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Abstract

We present a novel fine-tuning framework that
improves the motion sensitivity and length
adaptability of Vision-Language Pretraining
Models (VLPs), which are currently con-
strained by their dependence on static images
or fixed-length video segments due to data
and computational limits. Our framework in-
troduces two main components: the Temporal
Prompt Sampler (TPS), which uses optical flow
to selectively sample video content based on
motion, and the Spatial Prompt Solver (SPS),
which accurately captures the complex spatial
interplay between visual and textual elements.
We further propose a self-boost training ap-
proach to harmonize TPS and SPS. Our frame-
work’s effectiveness is validated through rig-
orous testing on various advanced videoQA
tasks and a temporal question grounding task,
showing marked improvements in performance,
efficiency, and generality across various VLPs
and large language models (LLMs).

1 Introduction

Existing methods in video-langauge modeling have
been greatly improved by the pertaining technicals
and LLMs (Maaz et al., 2023a; Li et al., 2023c;
Zhang et al., 2023a; Lin et al., 2023). However,
understanding videos with task-oriented linguistic
queries still suffers from the significant compu-
tational overhead (Buch et al., 2022; Gao et al.,
2023a; Yu et al., 2023; Song et al., 2023) imposed
by high-dimensional video data and the dispar-
ity between language and spatial-temporal visual
cues (Lei et al., 2022; Xiao et al., 2023a). To ad-
dress the computational burden of video process-
ing, research has focused on sampling methods
that select only relevant frames to reduce input size
(Lei et al., 2021; Wang et al., 2023; Bain et al.,
2021; Buch et al., 2022; Gao et al., 2023a). De-
spite this, these approaches are hindered by low
efficiency and slow speeds due to extensive parame-

ters. Achieving a balance between effective spatial-
temporal video-language extraction and computa-
tional efficiency continues to be a significant chal-
lenge, especially for advanced and long videos.

Drawing upon the insights, we introduce Motion-
Boost, a general and efficient finetuning framework
capable of integrating temporal priors into LLMs
for a range of Video-language understanding tasks.
As illustrated in fig. 1, our framework comprises a
TPS to bootstrap information from temporal priors,
and a SPS to grasp spatial visual-text cues. The
primary advantages that differentiate MotionBoost
from prior arts can be outlined as follows:

Computationally efficient and effective Our
lightweight TPS effectively extracts keyframes
from video using language queries without extra
pre-trained models, optimizing both efficacy and
efficiency in video-language understanding.

Temporally extrapolated We enhance the
TPS’s flexibility and scalability by incorporating
ROPE (Su et al., 2021), which encodes absolute po-
sitions and relative dependencies in cross-attention.
Our adaptation applies RoPE to both visual and lan-
guage embeddings, enabling our sampler to handle
long videos efficiently.

Collaborative Spatial-Temporal Self-Boost
In MotionBoost, TPS and SPS mutually enhance
performance. TPS selects keyframes for SPS,
which uses advanced tools for spatial-textual analy-
sis. A self-boost loop connects them, and Gumbel-
Softmax bridges the gap for joint fine-tuning, syn-
ergizing LLM, SPS, and TPS effectively and effi-
ciently without additional annotation.

2 The MotionBoost Framework

The open-ended video-language understanding task
involves analyzing a video, represented as a se-
quence of frames V' = {fry, fro, -+, frr}, and
a language prompt L consisting of /N tokens, to
identify keyframes relevant to the prompt and gen-
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Figure 1: Overview of MotionBoost framework. The TPS is designed to capture temporal priors and specific
moments. The SPS bridges the gap between the sampled frames and language. A collaborative spatial-temporal
self-boost algorithm is devised to incorporate spatial-temporal-language alignment.

erate a natural language response y. Trainable pa-
rameters or neural networks are denoted by /(-),
while f(-) represents frozen pre-trained models.

Temporal Prompt Sampler We introduce
a TPS that encodes video-text temporal features
more effectively using optical flows (OFs) than
traditional offline encoders. Optical flows capture
frame-to-frame motion and are processed by a
compact CNN and an MLP for visual data, while
language inputs are handled by a trainable embed-
ding layer, denoted as E,; = ( (of)).
To manage long inputs in Transformer models, we
use RoPE (Su et al., 2021) for positional encoding
of both OF and language tokens, represented
as Of = RoPE( RoPE( Eof, Posef),
where W, ;, Wi are transformation matrices and
Pos,y, Pos; are position indices. Cross-attention
is applied to these features to create language-
informed temporal features. We formulate
temporal question grounding as a multi-span
reading comprehension task, employing an RC
head to pinpoint keyframe spans and optimizing
with cross-entropy, as explained in Appendix D.1.
Our approach allows for the extraction of multiple
video segments efficiently during inference, with
low time and space complexity.

Spatial Prompt Solver For each keyframe
fre, we capture spatial information using a pre-
trained visual encoder: Ef. = Fnc,(fry). We
then adapt these features with a pre-trained Q-
former (Li et al., 2022a) to generate query rep-
resentations F, = (£, Ey), where , is a
learnable query and Eq is the output of the SPS.
The final output y is obtained by inputting spatial-

temporal-language information into a frozen LLM:
y = LLM(E,, Eq, E}). The SPS is pluggable and
could be replaced with any VLPs.

Collaborative Spatial-Temporal Self-Boost Al-
gorithm We create a self-boost algorithm to
boost TPS performance using the capabilities of
the SPS due to the lack of temporally annotated
video-language datasets and the expensive nature
of human labeling. Our algorithm caters to both
close-ended and open-ended video-language under-
standing tasks. For close-ended tasks, we use an
iterative SPS-based evaluation of video frames, la-
beling frames with correct SPS predictions as posi-
tive and incorrect ones as negative. For open-ended
tasks, we analyze SPS results of sampled frames,
comparing them with ground truth using sentence
semantic similarity score, and employing a mono-
tonic stack algorithm to find the span with the high-
est similarity for pseudo labeling. More details
are available in Appendix A. Furthermore, The
lightweight TPS’s ability in localizing keyframes
is improved by proposing a joint optimization tech-
nique using Gumbel-Softmax, which samples key
spans and connects temporal samplers with spatial
solvers. This approach enhances spatial-temporal
grounding by combining large language models,
visual feature extraction, and optical flow insights.

3 Experiments

In this section, we utilize the MotionBoost on a
variety of VLPs and advanced VidL tasks. You can
find all the experiment setups, baselines, implemen-
tation details in Appendix D



Model Ob‘le.Ct- Rela.tlon- Ob.].e ct- Superlative Sequencing Exists Duratl.o n Acm.".l Overall
relation action action comparison recognition
Retrieval-based Video-Language Models
HME (Fan et al., 2019) 37.42 49.90 49.97 33.21 49.77 49.96 47.03 5.43 39.89
PSAC (Lietal., 2019) 37.84 49.95 50.00 33.20 49.78 49.94 45.21 4.14 40.18
HCRN (Le et al., 2020) 40.33 49.86 49.85 33.55 49.70 50.01 43.84 5.52 42.11
AIO (Wang et al., 2023) 48.34 48.99 49.66 37.53 49.61 50.81 45.36 18.97 48.59
ATP (Buch et al., 2022) 50.15 49.76 46.25 39.78 48.25 51.79 49.59 18.96 49.79
ALBEF (Li et al., 2021) 50.53 49.39 49.97 38.22 49.79 54.11 48.01 10.40 50.68
SINGULARITY (Lei et al., 2022) 50.87 50.67 49.70 40.47 40.79 55.34 48.20 11.59 51.11
VIOLET (Fu et al., 2021) 50.89 50.24 50.93 40.76 50.51 58.07 38.97 6.53 51.03
MIST-AIO (Gao et al., 2023a) 51.43 54.67 55.37 41.34 53.14 53.49 47.48 20.18 50.96
MIST-CLIP (Gao et al., 2023a) 51.68 67.18 68.99 42.05 67.24 60.33 54.62 19.69 54.39
Open-ended Video-Language Models
SeViLA* (Yu et al., 2023) 51.15 48.93 62.08 42.24 55.96 53.02 38.91 0.00 51.70
BLIP2 (Li et al., 2023b) 53.72 48.64 62.1 43.84 55.94 55.14 40.39 0.28 54.00
TPS + ALBEF (Li et al., 2021) 51.05 S51.11 51.66 38.36 51.33 58.10 49.20 11.78 51.73
TPS + VIOLET (Fu et al., 2021) 51.59 54.54 56.96 40.94 55.61 59.12 42.81 9.02 52.59
TPS + SINGULARITY (Lei et al., 2022) | 52.33 54.12 55.07 40.71 54.49 57.88 48.35 12.24 53.13
MotionBoost (Ours, BLIP2-based) 62.27 51.74 66.09 53.67 60.11 60.85 36.99 0.00 61.45

* Re-implementation result. We removed prior information from QVHighlights (Lei et al.) used in (Yu et al., 2023) for fair

comparison.

Table 1: Comparison accuracy of different sampling-based SOTA models on AGQA 2.0.

Model ‘ Temporal Causal Description All
CLIP (Radford et al., 2021a) 46.3 39.0 53.1 43.7
HGA (Jiang and Han, 2020) 442 525 441 49.7
AIO (Wang et al., 2023) 48.0 48.6 63.2 50.6
VQA-T (Yang et al., 2021) 49.6 51.5 63.2 52.3
MIST-AIO (Gao et al., 2023a) 51.6 51.5 64.2 53.5
ATP (Buch et al., 2022) 50.2 53.1 66.8 54.3
VGT (Xiao et al., 2022) 523 55.1 64.1 55.0
MIST-CLIP (Gao et al., 2023a) 56.6 54.6 66.9 57.1
BLIP2 (Li et al., 2023b) 64.9 69.7 79.4 69.6
SeVILA* (Yu et al., 2023) 66.4 71.9 80.8 71.5
MotionBoost (Ours, BLIP2-based) ‘ 66.5 72.8 81.2 72.1

* Re-implementation result. We removed prior information
from QVHighlights (Lei et al.) used in (Yu et al., 2023) for
fair comparison.

Table 2: Comparison accuracy of long-form video
QA on NEXT-QA (Xiao et al., 2021).

3.1 Complicated Video Question Answering

Results on AGQA 2.0 (Grunde-McLaughlin
et al., 2021) The MotionBoost framework
marginally improves BLIP2’s performance in
video-language tasks, but it still falls short of
MIST-CLIP. Enhancements from MotionBoost in-
crease BLIP2’s accuracy by 7.45 points, indicating
better spatial-temporal feature learning. However,
BLIP2 struggles with certain question types, such
as“Activity Recognition," This difficulty arises
from the reliance on an unsuitable evaluation
method, namely, the requirement for exact matches
between the generative model’s outputs and a pre-
defined set of answer vocabulary.

Results on NExTQA (Xiao et al., 2021) Ta-
ble 2 presents the results on the NExTQA dataset.
Our method surpasses various baseline models, in-
cluding the recent SeViL A model that utilizes LLM
for keyframe selection. The lesser performance
gain on NEXTQA over AGQA is attributed to its
focus on causality and the inherent "static appear-
ance bias" (Lei et al., 2022) in its source videos
from the VidOR dataset (Shang et al., 2019).

Analysis Our study evaluated the impact of
TPS on various VLPs by comparing them with dif-
ferent frame sampling methods, excluding optical
flow features. For VLPs that use a single image,
we combined multiple images through early fu-
sion. Results on the AGQA 2.0 dataset showed that
TPS significantly improves VLPs’ performance on
temporal questions, such as “Relation-action,"
“Sequencing, and “Exists ", over uniform sam-
pling. However, the lack of temporal priors lim-
its ensemble methods’ effectiveness, with SINGU-
LARITY outperforming ALBEF due to its video
corpus pre-training. While TPS-augmented mod-
els show limited improvement on “Superlative "
questions, integrating optical flow into our BLIP2-
based framework resulted in a 22.42% performance
increase, demonstrating that optical flow can mit-
igate the temporal information loss from frame
sampling. In addition, We replaced BLIP2-based
SPS with different types of VLPs, excluding opti-
cal flow input, and tested on AGQA 2.0. Results
show a 3.68% accuracy increase using keyframes
over uniform frames, proving our model’s effec-
tiveness with various VLPs. For the effectiveness
of our components, refer to Appendix C.1.

3.2 Temporal Question Grounding on Video

The results on NEXTGQA (Xiao et al., 2023a) are
shown in table 3, our method outperforms baselines
using additional feature extractors (Ren et al., 2015;
Liu et al., 2021c,b; Radford et al., 2021a). Our
TPS with OF improves temporal learning for video-
language tasks, reducing the irrelevant visual noise
from discrete frames. Current methods show weak
temporal grounding (mloU < 0.20), but our TPS’s



Method Vision Encoder | mloU IoU@0.3 IoU@0.5

VGT RCNN 3.0 42 1.4
VIOLETv2 VSWT 3.1 43 1.3
Temp[Swin] SWT 49 6.6 2.3
Temp[CLIP] ViT-B 6.1 83 3.7
Temp[BLIP] ViT-B 6.9 10.0 45
FrozenBiLM ViT-L 7.1 10.0 4.4
IGV ResNet 14.0 19.8 9.6
SeViLA* ViT-G 21.7 29.2 13.8

MotionBoost (BLIP2-based) |
* pre-trained on QVHighlights (Lei et al.).

OF+CNN | 199 233 112

Table 3: Comparison results of Temporal Question
Grounding task on NExT-GQA (Xiao et al., 2023b).

MSVD-QA
Accuracy  Score

MSRVTT-QA
Accuracy  Score

ActivityNet-QA

Methods Accuracy  Score

LLM size

VideoChat 7B 56.3 2.8 45.0 25 -
LLaMA-Adapter 7B 549 3.1 43.8 2.7 342
Video-LLaMA 7B 51.6 2.5 29.6 1.8 124

=N
RS

Video-ChatGPT
Video-LLaVA

7B 64.9 33 49.3 2.8 352 2.7
7B 70.7 39 59.2 35 453 33

7B | 714 39 | 573 33 | 439 33

FrozenBiLM 1B 322 - 16.8 - 24.7

MotionBoost (Vicuna-7b-based)

Table 4: Zero-shot Open Domain Video QA.

Methods ‘ Base Model ‘ # of Frames ‘ Accuracy
Video-LLaVA LLaVA-7b 8 36.8
Sevila BLIP2 32 25.7
MotionBoost (BLIP2) BLIP2 4 41.2
MotionBoost (BLIP2) BLIP2 8 414
MotionBoost (BLIP2) BLIP2 32 42.8

Table 5: Zero-shot Result on subset of EgoSchema

features could close this gap in spatial-temporal
research. For qualitative results, refer to Appendix
E.

3.3 Generality of MotionBoost

To illustrate the generality of our approach, we im-
plemented our model on visual instruction datasets,
namely VideoChatGPT (Maaz et al., 2023a) and
LLava-1.5K (Liu et al., 2023a). Additionally, we
change the LLM to the Vicuna-7b (Chiang et al.,
2023) for an equitable comparison with the latest
SOTA techniques. Table 4 displays our model’s
performance on the videoQA dataset in a zero-shot
scenario. In contrast to VideoLLaVA, our model
was solely fine-tuned on these visual instruction
datasets, without any pretraining on extra datasets.
The outcomes affirm that our method rivals the
performance of the most recent SOTA MLLMs,
despite our model’s LLM being static and not pre-
trained on video-specific corpora. This underscores
the significant potential and broad applicability of
our framework within this field.

3.4 Length Extrapolation of MotionBoost

In this section, we will assess MotionBoost’s ca-
pabilities in long video language understanding

FLOPs MACs
Model (GFLOPs) ¥ (GMACs) ¢ AceT
BLIP2 (ViT-G) 2,705 1,350 69.6
Sevila (ViT-G) 13,720 14,357 71.5
MotionBoost (ViT-G, BLIP2-based) 19,620 9,840 72.3
MotionBoost (OFs, BLIP2-based) 2,950 1,474 72.1

Table 6: Computational Efficiency of MotionBoost.

tasks. We evaluate the model’s performance on
EgoSchema(Mangalam et al., 2023), which is one
of the longest videoQA datasets available. As de-
picted in table 5, MotionBoost exhibits a robust
understanding of long videos. Moreover, although
MotionBoost is trained on sequences of 4 frames,
it is evaluated on varying lengths during the testing
phase. The consistently improved results suggest
that our method possesses a strong capacity for
length extrapolation.

3.5 Time Efficiency

We evaluated the average inference time efficiency
of our method against BLIP2 using calflops (xi-
aoju ye, 2023) on the NExT-QA dataset, as shown
in Table 6. Our method outperformed the current
SOTA model SeVilLa, which uses the LLM to se-
lect keyframes, both in performance and efficiency.
While replacing the OFs with features from ViT-
G (Zhai et al., 2021) resulted in minor improve-
ments, it significantly increased computation costs
due to the offline feature extractor. Compared to
BLIP2, our method required minimal additional
computation. The major computation costs were as-
sociated with the LLMs from BLIP2 and the offline
feature extractor. We believe our method strikes a
balance between being effective and efficient. Fur-
ther details on the composition of inference time
of MotionBoost are provided in SM. In addition,
we investigate the composition of inference time of
MotionBoost and offline demo in Appendix B.

4 Conclusion

In this work, we propose an efficient plug-
gable framework MotionBoost for advanced video-
language understanding tasks, which comprises
a temporal prompt sampler and a spatial prompt
solver to combine spatial-temporal-language align-
ment and temporal grounding. Experiments on ad-
vanced video question answering and temporal
question grounding on video demonstrate a con-
sistent improvement over various types of VLPs.
Comprehensive analysis verifies the effectiveness,
efficiency, and generality of our framework.



5 Limitations

Our study has one primary limitation: i.e. Limited
Temporal Grounding Capability As shown in
section 3.2, our method outperforms existing ap-
proaches but still has restricted temporal grounding
capabilities, a common issue in current research.
We suspect that this limitation may be due to the
constraints of the lightweight 6-layer transformer-
based TPS. In future work, we aim to enhance this
aspect of our method without sacrificing efficiency.
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Appendices

We provide supplementary materials as fol-

lows, in addition, we provide the demo and
anonymous code in the uploaded zip files.
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A Self-Boost Algorithm

algorithm 1 shows our self-boost algorithm of au-
tomatically generating pseudo labels under open-
ended settings by the SPS, which is used to opti-
mize the TPS.

B Inference Time Analysis

Feature Extractor
Qformer

LLM

Sampler

OF Extractor

Figure 2: Inference time Analysis

Algorithm 1: Pseudo Label Algorithm
Input: frames (V = {fry, fra,-- -, frr}),
query (q), answer (a)
Output: temporal grounded span
scorepest — 0
start <0
end+— T —1
stack < empty list
scores < empty list
for frinV do
prediction = LLMgps(fr,q)
scores.add(SIM (prediction,a))
end

for ¢ in scores.length do
while stack is not empty and

stack.get(score.top) > score.get(i)
do
tmp = stack.pop()
scorepmp = (i — stack.top — 1) x
score.get(tmp)
if scoreyn, > scorepes then
SCOTEpest = SCOTE4mp
start =0
end=1—2
else

end
end
stack.push(i)

end

We further investigate the composition of inference
time of MotionBoost on the NEXT-QA dataset. We
find most computation costs come from LLM and
the offline feature extractor. Compared with other
components, the computation cost is trivial, indicat-
ing the strong efficiency of our method. The offline
demo is presented in the supplementary material.



Object- Relation- Object-

Model . . . Others | All
relation action action
MotionBoost 62.27 51.74 66.09 57.04 | 61.45
w/o optical flow 59.13 15.06 50.79 51.29 | 55.00
w/ fixed sampler 62.28 47.84 50.68 53.47 | 59.88
w/ uniform sampler | 53.72 48.64 62.10 50.68 | 54.00
w/ zero-shot 23.60 17.09 29.37 40.72 | 25.54

Table 7: Ablation study of our method on reasoning
questions from AGQA 2.0. We list the major outputs
of complicated relationships and summarize the rest;
see SM for complete results.
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Figure 3: Efficiency Illustration and Task Definition.

C More Analysis Experiments

C.1 Ablation Study

We apply ablation study on MotionBoost to in-
vestigate the effects of our joint training frame-
work. All the experiments are performed on AGQA
2.0 (Grunde-McLaughlin et al., 2021). As shown
in Table 7, the framework incorporating motion
feature significantly improved performance by
11.72%, underscoring its effectiveness in tackling
spatial-temporal problems. We also found that fix-
ing the pre-trained sampler during training notably
affected performance on temporal questions like
“Relation-action ", suggesting that joint train-
ing can further optimize the sampler. Lastly, com-
paring with zero-shot and fine-tuned BLIP2 (Li
et al., 2023b) with uniformly-sampled frames, our
method showes significant improvements, demon-
strating its overall effectiveness. In Appendix C.2,
we provide detailed ablation study about the TPS-
augmented models.
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C.2 Ablated TSP-augmented models

Sampler Solver # (();,:;?:;es # (E;f;:ges Acc.
OF SING-17M 1 6 53.13
OF SING-17M 1 1 51.36
OF SING-17M 6 6 53.85
OF SING-5M 1 6 51.10
Swin. SING-17M 1 6 53.76

Table 8: Detailed Analysis on the Sampler.

In table 8, we analyzed TSP+SINGULARITY to
evaluate the TSP-augmented paradigm. Our study
revealed that increasing the number of frames dur-
ing inference improved performance by 3.4%, but
further increases did not proportionally enhance
results. We also found that VLP benefits more from
the sampling strategy when adequately pretrained
(i.e., 17M denotes the model is pretrained on 17M
video corpora). Additionally, we proposed two sam-
pler variants, replacing optical flow with features
extracted by the video SwinTransformer (Liu et al.,
2021c) for pre-training. The comparable results
suggest that our TSP can effectively reason over
time without any prior perception information.

C.3 Influence of the number of frames on

solver

|

Accuracy

Sample Strategy
=== Uniform

Keyframe

2 4 6 8

8 10
# of sampled frames

12

Figure 4: Further study on the number of sampled
frames.

We trained the solver with different numbers of
sampled frames. Results are shown in Figure 4.
The fewer sampled frames the better performance
of the keyframe strategy, and after a certain point,
the uniform strategy performs close to the keyframe
strategy. This is because the average duration of
videos in AGQA is around 30 seconds, 12 frames
are close to dense sampling which covers almost all
visual cues. In other words, video-language tasks



require bountiful frame inputs that have high com-
putational complexity, but our method efficiently
learns near-complete video information.

C.4 Detailed Ablation Study Results

Zero-Shot

23.60
17.09
29.37
28.39
48.79
48.79
26.99
0.28
25.54

MotionBoost

62.27
51.74

w/o Optical Flow | fixed Sampler | Uniform Sample

Obj-rel
Rel-act
Obj-act
Superlative
Sequencing
Exists
Duration
Action

All

59.13
15.06

62.28
47.84
50.68
52.12
49.43
60.96
40.18

0.00
59.88

53.72
48.64
66.09
53.67
60.11
60.85
36.99
0.00

61.45

50.79
59.79
35.04
60.92
26.48
0.00
55.00

62.10
43.84
55.94
55.14
40.39
0.28
54.00

Table 9: Ablation study of our method on reasoning
questions from AGQA 2.0 (Grunde-McLaughlin et al.,
2021).

In table 9, we demonstrate the details of the abla-
tion study of MotionBoost on AGQA 2.0. Specifi-
cally, we demonstrates the ablation study results of
different question types.

D Implementation Details

D.1 Details of Multi-span Prediction

Based on the flow-language encoding, we formu-
late the temporal question grounding video task
as multi-span reading comprehension (RC) prob-
lem, where an RC head is to predict the label
of fused encoding {eRy, €Ra, - ..,err} as one of
{“<BEGIN>”, “<END>”, “<NONE>"} of the grounded
video spans. The selection can be formulated as:

ey

h = <6R176R27"'76RT)7
index = arg max(Softmax(h)),

where Fy denotes the RC head for span selection,
index is the prediction of the start or end index.
The objective is computed as the cross-entropy be-
tween the prediction and pseudo labels.

During Inference, we can obtain an arbitrary
number of K segments of grounded video by pre-
dicting K <BEGIN> s and K <END> s with the RC
Head. Finally, we union these segments to elimi-
nate the overlap between these extracted spans. Ap-
pendix D.1 demonstrates commonly used methods
for temporal sentence grounding on video tasks
(TSGV) (Zhang et al., 2023b). Compared with
other span-fixed methods, our method could obtain
multiple grounded video spans with the least time
complexity and space complexity.
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Figure 5: Comparison of multi-span RC prediction
(d) and other methods (a-c) in terms of time and space
complexity.

In fig. 5, we compare our proposed multi-span
reading comprehension prediction algorithm and
other commonly used methods for temporal sen-
tence grounding on video tasks, including the slid-
ing window method, proposal method, and anchor-
based method.

D.2 Baselines and Setups

Advanced VideoQA We take two advanced
video question answering (VideoQA) benchmarks
AGQA (Grunde-McLaughlin et al., 2021) and NEx-
TQA (Xiao et al., 2021) for evaluation. AGQA
is specially designed for compositional spatial-
temporal reasoning! including 1,455,610/669,207
question answering for train/test splits. NExTQA is
a multiple choice VideoQA benchmark for causal,
temporal, and descriptive reasoning, including 52K
questions. We use two types of baselines: retrieval-
based models and open-ended models focusing
on recent SOTA temporal priors learning models
for comparative analysis. For the retrieval-based
models, in addition to traditional methods (Fan
etal., 2019; Li et al., 2019; Le et al., 2020; Wang
et al., 2023; Li et al., 2021; Lei et al., 2022;
Fu et al., 2021), we use recent SOTA temporal
learning models, specifically ATP (Buch et al.,,
2022) and MIST (Gao et al., 2023a). For the open-
ended models, we use BLIP2 (Li et al., 2023b)
and SEVILA (Yu et al., 2023). For the number of
keyframes, we sample 4 frames for MotionBoost
and 6 frames for TPS-augmented methods in all ex-
periments. For more implementation details, please
refer to Appendix D.3.

Temporal Question Grounding on Video We
use the Temporal Question Grounding on Video

'We use AGQA 2.0 which has more balanced distributions.



(TQGYV) dataset NExXT-GQA (Xiao et al., 2023a)
to evaluate the efficacy of our temporal prompt
sampler. NEXT-GQA is an extension of NExT-
QA (Xiao et al., 2021) with 10.5K temporal
grounding labels tied to questions, which contains
3,358/5,553 questions for val/test splits. We report
mean Intersection over Union (mloU), IoU@0.3,
and IoU@0Q.5 as metrics following (Xiao et al.,
2023a). We select a wide range of VLPs as base-
lines: VGT (Xiao et al., 2022), Temp (Buch et al.,
2022; Xiao et al., 2023b), FrozenBiLM (Yang et al.,
2022), IGV (Li et al., 2022b), and SeViLA (Yu
et al., 2023). These baseline models encompass a
variety of architectures, text encoders, and vision
encoders. In contrast, our method does not depend
on heavy offline vision feature extractors. We ob-
tain the optical flow using a fixed RAFT (Teed and
Deng, 2020), a model with only 5.26 million pa-
rameters. This comparison highlights the efficiency
and simplicity of our approach.

Long VideoQA We take the long videoQA
dataset EgoSchema (Mangalam et al., 2023) to
evaluate MotionBoost’s ability over long video un-
derstanding. EgoSchema consists of over 5000 hu-
man curated multiple choice question answer pairs
with an average video length of 3 minutes. The
EgoSchema subset, including 500 question-answer
pairs are publicly available. Our experiments are
applied on the subset.

D.3 Implementation Details of MotionBoost
on Downstream Tasks

The sampler is a 6-layer transformer with RoPE (Su
et al., 2021). For MotionBoost, We use BLIP2-
flant5-x1 (Li et al., 2023b) as TPS. For the
TPS-augmented framework, we take three vison-
language pretraining models as the solver: AL-
BEF (Li et al., 2021), SINGULARITY (Lei et al.,
2022), and VIOLET (Fu et al., 2021) For the num-
ber of keyframes, we sample 4 frames for Motion-
Boost and 6 frames for TPS-augmented methods to
keep consistent with baselines. We take K = 2 for
Gumbel-Softmax tricks in practice. We extract the
dense optical flow from the video by RAFT (Teed
and Deng, 2020). For the BLIP2-based model, the
total trainable parameters are 195M, thus our frame-
work is lightweight and can be easily adapted to
any LLM. All the experiments are performed on
NVIDIA A100 80G GPU. Furthermore, all models
on zero-shot setting, including section 3.3 and sec-
tion 3.4 are fine-tuned on VideoLLaVA(Lin et al.,
2023) fine-tuning dataset without any pretraing.
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D.4 Prompt for Multiple-choice Task on
BLIP2

Following (Yu et al., 2023), we construct addi-
tional prompts to adapt the generative model to the
multiple-choice task.

Question: why did the boy pick up one present
from the group of them and move to the sofa ?
Option A: share with the girl

Option B: approach lady sitting there

Option C: unwrap it

Option D: playing with toy train

Option E: gesture something

Considering the information presented in the
frame, select the correct answer from the options.

Figure 6: Additional prompt for NExT-MC task

E Qualitative Studies on NExXTGQA

0.3s 1.5s

Q: Why did the girl bend forward at the beginning of the video?
A: Pick up leash.

4.5s

0.0s

Q: Why is the lady leaning forward slightly as she walked?
A: Exert more force.

Figure 7: Qualitative results on temporal grounding

fig. 7 presents two random outputs from Motion-
Boost on the TQGV task. The first example demon-
strates how our method can ground video using
the semantic information from the question, specif-
ically, the phrase “at the beginning ". The
second example demonstrates the efficacy of our
method in temporal reasoning, as evidenced by the
phrase “as she walked ".

F Qualitative Studies on AGQA 2.0
G Related Work

Long-form Video Question Answering
In the realm of Video Question Answering



Video

OF

Question: Before holding a book but after sitting in a bed, what did they undress?
Ground Truth: shoe  MotionBoost: shoe  BLIP2: dish SEVILA: clothes

Q v ¥ | b ') J : :
>

I
s o W :

Question: Which object did the person grasp after watching a book?
Ground Truth: doorknob  MotionBoost: doorknob  BLIP2: NA  SEVILA: doorway

Figure 8: Case Studies. OF: Optical Flow. Green and red boxes indicate correct and wrong keyframe predictions,
respectively. In these cases, our method could correctly localize the keyframes and predict the right answer. “NA"
indicates the BLIP2 can’t generate an answer hitting the answer vocabulary.

OF

Question: Between putting a book somewhere and tidying something on the floor, which object
were they undressing?
Prediction: shoe  Ground Truth: clothes

Video

OF

Question: What was the person taking between putting a cup somewhere and holding a book?
Prediction: box  Ground Truth: food

Figure 9: Filure Cases. OF: Optical Flow. Green and red boxes indicate correct and wrong keyframe predictions,

respectively. For complicated situations involving more than one event, e.g., “between putting a cup and holding a
book", our method could fail to localize the keyframes and thus print the wrong answer.
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(VideoQA), traditional datasets such as TGIF-
QA (Jang et al., 2017), MSRVTT-QA (?), and
ActivityNetQA (Yu et al., 2019) consist of short
videos about daily human activities. Notably, Buch
et al. (2022); Lei et al. (2022) reveal limitations in
common VideoQA benchmarks, failing to mitigate
static appearance bias, hindering performance
gains from temporal cues. Recent strides introduce
intricate spatio-temporal reasoning datasets (Gao
et al., 2021a; Grunde-McLaughlin et al., 2021; Wu
et al., 2021; Xiao et al., 2021), catalyzing a surge
in associated research.

Visual Prompt Learning Prompt learning, a
label-free approach utilizing language models for
text prediction, has shown promise in few-shot
and zero-shot learning for NLP tasks (Petroni
etal., 2019; Brown et al., 2020; Gao et al., 2021b;
Sun et al., 2022). Evolving into prompt tuning,
which combines continuous prompts with super-
vised learning for efficient training (Lester et al.,
2021; Li and Liang, 2021; Liu et al., 2021a), this
method has extended to image prompts for com-
puter vision (Jia et al., 2022; Wang et al., 2022;
Wu et al., 2022; Bar et al., 2022). The integra-
tion of vision and language prompts enables low-
cost cross-modal alignment, as evidenced by recent
studies (Radford et al., 2021b; Zhou et al., 2022; Li
et al., 2023f; Huang et al., 2023b). This concept has
further expanded to video-language prompts (Villa
et al., 2023; Yan et al., 2023), with research inte-
grating LLMs with video data to improve visual
tasks like video captioning and question answer-
ing, demonstrating the potential of visual prompts
in language models for diverse applications (Villa
et al., 2023; Li et al., 2023d; Zhao et al., 2023;
Maaz et al., 2023b; Lyu et al., 2023a).

Bootstrapping Large Language Models for Vi-
sual Tasks Capitalizing on the success of LLMs
in NLP, there is a growing trend of applying them
to computer vision tasks, such as VQA (Lu et al.,
2022; Chen et al., 2023; Fu et al., 2023; Liu et al.,
2023b; Li et al., 2023a), image generation (Ku
etal., 2023; Zhang et al., 2023c), and visual instruc-
tion following (Xu et al., 2022; Li et al., 2023e).
The research mainly progresses along three av-
enues: (i) leveraging LLMs’ reasoning for visual
tasks (Huang et al., 2023a; Wu et al., 2023; Driess
et al., 2023; Suris et al., 2023); (ii) adapting Trans-
former or linear networks to equip LLMs with vi-
sual perception (Li et al., 2023b; Dai et al., 2023;
Zhu et al., 2023; Xu et al., 2023; Gao et al., 2023b;
Liu et al., 2023a); (iii) merging LL.Ms with video
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and audio inputs (Zhang et al., 2023a; Maaz et al.,
2023a; Lyu et al., 2023b). Recently, Sevila’s (Yu
et al., 2023) self-chained VideoQA framework uses
a two-step approach: selecting keyframes with a tai-
lored prompt and applying them to tasks. However,
it faces three issues: time-consuming keyframe lo-
calization, static frames missing motion details,
and incomplete video representation by sampled
frames. Addressing these, we introduce a sampler-
solver framework that incorporates both static and
dynamic features for video-language understand-
ing.
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