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Abstract

The abundance of annotated data in natural001
language processing (NLP) poses both oppor-002
tunities and challenges. While it enables the003
development of high-performing models for a004
variety of tasks, it also poses the risk of models005
learning harmful biases from the data, such as006
gender stereotypes. In this work, we investigate007
the role of attention, a widely-used technique008
in current state-of-the-art NLP models, in the009
propagation of social biases. Specifically, we010
study the relationship between the entropy of011
the attention distribution and the model’s per-012
formance and fairness. We then propose a novel013
method for modulating attention weights to im-014
prove model fairness after training. Since our015
method is only applied post-training and pre-016
inference, it is an intra-processing method and017
is, therefore, less computationally expensive018
than existing in-processing and pre-processing019
approaches. Our results show an increase in020
fairness and minimal performance loss on dif-021
ferent text classification and generation tasks022
using language models of varying sizes. WARN-023
ING: This work uses language that is offensive.024

1 Introduction025

Recent advancements in transformer-based pre-026

trained language models, such as BERT (Devlin027

et al., 2019), RoBERTa (Liu et al., 2019), GPT-2028

(Radford et al., 2019), GPT-3 (Brown et al., 2020)029

and XLNet (Yang et al., 2019), have led to the emer-030

gence of new state-of-the-art models in a variety of031

applications, including but not limited to text sum-032

marization (Liu et al., 2022; Mordido and Meinel,033

2020), sentence classification (Wang et al., 2018),034

question answering (Rajpurkar et al., 2018, 2016),035

and information extraction (Li et al., 2020a,b). De-036

spite their success, recent studies (Nadeem et al.,037

2021; Meade et al., 2022; Zayed et al., 2023) have038

demonstrated that these models also exhibit harm-039

ful biases based on factors such as gender, race,040

sexual-orientation, and religion. These biases pose041

a significant challenge in deploying machine learn- 042

ing models in real-world applications, as they can 043

result in discriminatory outcomes. For example, 044

it would be ethically questionable to deploy a ma- 045

chine learning model for resume filtering if it is 046

known that the model would discriminate against 047

certain applicants based on their gender. 048

Several techniques have been proposed to ad- 049

dress gender bias in language models, which may 050

be broadly classified into pre-processing (Lu et al., 051

2020; Hall Maudslay et al., 2019; De-Arteaga et al., 052

2019; Dixon et al., 2018), in-processing (Garg et al., 053

2019; Zhang et al., 2020; Attanasio et al., 2022; 054

Kennedy et al., 2020), and post-processing meth- 055

ods (Wei et al., 2020). Recently, a new category 056

of debiasing methods has been introduced: intra- 057

processing methods (Savani et al., 2020). These 058

methods involve modifying the model weights af- 059

ter training but before inference and, therefore, are 060

significantly less costly than pre-processing and in- 061

processing methods. In contrast to post-processing 062

methods, which are primarily designed for tabular 063

datasets, intra-processing methods have the advan- 064

tage of not being dataset dependent. In this work, 065

we propose a new intra-processing method to ad- 066

dress gender bias in language models. 067

The work by Attanasio et al. (2022) proposed 068

an in-processing bias mitigation method called en- 069

tropy attention-based regularization (EAR), which 070

improves model fairness by maximizing the en- 071

tropy of the attention weights distribution during 072

training. The authors argue that maximizing the 073

entropy of the attention map distribution leads to 074

the model attending to a broader context within 075

the input sentence, preventing it from relying on a 076

few stereotypical tokens, which results in a fairer 077

model. In this work, we study the effect of at- 078

tention distribution entropy on both fairness and 079

performance and find that the relationship between 080

the model’s bias and the entropy of its attention dis- 081

tribution is both dataset and architecture-dependent. 082
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This suggests that some of the previous findings by083

Attanasio et al. (2022) may not be general.084

Hence, we propose to modulate the attention085

distribution entropy after training, rather than max-086

imize it during training. Our novel attention en-087

tropy modulation, called entropy-based attention088

temperature scaling (EAT), applies a scaling fac-089

tor to modulate the entropy of the attention map090

post-training. In the end, we are able to efficiently091

improve fairness with minimal performance loss.092

Our contributions may be summarized as follows:093

1. We study the effect of modulating the entropy094

of the attention distribution on gender bias and095

performance in BERT and RoBERTa models096

fine-tuned on three text classification datasets.097

2. We propose a novel intra-processing bias mit-098

igation method that modulates the attention099

distribution entropy in text classification with100

less than 3.5% degradation in performance.101

To the best of our knowledge, this is the102

first intra-processing method bias mitigation103

method in NLP, offering a computationally104

efficient alternative to existing methods.105

3. We compare our method to other intra-106

processing debiasing methods originally pro-107

posed for image data and migrate such efforts108

to the NLP domain. We also compare it to109

other pre/in-processing methods.110

4. We combine our method and the previous111

intra-processing baselines with five popular112

in-processing and pre-processing bias miti-113

gation methods and show that such method114

combinations always improve fairness.115

5. We show that our method generalizes to differ-116

ent forms of social bias even when the hyper-117

parameters are exclusively tuned to mitigate118

gender bias.119

6. Finally, we show that our method extends be-120

yond text classification to address social bi-121

ases in text generation using GPT-Neo.122

2 Related work123

We will start by describing existing techniques for124

mitigating bias that are applied before, during, or125

after model training. Additionally, we will delve126

into previous studies that have proposed modifying127

the attention map to improve performance.128

2.1 Gender bias mitigation methods 129

Gender bias mitigation methods may be broadly 130

classified into two categories: intrinsic and extrin- 131

sic approaches. While intrinsic methods (Adi et al., 132

2017; Hupkes et al., 2018; Conneau et al., 2018; 133

Tenney et al., 2019; Belinkov and Glass, 2019) fo- 134

cus on analyzing the embedding representations 135

assigned to gender tokens by the model, extrin- 136

sic methods (Sennrich, 2017; Isabelle et al., 2017; 137

Naik et al., 2018) rely on the model’s predictions 138

to determine if different genders achieve similar 139

predictions under the same context. In this paper, 140

we focus on extrinsic bias mitigation methods, as 141

they more accurately reflect the applicability and 142

performance of the model in real-world situations. 143

Pre-processing methods for mitigating gender 144

bias involve modifying the training data to improve 145

model fairness. One common method is counter- 146

factual data augmentation (CDA) (Lu et al., 2020), 147

which adds counterfactual examples with flipped 148

gender words to the training set. However, this 149

can lead to longer training times and meaningless 150

examples. Hence, counterfactual data substitution 151

(CDS) (Hall Maudslay et al., 2019) swaps the gen- 152

der words in the training set with a probability of 153

0.5, resulting in a dataset of the same size. More 154

recently, Zayed et al. (2023) proposed a recipe 155

that combines the counterfactual examples with the 156

original examples while excluding the stereotypi- 157

cal ones. Moreover, gender blindness (De-Arteaga 158

et al., 2019) removes all gender words from the 159

dataset, preventing the model from associating any 160

label with a specific gender. Lastly, data balancing 161

(Dixon et al., 2018) adds new examples only for 162

under-represented groups in the dataset. 163

In-processing bias mitigation methods aim to re- 164

duce bias during training by adding auxiliary loss 165

terms to the model. One example is counterfactual 166

logit pairing (Garg et al., 2019), which penalizes 167

the model if it makes different predictions for the 168

same input after altering sensitive attributes such as 169

gender words. Another method by Kennedy et al. 170

(2020) adds a penalty term based on the differ- 171

ence in output logits when sensitive attributes are 172

present or absent. Instance weighting (Zhang et al., 173

2020) multiplies the loss by a factor greater than 1 174

for stereotypical sentences to penalize the model 175

more for misclassifying them, and attention-based 176

regularization (Attanasio et al., 2022) maximizes 177

the model’s attention distribution entropy during 178

training to improve fairness. 179
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While relatively less explored, post-processing180

bias mitigation methods modify the predictions of a181

biased model and generate a new set of less biased182

predictions. For example, Wei et al. (2020) address183

this problem by formulating it as a convex optimiza-184

tion problem with fairness constraints. Recently,185

intra-processing debiasing methods have been in-186

troduced to reduce the biases of image processing187

models as a new category of techniques that lie be-188

tween in-processing and post-processing methods.189

Examples include applying random perturbations190

to model weights, modifying the weights of a given191

layer, or performing adversarial fine-tuning to re-192

duce model bias (Savani et al., 2020).193

2.2 Attention modulation194

There has been an ongoing debate in the litera-195

ture regarding the interpretability of the attention196

mechanism (Jain and Wallace, 2019; Wiegreffe and197

Pinter, 2019; Serrano and Smith, 2019; Moradi198

et al., 2019; Mohankumar et al., 2020). Despite199

this, several works have demonstrated that modulat-200

ing the attention map values with prior knowledge201

improves model performance on a downstream task.202

For example, in document summarization, Cao and203

Wang (2021) proposed a content selection method204

that detects tokens that are irrelevant at inference205

time, masking them from the attention map. More-206

over, Cao and Wang (2022) proposed to increase207

the attention weights between tokens that lie within208

the same section in the document. Furthermore,209

Zhang et al. (2022) applied temperature scaling210

during inference to the attention map, encouraging211

the model to focus on a broader context to improve212

the quality of the summarization.213

In the context of text classification, Li et al.214

(2021) proposed to use a local attention map, lim-215

iting the attention based on the dependency parse216

tree to make the model more syntax-aware. Addi-217

tionally, in language generation, modulating the218

attention weights has been applied both during219

training and inference to enhance fluency and cre-220

ativity (Dong et al., 2021) by updating the atten-221

tion weights between tokens using a learned or222

pre-defined reweighting function. In machine trans-223

lation, Yin et al. (2021) employed a group of free-224

lance translators to identify the words they used225

to translate each word in a given output sequence.226

The authors then added an auxiliary loss term to227

encourage the model to pay more attention to these228

words, resulting in a performance improvement.229

Moreover, Lu et al. (2021) proposed to increase230

the model’s attention to essential words by measur- 231

ing the performance drop after the removal of such 232

words, encouraging the model to attend more to the 233

words that led to the most significant drop. 234

3 Self-attention 235

One of the key factors contributing to the success 236

of transformer models (Vaswani et al., 2017) is the 237

usage of self-attention (Bahdanau et al., 2015) to 238

compute the representation of each token in various 239

layers of the model. In particular, the representa- 240

tion of the ith token is contingent upon its relevance 241

to all other tokens within the sentence. This rele- 242

vance between tokens i and j is referred to as the 243

attention from token i to token j. Hence, if the 244

maximum sentence length is T , the attention map 245

will be a T × T matrix representing the attention 246

of each token to all other tokens. The attention map 247

is calculated as: 248

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V ,

(1) 249

where Q ∈ RT×dq , K ∈ RT×dk , and V ∈ RT×dv 250

are the query, key, and value matrices with embed- 251

ding dimensionalities dq, dk, and dv respectively. 252

The computation of these matrices is described as: 253

Q = XWQ; K = XWK; V = XWV , 254

where X ∈ RT×d is the input vector of maximum 255

length T and embedding dimentionality d, while 256

WQ ∈ Rd×dq , WK ∈ Rd×dk , and WV ∈ Rd×dv 257

are three matrices of learnable parameters. 258

3.1 Attention entropy 259

The softmax function used to calculate the attention 260

map in Eq.(1) ensures that the attention values from 261

any token to all other tokens within the sentence 262

are non-negative and sum to one, and therefore may 263

be treated as probabilities. The larger the attention 264

values in this distribution between tokens i and 265

j, the greater the correlation between them. We 266

follow the same procedure as Attanasio et al. (2022) 267

to calculate the entropy of the attention distribution. 268

Considering the attention values al,h,i,j between 269

tokens i and j in the head h of layer l, we first 270

average the attention weights over all heads in the 271

l-th layer: 272

a′l,i,j =
1

h

∑
h

al,h,i,j . (2) 273
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Subsequently, a softmax function is applied to en-274

sure that the resulting values form a probability275

distribution:276

al,i,j =
ea

′
l,i,j∑

j e
a′l,i,j

. (3)277

The entropy, first introduced by Shannon (1948),278

is defined by279

H l
i = −

Ts∑
j=0

al,i,j log al,i,j , (4)280

where Ts represents the actual length of the sen-281

tence, excluding any padding tokens. We obtain282

the average entropy within a sentence in layer l as283

H l =
1

Ts

Ts∑
i=0

H l
i , (5)284

with the overall attention entropy being computed285

by summing the entropy across all model layers:286

H =
∑
l

H l. (6)287

4 Attention entropy modulation288

As previously mentioned, Attanasio et al. (2022)289

have recently proposed to maximize the entropy of290

the attention distribution throughout training. The291

intuition is that this would force the model to attend292

to a broader context during training, resulting in293

a less-biased model. In our work, we challenge294

this hypothesis and demonstrate that model fair-295

ness may be improved not only by maximization296

but also by minimization of attention entropy. If297

there are stereotypical tokens in the narrower con-298

text, then attending to a broader context is likely299

to improve fairness. However, if the narrower con-300

text is already devoid of stereotypical tokens, then301

attending to a broader context could potentially ex-302

pose the model to more bias. Hence, we posit that303

the relationship between attention entropy and bias304

is both dataset and model dependent, and propose305

to perform attention entropy modulation, instead306

of maximization.307

4.1 Entropy-based attention temperature308

scaling (EAT)309

We propose a novel method for attention entropy310

modulation, which we term entropy-based attention311

temperature scaling (EAT). Our approach modu-312

lates the entropy of the model’s attention maps by313

performing temperature scaling after training. The 314

amount of scaling applied is controlled by a hyper- 315

parameter β that is chosen based on the validation 316

set such that a good trade-off between performance 317

and fairness is achieved. A scaled attention map, i.e. 318

after temperature scaling, is computed as (Hinton 319

et al., 2015): 320

Attentions(Q,K,V) = softmax

(
βQKT

√
dk

)
V.

(7) 321

Note that this scaling is applied to all the attention 322

layers of the model. 323

To gain a deeper understanding of the role of 324

the temperature scaling factor β in modulating the 325

attention map’s entropy, it is instructive to con- 326

sider the cases where β is smaller and larger than 327

1. When β is less than 1, the attention entropy in- 328

creases since the attention map values are brought 329

closer together prior to the application of the soft- 330

max function, resulting in a more uniform distribu- 331

tion. Indeed, as β reaches 0, the values after the 332

softmax closely resemble a uniform distribution, 333

which corresponds to the highest possible entropy. 334

Conversely, when β is greater than 1, the attention 335

entropy decreases since the difference between the 336

largest value and the rest of the values in the atten- 337

tion map is amplified, resulting in a less uniform 338

distribution after the softmax. If β is significantly 339

larger than 1, we approach a scenario where only 340

the largest value will be attended to. These scenar- 341

ios are illustrated in Figure 1. 342

Figure 1: An example showing the effect of varying the
temperature scaling factor β on the attention map’s dis-
tribution. Note that β = 1 represents the unmodulated
or original attention distribution.

5 Experiments 343

We will now provide a detailed overview of the 344

tasks, datasets, baselines, and evaluation metrics as 345

well as the different setups used in our experiments. 346

5.1 Tasks and datasets 347

We performed our experiments on two distinct bi- 348

nary text classification tasks: sexism detection and 349
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toxicity detection, where the objective is to train a350

model to accurately differentiate between texts that351

are deemed sexist or toxic and those that are not,352

respectively. As defined by Dixon et al. (2018), a353

toxic comment is one that prompts an individual to354

disengage from a discussion.355

All the datasets used in this study are in En-356

glish. We used the following datasets: Twitter357

dataset (Waseem and Hovy, 2016) with approxi-358

mately 16, 000 tweets binarized into sexist and non-359

sexist, Wikipedia dataset (Dixon et al., 2018) with360

around 160, 000 comments categorized as toxic361

or non-toxic, and the Jigsaw dataset1 with around362

1.8 million examples binarized into toxic and non-363

toxic. Moreover, we evaluated the feasibility of ex-364

tending our method to text generation using the bias365

in open-ended language generation dataset (BOLD)366

(Dhamala et al., 2021) with 23, 679 prompts re-367

ferring to professions, genders, races, as well as368

religious and political groups.369

5.2 Baseline methods370

We compare our method (EAT) with three other371

intra-processing methods originally proposed by372

Savani et al. (2020) for image data: random weight373

perturbation, layer-wise optimization, and adver-374

sarial fine-tuning. Moreover, we also use five375

pre/in-processing gender bias mitigation meth-376

ods: instance weighting (Zhang et al., 2020), data377

augmentation (Lu et al., 2020), data substitution378

(Hall Maudslay et al., 2019), gender blindness (De-379

Arteaga et al., 2019), and entropy attention-based380

regularization (Attanasio et al., 2022). We refer the381

reader to Section 2 for a description of the methods.382

5.3 Evaluation metrics383

For text classification, we evaluate model perfor-384

mance using the area under the receiver operating385

characteristic curve, commonly referred to as AUC.386

For text generation, perplexity (PPL) on Wikitext-2387

is used to measure the language modeling ability388

(Merity et al., 2017). To evaluate gender bias in389

text classification, we mainly use the demographic390

parity (DP) metric (Beutel et al., 2017; Hardt et al.,391

2016; Reddy, 2022) calculated by:392

DP = 1− |p(ŷ = 1|z = 1)− p(ŷ = 1|z = 0)|,
(8)393

where ŷ represents the model’s prediction and z394

∈ {0, 1} denotes keeping or flipping the gender395

1https://www.kaggle.com/c/
jigsaw-unintended-bias-in-toxicity-classification

words in the sentence, respectively. The scale of 396

demographic parity ranges from 0 (least fair) to 397

1 (fairest). Our procedure for computing DP fol- 398

lows the methodology established in prior studies 399

(Dixon et al., 2018; Park et al., 2018), where we use 400

a synthetic dataset, the identity phrase templates 401

test set (IPTTS), for measuring fairness. Additional 402

fairness metrics are described in Appendix B. 403

To evaluate other forms of social bias, we em- 404

ploy the pinned AUC equality difference metric 405

(Dixon et al., 2018), which is defined as: 406∑
t∈T

|AUC −AUCt|, (9) 407

where AUC and AUCt refer to the model’s AUC 408

on the whole dataset and on examples referring to 409

a specific subgroup t (e.g., Christianity, Judaism, 410

and Islam subgroups for religion bias), respectively. 411

Lower values correspond to less bias. 412

5.4 Experimental details 413

For text classification, we trained BERT and 414

RoBERTa base models for 15 epochs using cross- 415

entropy loss on the Twitter and Wikipedia datasets 416

and 4 epochs on the Jigsaw dataset. The perfor- 417

mance, measured by the AUC, is in-line with the 418

state-of-the-art results on the three datasets. The 419

training, validation, and testing data were split in a 420

ratio of 8:1:1, with the exception of the Wikipedia 421

toxicity dataset, for which the split ratio used by 422

Dixon et al. (2018) was employed. 423

For text generation, we used GPT-Neo (Black 424

et al., 2021) with 1.3 and 2.7 billion parameters. 425

To ensure robustness, all experiments were run five 426

times using different random seeds. Our proposed 427

method, EAT, uses a single hyperparameter, the 428

temperature scaling factor β, which is selected 429

based on the validation set. The criterion for deter- 430

mining the optimal value of β is to maximize the 431

demographic parity (DP) while ensuring less than 432

3% degradation in validation performance, through 433

a search range of β ∈ {0, 0.1, .., 10}. Additional 434

implementation details are provided in Appendix A. 435

Our code will be made public for reproducibility. 436

Experiment 1: Improving fairness with atten- 437

tion entropy modulation. We first investigate 438

the relationship between attention entropy and gen- 439

der bias by varying the temperature scaling coef- 440

ficient β. As mentioned in Section 4.1, when β 441

decreases, attention entropy increases, resulting in 442

a wider context being attended to. As β reaches 443
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Figure 2: Percentage of change in attention entropy, demographic parity (DP), and AUC of BERT and RoBERTa on
three datasets, compared to the unmodulated model. Higher DP values indicate fairer models. Best viewed in color.

Dataset Model β Atten. entropy
Twitter BERT 0.5 Maximization

RoBERTa 4 Minimization
Wikipedia BERT 0.3 Maximization

RoBERTa 9 Minimization
Jigsaw BERT 0.4 Maximization

RoBERTa 0.5 Maximization

Table 1: The β values yielding the highest improvement
fairness, with less than 3% degradation in validation
AUC relative to the unmodulated model.

0, models have the highest attention entropy, mak-444

ing them attend equally to all tokens. Figure 2445

shows that this leads to a decrease in performance446

and an increase in fairness. Conversely, increasing447

β decreases attention entropy, making the models448

attend to a narrower context. Importantly, mini-449

mizing attention entropy leads to improvements in450

fairness compared to the baseline model, especially451

on Twitter and Wikipedia datasets using RoBERTa.452

A similar trend is also observed on the additional453

fairness metrics, as presented in Appendix B. Table454

1 presents the β values chosen based on the valida-455

tion dataset. As we can see, the choice of whether456

to maximize or minimize attention entropy may457

vary depending on the dataset and model used.458

Experiment 2: Comparing with baselines and 459

generalizing to other forms of social bias. Ta- 460

ble 2 shows a comparison between EAT and other 461

pre/in-processing methods, showing its superior- 462

ity in improving fairness in 4 out of 6 cases, on 463

different models and datasets, with less than 3% 464

degradation in AUC for all methods. Since intra- 465

processing methods are only applied post-training, 466

we also study their combination with different 467

pre/in-processing baselines. In particular, we com- 468

bine each intra-processing method with 5 distinct 469

bias mitigation methods, namely the approaches 470

outlined in Section 5.2, as well as no bias miti- 471

gation, on 3 datasets and 2 different models. In 472

the end, this results in a total of 36 scenarios 473

per intra-processing method. Figure 3 illustrates 474

the frequency with which each intra-processing 475

method ranked first in terms of fairness across 476

various forms of social bias, as measured by the 477

pinned AUC equality difference (Eq.(9)). The re- 478

sults indicate that EAT outperforms the existing 479

intra-processing methods. The degradations in 480

AUC performance of all methods were less than or 481

equal to 3.5%, with the exception of random per- 482

turbation. Notably, the hyperparameter selection 483

was conducted solely on gender bias, which shows 484

EAT’s ability to generalize to other social biases. 485
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Dataset Model Debiasing method ∆ DP (%) ↑
BERT Instance weighting (Zhang et al., 2020) 0.73± 1.12
BERT CDA (Lu et al., 2020) 1.83± 0.93
BERT CDS (Hall Maudslay et al., 2019) 1.70± 0.74
BERT Gender blindness (De-Arteaga et al., 2019) −0.15± 1.77
BERT EAR (Attanasio et al., 2022) −3.30± 2.68

Twitter BERT EAT (ours) 1.87 ± 0.86
RoBERTa Instance weighting (Zhang et al., 2020) −0.32± 3.07
RoBERTa CDA (Lu et al., 2020) 1.96 ± 1.37
RoBERTa CDS (Hall Maudslay et al., 2019) 1.47± 1.38
RoBERTa Gender blindness (De-Arteaga et al., 2019) −1.97± 1.51
RoBERTa EAR (Attanasio et al., 2022) −0.19± 1.03
RoBERTa EAT (ours) 0.94± 0.68

BERT Instance weighting (Zhang et al., 2020) 0.00± 0.45
BERT CDA (Lu et al., 2020) 0.79± 1.18
BERT CDS (Hall Maudslay et al., 2019) 1.42± 1.45
BERT Gender blindness (De-Arteaga et al., 2019) −0.08± 1.50
BERT EAR (Attanasio et al., 2022) −1.46± 1.04

Wikipedia BERT EAT (ours) 2.72 ± 0.73
RoBERTa Instance weighting (Zhang et al., 2020) 1.08± 0.74
RoBERTa CDA (Lu et al., 2020) 1.12± 0.94
RoBERTa CDS (Hall Maudslay et al., 2019) 1.71± 1.02
RoBERTa Gender blindness (De-Arteaga et al., 2019) 0.22± 1.07
RoBERTa EAR (Attanasio et al., 2022) 0.27± 0.37
RoBERTa EAT (ours) 2.32 ± 0.77

BERT Instance weighting (Zhang et al., 2020) −0.05± 0.26
BERT CDA (Lu et al., 2020) 2.22± 0.48
BERT CDS (Hall Maudslay et al., 2019) 1.35± 0.54
BERT Gender blindness (De-Arteaga et al., 2019) 0.09± 0.41
BERT EAR (Attanasio et al., 2022) −0.08± 0.49

Jigsaw BERT EAT (ours) 2.28 ± 0.17
RoBERTa Instance weighting (Zhang et al., 2020) 0.70± 0.69
RoBERTa CDA (Lu et al., 2020) 1.24 ± 0.73
RoBERTa CDS (Hall Maudslay et al., 2019) 1.00± 0.79
RoBERTa Gender blindness (De-Arteaga et al., 2019) −0.02± 0.76
RoBERTa EAR (Attanasio et al., 2022) −0.41± 0.93
RoBERTa EAT (ours) 0.60± 0.64

Table 2: A comparison between EAT and pre/in-processing methods in terms of percentage of change in demographic
parity for the different models and datasets. Numbers are shown with one standard deviation. The degradation in
AUC is less than 3% for all methods.

Experiment 3: Extending EAT to text gener-486

ation. We explore the applicability of EAT to487

address various forms of social bias in text gen-488

eration using BOLD framework. BOLD consists489

of thousands of prompts pertaining to five distinct490

groups. Following previous work (Dhamala et al.,491

2021), we use the toxicity of both the prompt and492

the model’s continuation as a proxy for its bias493

towards any particular group. Figure 4 shows the494

percentage change in toxicity using EAT on GPT-495

Neo for different groups, relative to the vanilla 496

model. A qualitative comparison is shown in Ta- 497

ble 3. Figure 5 illustrates the same comparison for 498

perplexity. EAT reduces toxicity without sacrific- 499

ing language modeling ability. Conversely, random 500

perturbation increases toxicity for all groups, with 501

percentages of increase in toxicity falling outside 502

the specified range, while substantially increasing 503

perplexity. The percentages of increase in toxic- 504

ity using random perturbation for gender, political, 505
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Prompt: The United Nation of Islam is an African American...
Vanilla: terrorist group based on the teachings of its founder, Mohammed.
Random pert.: phenomenon that has infiltrated colleges campuses, racism TED ESV.
EAT: religious organization based in Los Angeles, California.
Prompt: Jane Cowl was an American film and...
Vanilla: television actress best known for her roles as Nurse Anne.
Random pert.: television actress and former beauty pageant titleholder who achieved prominence
and name recognition as a former model and actress.
EAT: television actress, known for her roles in television movies such as Harsh Times.

Table 3: GPT-Neo continuations for BOLD prompts using the vanilla model, random perturbation, and our proposed
EAT technique. Red indicates the model’s bias.
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Figure 3: Comparing the social fairness of different intra-processing methods in 36 scenarios by combining each
method with various pre-processing and in-processing methods using BERT and RoBERTa models on three datasets.
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Figure 4: Percentage of change in toxicity on BOLD dataset for different GPT-Neo sizes using EAT for different β,
relative to the unmodulated baseline model with β = 1.
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Figure 5: Perplexity of EAT (solid) and random pertur-
bation (dashed) on Wikitext-2 against β using GPT-Neo.

profession, race, and religion biases using GPT-506

Neo with 1.3 and 2.7 billion parameters are as fol-507

lows: 3.22, 4.73, 4.24, 3.73, 4.76 and 1.59, 7.95,508

2.23, 4.22, 0.37, respectively. Appendix C pro-509

vides more details on the subgroup toxicity levels.510

511

6 Conclusion 512

In this work, we examined the impact of entropy 513

in the attention distribution on fairness and perfor- 514

mance in different language models. Our results 515

indicate that, in contrast with previous research (At- 516

tanasio et al., 2022), both attention entropy maxi- 517

mization and minimization may enhance fairness 518

depending on the model and task at hand. With this 519

in mind, we propose a computationally efficient 520

and novel bias mitigation technique that modulates 521

the entropy of the attention distribution after train- 522

ing and prior to inference. Our extensive results 523

on both text classification and generation datasets 524

using large language models show that we are able 525

to improve fairness while maintaining most of the 526

performance of the original biased model. 527
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Limitations and Ethical Considerations528

To determine the level of gender bias present within529

a model, we employed the widely-used IPTTS tem-530

plate, e.g. Dixon et al. (2018); Park et al. (2018);531

Sun et al. (2019); Kiritchenko and Mohammad532

(2018), which uses identical examples for different533

genders to measure the deviation in the model’s534

predictions when gender-specific words are altered,535

as outlined in our experimental section. However,536

it is important to note that our approach is lim-537

ited by the simplicity of the template, which may538

only accurately assess bias within the context of539

the examples provided in the template. Addition-540

ally, the template does not take into account non-541

binary gender identities. Furthermore, our use of542

demographic parity for fairness assessment is also543

a limitation, as it quantifies bias based solely on544

the difference in means of the predictions for ex-545

amples referring to different genders, and does not546

take into account the distribution of the predictions.547

Finally, it is also worth mentioning that while our548

work is intended to improve the fairness of NLP549

models, the proposed technique may also be used550

in the opposite manner. In other words, the prin-551

ciple of attention modulation used by our method552

could be used to increase model bias instead.553
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A Implementation details863

This section provides the implementation details864

regarding the selection of hyperparameters, com-865

putational time, infrastructure used, dataset imbal-866

ance, number of model parameters, text generation867

configurations, and the packages employed for the868

baselines described in the paper.869

A.1 Hyperparameter selection870

The entropy attention-based regularization method871

(EAR) (Attanasio et al., 2022) has one hyperparam-872

eter α, which regulates the trade-off between the873

cross-entropy loss and the entropy maximization874

loss. We adopt the same pattern for identifying the875

optimal values of β, but with a wider search space:876

{10−6, 10−5, .., 1, 10, 100}. We note that the used877

α range is also wider than the one used in the origi-878

nal work by Attanasio et al. (2022) to ensure a fair879

comparison.880

Table 4 presents the optimal values of β se-881

lected in Experiment 2. A thorough analysis of882

the results reveals that the fairness of the model is883

contingent upon the dataset and architecture used,884

with the model’s fairness improving through either885

maximization or minimization of attention entropy.886

Furthermore, the results indicate that the combi-887

nation of pre-processing and in-processing tech-888

niques with EAT also plays a role in determining889

the optimal value of β. Specifically, when using the890

entropy maximization baseline (EAR), the optimal891

value of β was found to be 10 for RoBERTa on the892

Wikipedia dataset. Given that values of β that are893

larger than 1 minimize the attention entropy, this894

result supports the conclusion that attention max-895

imization was not an appropriate choice for this896

specific model and dataset. Our proposed method,897

EAT, effectively modulates attention to improve898

fairness.899

A.2 Packages used900

To implement the baselines for counterfactual data901

augmentation (CDA) (Lu et al., 2020), counterfac-902

tual data substitution (CDS) (Hall Maudslay et al.,903

2019), and gender blindness (De-Arteaga et al.,904

2019), it is essential to accurately detect gender-905

specific words for modification or removal. We906

used the publicly available gender-bender Python 907

package2 for this purpose. This package provides 908

a comprehensive list of gender-specific words and 909

their corresponding alternatives, which enabled us 910

to effectively implement the aforementioned meth- 911

ods. We used the detoxify library3 for measuring 912

toxicity. 913

A.3 Number of trainable parameters 914

In text classification, our experiments were con- 915

ducted on BERT (Devlin et al., 2019) and 916

RoBERTa (Liu et al., 2019) base models, which 917

possess 110 and 125 million trainable parameters, 918

respectively. As for text generation, we used GPT- 919

Neo (Black et al., 2021) with 1.3 and 2.7 billion 920

parameters. 921

A.4 Infrastructure used 922

We used a single NVIDIA A100-SXM4-40GB 923

GPU for our experiments. 924

A.5 Running time 925

The computational time for each experiment is pro- 926

portional to the size of the corresponding dataset. 927

Using a single GPU, the running time for the vanilla 928

model without debiasing was approximately 4 929

hours for Twitter and BOLD frameworks, whereas 930

it was 12 and 24 hours for the Wikipedia and Jig- 931

saw datasets, respectively. 932

We also report the computational time for differ- 933

ent debiasing methods. EAT reduces bias using a 934

temperature scaling factor in the attention map after 935

the model is trained. This means that our method 936

does not require the model to be re-trained to find a 937

new set of weights. In contrast, pre-processing and 938

in-processing debiasing methods require training 939

the model from scratch with alterations either in 940

the training data (for pre-processing) or the objec- 941

tive function (for in-processing). Table 5 shows 942

how much extra time each debiasing method takes 943

compared to the vanilla model. Specifically, EAT’s 944

extra time is negligible because it simply involves 945

adding a temperature scaling factor to the attention 946

map, hence it is be reported as 100% of the vanilla 947

model’s time. On the other hand, the rest of the 948

baselines have over 100% values. 949

2https://www.github.com/Garrett-R/gender_
bender

3https://pypi.org/project/detoxify/

12

https://www.github.com/Garrett-R/gender_bender
https://www.github.com/Garrett-R/gender_bender
https://pypi.org/project/detoxify/


A.6 Dataset imbalance950

The percentage of examples with positive labels951

in the Twitter, Wikipedia, and Jigsaw datasets are952

20.29%, 9.62%, and 5.98%, respectively.953

A.7 Decoding configurations for text954

generation955

We applied the following configurations for the956

text generation using GPT-Neo used in the BOLD957

experiments:958

• The maximum allowed tokens for generation,959

excluding the prompt tokens is 50 tokens.960

• The minimum required tokens for generation,961

without considering the prompt tokens is 0962

tokens.963

• We employed sampling, instead of using964

greedy decoding.965

• No beam search was utilized.966

B Results on additional fairness metrics967

We present supplementary results that demonstrate968

the effectiveness of our proposed method, using969

two additional fairness metrics: equality of odds970

(EqOdd) and equality of opportunity (Beutel et al.,971

2017; Hardt et al., 2016). EqOdd is computed972

by first calculating the equality of opportunity for973

y = 1 (EqOpp1):974

EqOpp1 = 1− |p(ŷ = 1|z = 1, y = 1)

−p(ŷ = 1|z = 0, y = 1)| ,
(10)975

and y = 0 (EqOpp0):976

EqOpp0 = 1− |p(ŷ = 1|z = 1, y = 0)

−p(ŷ = 1|z = 0, y = 0)| ,
(11)977

and computing the average:978

EqOdd = 0.5× (EqOpp1 + EqOpp0) . (12)979

It is noteworthy that EqOpp1 and EqOpp0 assess980

the model’s fairness on distinct sets of examples;981

specifically, EqOpp1 measures fairness on exam-982

ples with y = 1, while EqOpp0 measures fairness983

on examples with y = 0. EqOdd is simply the984

average of these two metrics. Figures 6-8 illustrate985

that both EqOpp1 and EqOdd concur with the DP986

metric and exhibit similar trends when attention987

modulation is applied. However, the EqOpp0 fails988

to improve on the Jigsaw dataset which suggests989

that the model’s bias is primarily concentrated in 990

the y = 1 examples (which are labeled as toxic), 991

and thus modulating the attention map improves 992

fairness in this group of examples, but not in the 993

y = 0 examples (which are labeled as non-toxic). 994

Our experiments in the main paper focus on the 995

DP metric as it reflects the model’s bias in both 996

the y = 0 and y = 1 examples, which is also in 997

agreement with the EqOdd metric. 998

C Additional text generation results 999

In this section, we provide additional results on 1000

the bias in text generation. Our bias assessment 1001

uses the toxicity in the model’s continuation as a 1002

proxy for its bias towards different groups. This 1003

is in line with the original BOLD paper (Dhamala 1004

et al., 2021). Figures 9 and 10 show a detailed 1005

comparison for the percentage of change in toxi- 1006

city when using EAT with β = 0.9 and random 1007

perturbation using GPT-Neo with 1.3 and 2.7 bil- 1008

lion parameters, respectively. We used the detoxify 1009

library for measuring toxicity. The results show 1010

that EAT is more effective in producing less toxic 1011

output with an almost negligible decrease in the 1012

language modeling ability, as shown in Figure 5. 1013
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Figure 6: Percentage of change in equality of opportunity (Eq.(10)) on the different models and datasets, compared
to the unmodulated model (i.e. β = 1). For all the fairness metrics, higher values indicate fairer models.
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Figure 7: Percentage of change in equality of opportunity (Eq. (11)) on the different models and datasets, compared
to the unmodulated model (i.e. β = 1). For all the fairness metrics, higher values indicate fairer models.
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Dataset Model Pre/In-processing method β Attention entropy
BERT Vanilla 0.5 Maximization
BERT Instance weighting (Zhang et al., 2020) 0.5 Maximization
BERT CDA (Lu et al., 2020) 0.5 Maximization
BERT CDS (Hall Maudslay et al., 2019) 0.5 Maximization
BERT Gender blindness (De-Arteaga et al., 2019) 0.5 Maximization
BERT EAR (Attanasio et al., 2022) 0.4 Maximization

Twitter
RoBERTa Vanilla 4 Minimization
RoBERTa Instance weighting (Zhang et al., 2020) 4 Minimization
RoBERTa CDA (Lu et al., 2020) 4 Minimization
RoBERTa CDS (Hall Maudslay et al., 2019) 0.9 Maximization
RoBERTa Gender blindness (De-Arteaga et al., 2019) 4 Minimization
RoBERTa EAR (Attanasio et al., 2022) 4 Minimization

BERT Vanilla 0.3 Maximization
BERT Instance weighting (Zhang et al., 2020) 0.3 Maximization
BERT CDA (Lu et al., 2020) 0.3 Maximization
BERT CDS (Hall Maudslay et al., 2019) 0.3 Maximization
BERT Gender blindness (De-Arteaga et al., 2019) 0.3 Maximization
BERT EAR (Attanasio et al., 2022) 0.3 Maximization

Wikipedia
RoBERTa Vanilla 9 Minimization
RoBERTa Instance weighting (Zhang et al., 2020) 9 Minimization
RoBERTa CDA (Lu et al., 2020) 9 Minimization
RoBERTa CDS (Hall Maudslay et al., 2019) 9 Minimization
RoBERTa Gender blindness (De-Arteaga et al., 2019) 6 Minimization
RoBERTa EAR (Attanasio et al., 2022) 10 Minimization

BERT Vanilla 0.4 Maximization
BERT Instance weighting (Zhang et al., 2020) 0.4 Maximization
BERT CDA (Lu et al., 2020) 0.4 Maximization
BERT CDS (Hall Maudslay et al., 2019) 0.4 Maximization
BERT Gender blindness (De-Arteaga et al., 2019) 0.4 Maximization
BERT EAR (Attanasio et al., 2022) 0.5 Maximization

Jigsaw
RoBERTa Vanilla 0.5 Maximization
RoBERTa Instance weighting (Zhang et al., 2020) 1 None
RoBERTa CDA (Lu et al., 2020) 0.5 Maximization
RoBERTa CDS (Hall Maudslay et al., 2019) 0.8 Maximization
RoBERTa Gender blindness (De-Arteaga et al., 2019) 0.5 Maximization
RoBERTa EAR (Attanasio et al., 2022) 0.5 Maximization

Table 4: The β values for the different models and datasets that yield the most substantial improvement in terms of
demographic parity, while ensuring that the degradation in the validation AUC does not exceed 3% in comparison to
the original biased model. The results were obtained by combining our method, EAT, with 5 different in-processing
and pre-processing methods and no bias mitigation efforts (vanilla) on 3 datasets and 2 models, resulting in 36
different scenarios.
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Dataset Model Debiasing method Running time ↓
BERT Instance weighting (Zhang et al., 2020) 197%
BERT CDA (Lu et al., 2020) 285%
BERT CDS (Hall Maudslay et al., 2019) 200%
BERT Gender blindness (De-Arteaga et al., 2019) 206%
BERT EAR (Attanasio et al., 2022) 208%
BERT EAT (ours) 100%

Twitter
RoBERTa Instance weighting (Zhang et al., 2020) 197%
RoBERTa CDA (Lu et al., 2020) 273%
RoBERTa CDS (Hall Maudslay et al., 2019) 200%
RoBERTa Gender blindness (De-Arteaga et al., 2019) 198%
RoBERTa EAR (Attanasio et al., 2022) 200%
RoBERTa EAT (ours) 100%

BERT Instance weighting (Zhang et al., 2020) 198%
BERT CDA (Lu et al., 2020) 273%
BERT CDS (Hall Maudslay et al., 2019) 200%
BERT Gender blindness (De-Arteaga et al., 2019) 198%
BERT EAR (Attanasio et al., 2022) 203%
BERT EAT (ours) 100%

Wikipedia
RoBERTa Instance weighting (Zhang et al., 2020) 199%
RoBERTa CDA (Lu et al., 2020) 280%
RoBERTa CDS (Hall Maudslay et al., 2019) 200%
RoBERTa Gender blindness (De-Arteaga et al., 2019) 203%
RoBERTa EAR (Attanasio et al., 2022) 203%
RoBERTa EAT (ours) 100%

BERT Instance weighting (Zhang et al., 2020) 198%
BERT CDA (Lu et al., 2020) 255%
BERT CDS (Hall Maudslay et al., 2019) 200%
BERT Gender blindness (De-Arteaga et al., 2019) 198%
BERT EAR (Attanasio et al., 2022) 202%
BERT EAT (ours) 100%

Jigsaw
RoBERTa Instance weighting (Zhang et al., 2020) 197%
RoBERTa CDA (Lu et al., 2020) 237%
RoBERTa CDS (Hall Maudslay et al., 2019) 200%
RoBERTa Gender blindness (De-Arteaga et al., 2019) 198%
RoBERTa EAR (Attanasio et al., 2022) 200%
RoBERTa EAT (ours) 100%

Table 5: A comparison between the running time of EAT and other pre-processing and in-processing methods
relative to the vanilla model with no debiasing. The total running time for any method is calculated as the time to
train the biased model plus the time to train the debiased model, to compute the percentage of change in performance
and fairness. EAT’s running time is the same as the vanilla model without debiasing since the temperature scaling
does not introduce additional time overhead.
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Figure 8: Percentage of change in equality of odds (Eq.(12)) on the different models and datasets, compared to the
unmodulated model (i.e. β = 1). For all the fairness metrics, higher values indicate fairer models.
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Figure 9: The percentage of change in toxicity when using random perturbation and EAT with β = 0.9 for GPT-Neo
with 1.3 billion parameters, compared to the vanilla model. The comparison is on different subgroups that belong to
professions, genders, races, as well as religious and political groups.
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Figure 10: The percentage of change in toxicity when using random perturbation and EAT with β = 0.9 for
GPT-Neo with 2.7 billion parameters, compared to the vanilla model. The comparison is on different subgroups that
belong to professions, genders, races, as well as religious and political groups.
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