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Abstract

We present a novel fine-tuning framework that001
improves the motion sensitivity and length002
adaptability of Vision-Language Pretraining003
Models (VLPs), which are currently con-004
strained by their dependence on static images005
or fixed-length video segments due to data006
and computational limits. Our framework in-007
troduces two main components: the Temporal008
Prompt Sampler (TPS), which uses optical flow009
to selectively sample video content based on010
motion, and the Spatial Prompt Solver (SPS),011
which accurately captures the complex spatial012
interplay between visual and textual elements.013
We further propose a self-boost training ap-014
proach to harmonize TPS and SPS. Our frame-015
work’s effectiveness is validated through rig-016
orous testing on various advanced videoQA017
tasks and a temporal question grounding task,018
showing marked improvements in performance,019
efficiency, and generality across various VLPs020
and large language models (LLMs).021

1 Introduction022

Existing methods in video-langauge modeling have023

been greatly improved by the pertaining technicals024

and LLMs (Maaz et al., 2023a; Li et al., 2023c;025

Zhang et al., 2023a; Lin et al., 2023). However,026

understanding videos with task-oriented linguistic027

queries still suffers from the significant compu-028

tational overhead (Buch et al., 2022; Gao et al.,029

2023a; Yu et al., 2023; Song et al., 2023) imposed030

by high-dimensional video data and the dispar-031

ity between language and spatial-temporal visual032

cues (Lei et al., 2022; Xiao et al., 2023a). To ad-033

dress the computational burden of video process-034

ing, research has focused on sampling methods035

that select only relevant frames to reduce input size036

(Lei et al., 2021; Wang et al., 2023; Bain et al.,037

2021; Buch et al., 2022; Gao et al., 2023a). De-038

spite this, these approaches are hindered by low039

efficiency and slow speeds due to extensive parame-040

ters. Achieving a balance between effective spatial- 041

temporal video-language extraction and computa- 042

tional efficiency continues to be a significant chal- 043

lenge, especially for advanced and long videos. 044

Drawing upon the insights, we introduce Motion- 045

Boost, a general and efficient finetuning framework 046

capable of integrating temporal priors into LLMs 047

for a range of Video-language understanding tasks. 048

As illustrated in fig. 1, our framework comprises a 049

TPS to bootstrap information from temporal priors, 050

and a SPS to grasp spatial visual-text cues. The 051

primary advantages that differentiate MotionBoost 052

from prior arts can be outlined as follows: 053

Computationally efficient and effective Our 054

lightweight TPS effectively extracts keyframes 055

from video using language queries without extra 056

pre-trained models, optimizing both efficacy and 057

efficiency in video-language understanding. 058

Temporally extrapolated We enhance the 059

TPS’s flexibility and scalability by incorporating 060

RoPE (Su et al., 2021), which encodes absolute po- 061

sitions and relative dependencies in cross-attention. 062

Our adaptation applies RoPE to both visual and lan- 063

guage embeddings, enabling our sampler to handle 064

long videos efficiently. 065

Collaborative Spatial-Temporal Self-Boost 066

In MotionBoost, TPS and SPS mutually enhance 067

performance. TPS selects keyframes for SPS, 068

which uses advanced tools for spatial-textual analy- 069

sis. A self-boost loop connects them, and Gumbel- 070

Softmax bridges the gap for joint fine-tuning, syn- 071

ergizing LLM, SPS, and TPS effectively and effi- 072

ciently without additional annotation. 073

2 The MotionBoost Framework 074

The open-ended video-language understanding task 075

involves analyzing a video, represented as a se- 076

quence of frames V = {fr1, fr2, · · · , frT }, and 077

a language prompt L consisting of N tokens, to 078

identify keyframes relevant to the prompt and gen- 079
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Figure 1: Overview of MotionBoost framework. The TPS is designed to capture temporal priors and specific
moments. The SPS bridges the gap between the sampled frames and language. A collaborative spatial-temporal
self-boost algorithm is devised to incorporate spatial-temporal-language alignment.

erate a natural language response y. Trainable pa-080

rameters or neural networks are denoted by f(·),081

while f(·) represents frozen pre-trained models.082

Temporal Prompt Sampler We introduce083

a TPS that encodes video-text temporal features084

more effectively using optical flows (OFs) than085

traditional offline encoders. Optical flows capture086

frame-to-frame motion and are processed by a087

compact CNN and an MLP for visual data, while088

language inputs are handled by a trainable embed-089

ding layer, denoted as Eof = MLP(CNN(of)).090

To manage long inputs in Transformer models, we091

use RoPE (Su et al., 2021) for positional encoding092

of both OF and language tokens, represented093

as ER
of = RoPE(WofRoPE(WofEof , Posof ),094

where Wof ,Wl are transformation matrices and095

Posof , Posl are position indices. Cross-attention096

is applied to these features to create language-097

informed temporal features. We formulate098

temporal question grounding as a multi-span099

reading comprehension task, employing an RC100

head to pinpoint keyframe spans and optimizing101

with cross-entropy, as explained in Appendix D.1.102

Our approach allows for the extraction of multiple103

video segments efficiently during inference, with104

low time and space complexity.105

Spatial Prompt Solver For each keyframe106

frk, we capture spatial information using a pre-107

trained visual encoder: Efr = Encv(frk). We108

then adapt these features with a pre-trained Q-109

former (Li et al., 2022a) to generate query rep-110

resentations Ẽq = Encq(Eq, Efr), where Eq is a111

learnable query and Ẽq is the output of the SPS.112

The final output y is obtained by inputting spatial-113

temporal-language information into a frozen LLM: 114

y = LLM(Er, Ẽq, El). The SPS is pluggable and 115

could be replaced with any VLPs. 116

Collaborative Spatial-Temporal Self-Boost Al- 117

gorithm We create a self-boost algorithm to 118

boost TPS performance using the capabilities of 119

the SPS due to the lack of temporally annotated 120

video-language datasets and the expensive nature 121

of human labeling. Our algorithm caters to both 122

close-ended and open-ended video-language under- 123

standing tasks. For close-ended tasks, we use an 124

iterative SPS-based evaluation of video frames, la- 125

beling frames with correct SPS predictions as posi- 126

tive and incorrect ones as negative. For open-ended 127

tasks, we analyze SPS results of sampled frames, 128

comparing them with ground truth using sentence 129

semantic similarity score, and employing a mono- 130

tonic stack algorithm to find the span with the high- 131

est similarity for pseudo labeling. More details 132

are available in Appendix A. Furthermore, The 133

lightweight TPS’s ability in localizing keyframes 134

is improved by proposing a joint optimization tech- 135

nique using Gumbel-Softmax, which samples key 136

spans and connects temporal samplers with spatial 137

solvers. This approach enhances spatial-temporal 138

grounding by combining large language models, 139

visual feature extraction, and optical flow insights. 140

3 Experiments 141

In this section, we utilize the MotionBoost on a 142

variety of VLPs and advanced VidL tasks. You can 143

find all the experiment setups, baselines, implemen- 144

tation details in Appendix D. 145
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Model Object-
relation

Relation-
action

Object-
action Superlative Sequencing Exists Duration

comparison
Action

recognition Overall

Retrieval-based Video-Language Models
HME (Fan et al., 2019) 37.42 49.90 49.97 33.21 49.77 49.96 47.03 5.43 39.89
PSAC (Li et al., 2019) 37.84 49.95 50.00 33.20 49.78 49.94 45.21 4.14 40.18
HCRN (Le et al., 2020) 40.33 49.86 49.85 33.55 49.70 50.01 43.84 5.52 42.11
AIO (Wang et al., 2023) 48.34 48.99 49.66 37.53 49.61 50.81 45.36 18.97 48.59
ATP (Buch et al., 2022) 50.15 49.76 46.25 39.78 48.25 51.79 49.59 18.96 49.79
ALBEF (Li et al., 2021) 50.53 49.39 49.97 38.22 49.79 54.11 48.01 10.40 50.68
SINGULARITY (Lei et al., 2022) 50.87 50.67 49.70 40.47 40.79 55.34 48.20 11.59 51.11
VIOLET (Fu et al., 2021) 50.89 50.24 50.93 40.76 50.51 58.07 38.97 6.53 51.03
MIST-AIO (Gao et al., 2023a) 51.43 54.67 55.37 41.34 53.14 53.49 47.48 20.18 50.96
MIST-CLIP (Gao et al., 2023a) 51.68 67.18 68.99 42.05 67.24 60.33 54.62 19.69 54.39

Open-ended Video-Language Models
SeViLA∗ (Yu et al., 2023) 51.15 48.93 62.08 42.24 55.96 53.02 38.91 0.00 51.70
BLIP2 (Li et al., 2023b) 53.72 48.64 62.1 43.84 55.94 55.14 40.39 0.28 54.00

TPS + ALBEF (Li et al., 2021) 51.05 51.11 51.66 38.36 51.33 58.10 49.20 11.78 51.73
TPS + VIOLET (Fu et al., 2021) 51.59 54.54 56.96 40.94 55.61 59.12 42.81 9.02 52.59
TPS + SINGULARITY (Lei et al., 2022) 52.33 54.12 55.07 40.71 54.49 57.88 48.35 12.24 53.13
MotionBoost (Ours, BLIP2-based) 62.27 51.74 66.09 53.67 60.11 60.85 36.99 0.00 61.45
∗ Re-implementation result. We removed prior information from QVHighlights (Lei et al.) used in (Yu et al., 2023) for fair
comparison.

Table 1: Comparison accuracy of different sampling-based SOTA models on AGQA 2.0.

Model Temporal Causal Description All

CLIP (Radford et al., 2021a) 46.3 39.0 53.1 43.7
HGA (Jiang and Han, 2020) 44.2 52.5 44.1 49.7
AIO (Wang et al., 2023) 48.0 48.6 63.2 50.6
VQA-T (Yang et al., 2021) 49.6 51.5 63.2 52.3
MIST-AIO (Gao et al., 2023a) 51.6 51.5 64.2 53.5
ATP (Buch et al., 2022) 50.2 53.1 66.8 54.3
VGT (Xiao et al., 2022) 52.3 55.1 64.1 55.0
MIST-CLIP (Gao et al., 2023a) 56.6 54.6 66.9 57.1
BLIP2 (Li et al., 2023b) 64.9 69.7 79.4 69.6
SeViLA∗ (Yu et al., 2023) 66.4 71.9 80.8 71.5

MotionBoost (Ours, BLIP2-based) 66.5 72.8 81.2 72.1
∗ Re-implementation result. We removed prior information
from QVHighlights (Lei et al.) used in (Yu et al., 2023) for
fair comparison.

Table 2: Comparison accuracy of long-form video
QA on NExT-QA (Xiao et al., 2021).

3.1 Complicated Video Question Answering146

Results on AGQA 2.0 (Grunde-McLaughlin147

et al., 2021) The MotionBoost framework148

marginally improves BLIP2’s performance in149

video-language tasks, but it still falls short of150

MIST-CLIP. Enhancements from MotionBoost in-151

crease BLIP2’s accuracy by 7.45 points, indicating152

better spatial-temporal feature learning. However,153

BLIP2 struggles with certain question types, such154

as“Activity Recognition," This difficulty arises155

from the reliance on an unsuitable evaluation156

method, namely, the requirement for exact matches157

between the generative model’s outputs and a pre-158

defined set of answer vocabulary.159

Results on NExTQA (Xiao et al., 2021) Ta-160

ble 2 presents the results on the NExTQA dataset.161

Our method surpasses various baseline models, in-162

cluding the recent SeViLA model that utilizes LLM163

for keyframe selection. The lesser performance164

gain on NExTQA over AGQA is attributed to its165

focus on causality and the inherent "static appear-166

ance bias" (Lei et al., 2022) in its source videos167

from the VidOR dataset (Shang et al., 2019).168

Analysis Our study evaluated the impact of 169

TPS on various VLPs by comparing them with dif- 170

ferent frame sampling methods, excluding optical 171

flow features. For VLPs that use a single image, 172

we combined multiple images through early fu- 173

sion. Results on the AGQA 2.0 dataset showed that 174

TPS significantly improves VLPs’ performance on 175

temporal questions, such as “Relation-action," 176

“Sequencing, and “Exists ", over uniform sam- 177

pling. However, the lack of temporal priors lim- 178

its ensemble methods’ effectiveness, with SINGU- 179

LARITY outperforming ALBEF due to its video 180

corpus pre-training. While TPS-augmented mod- 181

els show limited improvement on “Superlative " 182

questions, integrating optical flow into our BLIP2- 183

based framework resulted in a 22.42% performance 184

increase, demonstrating that optical flow can mit- 185

igate the temporal information loss from frame 186

sampling. In addition, We replaced BLIP2-based 187

SPS with different types of VLPs, excluding opti- 188

cal flow input, and tested on AGQA 2.0. Results 189

show a 3.68% accuracy increase using keyframes 190

over uniform frames, proving our model’s effec- 191

tiveness with various VLPs. For the effectiveness 192

of our components, refer to Appendix C.1. 193

3.2 Temporal Question Grounding on Video 194

The results on NExTGQA (Xiao et al., 2023a) are 195

shown in table 3, our method outperforms baselines 196

using additional feature extractors (Ren et al., 2015; 197

Liu et al., 2021c,b; Radford et al., 2021a). Our 198

TPS with OF improves temporal learning for video- 199

language tasks, reducing the irrelevant visual noise 200

from discrete frames. Current methods show weak 201

temporal grounding (mIoU < 0.20), but our TPS’s 202
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Method Vision Encoder mIoU IoU@0.3 IoU@0.5

VGT RCNN 3.0 4.2 1.4
VIOLETv2 VSWT 3.1 4.3 1.3
Temp[Swin] SWT 4.9 6.6 2.3
Temp[CLIP] ViT-B 6.1 8.3 3.7
Temp[BLIP] ViT-B 6.9 10.0 4.5
FrozenBiLM ViT-L 7.1 10.0 4.4
IGV ResNet 14.0 19.8 9.6
SeViLA* ViT-G 21.7 29.2 13.8

MotionBoost (BLIP2-based) OF+CNN 19.9 23.3 11.2
∗ pre-trained on QVHighlights (Lei et al.).

Table 3: Comparison results of Temporal Question
Grounding task on NExT-GQA (Xiao et al., 2023b).

Methods LLM size MSVD-QA MSRVTT-QA ActivityNet-QA
Accuracy Score Accuracy Score Accuracy Score

FrozenBiLM 1B 32.2 - 16.8 - 24.7 -
VideoChat 7B 56.3 2.8 45.0 2.5 - 2.2
LLaMA-Adapter 7B 54.9 3.1 43.8 2.7 34.2 2.7
Video-LLaMA 7B 51.6 2.5 29.6 1.8 12.4 1.1
Video-ChatGPT 7B 64.9 3.3 49.3 2.8 35.2 2.7
Video-LLaVA 7B 70.7 3.9 59.2 3.5 45.3 3.3

MotionBoost (Vicuna-7b-based) 7B 71.4 3.9 57.3 3.3 43.9 3.3

Table 4: Zero-shot Open Domain Video QA.

Methods Base Model # of Frames Accuracy

Video-LLaVA LLaVA-7b 8 36.8
Sevila BLIP2 32 25.7

MotionBoost (BLIP2) BLIP2 4 41.2
MotionBoost (BLIP2) BLIP2 8 41.4
MotionBoost (BLIP2) BLIP2 32 42.8

Table 5: Zero-shot Result on subset of EgoSchema

features could close this gap in spatial-temporal203

research. For qualitative results, refer to Appendix204

E.205

3.3 Generality of MotionBoost206

To illustrate the generality of our approach, we im-207

plemented our model on visual instruction datasets,208

namely VideoChatGPT (Maaz et al., 2023a) and209

LLava-1.5K (Liu et al., 2023a). Additionally, we210

change the LLM to the Vicuna-7b (Chiang et al.,211

2023) for an equitable comparison with the latest212

SOTA techniques. Table 4 displays our model’s213

performance on the videoQA dataset in a zero-shot214

scenario. In contrast to VideoLLaVA, our model215

was solely fine-tuned on these visual instruction216

datasets, without any pretraining on extra datasets.217

The outcomes affirm that our method rivals the218

performance of the most recent SOTA MLLMs,219

despite our model’s LLM being static and not pre-220

trained on video-specific corpora. This underscores221

the significant potential and broad applicability of222

our framework within this field.223

3.4 Length Extrapolation of MotionBoost224

In this section, we will assess MotionBoost’s ca-225

pabilities in long video language understanding226

Model FLOPs
(GFLOPs)

↓ MACs
(GMACs)

↓ Acc. ↑

BLIP2 (ViT-G) 2,705 1,350 69.6
Sevila (ViT-G) 13,720 14,357 71.5

MotionBoost (ViT-G, BLIP2-based) 19,620 9,840 72.3
MotionBoost (OFs, BLIP2-based) 2,950 1,474 72.1

Table 6: Computational Efficiency of MotionBoost.

tasks. We evaluate the model’s performance on 227

EgoSchema(Mangalam et al., 2023), which is one 228

of the longest videoQA datasets available. As de- 229

picted in table 5, MotionBoost exhibits a robust 230

understanding of long videos. Moreover, although 231

MotionBoost is trained on sequences of 4 frames, 232

it is evaluated on varying lengths during the testing 233

phase. The consistently improved results suggest 234

that our method possesses a strong capacity for 235

length extrapolation. 236

3.5 Time Efficiency 237

We evaluated the average inference time efficiency 238

of our method against BLIP2 using calflops (xi- 239

aoju ye, 2023) on the NExT-QA dataset, as shown 240

in Table 6. Our method outperformed the current 241

SOTA model SeViLa, which uses the LLM to se- 242

lect keyframes, both in performance and efficiency. 243

While replacing the OFs with features from ViT- 244

G (Zhai et al., 2021) resulted in minor improve- 245

ments, it significantly increased computation costs 246

due to the offline feature extractor. Compared to 247

BLIP2, our method required minimal additional 248

computation. The major computation costs were as- 249

sociated with the LLMs from BLIP2 and the offline 250

feature extractor. We believe our method strikes a 251

balance between being effective and efficient. Fur- 252

ther details on the composition of inference time 253

of MotionBoost are provided in SM. In addition, 254

we investigate the composition of inference time of 255

MotionBoost and offline demo in Appendix B. 256

4 Conclusion 257

In this work, we propose an efficient plug- 258

gable framework MotionBoost for advanced video- 259

language understanding tasks, which comprises 260

a temporal prompt sampler and a spatial prompt 261

solver to combine spatial-temporal-language align- 262

ment and temporal grounding. Experiments on ad- 263

vanced video question answering and temporal 264

question grounding on video demonstrate a con- 265

sistent improvement over various types of VLPs. 266

Comprehensive analysis verifies the effectiveness, 267

efficiency, and generality of our framework. 268
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5 Limitations269

Our study has one primary limitation: i.e. Limited270

Temporal Grounding Capability As shown in271

section 3.2, our method outperforms existing ap-272

proaches but still has restricted temporal grounding273

capabilities, a common issue in current research.274

We suspect that this limitation may be due to the275

constraints of the lightweight 6-layer transformer-276

based TPS. In future work, we aim to enhance this277

aspect of our method without sacrificing efficiency.278
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Appendices704

We provide supplementary materials as fol-705

lows, in addition, we provide the demo and706

anonymous code in the uploaded zip files.707
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A Self-Boost Algorithm727

algorithm 1 shows our self-boost algorithm of au-728

tomatically generating pseudo labels under open-729

ended settings by the SPS, which is used to opti-730

mize the TPS.731

B Inference Time Analysis732

Feature Extractor
Qformer
LLM
Sampler
OF Extractor

Figure 2: Inference time Analysis

Algorithm 1: Pseudo Label Algorithm
Input: frames (V = {fr1, fr2, · · · , frT }),

query (q), answer (a)
Output: temporal grounded span
scorebest← 0
start← 0
end← T − 1
stack← empty list
scores← empty list
for fr in V do

prediction = LLMSPS(fr, q)
scores.add(SIM(prediction, a))

end
for i in scores.length do

while stack is not empty and
stack.get(score.top) > score.get(i)
do

tmp = stack.pop()
scoretmp = (i− stack.top− 1)×
score.get(tmp)

if scoretmp > scorebest then
scorebest = scoretmp

start = 0
end = i− 2

else
end

end
stack.push(i)

end

We further investigate the composition of inference 733

time of MotionBoost on the NExT-QA dataset. We 734

find most computation costs come from LLM and 735

the offline feature extractor. Compared with other 736

components, the computation cost is trivial, indicat- 737

ing the strong efficiency of our method. The offline 738

demo is presented in the supplementary material. 739
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Model Object-
relation

Relation-
action

Object-
action Others All

MotionBoost 62.27 51.74 66.09 57.04 61.45
w/o optical flow 59.13 15.06 50.79 51.29 55.00
w/ fixed sampler 62.28 47.84 50.68 53.47 59.88
w/ uniform sampler 53.72 48.64 62.10 50.68 54.00
w/ zero-shot 23.60 17.09 29.37 40.72 25.54

Table 7: Ablation study of our method on reasoning
questions from AGQA 2.0. We list the major outputs
of complicated relationships and summarize the rest;
see SM for complete results.
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Figure 3: Efficiency Illustration and Task Definition.

C More Analysis Experiments740

C.1 Ablation Study741

We apply ablation study on MotionBoost to in-742

vestigate the effects of our joint training frame-743

work. All the experiments are performed on AGQA744

2.0 (Grunde-McLaughlin et al., 2021). As shown745

in Table 7, the framework incorporating motion746

feature significantly improved performance by747

11.72%, underscoring its effectiveness in tackling748

spatial-temporal problems. We also found that fix-749

ing the pre-trained sampler during training notably750

affected performance on temporal questions like751

“Relation-action ", suggesting that joint train-752

ing can further optimize the sampler. Lastly, com-753

paring with zero-shot and fine-tuned BLIP2 (Li754

et al., 2023b) with uniformly-sampled frames, our755

method showes significant improvements, demon-756

strating its overall effectiveness. In Appendix C.2,757

we provide detailed ablation study about the TPS-758

augmented models.759

C.2 Ablated TSP-augmented models 760

Sampler Solver # of frames
(Train)

# of frames
(Infer.) Acc.

OF SING-17M 1 6 53.13
OF SING-17M 1 1 51.36
OF SING-17M 6 6 53.85
OF SING-5M 1 6 51.10
Swin. SING-17M 1 6 53.76

Table 8: Detailed Analysis on the Sampler.

In table 8, we analyzed TSP+SINGULARITY to 761

evaluate the TSP-augmented paradigm. Our study 762

revealed that increasing the number of frames dur- 763

ing inference improved performance by 3.4%, but 764

further increases did not proportionally enhance 765

results. We also found that VLP benefits more from 766

the sampling strategy when adequately pretrained 767

(i.e., 17M denotes the model is pretrained on 17M 768

video corpora). Additionally, we proposed two sam- 769

pler variants, replacing optical flow with features 770

extracted by the video SwinTransformer (Liu et al., 771

2021c) for pre-training. The comparable results 772

suggest that our TSP can effectively reason over 773

time without any prior perception information. 774

C.3 Influence of the number of frames on 775

solver 776

2 4 6 8 10 12

# of sampled frames

49
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Figure 4: Further study on the number of sampled
frames.

We trained the solver with different numbers of 777

sampled frames. Results are shown in Figure 4. 778

The fewer sampled frames the better performance 779

of the keyframe strategy, and after a certain point, 780

the uniform strategy performs close to the keyframe 781

strategy. This is because the average duration of 782

videos in AGQA is around 30 seconds, 12 frames 783

are close to dense sampling which covers almost all 784

visual cues. In other words, video-language tasks 785
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require bountiful frame inputs that have high com-786

putational complexity, but our method efficiently787

learns near-complete video information.788

C.4 Detailed Ablation Study Results789

MotionBoost w/o Optical Flow fixed Sampler Uniform Sample Zero-Shot

Obj-rel 62.27 59.13 62.28 53.72 23.60
Rel-act 51.74 15.06 47.84 48.64 17.09
Obj-act 66.09 50.79 50.68 62.10 29.37
Superlative 53.67 59.79 52.12 43.84 28.39
Sequencing 60.11 35.04 49.43 55.94 48.79
Exists 60.85 60.92 60.96 55.14 48.79
Duration 36.99 26.48 40.18 40.39 26.99
Action 0.00 0.00 0.00 0.28 0.28
All 61.45 55.00 59.88 54.00 25.54

Table 9: Ablation study of our method on reasoning
questions from AGQA 2.0 (Grunde-McLaughlin et al.,
2021).

In table 9, we demonstrate the details of the abla-790

tion study of MotionBoost on AGQA 2.0. Specifi-791

cally, we demonstrates the ablation study results of792

different question types.793

D Implementation Details794

D.1 Details of Multi-span Prediction795

Based on the flow-language encoding, we formu-796

late the temporal question grounding video task797

as multi-span reading comprehension (RC) prob-798

lem, where an RC head is to predict the label799

of fused encoding {eR1, eR2, . . . , eRT } as one of800

{“<BEGIN>”, “<END>”, “<NONE>”} of the grounded801

video spans. The selection can be formulated as:802

h = Fθ(eR1, eR2, . . . , eRT ), (1)803

index = argmax(Softmax(h)),804

where Fθ denotes the RC head for span selection,805

index is the prediction of the start or end index.806

The objective is computed as the cross-entropy be-807

tween the prediction and pseudo labels.808

During Inference, we can obtain an arbitrary809

number of K segments of grounded video by pre-810

dicting K <BEGIN> s and K <END> s with the RC811

Head. Finally, we union these segments to elimi-812

nate the overlap between these extracted spans. Ap-813

pendix D.1 demonstrates commonly used methods814

for temporal sentence grounding on video tasks815

(TSGV) (Zhang et al., 2023b). Compared with816

other span-fixed methods, our method could obtain817

multiple grounded video spans with the least time818

complexity and space complexity.819

RC
Head

Start

End

Proposal Detector
SW 1

Proposal 1 Proposal 2 Proposal K

Proposal 2

Proposal K

Proposal 1

(a) Sliding Window Method: T(N*K), O(K)

SW 2

SW K

(b) Proposal Method: T(N), O(K)

(c) Anchor-based Method: T(N*K), O(K) (d) Multi-span Prediction (Ours): T(N), O(1) 
and not limited to granularity

Video

Video

Video

Video

Figure 5: Comparison of multi-span RC prediction
(d) and other methods (a-c) in terms of time and space
complexity.

In fig. 5, we compare our proposed multi-span 820

reading comprehension prediction algorithm and 821

other commonly used methods for temporal sen- 822

tence grounding on video tasks, including the slid- 823

ing window method, proposal method, and anchor- 824

based method. 825

D.2 Baselines and Setups 826

Advanced VideoQA We take two advanced 827

video question answering (VideoQA) benchmarks 828

AGQA (Grunde-McLaughlin et al., 2021) and NEx- 829

TQA (Xiao et al., 2021) for evaluation. AGQA 830

is specially designed for compositional spatial- 831

temporal reasoning1 including 1,455,610/669,207 832

question answering for train/test splits. NExTQA is 833

a multiple choice VideoQA benchmark for causal, 834

temporal, and descriptive reasoning, including 52K 835

questions. We use two types of baselines: retrieval- 836

based models and open-ended models focusing 837

on recent SOTA temporal priors learning models 838

for comparative analysis. For the retrieval-based 839

models, in addition to traditional methods (Fan 840

et al., 2019; Li et al., 2019; Le et al., 2020; Wang 841

et al., 2023; Li et al., 2021; Lei et al., 2022; 842

Fu et al., 2021), we use recent SOTA temporal 843

learning models, specifically ATP (Buch et al., 844

2022) and MIST (Gao et al., 2023a). For the open- 845

ended models, we use BLIP2 (Li et al., 2023b) 846

and SEVILA (Yu et al., 2023). For the number of 847

keyframes, we sample 4 frames for MotionBoost 848

and 6 frames for TPS-augmented methods in all ex- 849

periments. For more implementation details, please 850

refer to Appendix D.3. 851

Temporal Question Grounding on Video We 852

use the Temporal Question Grounding on Video 853

1We use AGQA 2.0 which has more balanced distributions.
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(TQGV) dataset NExT-GQA (Xiao et al., 2023a)854

to evaluate the efficacy of our temporal prompt855

sampler. NExT-GQA is an extension of NExT-856

QA (Xiao et al., 2021) with 10.5K temporal857

grounding labels tied to questions, which contains858

3,358/5,553 questions for val/test splits. We report859

mean Intersection over Union (mIoU), IoU@0.3,860

and IoU@0.5 as metrics following (Xiao et al.,861

2023a). We select a wide range of VLPs as base-862

lines: VGT (Xiao et al., 2022), Temp (Buch et al.,863

2022; Xiao et al., 2023b), FrozenBiLM (Yang et al.,864

2022), IGV (Li et al., 2022b), and SeViLA (Yu865

et al., 2023). These baseline models encompass a866

variety of architectures, text encoders, and vision867

encoders. In contrast, our method does not depend868

on heavy offline vision feature extractors. We ob-869

tain the optical flow using a fixed RAFT (Teed and870

Deng, 2020), a model with only 5.26 million pa-871

rameters. This comparison highlights the efficiency872

and simplicity of our approach.873

Long VideoQA We take the long videoQA874

dataset EgoSchema (Mangalam et al., 2023) to875

evaluate MotionBoost’s ability over long video un-876

derstanding. EgoSchema consists of over 5000 hu-877

man curated multiple choice question answer pairs878

with an average video length of 3 minutes. The879

EgoSchema subset, including 500 question-answer880

pairs are publicly available. Our experiments are881

applied on the subset.882

D.3 Implementation Details of MotionBoost883

on Downstream Tasks884

The sampler is a 6-layer transformer with RoPE (Su885

et al., 2021). For MotionBoost, We use BLIP2-886

flant5-xl (Li et al., 2023b) as TPS. For the887

TPS-augmented framework, we take three vison-888

language pretraining models as the solver: AL-889

BEF (Li et al., 2021), SINGULARITY (Lei et al.,890

2022), and VIOLET (Fu et al., 2021) For the num-891

ber of keyframes, we sample 4 frames for Motion-892

Boost and 6 frames for TPS-augmented methods to893

keep consistent with baselines. We take K = 2 for894

Gumbel-Softmax tricks in practice. We extract the895

dense optical flow from the video by RAFT (Teed896

and Deng, 2020). For the BLIP2-based model, the897

total trainable parameters are 195M, thus our frame-898

work is lightweight and can be easily adapted to899

any LLM. All the experiments are performed on900

NVIDIA A100 80G GPU. Furthermore, all models901

on zero-shot setting, including section 3.3 and sec-902

tion 3.4 are fine-tuned on VideoLLaVA(Lin et al.,903

2023) fine-tuning dataset without any pretraing.904

D.4 Prompt for Multiple-choice Task on 905

BLIP2 906

Following (Yu et al., 2023), we construct addi- 907

tional prompts to adapt the generative model to the 908

multiple-choice task. 909

Question: why did the boy pick up one present 
from the group of them and move to the sofa ? 
Option A: share with the girl 
Option B: approach lady sitting there 
Option C: unwrap it 
Option D: playing with toy train 
Option E: gesture something 
Considering the information presented in the 
frame, select the correct answer from the options.

Figure 6: Additional prompt for NExT-MC task

E Qualitative Studies on NExTGQA 910

Q: Why did the girl bend forward at the beginning of the video?   
A: Pick up leash.

0.3s 1.5s

Q: Why is the lady leaning forward slightly as she walked?   
A: Exert more force.

0.0s 4.5s

Figure 7: Qualitative results on temporal grounding

fig. 7 presents two random outputs from Motion- 911

Boost on the TQGV task. The first example demon- 912

strates how our method can ground video using 913

the semantic information from the question, specif- 914

ically, the phrase “at the beginning ". The 915

second example demonstrates the efficacy of our 916

method in temporal reasoning, as evidenced by the 917

phrase “as she walked ". 918

F Qualitative Studies on AGQA 2.0 919

G Related Work 920

Long-form Video Question Answering 921

In the realm of Video Question Answering 922
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Question: Before holding a book but after sitting in a bed, what did they undress?
Ground Truth: shoe MotionBoost: shoe BLIP2: dish SEVILA: clothes

V
id

eo
O

F

Question: Which object did the person grasp after watching a book?
Ground Truth: doorknob MotionBoost: doorknob BLIP2: NA SEVILA: doorway

Figure 8: Case Studies. OF: Optical Flow. Green and red boxes indicate correct and wrong keyframe predictions,
respectively. In these cases, our method could correctly localize the keyframes and predict the right answer. “NA"
indicates the BLIP2 can’t generate an answer hitting the answer vocabulary.

V
id
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O

F

Question: Between putting a book somewhere and tidying something on the floor, which object
were they undressing?
Prediction: shoe Ground Truth: clothes

V
id

eo
O

F

Question: What was the person taking between putting a cup somewhere and holding a book?
Prediction: box Ground Truth: food

Figure 9: Filure Cases. OF: Optical Flow. Green and red boxes indicate correct and wrong keyframe predictions,
respectively. For complicated situations involving more than one event, e.g., “between putting a cup and holding a
book", our method could fail to localize the keyframes and thus print the wrong answer.

13



(VideoQA), traditional datasets such as TGIF-923

QA (Jang et al., 2017), MSRVTT-QA (?), and924

ActivityNetQA (Yu et al., 2019) consist of short925

videos about daily human activities. Notably, Buch926

et al. (2022); Lei et al. (2022) reveal limitations in927

common VideoQA benchmarks, failing to mitigate928

static appearance bias, hindering performance929

gains from temporal cues. Recent strides introduce930

intricate spatio-temporal reasoning datasets (Gao931

et al., 2021a; Grunde-McLaughlin et al., 2021; Wu932

et al., 2021; Xiao et al., 2021), catalyzing a surge933

in associated research.934

Visual Prompt Learning Prompt learning, a935

label-free approach utilizing language models for936

text prediction, has shown promise in few-shot937

and zero-shot learning for NLP tasks (Petroni938

et al., 2019; Brown et al., 2020; Gao et al., 2021b;939

Sun et al., 2022). Evolving into prompt tuning,940

which combines continuous prompts with super-941

vised learning for efficient training (Lester et al.,942

2021; Li and Liang, 2021; Liu et al., 2021a), this943

method has extended to image prompts for com-944

puter vision (Jia et al., 2022; Wang et al., 2022;945

Wu et al., 2022; Bar et al., 2022). The integra-946

tion of vision and language prompts enables low-947

cost cross-modal alignment, as evidenced by recent948

studies (Radford et al., 2021b; Zhou et al., 2022; Li949

et al., 2023f; Huang et al., 2023b). This concept has950

further expanded to video-language prompts (Villa951

et al., 2023; Yan et al., 2023), with research inte-952

grating LLMs with video data to improve visual953

tasks like video captioning and question answer-954

ing, demonstrating the potential of visual prompts955

in language models for diverse applications (Villa956

et al., 2023; Li et al., 2023d; Zhao et al., 2023;957

Maaz et al., 2023b; Lyu et al., 2023a).958

Bootstrapping Large Language Models for Vi-959

sual Tasks Capitalizing on the success of LLMs960

in NLP, there is a growing trend of applying them961

to computer vision tasks, such as VQA (Lu et al.,962

2022; Chen et al., 2023; Fu et al., 2023; Liu et al.,963

2023b; Li et al., 2023a), image generation (Ku964

et al., 2023; Zhang et al., 2023c), and visual instruc-965

tion following (Xu et al., 2022; Li et al., 2023e).966

The research mainly progresses along three av-967

enues: (i) leveraging LLMs’ reasoning for visual968

tasks (Huang et al., 2023a; Wu et al., 2023; Driess969

et al., 2023; Surís et al., 2023); (ii) adapting Trans-970

former or linear networks to equip LLMs with vi-971

sual perception (Li et al., 2023b; Dai et al., 2023;972

Zhu et al., 2023; Xu et al., 2023; Gao et al., 2023b;973

Liu et al., 2023a); (iii) merging LLMs with video974

and audio inputs (Zhang et al., 2023a; Maaz et al., 975

2023a; Lyu et al., 2023b). Recently, Sevila’s (Yu 976

et al., 2023) self-chained VideoQA framework uses 977

a two-step approach: selecting keyframes with a tai- 978

lored prompt and applying them to tasks. However, 979

it faces three issues: time-consuming keyframe lo- 980

calization, static frames missing motion details, 981

and incomplete video representation by sampled 982

frames. Addressing these, we introduce a sampler- 983

solver framework that incorporates both static and 984

dynamic features for video-language understand- 985

ing. 986
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