=

[a
(t)
1 , . . . , a

(t)
K]⊤ ∈ RK , then we obtain the matrix notation of Equation (5):

ℓ(t) ≈ Da(t), L ≈ DA. (6)

To emphasize changes, define the coefficient-difference vector ∆a(t) := a(t−1) − a(t) for t =
1, . . . , T and A∆ := [∆a(1), . . . ,∆a(T)], then we obtain an alternative form of Equation (6):

∆ℓ(t) ≈ D∆a(t), L∆ ≈ DA∆. (7)

3.2 WHEN DOES THE MODEL LEARN IT?

Summing all elements of ℓ(t) yields the total loss on the reference set at step t. On the other hand,
each LD is expected to have its own characteristic loss curve over time, and summing these compo-
nents at step t should reproduce the original loss. Formally, this relationship can be represented as a
constraint between ℓ(t) and a(t):

N∑
i=1

ℓ
(t)
i ≈

K∑
k=1

a
(t)
k . (8)

This constraint lets a
(t)
k behave as the instantaneous loss attributable to domain k at step t. A

decrease in a
(t)
k indicates learning of that domain, and an increase indicates forgetting.

3.3 JOINT FORMULATION

Given the loss-difference matrix L∆, our problem is to recover a dictionary D and a coefficient-
difference matrix A∆ such that

L∆ ≈ DA∆ and
N∑
i=1

ℓ
(t)
i ≈

K∑
k=1

a
(t)
k for all t. (9)

4 LEARNING-DOMAIN DECOMPOSITION

4.1 INDUCTIVE BIASES FOR INTERPRETABILITY

In addition to Equation (9), we introduce three inductive assumptions to make the decomposition
identifiable and interpretable.

1. Nonnegative contributions. The contribution of each sample must be nonnegative: dk,i ≥
0 for all k, i.

2. Nonnegative domain losses. The domain loss must be nonnegative: a(t)k ≥ 0 for all k, t.
3. Domain exclusivity. When the loss associated with one domain changes substantially at a

given step, other domains’ losses change little. We operationalize this with sparsity in the
coefficient-difference vector ∆a(t).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

From Assumptions 1 and 2 and the relation ℓ(t) ≈
∑

k a
(t)
k dk together with

∑
i ℓ

(t)
i ≈

∑
k a

(t)
k , we

obtain the (column-wise) normalization

N∑
i=1

dk,i ≈ 1 for all k = 1, . . . ,K. (10)

See Appendix B for a proof.

4.2 OPTIMIZATION

Given the loss-difference matrix L∆, we seek a dictionary D ∈ RN×K and the coefficient-
difference matrix A∆ ∈ RK×T that satisfy the factorization L∆ ≈ DA∆ while enforcing non-
negativity on D, simplex normalization of its columns, and sparsity on A∆:

min
D,A∆

∥L∆ −DA∆∥2F + λ ∥A∆∥1,1

s.t. D ≥ 0, 1⊤D = 1⊤,
(11)

where ∥ · ∥F is the Frobenius norm, ∥ · ∥1,1 is the sum of absolute values, λ > 0 is a regularization
parameter, and 1 is the all-ones vector (so each column of D sums to 1). The ℓ1 penalty encourages
temporal sparsity in A∆, aligning with domain exclusivity in Assumption 3. We estimate (D,A∆)
via alternating minimization: (i) solve a sparse coding subproblem for A∆ with D fixed; (ii) update
D with nonnegativity and simplex projections; iterate to convergence. In practice, we implement
this with scikit-learn’s DictionaryLearning.2

This yields a set of basis vectors {dk} (nonnegative, sample-weighted patterns) and a coefficient-
difference time series {∆a(t)}. Integrating the differences recovers a(t) up to a constant, which we
fix to satisfy

∑
i ℓ

(t)
i ≈

∑
k a

(t)
k .

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. We evaluate on MNIST (LeCun et al., 1998) (handwritten digit recognition). The training
set contains 30,000 examples and the validation set 3,000 examples. We use the training dataset as
the reference set for computing loss vectors.

Model. We use a simple convolutional neural network (CNN) with two convolutional layers fol-
lowed by a fully connected layer. The first convolutional layer has 32 output channels, the second
has 64 channels, and the fully connected layer has a hidden size of 128.

Training. We minimize cross-entropy loss using Adam (Kingma & Ba, 2015) with learning rate
1 × 10−4. Training is run for a single epoch, corresponding to 100 optimization steps (30,000
samples / batch size 300). We record the full per-sample loss vector at every step.

Learning-Domain Decomposition (LDD). For the dictionary factorization of loss differences, we
set the number of domains K = 10 and regularization λ = 0.01.

Data pruning. We retrain models on pruned subsets using the same optimization hyperparameters
as above. To ensure comparability, the number of optimization steps is kept the same after pruning
by adjusting the number of epochs.

5.2 VISUALIZING LEARNING-DOMAINS

The learned ten basis vectors d1, . . . ,d10 each contain 30,000 nonnegative entries. By examin-
ing which training samples receive large values within each basis vector, we can identify the data
samples associated with each learning-domain.

2https://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.DictionaryLearning.html

4

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.DictionaryLearning.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.DictionaryLearning.html

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 20 40 60 80

Training Step

Domain 1

Domain 2

Domain 3

Domain 4

Domain 5

Domain 6

Domain 7

Domain 8

Domain 9

Domain 10

L
ea

rn
in

g
 D

o
m

ai
n

−1000

−500

0

500

1000

T
ra

in
in

g
 L

os
s

C
h
a
n
ge

(a) Coefficient-difference matrix heatmap.

Domain 1

Domain 2

Domain 3

Domain 4

Domain 5

Domain 6

Domain 7

Domain 8

Domain 9

Domain 10

(b) Representative samples for
each learning-domain.

Figure 2: Learning-domains discovered by LDD. (a) Coefficient-difference matrix heatmap (A∆).
The color of each cell encodes the decrease in domain loss at that step, ∆a

(t)
k . Blue cells indicate that

the loss for that domain decreased (∆a
(t)
k > 0), whereas red cells indicate that it increased (∆a

(t)
k <

0). (b) Representative samples for each learning-domain. We display the 10 training images with
the highest basis coefficients dk,i for each domain k. These samples show the characteristic patterns
that define each domain.

Figure 2a shows a heatmap of the coefficient-difference matrix A∆. This heatmap visualizes
domain-specific patterns of loss change. For example, domains 1 and 2 show concentrated blue
early in training, indicating that the model substantially improves those domains at the beginning.
In contrast, domains 9 and 10 alternate between blue and red, indicating repeated cycles of loss
decrease (learning) and increase (forgetting).

Figure 2b presents examples of the data samples that contribute most to each domain. Specifically,
for each basis vector dk, we display the images corresponding to the top 10 entries with the largest
values. These can be interpreted as representative examples of the data primarily covered by that
learning-domain. The representative images exhibit characteristic structure across domains. For
instance, domain 1 contains many images of the digit ”0”, whereas domain 10 mixes visually con-
fusable digits such as ”4” and ”9”. This indicates that the learned basis vectors detect semantically
coherent clusters in the training data.

Comparing the heatmap (Figure 2a) with the representative images (Figure 2b) allows us to interpret
when each learning-domain is acquired. Domains with large early loss drops (e.g., domains 1 and 2)
tend to contain relatively simple, easily identifiable digits, aligning with the intuition that the model
learns easy patterns first. In contrast, domains whose losses decrease only later and fluctuate with
repeated increases and decreases (e.g., domains 5 and 10) include many confusable pairs such as ”5”
vs. ”8” and ”4” vs. ”9”. The model may learn them temporarily during training, but when learning
other patterns and adjusting the decision boundaries, it can misclassify them again.

To assess the discovered learning-domains globally, we visualize the per-sample loss-change tra-
jectories with t-SNE. Coloring points by ground-truth digit labels yields well-separated clusters
(Figure 3). When we instead visualize per-domain contributions in the same embedding, each do-
main concentrates on a largely non-overlapping region, exhibiting mutually exclusive distributions
(Figure 4).

5.3 DOMAIN-WISE CONTRIBUTIONS TO GENERALIZATION

To understand how each discovered learning-domain contributes to the model’s generalization abil-
ity, we perform a counterfactual analysis. For each training step t, we first compute the validation
loss using the current model θ(t). We then simulate what would happen if we excluded samples from
a specific domain k during the update from step t to t+1. Specifically, we remove training examples
that have large coefficients in the corresponding basis vector dk from the mini-batch. By compar-
ing the resulting validation loss change to the original update, we can estimate how much domain
k contributes to generalization. When excluding domain k leads to worse validation performance,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: t-SNE of per-sample loss-change trajectories. Each point corresponds to a training exam-
ple embedded from its sequence of ∆ℓ values. Color denotes the true digit label.

(a) Domain 1 (b) Domain 2 (c) Domain 3 (d) Domain 4 (e) Domain 5

(f) Domain 6 (g) Domain 7 (h) Domain 8 (i) Domain 9 (j) Domain 10

Figure 4: Distribution of domain contributions in t-SNE space. For each domain k, color intensity
indicates the domain contribution dk,i for sample xi normalized by the maximum and minimum
values within each domain. Brighter means larger contribution.

we interpret this as evidence that domain k positively contributes to generalization. Conversely, if
removing domain k actually improves validation performance, we conclude that this domain may
be harmful to generalization.

Figure 5 shows how these domain contributions evolve throughout training. For each step, the verti-
cal axis represents the difference between validation loss after updating without domain k versus the
original validation loss. Red regions indicate that excluding the domain would degrade performance
(positive contribution), while blue regions suggest excluding the domain would improve perfor-
mance (negative contribution). Interestingly, we observe that domains 5 and 10 consistently provide
substantial positive contributions across training, suggesting these more challenging domains play
a crucial role in improving generalization. Meanwhile, the simpler domains that are learned early
(such as domains 1 and 2) initially contribute positively but later become detrimental, implying that
overemphasizing these easy patterns may eventually interfere with generalization.

5.4 APPLICATION TO DATA PRUNING

Assumption 3 implies that samples strongly associated with the same domain tend to improve to-
gether. Learning one often reduces the loss of many others in that domain. We quantify each

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100

Training Step

Domain 1

Domain 2

Domain 3

Domain 4

Domain 5

Domain 6

Domain 7

Domain 8

Domain 9

Domain 10

L
ea

rn
in

g-
D

om
ai

n

−0.04

−0.02

0.00

0.02

0.04

V
al

 L
os

s
C

h
an

ge

Figure 5: Domain-wise contributions to validation loss over training steps. Red indicates a positive
contribution, while blue indicates a negative contribution.

sample’s domain multiplicity

mi :=

K∑
k=1

dk,i. (12)

Intuitively, mi measures how broadly sample xi participates across domains. We normalize {mi}
to a probability distribution and prioritize samples with larger mi when constructing a reduced
training set. Concretely, to prune from size N to n < N , we sample without replacement n ex-
amples according to probabilities proportional to mi, and retrain under the same protocol. This
coverage-based criterion favors examples that simultaneously advance multiple learning-domains.
We compare against random pruning.

Varying retained data size (fixed K = 10). Figure 6a shows test accuracy as a function of the
retained fraction. Retaining as little as 2% of the data outperforms random pruning at the same
budget, and with ≥ 5% retained, the pruned model matches or exceeds the accuracy of training on
the full dataset.

Varying the number of domains (fixed n = N/10). Figure 6b fixes the retained fraction at 10%
and varies K. When K ≤ 2, accuracy falls below random pruning, suggesting under-decomposition.
For K ≥ 10, LDD-based pruning consistently outperforms random pruning. This indicates that,
for pruning, the dictionary should be sufficiently expressive to capture multiple, distinct learning-
domains.

6 DISCUSSION

6.1 DISTRIBUTION OF SAMPLE IMPORTANCE AS A FUNCTION OF THE NUMBER OF DOMAINS

Figure 7 visualizes a two-dimensional t-SNE embedding of the per-step loss-change vectors, where
points correspond to training samples and color denotes their importance under Learning-Domain
Decomposition (LDD). Importance here refers to the domain multiplicity mi =

∑K
k=1 dk,i, which

determines a sample’s retention probability in our pruning scheme.

Across settings K ∈ {1, 2, 5, 10, 20, 50, 100}, we observe that once the dictionary has sufficient
capacity (K ≥ 10), the spatial pattern of importance stabilizes. The high-importance regions and
their relative extents change little as K increases further. This agrees with the pruning results (Fig-
ure 6b), where K ≥ 10 consistently outperforms random pruning, while very small K (e.g., K ≤ 2)
under-decomposes the dynamics and degrades accuracy.

A common geometric trend is that, near convergence, importance concentrates along cluster perime-
ters in the t-SNE map, that is, near putative decision boundaries. Samples on these margins appear

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

10−2 10−1 100

Remaining Dataset Proportion

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

T
es

t
A

cc
u
ra

cy

Random Pruning

Multiplicity Pruning

(a) Test accuracy vs. retained data fraction (K = 10).

100 101 102

Domains

0.86

0.87

0.88

0.89

0.90

T
es

t
A

cc
u
ra

cy

Random Pruning

Multiplicity Pruning

(b) Test accuracy vs. number of domains (10% re-
tained).

Figure 6: Test accuracy after LDD-based data pruning. (a) Test accuracy as a function of retained
data fraction with K = 10 domains. (b) Test accuracy as a function of the number of domains with
10% of data retained. Error bars denote 95% confidence intervals across 10 runs.

(a) K = 1 (b) K = 2 (c) K = 5

(d) K = 10 (e) K = 20 (f) K = 50 (g) K = 100

Figure 7: Sample importance mi in t-SNE space for varying K.

to participate in multiple learning-domains (higher mi), so training on them tends to advance sev-
eral domains simultaneously. Consequently, although our criterion is derived from coverage in
domain space (not from predictive uncertainty per se), the selected subsets qualitatively resemble
those produced by uncertainty sampling, providing an intuitive link between domain coverage and
decision-boundary refinement.

7 RELATED WORK

Loss vectors. Per-sample loss (or log-likelihood) vectors have been used as features of model
behavior. For language models, prior work observes that KL divergence between models can be
approximated from negative loss (log-likelihood) vectors, and that such vectors serve as useful fea-
tures for downstream analysis. In particular, log-likelihood vectors have recently been shown to be
informative representations of language models themselves (Oyama et al., 2025b;a). Despite this
promise, the use of per-sample loss vectors to analyze training dynamics, rather than to compare
fixed models, remains underexplored.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Visualizing training dynamics. Several studies, akin to our perspective, visualize trajectories of
loss vectors (or related statistics) via dimensionality reduction, e.g., ISOMAP (Erhan et al., 2010),
PCA (Olsson et al., 2022), and t-SNE (Kishino et al., 2025). These works explain global properties,
such as the stability of pretraining or phase transitions during learning, by interpreting the shape of
the trajectory. However, the resulting coordinates are not inherently interpretable, so such visualiza-
tions typically do not reveal which data are being learned or when specific patterns are acquired or
forgotten.

Top-down identification of acquired knowledge. A complementary, top-down line of work in-
vestigates concrete skills that emerge during training. For example, Chen et al. report that syntactic
attention structures in masked language models appear abruptly at particular training stages, align-
ing with sharp drops in loss (i.e., phase transitions) (Chen et al., 2024). These approaches project
learning dynamics onto predefined, semantically labeled features. This elucidates the emergence
of targeted capabilities. In contrast, our method is bottom-up. From only the time series of loss
vectors, we automatically extract nonnegative, sparse bases (learning-domains). We jointly identify
when they are learned and which samples define them, without requiring prior semantic annotations.
In this way, our approach complements top-down analyses.

Data pruning. Data pruning aims to curb training cost while preserving accuracy. One influen-
tial family estimates example importance from early-training behavior, including heuristics such as
GraNd (Paul et al., 2021) and EL2N (Paul et al., 2021), which provide quick proxies for data utility.
Sorscher et al. (Sorscher et al., 2022) further argue that such pruning signals can improve the scal-
ing of accuracy with dataset size. A second family frames pruning as subset selection via gradient
matching or bilevel optimization, as in CRAIG (Mirzasoleiman et al., 2019), GRAD-MATCH (Kil-
lamsetty et al., 2021), and GLISTER (Killamsetty et al., 2020), which offer principled objectives
but can be computationally demanding and may depend on a validation set. Other work estimates
per-example value through influence functions (Koh & Liang, 2017) or Shapley values (Ghorbani
& Zou, 2019), which are theoretically grounded yet often expensive to compute at scale. Orthog-
onally, studies of forgetting events (Toneva et al., 2019) and confidence trajectories (Swayamdipta
et al., 2020) show that ambiguous samples can aid generalization, inspiring diagnostic tools such
as Data Maps (Swayamdipta et al., 2020). Our approach differs by decomposing the time series of
loss vectors into learning-domains and measuring a sample’s value by its coverage, defined as the
number of domains it advances (domain multiplicity), rather than by difficulty alone.

8 CONCLUSION

We introduced a data-driven, bottom-up method for analyzing the training dynamics of deep neural
networks. By decomposing per-step loss vectors into nonnegative, sparse basis vectors (Learning-
Domain Decomposition, LDD), our framework jointly identifies what is learned (learning-domains)
and when it is learned or forgotten.

On MNIST with a simple CNN, LDD reveals: (i) easy patterns are acquired early, while ambiguous
patterns undergo cycles of forgetting and relearning; (ii) these ambiguous domains make sustained,
positive contributions to generalization, whereas easy domains can become detrimental later in train-
ing. Leveraging these insights, we formulate a coverage-based pruning strategy using domain mul-
tiplicity, which maintains accuracy and, in some settings, improves it, while substantially reducing
the training set.

Future work includes scaling LDD to larger architectures and datasets, extending it to language
models, and exploring applications to post-training regimes (e.g., instruction tuning, reinforcement
learning).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our study analyzes training dynamics on the publicly available MNIST dataset and does not involve
human subjects, personally identifiable information, or sensitive attributes.

REPRODUCIBILITY STATEMENT

Experimental settings, including dataset, network architectures, optimization parameters, and LDD
hyperparameters (e.g., number of domains K, sparsity constraints), are described in Section 5.1.

REFERENCES

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computa-
tional Linguistics, 48(1):207–219, March 2022. doi: 10.1162/coli a 00422. URL https:
//aclanthology.org/2022.cl-1.7/.

Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho, Matthew L Leavitt, and Naomi Saphra. Sud-
den drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in MLMs.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=MO5PiKHELW.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Ma-
chine Learning Research, 11(19):625–660, 2010. URL http://jmlr.org/papers/v11/
erhan10a.html.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In Proceedings of the 36th International Conference on Machine Learning, pp. 2242–2251, 2019.
URL https://arxiv.org/abs/1904.02868.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=F76bwRSLeK.

Kusupati Killamsetty, Kameswara Rao Pokkurthi, Bheeshma Chunduri, Pratik Jawanpuria, Arjun
Murugesan, Kush Bhatia, Anirban Bhattacharya, Neel Kumar, Bala Sivasubramanian, Prateek
Jain, et al. Glister: Generalization based data subset selection for efficient and robust learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8110–8118, 2020. URL
https://arxiv.org/abs/2006.08643.

Kusupati Killamsetty, Kameswara Rao Pokkurthi, Bala Sivasubramanian, Kush Bhatia, Prateek
Awasthi, Sanjiv Arora, Matti Chinnakotla, Neel Kumar, and Amit Deshpande. Grad-match:
Gradient matching based data subset selection for efficient deep model training. In Proceed-
ings of the 38th International Conference on Machine Learning, pp. 5464–5474, 2021. URL
https://arxiv.org/abs/2102.05959.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Ryo Kishino, Yusuke Takase, Momose Oyama, Hiroaki Yamagiwa, and Hidetoshi Shimodaira.
Revealing language model trajectories via kullback-leibler divergence, 2025. URL https:
//arxiv.org/abs/2505.15353.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. Pro-
ceedings of the 34th International Conference on Machine Learning, pp. 1885–1894, 2017. URL
https://arxiv.org/abs/1703.04730.

10

https://aclanthology.org/2022.cl-1.7/
https://aclanthology.org/2022.cl-1.7/
https://openreview.net/forum?id=MO5PiKHELW
https://openreview.net/forum?id=MO5PiKHELW
http://jmlr.org/papers/v11/erhan10a.html
http://jmlr.org/papers/v11/erhan10a.html
https://arxiv.org/abs/1904.02868
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://arxiv.org/abs/2006.08643
https://arxiv.org/abs/2102.05959
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2505.15353
https://arxiv.org/abs/2505.15353
https://arxiv.org/abs/1703.04730

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/mnist/, 1998. Accessed: 2025-09-25.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng. Efficient sparse coding algorithms.
Advances in neural information processing systems, 19, 2006.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna Wallach, Rob Fergus, S. Vishwanathan, and
Roman Garnett (eds.), Advances in Neural Information Processing Systems, volume 30, Long
Beach, CA, USA, 2017. Curran Associates, Inc. pp. 4768–4777 (NIPS 2017).

Baharan Mirzasoleiman, Amin Karbasi, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient
training of machine learning models. In Proceedings of the 36th International Conference on
Machine Learning, pp. 6950–6960, 2019. URL https://arxiv.org/abs/1906.00863.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Momose Oyama, Ryo Kishino, Hiroaki Yamagiwa, and Hidetoshi Shimodaira. Likelihood
variance as text importance for resampling texts to map language models. arXiv preprint
arXiv:2505.15428, 2025a.

Momose Oyama, Hiroaki Yamagiwa, Yusuke Takase, and Hidetoshi Shimodaira. Mapping 1, 000+
language models via the log-likelihood vector. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria,
July 27 - August 1, 2025, pp. 32983–33038. Association for Computational Linguistics, 2025b.
URL https://aclanthology.org/2025.acl-long.1584/.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. In Advances in Neural Information Process-
ing Systems, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
ac56f8fe9eea3e4a365f29f0f1957c55-Abstract.html. NeurIPS 2021.

Marco T. Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?”: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 1135–1144, New York, NY, USA, 2016.
Association for Computing Machinery.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S. Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. arXiv preprint arXiv:2206.14486, 2022.
URL https://arxiv.org/abs/2206.14486.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 3319–3328,
Sydney, Australia, 06–11 Aug 2017. PMLR.

Swabha Swayamdipta, Roy Schwartz, Alon Talmor, Ronan Le Bras, Omer Levy, and Noah Smith.
Dataset cartography: Mapping and diagnosing datasets with training dynamics. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing, pp. 9275–9293,
2020. URL https://arxiv.org/abs/2007.02436.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Ben-
gio, and Geoffrey J. Gordon. An empirical study of example forgetting during deep neu-
ral network learning. International Conference on Learning Representations, 2019. URL
https://arxiv.org/abs/1812.05159. arXiv preprint arXiv:1812.05159.

11

http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1906.00863
https://aclanthology.org/2025.acl-long.1584/
https://proceedings.neurips.cc/paper/2021/hash/ac56f8fe9eea3e4a365f29f0f1957c55-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ac56f8fe9eea3e4a365f29f0f1957c55-Abstract.html
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2007.02436
https://arxiv.org/abs/1812.05159

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS

The authors used large language models (ChatGPT3 and Gemini4) for translation, grammar correc-
tion, help finding related work, and writing a draft of the abstract. Outputs have been reviewed and
edited by the authors.

B PROOF OF COLUMN-WISE NORMALIZATION OF D

We justify the relation
N∑
i=1

dk,i ≈ 1 for all k = 1, . . . ,K. (13)

Recall from the main text that for each optimization step t we have the (approximate) nonnegative
decomposition

ℓ(t) ≈
K∑

k=1

a
(t)
k dk = Da(t) (14)

with D ≥ 0 (Assumption 1) and a(t) ≥ 0 (Assumption 2). We also impose the identifiability
convention that the total loss is approximated by the sum of the domain coefficients,

N∑
i=1

ℓ
(t)
i ≈

K∑
k=1

a
(t)
k = 1⊤a(t) for all t. (15)

Summing the decomposition over samples and using linearity gives

N∑
i=1

ℓ
(t)
i ≈

K∑
k=1

a
(t)
k

(N∑
i=1

dk,i

)
= 1⊤Da(t). (16)

Comparing the two expressions for
∑

i ℓ
(t)
i yields

1⊤Da(t) ≈ 1⊤a(t) for all t. (17)

Because both sides are linear in a(t) and the coefficients a(t) vary over training (and are nonnegative
but not identically zero), the only way for this to hold for all t is

1⊤D ≈ 1⊤, (18)

that is, each column of D approximately sums to 1:

N∑
i=1

dk,i ≈ 1 (k = 1, . . . ,K). (19)

In the idealized, noise-free case where the equalities above hold exactly and the set {a(t)}t spans
RK , the conclusion strengthens to 1⊤D = 1⊤. In practice we enforce this column-simplex con-
straint during optimization (via projection), making the normalization exact by design.

3https://chatgpt.com/
4https://gemini.google.com/app

12

https://chatgpt.com/
https://gemini.google.com/app

	Introduction
	Preliminaries
	Problem Setup
	What does the model learn?
	When does the model learn it?
	Joint formulation

	Learning-Domain Decomposition
	Inductive biases for interpretability
	Optimization

	Experiments
	Experimental setup
	Visualizing learning-domains
	Domain-wise contributions to generalization
	Application to data pruning

	Discussion
	Distribution of sample importance as a function of the number of domains

	Related Work
	Conclusion
	Use of Large Language Models
	Proof of Column-wise Normalization of D

