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Abstract

We present BELEBELE, a multiple-choice ma-001
chine reading comprehension (MRC) dataset002
spanning 122 language variants. Significantly003
expanding the language coverage of natural lan-004
guage understanding (NLU) benchmarks, this005
dataset enables the evaluation of text models in006
high-, medium-, and low-resource languages.007
Each question is based on a short passage from008
the FLORES-200 dataset and has four multiple-009
choice answers. The questions were carefully010
curated to discriminate between models with011
different levels of general language comprehen-012
sion. The English dataset on its own proves013
difficult enough to challenge state-of-the-art014
language models. Being fully parallel, this015
dataset enables direct comparison of model per-016
formance across all languages. We use this017
dataset to evaluate the capabilities of multi-018
lingual masked language models (MLMs) and019
large language models (LLMs). We present ex-020
tensive results and findings, notably that despite021
significant cross-lingual transfer in English-022
centric LLMs, much smaller MLMs pretrained023
on balanced multilingual data still understand024
far more languages. Overall, BELEBELE opens025
up new avenues for evaluating and analyzing026
the multilingual capabilities of NLP systems.027

1 Introduction028

The absence of high-quality, parallel evaluation029

benchmarks is a major obstacle in assessing the text030

comprehension capabilities of multilingual mod-031

els. NLP datasets with high language coverage do032

exist, such as FLORES-200 (NLLB et al., 2022),033

but they primarily focus on machine translation.034

Popular multilingual evaluation benchmarks, such035

as multilingual question answering (Lewis et al.,036

2020; Clark et al., 2020), natural language infer-037

ence (NLI) (Conneau et al., 2018), and summa-038

rization (Ladhak et al., 2020; Hasan et al., 2021),039

altogether only cover around 30 languages. And040

while understanding and generative text services041

are used across the globe in 100+ languages, the042

lack of labeled data provides a major obstacle to 043

building functional systems in most languages. 044

Simultaneously, large language models (LLMs) 045

have become increasingly popular. Certain LLMs, 046

like BLOOM (Scao et al., 2022), are trained on 047

multilingual data and tout their innate multilin- 048

gual capabilities. Others like GPT-3 (Brown et al., 049

2020) and LLAMA (Touvron et al., 2023a) have 050

demonstrated multilingual competence despite 051

their training data being predominantly English- 052

centric. Even so, LLMs benefit from pretrain- 053

ing data that is linguistically diverse, intention- 054

ally or not, as well as from cross-lingual transfer 055

(Zoph et al., 2016; Artetxe et al., 2020; Muller 056

et al., 2021b). But how multilingual are these mod- 057

els really? Beyond LLMs, significant scientific 058

progress needs to be made before NLP systems can 059

be built effectively and efficiently in low-resource 060

languages. Many modeling techniques are being 061

presented as language-agnostic but have only truly 062

been evaluated in a small number of languages 063

(Bender, 2011), risking not being applicable to di- 064

verse typologically phenomena (Bender, 2009). We 065

believe that large-scale, parallel, and discriminative 066

datasets are crucial for studying the multilingual 067

capabilities of such models and understanding how 068

the technological disparity between high- and low- 069

resource languages is evolving. 070

In this paper, we present a fundamental natural 071

language understanding benchmark to evaluate lan- 072

guage models across 122 language variants from 073

around the world, called BELEBELE1. The dataset 074

contains 900 unique multiple-choice reading com- 075

prehension passages and questions. The questions 076

have been carefully crafted to discriminate between 077

models with varying competence in language com- 078

prehension. While the questions do not necessarily 079

require higher levels of knowledge or reasoning, 080

they favor generalizable NLU models and deliber- 081

ately punish biased models. The English questions 082

1Bambara word meaning "big, large, fat, great".
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Figure 1: A sample passage from the dataset in 4 different languages, displayed alongside its two questions.

on their own present a significant challenge to nu-083

merous models, while humans are capable of an-084

swering the questions with near-perfect accuracy.085

The first of its scale, BELEBELE is parallel086

across all languages, facilitating a direct compar-087

ison of model performance across all languages.088

The dataset covers typologically diverse languages089

across 29 scripts and 27 language families. Seven090

languages are included in two separate scripts, re-091

sulting in one of the first NLP benchmarks for the092

romanized variants of Hindi, Urdu, Bengali, Nepali,093

and Sinhala. We further detail our data collection094

process and the resulting corpus in Section 3.095

The dataset enables evaluation of mono- and096

multi-lingual models, but the parallel nature also097

enables a number of cross-lingual evaluation set-098

tings. We evaluate several masked language models099

(MLMs) after fine-tuning on an English training set100

as well as with the assistance of machine transla-101

tion (Translate-Train-All). For LLMs, we evaluate102

several models using In-Context Learning and also103

instruction-tuned models via Zero-Shot. We dis-104

cuss our results in Section 5.105

2 Background106

2.1 Cross-Lingual Evaluation Benchmarks107

There are several datasets for NLU that are paral-108

lel across numerous languages and enable mono-109

lingual, multilingual, or cross-lingual evaluation.110

These include XNLI (Conneau et al., 2018),111

XQUAD (Artetxe et al., 2020), and MLQA (Lewis112

et al., 2020). MINTAKA (Sen et al., 2022) is de- 113

signed with LLMs in mind, presenting a more dif- 114

ficult QA task in 9 languages. Beyond QA, XL- 115

SUM (Hasan et al., 2021) is an analogous dataset 116

in the domain of abstractive summarization. How- 117

ever, all these datasets together cover under 30 118

languages, most of which are high- or medium- re- 119

source. MASSIVE (FitzGerald et al., 2023) is a 120

large NLU dataset covering 51 languages, but in 121

the domain of spoken conversational agents. NER 122

(Pan et al., 2017) has extensive language cover- 123

age and TYDIQA (Clark et al., 2020) is a popular 124

multilingual benchmark but neither are parallel. 125

Our work undertakes the challenge of expanding 126

existing cross-lingual evaluations to 122 languages, 127

many of which currently lack any NLU benchmark 128

at all. 129

2.2 Non-English Machine Reading 130

Comprehension 131

While the question-answering portion varies, ma- 132

chine reading comprehension (MRC) tasks are de- 133

fined by the closed-book passage provided to an- 134

swer each question. Of course, a big majority of 135

MRC datasets are in English, such as TRIVIAQA 136

(Joshi et al., 2017) and the BABI tasks (Weston 137

et al., 2016). 138

However, the need for MRC datasets for other 139

languages has led to a proliferation of monolin- 140

gual closed-book MRC datasets in recent years 141

(Mozannar et al., 2019; Hardalov et al., 2019; 142

d’Hoffschmidt et al., 2020; Möller et al., 2021; 143
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BELEBELE Statistics
Languages Passage statistics Question statistics

Total Number 122 Distinct Passages 488 Distinct Questions 900
Distinct Languages (ignoring script) 115 Questions per passage 1-2 Multiple-choice answers (num correct) per question 4 (1)
Language Families 27 Avg. words per passage (std) 79.1 (26.2) Avg. words per question (std) 12.9 (4.0)
Scripts 29 Avg. sentences per passage (std) 4.1 (1.4) Avg. words per answer (std) 4.2 (2.9)

Table 1: Language and Text Information for BELEBELE. Average length statistics are computed on the English split.

Anuranjana et al., 2019; Gupta et al., 2018; Croce144

et al., 2018; Efimov et al., 2020; Shavrina et al.,145

2020; Sun et al., 2021). Most were created us-146

ing translation and so are parallel with an English147

dataset, often SQUAD (Rajpurkar et al., 2016).148

However, BELEBELE aims to cover these lan-149

guages and more in one consistent dataset.150

2.3 Multiple Choice QA151

Compared to extractive QA, multiple-choice is a152

less common form of MRC datasets. Some, like153

RACE (Lai et al., 2017), are made from exam154

questions for English learners, while others were155

built specifically for NLU systems, like MCTest156

(Richardson et al., 2013) and MultiRC (Khashabi157

et al., 2018). While most are intended to be158

closed-book, SCIQ (Welbl et al., 2017) and OPEN-159

BOOKQA (Mihaylov et al., 2018) require open160

information retrieval. Others, like COPA (Roem-161

mele et al., 2011), SWAG (Zellers et al., 2018),162

and RECLOR (Yu et al., 2020), require higher-level163

commonsense reasoning to answer. For multilin-164

gual systems, EXAMS (Hardalov et al., 2020) is165

a parallel multiple-choice QA dataset covering 28166

languages. However, no passages are provided and167

answering questions requires cross-lingual knowl-168

edge transfer and reasoning.169

2.4 FLORES-200170

The passages in the BELEBELE corpus are directly171

sourced from the FLORES-200 Machine Transla-172

tion Benchmark (Goyal et al., 2022; NLLB et al.,173

2022). The parallel dataset was constructed by174

sourcing English passages from Wikinews, Wik-175

ijunior, and WikiVoyage. The translations were176

performed by native speakers with high English flu-177

ency and translation experience. Translators were178

instructed to maintain informative and standardized179

content while handling named entities, abbrevia-180

tions, idioms, and pronouns appropriately.181

3 The BELEBELE Dataset182

We opted to create multiple-choice questions and183

answers in English and then translate, as opposed to184

creating resources natively in each language. Many185

of the advantages to this approach outlined in Con-186

neau et al. (2018) remain. Most importantly, this187

leads to significantly more similar sets of samples 188

across languages, enabling direct score comparison. 189

The process for creating the dataset is summarized 190

in Fig. 2. 191

3.1 Creation of Multiple Choice Questions & 192

Answers 193

To create the BELEBELE dataset, we first construct 194

a question-answering dataset in English. 195

Amongst machine reading comprehension tasks, 196

we select multiple-choice questions (MCQs) be- 197

cause it would lead to the fairest evaluation across 198

languages. Related tasks, such as span extraction, 199

are more sensitive to morphological differences, 200

making scaling to many languages difficult (Lewis 201

et al., 2020). In addition, MCQs enable us to bet- 202

ter center the questions on information explicitly 203

stated in the passage, as yes/no or entailment (NLI) 204

questions can be easier to answer with external 205

knowledge held in pretrained models. In order for 206

the questions to discriminate solely between dif- 207

ferent levels of language understanding, we inten- 208

tionally create questions that do not require higher 209

levels of information processing, such as multi-hop 210

or commonsense reasoning. 211

Constructing high quality MCQs depends most 212

importantly on creating strong negatives that are 213

neither obviously wrong nor possibly correct (Agar- 214

wal and Mannem, 2011; Richardson et al., 2013). 215

We do not want the dataset to be easy enough 216

for biased models (e.g. models that use shortcuts 217

or pattern-match) (Boyd-Graber and Börschinger, 218

2020). In setting up this annotation, we consider 219

the protocols proposed in Bowman et al. (2020) 220

and the warnings from Malaviya et al. (2022). We 221

implement an iterative procedure with the Lan- 222

guage Service Provider (LSP) for this involved data 223

collection task, similar to that from Nangia et al. 224

(2021). We engaged in 5 total iterations, provid- 225

ing and receiving feedback in each. Annotators 226

were instructed on the similarities and differences 227

on how ML models approach QA datasets versus 228

humans, which we felt substantially improved the 229

quality of the data. 230

Our final guidelines include both important 231

points such as having the correct response being 232
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Figure 2: Illustration of the dataset creation process with Language Service Provider (LSP) starting from FLORES

unambiguous, as well as particularized rules such233

as no double negatives (Mihaylov et al., 2018). For234

each rule we provided annotators with a good and235

bad example to illustrate. An abridged version of236

our guidelines can be found in the Appendix A.5.1.237

3.2 Quality Assurance238

At each iteration, we evaluate whether or not re-239

turned samples satisfy the minimum quality bar240

through a mix of manual inspection and automatic241

inspection. At every step, we manually verified242

a sample of questions to understand how well the243

annotators were on the same page with us about244

the guidelines. While time consuming, manual245

verification was the most assured way to provide246

tangible feedback to the annotators, notably on the247

difficulty of the questions created. As we progres-248

sively aligned with annotators, we were required to249

look over more samples to provide feedback.250

To complement the manual inspection of a sub-251

set of questions, we use programmatic methods to252

evaluate all questions from a statistical perspective.253

Based on the findings in Malaviya et al. (2022),254

we create low-level features to identify overly easy255

questions or low-effort strategies employed by an-256

notators. For example, we evaluate the lexical over-257

lap between different combinations of the texts258

associated with a question to evaluate whether the259

question is answerable by a biased model. This260

allows us to see if the question can be answered261

without the passage, without the question, or with262

only one sentence in the passage. We also identi-263

fied patterns associated with heuristic solvability,264

such as the wrong answers less frequently being265

extracted from the passage.266

These low-level features allow us to (1) deter-267

mine whether an annotation iteration was up to par,268

(2) filter out questions that failed these heuristic269

checks (for the final iteration, about 20% were fil-270

tered out), and (3) compare to other MCQ datasets.271

We run statistical t-tests to ensure the distribution 272

of these features for correct answers is no differ- 273

ent than for wrong answers. In comparison to 274

MCTEST which largely fails this t-test (p-value 275

< 0.01), our final collection has p-value 0.81. We 276

also train a logistic regression model to answer 277

using only bag-of-word representations and find 278

that the best the naïve model could achieve was 279

an accuracy of 0.28 on our 900 questions. This is 280

just better than random (0.25) and much lower than 281

what was achieved on MCTEST, 0.44. 282

3.3 Translating the Corpus 283

BELEBELE was created end-to-end without the use 284

of machine translation technology, relying solely 285

on experts fluent in English and the target language. 286

For all languages included in the corpus, the 287

context passages were taken directly from the FLO- 288

RES-200 dataset, with the exception of Hindi, Ben- 289

gali, Urdu, Nepali, and Sinhala in the Latin script. 290

While the romanized variant of these 5 Indo-Aryan 291

languages is very prevalent on the modern Internet, 292

their romanization is not included in FLORES-200. 293

We thus had annotators transliterate from the native 294

to Latin script with the support of IndicXlit (Mad- 295

hani et al., 2023). As a result, much like Modern 296

Standard Arabic, these languages are present in 297

two forms in the corpus. 298

In order for the questions and answers to prop- 299

erly pair the translated FLORES passages, the latter 300

was provided for the annotators. We specifically 301

instructed annotators to align potentially ambigu- 302

ous translations with the original passages. While 303

Clark et al. (2020) warns that this forced alignment 304

could increase ‘translationese’, it is necessary to en- 305

sure equivalent question difficulty across languages. 306

The modifications to the translation guidelines can 307

be found in Appendix A.5.2. All translations were 308

proofread and edited by an additional annotator. 309
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Model Size/Variant Vocab size AVG % ≥ 50 % ≥ 70 eng_Latn non-Eng AVG

5-Shot In-Context Learning (examples in English)

LLAMA 1 7B 32K 27.7 0.0% 0.0% 37.3 27.6
LLAMA 1 13B 32K 30.4 0.8% 0.0% 53.3 30.2
LLAMA 1 30B 32K 36.2 18.0% 0.8% 73.1 35.9
LLAMA 1 70B 32K 40.9 25.4% 12.3% 82.5 40.5

LLAMA 2 base 70B 32K 48.0 38.5% 26.2% 90.9 47.7
FALCON 40B 65K 37.3 16.4% 1.6% 77.2 36.9

Zero-Shot for Instructed Models (English instructions)

LLAMA-2-CHAT 7B 32K 34.4 4.1% 0.0% 58.6 34.1
LLAMA-2-CHAT 70B 32K 41.5 27.0% 2.5% 78.8 41.2
GPT3.5-TURBO unk 100K 51.1 44.2% 29.2% 87.7 50.7

Full Finetuning in English

XLM-R large (550M) 250K 54.0 64.8% 15.6% 76.2 53.8
XLM-V large (1.2B) 902K 55.6 69.7% 21.2% 76.2 54.9

INFOXLM large (550M) 250K 56.2 67.2% 28.7% 79.3 56.0

Translate-Train-All

XLM-R large (550M) 250K 58.9 69.7% 36.1% 78.7 58.8
XLM-V large (1.2B) 902K 60.2 76.2% 32.8% 77.8 60.1

INFOXLM large (550M) 250K 60.0 70.5% 36.9% 81.2 59.8

Table 2: Summary of results on BELEBELE across models and evaluation settings. % ≥ 50/70 refers to the proportion
of languages for which a given model performs above 50/70%. We additionally report LLAMA-2-CHAT zero-shot
results leveraging translation in Table 3.

3.4 English Training Data310

BELEBELE is intended to be used as a test set, and311

not for training. Therefore, for models that require312

additional task finetuning, we instead assemble a313

training set consisting of samples from English314

multiple-choice QA datasets (See Appendix A.2).315

3.5 The BELEBELE Dataset in Summary316

BELEBELE contains 900 questions, each with 4317

multiple-choice answers and one correct answer.318

Most passages have two associated questions, but319

some have only one. In total, there are 488 distinct320

passages, none belonging to the hidden FLORES321

test set. Parallel across 122 languages, the corpus322

contains a total of 109,800 rows. We display a323

sample passage in four languages in Fig. 1.324

Because of the careful annotation procedure and325

quality checks, the MCQs discriminate text compre-326

hension competence. It often includes paraphras-327

ing and strong negatives in order to elude simple328

pattern-matching models. Questions often addi-329

tionally require understanding multiple sentences.330

However, answering does not require presumptions331

or external knowledge as is required in more dif-332

ficult reasoning datasets. For example, Q1 in Fig.333

1 is unambiguous. Food, mates, and flying are all334

mentioned in the passage, but a careful read reveals335

the wings folding back is only associated with hid-336

ing spaces. To confidently rule out the other can-337

didate answers, it is required to understand three338

sentences. In general, we find all questions to be 339

answerable by humans fluent in the target language, 340

but not without focused reading (see Section 5.1). 341

As can be seen in Fig. 1, the passages, questions, 342

and answers are aligned in semantic meaning and 343

formality. BELEBELE therefore poses an equivalent 344

challenge in all languages. It also enables models 345

with cross-lingual alignment in the semantic repre- 346

sentation space to answer questions when passage, 347

question, and answers are swapped to different lan- 348

guages. Since FLORES includes passages in 83 349

additional languages, we can even evaluate reading 350

comprehension in these languages by asking the 351

questions in English. 352

4 Experiments 353

Thanks to BELEBELE, we are able to evaluate 354

numerous models and establish baseline perfor- 355

mances across 122 language variants. We compare 356

performance between popular multilingual MLMs 357

and LLMs in several settings. For all, accuracy is 358

the central metric. With 4 candidate answers for 359

each question, the expected accuracy for sequence 360

classification models that guess randomly is 0.25.2 361

4.1 Evaluated Models 362

Masked Language Models (MLMs) We evalu- 363

ate three different models, XLM-V (Liang et al., 364

2Note: For sequence-to-sequence models (e.g. instructed
models) that are evaluated in exact-match scenarios, this lower-
bound does not hold.
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Figure 3: BELEBELE Results in 122 languages. We compare four models in two settings and see the difference
between intentionally multilingual models and models with English-centric data. GPT3.5-TURBO performs the
best on the top 20 languages, but after 40-50, its performance falls far behind INFOXLM and XLM-V. Similarly,
INFOXLM outperforms XLM-V in the first 40 languages, but XLM-V proves more capable on the long tail of
languages. Note that the language order can change the plot considerably, here we choose median accuracy.

2023), INFOXLM (Chi et al., 2021), and XLM-R365

(Conneau et al., 2020a). All the evaluated MLMs366

have been pretrained on intentionally multilingual367

corpi inclusive of about 100 languages. The pre-368

training data in high-resource languages is typically369

down-sampled while low-resource languages are370

up-sampled in order to favor multilingual perfor-371

mance (Conneau et al., 2020a). In addition, all their372

subword tokenizers (Kudo and Richardson, 2018)373

are trained on multilingual corpora making them374

better suited for multilingual text.375

Large Language Models We evaluate GPT3.5-376

TURBO, FALCON, and LLAMA (1 and 2). GPT3.5-377

TURBO is a model optimized for chat based on GPT-378

3 (Brown et al., 2020) available through OpenAI379

APIs3. Limited details have been disclosed about380

the pretraining and fine-tuning data.4 LLAMA 1381

(Touvron et al., 2023a) is a collection of decoder-382

only transformers models trained on 1T (for 7B,383

13B) or 1.4T (for 30B, 65B) tokens of web-crawled384

data, while LLAMA 2 (Touvron et al., 2023b) pre-385

trained on about 2T. We evaluate all four pre-386

trained checkpoints for LLAMA 1. We evaluate387

both LLAMA 2 70B’s pretrained version and its388

chat version instruction-fine-tuned for safe dialog389

purposes (a.k.a. LLAMA-2-CHAT). We also eval-390

uate FALCON 40B, which was pretrained on 1T391

3https://platform.openai.com/docs/models
4Our experiments rely on the unverified assumption that

GPT3.5-TURBO was not trained on FLORES. See the Ethics
Statement

extensively filtered web-crawled samples (Penedo 392

et al., 2023). 393

While LLAMA 1 was reportedly trained in 20 lan- 394

guages with Latin and Cyrillic scripts, non-English 395

text accounts for less than 4.5% of the pretraining 396

corpus (Touvron et al., 2023a). LLAMA 2 pretrain- 397

ing data is made of 89.7% of English data, 8.4% 398

unidentified, and a tiny 1.9% belonging to 26 other 399

languages5 (Touvron et al., 2023b). Both series use 400

the same BPE-based tokenizers (Kudo and Richard- 401

son, 2018). Splitting unicode characters into bytes 402

also helps LLAMA avoid out-of-vocabulary errors. 403

4.2 Evaluation Settings 404

More specifics are provided in Appendix A.4. 405

Full Model Fine-tuning For evaluating MLMs, 406

we add a multiple-choice classification head and 407

fine-tune the entire model. We finetune in two 408

settings, (1) in English and evaluate cross-lingual 409

transfer and (2) on machine-translated samples of 410

the training set to all the target languages and eval- 411

uate each language (Translate-Train-All). 412

Five-Shot In-Context Learning We evaluate the 413

pretrained LLAMA 1 and 2 as well as FALCON 40B 414

in the five-shots setting. Examples are sampled 415

from the English training set and prompted to the 416

model. For prediction, we pick the answer with 417

highest probability and report the average cumula- 418

tive score over 3 runs. 419

5See Table 10 in Touvron et al. (2023b) for a full list of
the identified languages
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Zero-Shot Evaluation We evaluate GPT3.5 and420

LLAMA-2-CHAT (70B) in Zero-Shot by describing421

the task with natural language instructions (in En-422

glish). We present the passage, question, and four423

possible answers, and instruct the model to provide424

the letter of the answer. We post-process answers425

and accept multiple formats.6426

In addition, we prompt LLAMA-2-CHAT with427

instructions that are machine translated to the target428

language from English. Conversely, we evaluate429

machine-translating the passages, questions, and430

answers back to English and prompting them to the431

model (Translate-Test). This setting allows us to432

compare in-language comprehension to the popular433

approach of cascading with machine translation.434

5 Results435

We provide summarized results in Table 2 and de-436

tailed results in Appendix A.6.437

5.1 How difficult is BELEBELE?438

As discussed in Section 3, the questions in BELE-439

BELE are intentionally difficult. While the pri-440

mary challenge of this dataset is its multilingual-441

ity, we see that empirically, the English ques-442

tions are able to shed light on the varying NLU443

capabilites of models. With full finetuning, we444

achieved a maximum accuracy of 71.7 in English445

with ROBERTA-base model, significantly less than446

the 90.9 achieved by LLAMA 2 70B in five-shot.447

Between LLAMA 1 variants, we see a wide range448

of results, with the 7B model only achieving 37.3.449

To establish human performance, 4 authors each450

randomly sampled around 30 English MCQs and451

answered in a blind test, achieving mean 97.6 accu-452

racy7. This is much higher than any of the models453

evaluated, implying the task presents a particular454

challenge for models. For comparison, Nangia455

and Bowman (2019) conservatively estimate hu-456

man performance to be 92.8 on the English split of457

XNLI (i.e. MNLI (Williams et al., 2018)).458

When comparing model performance with459

XNLI, we find very high correlation. In the460

Translate-Train-All setting, XLM-V, INFOXLM,461

and XLM-R all perform about 10 accuracy points462

lower on BELEBELE than on XNLI Translate-463

Train8 reported in Liang et al. (2023) and Chi et al.464

(2021). Still, across all 15 languages and three465

models, we find a score correlation of r = 0.85.466

6We provide code to replicate at our github repository
795% CI for all 900 questions = [93.1, 99.5]
8In traditional Translate-Train, the model is finetuned on

translated training inputs for each language individually.

5.2 Multilingual Generalization of MLMs and 467

LLMs on BELEBELE 468

Schematically, the performance of a language 469

model in a given language is related to two key fac- 470

tors. (i) First, the amount of pretraining data in the 471

target language. As predicted by the scaling laws 472

(Kaplan et al., 2020), performance in a language 473

increases monotonically with the amount of pre- 474

training tokens. (ii) Second, the cross-lingual trans- 475

fer happening between languages in the pretraining 476

data and the target language at inference time (Con- 477

neau et al., 2020a,b). This transfer is impacted by a 478

combination of typological, script, and lexical sim- 479

ilarities between the pretraining languages and the 480

target language (Muller et al., 2021a, 2023). These 481

two factors are hard to disentangle due to the scale 482

(up to ∼1T tokens) and the potential language leaks 483

of large-scale pretraining corpora (Kreutzer et al., 484

2022). Thanks to BELEBELE’s quality and scale, 485

we provide detailed evidence of both impacting the 486

multilingual generalization of the models. 487

Impact of Pretraining Language Distribution 488

One of the key differences between the MLMs and 489

LLMs evaluated is their pretraining data distribu- 490

tion and parameter size, explaining the large per- 491

formance differences between them. For instance, 492

LLAMA 2 largely outperforms XLM-R on high- 493

resource languages, but only achieves accuracy 50 494

on about half the amount of languages as XLM-R 495

(See Table 2). This difference between the MLMs 496

and LLMs evaluated is illustrated in Fig. 3. How- 497

ever, despite this gap, all LLMs evaluated perform 498

surprisingly well on a large number of languages. 499

For instance, LLAMA-2-CHAT is above 35 accu- 500

racy (i.e. 10 above random) for 59 languages. This 501

shows that English-centric LLMs are a promising 502

starting point to build multilingual models. 503

Machine Translation for Zero-Shot Our 504

Translate-Test evaluations show that using machine 505

translation into English strongly outperforms 506

LLAMA-2-CHAT (70B) performance in the original 507

target language. Across 91 evaluated languages, 508

only 2 are non-trivially better in-language (German 509

and Italian), compared to 68 (none high-resource) 510

for which translating to English is better. none of 511

which are considered high-resource. Compared to 512

LLAMA-2-CHAT having zero-shot accuracy above 513

50% for 33 languages, it has 71 in Translate-Test 514

(see Appendix A.6.5). 515

In addition, we evaluate machine-translating the 516

task instructions to the target language. For around 517
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Model Variant Eval Setting AVG % ≥ 50 % ≥ 70 eng_Latn

Translate-Test (English) on 91 non-English languages in Zero-Shot

LLAMA-2-CHAT 70B Translate-Test 57.1 78.0% 2.2% 78.8
LLAMA-2-CHAT 70B In-Language 44.1 35.2% 2.2% 78.8

Translated Instructions in 89 non-English languages Zero-Shot

LLAMA-2-CHAT 70B In-Language Translated Instructions 38.7 36.0% 7.9% 78.8
LLAMA-2-CHAT 70B English Instructions 44.9 37.1% 3.4% 78.8

Table 3: Results of LLAMA-2-CHAT in zero-shot in two machine translation-based evaluation settings; Translate-Test
(passages, questions, answers translated back to English) and evaluations with the English instructions translated to
the target language. The traditional setting on the same languages is provided for comparison.

25 languages, the translated instructions were not518

well understood (i.e. accuracy less than random),519

correlating strongly with already low-score lan-520

guages. For the rest, the performance relative to521

using English instructions is mixed, though lan-522

guages that already scored highly had the largest523

accuracy boost from in-language instructions.524

Impact of Sub-Word Tokenization We reaffirm a525

correlation between increasing vocabulary size and526

performance on lower resource languages (Liang527

et al., 2023). XLM-V has a massive 900k-token528

vocabulary that allocates capacity for each indi-529

vidual language and de-emphasizes token sharing530

between languages. XLM-V outperforms XLM-531

R and INFOXLM (250k vocabulary size) on low-532

resource languages even though they all have the533

same architecture and are trained on the same534

dataset (CC-100). GPT3.5-TURBO (100k vocab-535

ulary size),9 FALCON (65k vocabulary size), and536

LLAMA 2 (32k vocabulary size) all fall off abruptly537

for medium- and low- resource languages. Larger538

vocabulary size may explain why FALCON 40B per-539

forms equivalent to LLAMA 1 30B despite having540

been pretrained on fewer non-English tokens.541

Scaling effect on Multilingual Generalization542

We report in Fig. 4 the impact of model sizes on per-543

formance on the BELEBELE benchmark across six544

language families and English. We find that scale is545

critical for LLAMA to perform reading comprehen-546

sion as the 7B checkpoint performs slightly above547

chance in English even. As the parameter size in-548

creases, performances across the board increases549

significantly. Only the 30B and 65B checkpoints550

are able to perform non-trivially in language fam-551

ilies not reported to be in the pretraining corpus552

(Japanese and Greek). However, unlike other lan-553

guage families such as Romance and Germanic,554

the performance becomes non-trivial only with the555

30B and 65B checkpoints. Results like this suggest556

9According to https://github.com/openai/tiktoken.

that generalizing to distant languages after English- 557

centered pretraining requires more parameters. 558

Impact of Script Comparing the Romanized ver- 559

sions with the original scripts for Hindi, Urdu, Ben- 560

gali, Sinhala, Nepali, and Modern Standard Arabic, 561

we find that all models except FALCON perform 562

stronger in the native script than in the Latin script 563

(see Appendix A.6.4). However, the native scripts 564

are allegedly not present in the pretraining data 565

for LLAMA 2 and FALCON. For the Indo-Aryan 566

languages, we hypothesized cross-lingual transfer 567

would be higher in the Latin variant since the tok- 568

enization will be more suitable and there is opportu- 569

nity for shared subwords (anchor points) (Conneau 570

et al., 2020b; Muller et al., 2020; Pfeiffer et al., 571

2021; Muller et al., 2021a). However, this only 572

seems to be the case for FALCON. The results 573

generally suggest the models were pretrained on 574

significant samples in the native script (perhaps due 575

to code-switching or poor language identification). 576

6 Conclusion 577

A fundamental limitation to conducting sound eval- 578

uations of the capabilities of language models in 579

low-, or even moderate-, resource languages is the 580

availability of annotated benchmarks. This paper 581

presents a massive dataset, BELEBELE, consist- 582

ing of passages and multiple-choice questions eval- 583

uating reading comprehension in 122 languages. 584

This benchmark enables critical evaluation of read- 585

ing comprehension capabilities of LLMs in En- 586

glish and top languages. In addition, the dataset 587

is the first of its kind in many medium- and low- 588

resource languages, enabling unprecedented in- 589

sight into the multilingual capabilities of language 590

models. We present results from a number of fa- 591

mous MLMs and LLMs in different evaluation set- 592

tings. But given all the evaluations and experiments 593

this dataset enables, we hope BELEBELE unveils 594

further insights that contribute to the development 595

of NLP systems beyond high-resource language. 596
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Limitations597

Even with our extensive quality assurance, we warn598

that "translationese" may cause accuracy on non-599

English languages to not be directly comparable600

to English. Often, the perfect translation does not601

exist.602

In addition, BELEBELE was designed to measure603

the reading comprehension abilities of NLP sys-604

tems across 122 languages. We specifically align605

as much as possible with translation choices made606

in the creation of FLORES. Therefore, by-design607

the samples collected do not capture language- and608

culture-specific phenomena such as formality (Er-609

soy et al., 2023), values (Kovač et al., 2023), and610

aboutness (Hershcovich et al., 2022). Following611

BELEBELE, building NLP systems inclusive of all612

cultures and languages will require the release of613

benchmarks that capture these phenomena.614

As briefly mentioned in Section 3.3, annota-615

tors discovered a few quality issues with FLORES.616

Some of them are likely due to style/dialect dif-617

ferences between annotators, but many seem to618

not be. It’s rare enough, thanks to the extensive619

quality-assurance loops implemented by the NLLB620

team and the LSP. However, over the scale of 122621

languages a fair number of issues have arisen, espe-622

cially in lower-resource languages. Since updating623

the FLORES dataset is not in scope for this project,624

we deliberated on each with the LSP to maximize625

both appropriateness of the question/answers trans-626

lations and cross-language consistency.627

In general, our model analyses are limited by628

inconsistent documentation on the composition of629

pretraining corpora used. To enable further un-630

derstanding the interaction of multilingual text in631

training and enable progress in the field, we point632

to two critical research directions. First, (i) better633

language identification systems: popular language634

identification models are trained on a restricted635

number of languages and domains and only work636

at the sentence level (Bojanowski et al., 2017),637

limiting their abilities to track languages in code-638

switched data and embedded text. Second, (ii) we639

encourage LLM developers to improve reporting640

on pretraining language distribution. This is nec-641

essary for the research community to understand642

the cross-lingual transfer capabilities of LLMs and643

to improve NLP system design for low-resource644

languages.645

Ethics Statement 646

We removed BLOOMZ (Muennighoff et al., 2023) 647

from our experiment results upon discovery that 648

it was fine-tuned for translation on FLORES- 649

200. However, as alluded to in Section 4.1, we 650

present GPT3.5-TURBO results on BELEBELE 651

even though we cannot verify that FLORES was 652

not in its pretraining or finetuning data. Because 653

of this, comparing results on GPT3.5-TURBO to 654

other models may be unfair given the lack of trans- 655

parency on training data. 656

In general, our decision to open-source BELE- 657

BELE may compromise future benchmarking as the 658

samples may get collected into large pretraining 659

corpora, undermining fair comparison. This is es- 660

pecially the case for zero- or few-shot evaluation. 661

We determine the value of open-sourcing the full 662

dataset to far outweigh these considerations. 663
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Grgur Kovač, Masataka Sawayama, Rémy Portelas, Cé-857
dric Colas, Peter Ford Dominey, and Pierre-Yves858
Oudeyer. 2023. Large language models as super-859
positions of cultural perspectives. arXiv preprint860
arXiv:2307.07870.861

Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wahab,862
Daan van Esch, Nasanbayar Ulzii-Orshikh, Allah-863
sera Tapo, Nishant Subramani, Artem Sokolov, Clay-864
tone Sikasote, Monang Setyawan, Supheakmungkol865
Sarin, Sokhar Samb, Benoît Sagot, Clara Rivera, An-866
nette Rios, Isabel Papadimitriou, Salomey Osei, Pe-867
dro Ortiz Suarez, Iroro Orife, Kelechi Ogueji, An-868
dre Niyongabo Rubungo, Toan Q. Nguyen, Math-869
ias Müller, André Müller, Shamsuddeen Hassan870

Muhammad, Nanda Muhammad, Ayanda Mnyak- 871
eni, Jamshidbek Mirzakhalov, Tapiwanashe Matan- 872
gira, Colin Leong, Nze Lawson, Sneha Kudugunta, 873
Yacine Jernite, Mathias Jenny, Orhan Firat, Bonaven- 874
ture F. P. Dossou, Sakhile Dlamini, Nisansa de Silva, 875
Sakine Çabuk Ballı, Stella Biderman, Alessia Bat- 876
tisti, Ahmed Baruwa, Ankur Bapna, Pallavi Baljekar, 877
Israel Abebe Azime, Ayodele Awokoya, Duygu Ata- 878
man, Orevaoghene Ahia, Oghenefego Ahia, Sweta 879
Agrawal, and Mofetoluwa Adeyemi. 2022. Quality 880
at a glance: An audit of web-crawled multilingual 881
datasets. Transactions of the Association for Compu- 882
tational Linguistics, 10:50–72. 883

Taku Kudo and John Richardson. 2018. SentencePiece: 884
A simple and language independent subword tok- 885
enizer and detokenizer for neural text processing. In 886
Proceedings of the 2018 Conference on Empirical 887
Methods in Natural Language Processing: System 888
Demonstrations, pages 66–71, Brussels, Belgium. 889
Association for Computational Linguistics. 890

Faisal Ladhak, Esin Durmus, Claire Cardie, and Kath- 891
leen McKeown. 2020. WikiLingua: A new bench- 892
mark dataset for cross-lingual abstractive summariza- 893
tion. In Findings of the Association for Computa- 894
tional Linguistics: EMNLP 2020, pages 4034–4048, 895
Online. Association for Computational Linguistics. 896

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, 897
and Eduard Hovy. 2017. RACE: Large-scale ReAd- 898
ing comprehension dataset from examinations. In 899
Proceedings of the 2017 Conference on Empirical 900
Methods in Natural Language Processing, pages 785– 901
794, Copenhagen, Denmark. Association for Compu- 902
tational Linguistics. 903

Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian 904
Riedel, and Holger Schwenk. 2020. MLQA: Evalu- 905
ating cross-lingual extractive question answering. In 906
Proceedings of the 58th Annual Meeting of the Asso- 907
ciation for Computational Linguistics, pages 7315– 908
7330, Online. Association for Computational Lin- 909
guistics. 910

Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Na- 911
man Goyal, Marjan Ghazvininejad, Luke Zettle- 912
moyer, and Madian Khabsa. 2023. XLM-V: Over- 913
coming the vocabulary bottleneck in multilingual 914
masked language models. In Proceedings of the 2023 915
Conference on Empirical Methods in Natural Lan- 916
guage Processing, pages 13142–13152, Singapore. 917
Association for Computational Linguistics. 918

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 919
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 920
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 921
Roberta: A robustly optimized bert pretraining ap- 922
proach. 923

Yash Madhani, Sushane Parthan, Priyanka Bedekar, 924
Gokul Nc, Ruchi Khapra, Anoop Kunchukuttan, 925
Pratyush Kumar, and Mitesh Khapra. 2023. Aksha- 926
rantar: Open Indic-language transliteration datasets 927
and models for the next billion users. In Findings 928

11

https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2022.acl-long.482
https://doi.org/10.18653/v1/2022.acl-long.482
https://doi.org/10.18653/v1/2022.acl-long.482
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/2020.acl-main.653
https://doi.org/10.18653/v1/2020.acl-main.653
https://doi.org/10.18653/v1/2020.acl-main.653
https://aclanthology.org/2023.emnlp-main.813
https://aclanthology.org/2023.emnlp-main.813
https://aclanthology.org/2023.emnlp-main.813
https://aclanthology.org/2023.emnlp-main.813
https://aclanthology.org/2023.emnlp-main.813
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2023.findings-emnlp.4
https://aclanthology.org/2023.findings-emnlp.4
https://aclanthology.org/2023.findings-emnlp.4
https://aclanthology.org/2023.findings-emnlp.4
https://aclanthology.org/2023.findings-emnlp.4


of the Association for Computational Linguistics:929
EMNLP 2023, pages 40–57, Singapore. Association930
for Computational Linguistics.931

Chaitanya Malaviya, Sudeep Bhatia, and Mark Yatskar.932
2022. Cascading biases: Investigating the effect of933
heuristic annotation strategies on data and models.934
In Proceedings of the 2022 Conference on Empiri-935
cal Methods in Natural Language Processing, pages936
6525–6540, Abu Dhabi, United Arab Emirates. As-937
sociation for Computational Linguistics.938

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish939
Sabharwal. 2018. Can a suit of armor conduct elec-940
tricity? a new dataset for open book question an-941
swering. In Proceedings of the 2018 Conference on942
Empirical Methods in Natural Language Processing,943
pages 2381–2391, Brussels, Belgium. Association944
for Computational Linguistics.945

Timo Möller, Julian Risch, and Malte Pietsch. 2021.946
GermanQuAD and GermanDPR: Improving non-947
English question answering and passage retrieval.948
In Proceedings of the 3rd Workshop on Machine949
Reading for Question Answering, pages 42–50, Punta950
Cana, Dominican Republic. Association for Compu-951
tational Linguistics.952

Hussein Mozannar, Elie Maamary, Karl El Hajal, and953
Hazem Hajj. 2019. Neural Arabic question answer-954
ing. In Proceedings of the Fourth Arabic Natural955
Language Processing Workshop, pages 108–118, Flo-956
rence, Italy. Association for Computational Linguis-957
tics.958

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,959
Adam Roberts, Stella Biderman, Teven Le Scao,960
M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hai-961
ley Schoelkopf, Xiangru Tang, Dragomir Radev,962
Alham Fikri Aji, Khalid Almubarak, Samuel Al-963
banie, Zaid Alyafeai, Albert Webson, Edward Raff,964
and Colin Raffel. 2023. Crosslingual generaliza-965
tion through multitask finetuning. In Proceedings966
of the 61st Annual Meeting of the Association for967
Computational Linguistics (Volume 1: Long Papers),968
pages 15991–16111, Toronto, Canada. Association969
for Computational Linguistics.970

Benjamin Muller, Antonios Anastasopoulos, Benoît971
Sagot, and Djamé Seddah. 2021a. When being un-972
seen from mBERT is just the beginning: Handling973
new languages with multilingual language models.974
In Proceedings of the 2021 Conference of the North975
American Chapter of the Association for Computa-976
tional Linguistics: Human Language Technologies,977
pages 448–462, Online. Association for Computa-978
tional Linguistics.979

Benjamin Muller, Yanai Elazar, Benoît Sagot, and980
Djamé Seddah. 2021b. First align, then predict: Un-981
derstanding the cross-lingual ability of multilingual982
BERT. In Proceedings of the 16th Conference of the983
European Chapter of the Association for Computa-984
tional Linguistics: Main Volume, pages 2214–2231,985
Online. Association for Computational Linguistics.986

Benjamin Muller, Deepanshu Gupta, Jean-Philippe Fau- 987
connier, Siddharth Patwardhan, David Vandyke, and 988
Sachin Agarwal. 2023. Languages you know in- 989
fluence those you learn: Impact of language char- 990
acteristics on multi-lingual text-to-text transfer. In 991
Proceedings of The 1st Transfer Learning for Natu- 992
ral Language Processing Workshop, volume 203 of 993
Proceedings of Machine Learning Research, pages 994
88–102. PMLR. 995

Benjamin Muller, Benoît Sagot, and Djamé Seddah. 996
2020. Can multilingual language models transfer 997
to an unseen dialect? a case study on north african 998
arabizi. ArXiv, abs/2005.00318. 999

Nikita Nangia and Samuel R. Bowman. 2019. Human 1000
vs. muppet: A conservative estimate of human perfor- 1001
mance on the GLUE benchmark. In Proceedings of 1002
the 57th Annual Meeting of the Association for Com- 1003
putational Linguistics, pages 4566–4575, Florence, 1004
Italy. Association for Computational Linguistics. 1005

Nikita Nangia, Saku Sugawara, Harsh Trivedi, Alex 1006
Warstadt, Clara Vania, and Samuel R. Bowman. 2021. 1007
What ingredients make for an effective crowdsourc- 1008
ing protocol for difficult NLU data collection tasks? 1009
In Proceedings of the 59th Annual Meeting of the 1010
Association for Computational Linguistics and the 1011
11th International Joint Conference on Natural Lan- 1012
guage Processing (Volume 1: Long Papers), pages 1013
1221–1235, Online. Association for Computational 1014
Linguistics. 1015

Team NLLB, Marta R. Costa-jussà, James Cross, Onur 1016
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef- 1017
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht, 1018
Jean Maillard, Anna Sun, Skyler Wang, Guillaume 1019
Wenzek, Al Youngblood, Bapi Akula, Loic Bar- 1020
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti, 1021
John Hoffman, Semarley Jarrett, Kaushik Ram 1022
Sadagopan, Dirk Rowe, Shannon Spruit, Chau 1023
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti 1024
Bhosale, Sergey Edunov, Angela Fan, Cynthia 1025
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp 1026
Koehn, Alexandre Mourachko, Christophe Ropers, 1027
Safiyyah Saleem, Holger Schwenk, and Jeff Wang. 1028
2022. No language left behind: Scaling human- 1029
centered machine translation. Meta Research. 1030

Simon Ostermann, Michael Roth, and Manfred Pinkal. 1031
2019. MCScript2.0: A machine comprehension cor- 1032
pus focused on script events and participants. In Pro- 1033
ceedings of the Eighth Joint Conference on Lexical 1034
and Computational Semantics (*SEM 2019), pages 1035
103–117, Minneapolis, Minnesota. Association for 1036
Computational Linguistics. 1037

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth- 1038
man, Kevin Knight, and Heng Ji. 2017. Cross-lingual 1039
name tagging and linking for 282 languages. In Pro- 1040
ceedings of the 55th Annual Meeting of the Associa- 1041
tion for Computational Linguistics (Volume 1: Long 1042
Papers), pages 1946–1958, Vancouver, Canada. As- 1043
sociation for Computational Linguistics. 1044

12

https://doi.org/10.18653/v1/2022.emnlp-main.438
https://doi.org/10.18653/v1/2022.emnlp-main.438
https://doi.org/10.18653/v1/2022.emnlp-main.438
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/2021.mrqa-1.4
https://doi.org/10.18653/v1/2021.mrqa-1.4
https://doi.org/10.18653/v1/2021.mrqa-1.4
https://doi.org/10.18653/v1/W19-4612
https://doi.org/10.18653/v1/W19-4612
https://doi.org/10.18653/v1/W19-4612
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.eacl-main.189
https://doi.org/10.18653/v1/2021.eacl-main.189
https://doi.org/10.18653/v1/2021.eacl-main.189
https://doi.org/10.18653/v1/2021.eacl-main.189
https://doi.org/10.18653/v1/2021.eacl-main.189
https://proceedings.mlr.press/v203/muller23a.html
https://proceedings.mlr.press/v203/muller23a.html
https://proceedings.mlr.press/v203/muller23a.html
https://proceedings.mlr.press/v203/muller23a.html
https://proceedings.mlr.press/v203/muller23a.html
https://api.semanticscholar.org/CorpusID:218470572
https://api.semanticscholar.org/CorpusID:218470572
https://api.semanticscholar.org/CorpusID:218470572
https://api.semanticscholar.org/CorpusID:218470572
https://api.semanticscholar.org/CorpusID:218470572
https://doi.org/10.18653/v1/P19-1449
https://doi.org/10.18653/v1/P19-1449
https://doi.org/10.18653/v1/P19-1449
https://doi.org/10.18653/v1/P19-1449
https://doi.org/10.18653/v1/P19-1449
https://doi.org/10.18653/v1/2021.acl-long.98
https://doi.org/10.18653/v1/2021.acl-long.98
https://doi.org/10.18653/v1/2021.acl-long.98
https://doi.org/10.18653/v1/S19-1012
https://doi.org/10.18653/v1/S19-1012
https://doi.org/10.18653/v1/S19-1012
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178


Guilherme Penedo, Quentin Malartic, Daniel Hesslow,1045
Ruxandra Cojocaru, Alessandro Cappelli, Hamza1046
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,1047
and Julien Launay. 2023. The refinedweb dataset for1048
falcon llm: Outperforming curated corpora with web1049
data, and web data only.1050
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A Appendix 1170

A.1 Languages and Variants 1171

Language Code Name in English Script Family

acm_Arab Mesopotamian Arabic Arab Afro-Asiatic
afr_Latn Afrikaans Latn Germanic
als_Latn Tosk Albanian Latn Paleo-Balkanic
amh_Ethi Amharic Ethi Afro-Asiatic
apc_Arab North Levantine Arabic Arab Afro-Asiatic
arb_Arab Modern Standard Arabic Arab Afro-Asiatic
arb_Latn Modern Standard Arabic (Romanized) Latn Afro-Asiatic
ars_Arab Najdi Arabic Arab Afro-Asiatic
ary_arab Moroccan Arabic Arab Afro-Asiatic
arz_Arab Egyptian Arabic Arab Afro-Asiatic
asm_Beng Assamese Beng Indo-Aryan
azj_Latn North Azerbaijani Latn Turkic
bam_Latn Bambara Latn Mande
ben_Beng Bengali Beng Indo-Aryan
ben_Latn Bengali (Romanized) Latn Indo-Aryan
bod_Tibt Standard Tibetan Tibt Sino-Tibetan
bul_Cyrl Bulgarian Cyrl Balto-Slavic
cat_Latn Catalan Latn Romance
ceb_Latn Cebuano Latn Austronesian
ces_Latn Czech Latn Balto-Slavic
ckb_Arab Central Kurdish Arab Iranian
dan_Latn Danish Latn Germanic
deu_Latn German Latn Germanic
ell_Grek Greek Grek Hellenic
eng_Latn English Latn Germanic
est_Latn Estonian Latn Uralic
eus_Latn Basque Latn Basque
fin_Latn Finnish Latn Uralic
fra_Latn French Latn Romance
fuv_Latn Nigerian Fulfulde Latn Atlantic-Congo
gaz_Latn West Central Oromo Latn Afro-Asiatic
grn_Latn Guarani Latn Tupian
guj_Gujr Gujarati Gujr Indo-Aryan
hat_Latn Haitian Creole Latn Atlantic-Congo
hau_Latn Hausa Latn Afro-Asiatic
heb_Hebr Hebrew Hebr Afro-Asiatic
hin_Deva Hindi Deva Indo-Aryan
hin_Latn Hindi (Romanized) Latn Indo-Aryan
hrv_Latn Croatian Latn Balto-Slavic
hun_Latn Hungarian Latn Uralic
hye_Armn Armenian Armn Armenian
ibo_Latn Igbo Latn Atlantic-Congo
ilo_Latn Ilocano Latn Austronesian
ind_Latn Indonesian Latn Austronesian
isl_Latn Icelandic Latn Germanic
ita_Latn Italian Latn Romance
jav_Latn Javanese Latn Austronesian
jpn_Jpan Japanese Jpan Japonic
kac_Latn Jingpho Latn Sino-Tibetan
kan_Knda Kannada Knda Dravidian
kat_Geor Georgian Geor kartvelian
kaz_Cyrl Kazakh Cyrl Turkic
kea_Latn Kabuverdianu Latn Portuguese Creole
khk_Cyrl Halh Mongolian Cyrl Mongolic
khm_Khmr Khmer Khmr Austroasiatic
kin_Latn Kinyarwanda Latn Atlantic-Congo
kir_Cyrl Kyrgyz Cyrl Turkic
kor_Hang Korean Hang Koreanic
lao_Laoo Lao Laoo Kra-Dai
lin_Latn Lingala Latn Atlantic-Congo
lit_Latn Lithuanian Latn Balto-Slavic
lug_Latn Ganda Latn Atlantic-Congo
luo_Latn Luo Latn Nilo-Saharan
lvs_Latn Standard Latvian Latn Balto-Slavic
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mal_Mlym Malayalam Mlym Dravidian
mar_Deva Marathi Deva Indo-Aryan
mkd_Cyrl Macedonian Cyrl Balto-Slavic
mlt_Latn Maltese Latn Afro-Asiatic
mri_Latn Maori Latn Austronesian
mya_Mymr Burmese Mymr Sino-Tibetan
nld_Latn Dutch Latn Germanic
nob_Latn Norwegian Bokmål Latn Germanic
npi_Deva Nepali Deva Indo-Aryan
npi_Latn Nepali (Romanized) Latn Indo-Aryan
nso_Latn Northern Sotho Latn Atlantic-Congo
nya_Latn Nyanja Latn Afro-Asiatic
ory_Orya Odia Orya Indo-Aryan
pan_Guru Eastern Panjabi Guru Indo-Aryan
pbt_Arab Southern Pashto Arab Indo-Aryan
pes_Arab Western Persian Arab Iranian
plt_Latn Plateau Malagasy Latn Austronesian
pol_Latn Polish Latn Balto-Slavic
por_Latn Portuguese Latn Romance
ron_Latn Romanian Latn Romance
rus_Cyrl Russian Cyrl Balto-Slavic
shn_Mymr Shan Mymr Kra-Dai
sin_Latn Sinhala (Romanized) Latn Indo-Aryan
sin_Sinh Sinhala Sinh Indo-Aryan
slk_Latn Slovak Latn Balto-Slavic
slv_Latn Slovenian Latn Balto-Slavic
sna_Latn Shona Latn Atlantic-Congo
snd_Arab Sindhi Arab Indo-Aryan
som_Latn Somali Latn Afro-Asiatic
sot_Latn Southern Sotho Latn Atlantic-Congo
spa_Latn Spanish Latn Romance
srp_Cyrl Serbian Cyrl Balto-Slavic
ssw_Latn Swati Latn Atlantic-Congo
sun_Latn Sundanese Latn Austronesian
swe_Latn Swedish Latn Germanic
swh_Latn Swahili Latn Atlantic-Congo
tam_Taml Tamil Taml Dravidian
tel_Telu Telugu Telu Dravidian
tgk_Cyrl Tajik Cyrl Iranian
tgl_Latn Tagalog Latn Austronesian
tha_Thai Thai Thai Kra-Dai
tir_Ethi Tigrinya Ethi Afro-Asiatic
tsn_Latn Tswana Latn Atlantic-Congo
tso_Latn Tsonga Latn Afro-Asiatic
tur_Latn Turkish Latn Turkic
ukr_Cyrl Ukrainian Cyrl Balto-Slavic
urd_Arab Urdu Arab Indo-Aryan
urd_Latn Urdu (Romanized) Latn Indo-Aryan
uzn_Latn Northern Uzbek Latn Turkic
vie_Latn Vietnamese Latn Austroasiatic
war_Latn Waray Latn Austronesian
wol_Latn Wolof Latn Atlantic-Congo
xho_Latn Xhosa Latn Atlantic-Congo
yor_Latn Yoruba Latn Atlantic-Congo
zho_Hans Chinese (Simplified) Hans Sino-Tibetan
zho_Hant Chinese (Traditional) Hant Sino-Tibetan
zsm_Latn Standard Malay Latn Austronesian
zul_Latn Zulu Latn Atlantic-Congo

Table 4: The 122 Languages & Scripts in BELEBELE.

As mentioned in Section 3, Bengali, Hindi, Sinhala, Nepali, Urdu, and Modern Standard Arabic are1172

present twice, once in their respective native scripts and once in the Latin script. Chinese is also present1173

twice, in Simplified and Traditional characters. There are 50 Indo-European languages, which we decide1174

to display in smaller language families. Even so, Indo-Aryan is the most common language family (17),1175

followed by Atlantic-Congo (16) and Afro-Asiatic (16).1176

Note that the FLORES-200 code isn’t exactly the same as the older FLORES-101 code, see the FLORES1177

website for details.1178
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A.2 Training Set 1179

To create a training and development set to enable model finetuning to the task for adequate evaluation, 1180

we considered a diverse set of multiple-choice question-answering datasets. As there were little options 1181

for similarly-formatted datasets outside of English, we only selected English datasets. 1182

After considering 33 different MRC datasets, we determine the most compatible to be RACE (Lai 1183

et al., 2017), SCIQ (Welbl et al., 2017), MULTIRC (Khashabi et al., 2018), MCTEST (Richardson et al., 1184

2013), MCSCRIPT2.0 (Ostermann et al., 2019), and RECLOR (Yu et al., 2020). For each of the 6 1185

datasets, we unpack and restructure the passages and questions from their respective formats. Some 1186

required more reformatting, such as MCScript2.0, which only has two multiple choice options. For this 1187

dataset, we sampled answers from different questions to complete 4 candidate answers. For each, we 1188

then filter out less suitable samples, such as questions with multiple correct answers (as in MultiRC), 1189

excessively long passages, or fill-in-the-blank questions. We then created subgroups of questions based 1190

of surface characteristics such as passage length, question length, and topic. We experiment with these 1191

different strata to train the best ROBERTA-base model (Liu et al., 2019) evaluated on the English set from 1192

BELEBELE in order to empirically validate the ability to teach a model the correct task. We use these 1193

empirical evaluations to finalize the training set, along with a development set of associated samples from 1194

the respective validation sets of the 6 above datasets. No test sets were included. 1195

In the end, the dataset comprises 67.5k training samples and 3.7k development samples, more than half 1196

of which are from RACE. We provide a script at our github repo to reconstruct this dataset for anyone to 1197

perform task finetuning. 1198

Note: Since the training set is a joint sample of other datasets, it is governed by a different license than 1199

BELEBELE. Most importantly, we do not claim any of that work or datasets to be our own. See Appendix 1200

A.3. 1201

A.3 Licensing 1202

The BELEBELE dataset is licensed under CC-BY-SA, as is the case for the underlying FLORES-200. 1203

Please refer to our github repo for more information. 1204

The training set and assembly code is, however, licensed differently. The majority of the training set 1205

(data and code) is licensed under CC-BY-NC, therefore the use of BELEBELE for commercial purposes 1206

requires a different data solution for model finetuning. 1207

A.4 Experiment Details 1208

A.4.1 Model fine-tuning 1209

As discussed in Section 4.2, for the fine-tuning of MLMs, we use the training set detailed in Appendix 1210

A.2. For all settings, the training was performed using the HuggingFace transformers library. We use the 1211

development set for hyperparameter search and evaluate the two best training runs on the BELEBELE 1212

splits. 1213

For Translate-Train-All, we use machine translation on passages, questions, and answers separately. 1214

Since there is almost 100x available data for this setting, we limit the training and validation sample to 1215

650k and only train one epoch. 1216

A.4.2 In-Context Learning Prompt 1217

As stated in Section 4.2, for 5-shot in-context learning, examples are sampled from the English training 1218

set and prompted to the model. The template used is as follows: 1219

P: <passage> \n Q: <question> \n A: <mc answer 1> \n B: <mc answer 2> \n C: <mc 1220

answer 3> \n D: <mc answer 4> \n Answer: <Correct answer letter> 1221

Within the answers {A, B, C, D}, we determine the prediction to be the one with the highest probability 1222

(relative to the others). For all our results, we report the average score over 3 runs. 1223

A.4.3 Zero-Shot Instructions 1224

As stated in Section 4.2, we evaluate both GPT3.5 and LLAMA-2-CHAT in the zero-shot setting by 1225

describing the task in natural language. We present the passage, question, and four possible answers, and 1226

instruct the model to provide the letter “A”, “B”, “C” or “D ” as the answer. The instructions are given in 1227
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English for all languages. We perform post-processing steps and accept answers predicted as e.g. “(A)”1228

instead of “A”. The instructions and post-processing code are provided at our github repo.1229

For the In-language Translated Instructions setting, we replicate the above, except present LLAMA-2-1230

CHAT (70B) with instructions that are machine translated to the target language. We do not translate (or1231

transliterate) the lettered answers we ask for (“A”, “B”, “C” or “D ”). Therefore, the post-processing steps1232

are the same.1233

For the Translate-Test setting, we present the natural language instructions in English. The passage,1234

questions, and answers, however, have been machine-translated individually back to English.1235

A.5 Annotation Guidelines1236

A.5.1 MCQA Annotation Guidelines1237

The following is an abridged version of the particularized instructions provided to annotators for the1238

task of creating a multiple-choice question-answering dataset. As mentioned, we additionally provided a1239

positive and negative example for each guidelines to the annotators.1240

1. Ensure that all answers, if not most, are decently plausible to require the test-taker to fully read and1241

understand the passage.1242

2. In order to make the questions not overly easy, ensure that if the correct answer is word-for-word1243

from the passage, at least some of the wrong answers are as well. This is to ensure that the person1244

answering can’t just guess the right answer based off identifying the answer in the passage through1245

skimming.1246

3. Make the questions as specific as possible, leave nothing to ambiguity.1247

4. It should not be possible to answer the question without having read the passage, but the question1248

must be answerable using just the passage (no external knowledge). We encourage the use of phrases1249

such as “According to the passage. . . ” in the questions if there may be ambiguity.1250

5. Try to sometimes have the answers be word-for-word in the passage and for other questions, the1251

answers be in your own words. We would like a balance of these two categories of question.1252

6. Don’t write questions with double negatives that may trivially fool the person answering.1253

7. Try to ask questions in your own words and don’t copy and paste entire phrases from the paragraph.1254

This allows us to truly evaluate the comprehension as opposed to recognizing patterns in the way1255

the question is extracted from the text. That being said, making the questions comprehensible and1256

including details is very important, as mentioned above.1257

8. Avoid using ambiguous qualifiers (for example, “very” or “really”) or having the question centered1258

around an extreme (for example, “the greatest” or “the most”). These phrases may leave room for1259

ambiguity and subjectivity. In addition, qualified statements change with time and may not be valid1260

in the future.1261

A.5.2 Translation Specifications1262

To align the dialect or langauge variant to FLORES, we instructed the LSP to use the same localization as1263

in the FLORES-200 creation a few years prior. To align style, formality, and wording, we supplemented1264

the traditional translation guidelines with the following:1265

Given that the associated translated passage is already established (and not subject to change1266

as it is in a published dataset), the translations of the questions and answers have to be fully1267

compatible with it. This means that for dates, proper nouns, units of measure, etc. where there1268

is potential ambiguity, the translators have to follow what was done for the passage, even if they1269

disagree that it is the more correct translation.1270

For example,1271
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Hungarian Translated passage: “Jesus készen áll a vitára. . . ” 1272

English question: “What was Jesus working on when. . . ” 1273

Therefore, in the questions and answers Jesus must be translated as “Jesus” and not “Jézus”. 1274

A.6 Detailed Results Tables 1275

A.6.1 Cross-Lingual MLMs 1276

Full Results for Cross-Lingual MLMs

Evaluation Finetune in English Translate-Train-All
Model Name XLM-V INFOXLM XLM-R XLM-V INFOXLM XLM-R
Size/Variant large large large large large large

AVG 55.6 56.2 54.0 60.2 60.0 58.9
PCT Above 50 69.7% 67.2% 64.8% 76.2% 70.5% 69.7%
PCT Above 70 21.9% 28.9% 15.7% 33.1% 37.2% 36.4%

eng_Latn 76.2 79.3 76.2 77.8 81.2 78.7
acm_Arab 51.2 57.3 55.4 55.3 57.6 59.2
afr_Latn 69.3 72.7 69.1 72.3 75.1 74.3
als_Latn 68.4 68.9 64.9 70.8 72.2 71.4
amh_Ethi 53.1 52.9 52.6 61.6 60.0 60.7
apc_Arab 56.1 58.8 57.9 57.7 60.6 61.9
arb_Arab 67.2 71.0 69.8 70.6 75.0 74.3
arb_Latn 29.3 32.2 27.6 31.6 33.4 30.6
ars_Arab 55.6 59.9 58.9 61.1 65.8 65.9
ary_Arab 43.8 48.7 44.0 48.0 52.8 52.6
arz_Arab 56.9 60.2 57.6 61.4 64.9 66.1

asm_Beng 53.7 53.6 49.3 58.6 58.8 56.9
azj_Latn 59.7 61.3 59.0 65.0 65.6 65.1

bam_Latn 34.2 34.9 33.2 39.2 39.1 36.9
ben_Beng 60.0 63.4 59.6 65.6 69.6 63.7
ben_Latn 46.8 36.9 38.8 53.0 42.7 48.1
bod_Tibt 24.0 24.9 23.7 24.8 23.3 36.9
bul_Cyrl 72.6 72.0 70.1 74.0 75.3 74.2
cat_Latn 71.6 74.4 72.0 75.7 78.1 74.7
ceb_Latn 45.4 44.1 42.3 52.0 52.6 50.7
ces_Latn 69.9 72.3 69.9 72.3 76.2 74.4
ckb_Arab 29.7 52.3 30.3 36.9 58.0 36.9
dan_Latn 70.8 74.1 72.9 73.0 76.3 74.7
deu_Latn 72.6 75.7 72.9 74.1 78.7 76.7
ell_Grek 70.3 72.3 70.3 73.1 74.9 73.0
est_Latn 63.2 67.2 64.8 68.7 70.7 70.4
eus_Latn 63.6 66.1 64.8 68.2 70.8 70.3
fin_Latn 69.1 72.4 72.2 73.0 75.2 74.9
fra_Latn 73.1 74.2 72.1 74.6 76.8 75.6
fuv_Latn 29.7 27.7 26.4 32.8 30.7 31.1
gaz_Latn 48.8 33.8 36.4 52.6 36.0 43.3
grn_Latn 53.9 37.8 37.9 59.6 40.6 41.9
guj_Gujr 58.7 57.0 54.1 63.3 65.9 63.1
hat_Latn 57.1 39.6 35.2 63.2 44.1 39.8
hau_Latn 51.0 41.1 48.2 53.4 48.1 53.0
heb_Hebr 67.2 68.2 64.8 69.3 72.3 70.6
hin_Deva 57.9 60.2 57.4 63.8 64.3 63.4
hin_Latn 53.1 49.7 46.8 57.6 55.4 58.9
hrv_Latn 70.0 72.4 69.9 71.2 75.3 74.0
hun_Latn 69.7 70.8 70.0 73.1 74.2 72.8
hye_Armn 59.4 61.0 58.9 65.9 66.1 64.7
ibo_Latn 40.1 32.2 31.2 46.8 32.0 32.2
ilo_Latn 37.4 36.3 33.8 38.1 40.6 39.7
ind_Latn 68.9 70.7 68.0 71.3 73.1 70.4
isl_Latn 67.3 66.0 63.8 70.1 68.9 69.0
ita_Latn 70.6 72.8 70.0 71.8 76.4 73.3
jav_Latn 64.2 59.8 60.8 67.2 63.3 66.8
jpn_Jpan 66.4 70.1 67.6 71.3 71.8 71.0
kac_Latn 32.0 29.1 32.1 33.8 34.0 33.3
kan_Knda 61.1 62.0 59.7 66.6 68.4 69.1
kat_Geor 64.7 64.8 63.6 68.0 68.9 67.4
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kaz_Cyrl 60.1 61.6 56.8 64.9 65.3 64.7
kea_Latn 44.0 45.2 44.9 48.7 47.7 48.1
khk_Cyrl 56.7 58.8 57.8 61.1 64.6 64.2

khm_Khmr 60.0 59.0 57.7 63.0 64.2 63.8
kin_Latn 35.9 33.6 34.3 39.1 39.1 38.6
kir_Cyrl 65.4 63.4 61.8 68.3 68.2 67.7

kor_Hang 70.1 71.4 68.7 72.9 74.6 74.8
lao_Laoo 55.8 57.6 53.0 63.2 63.6 63.0
lin_Latn 44.7 33.2 30.6 50.9 35.3 34.4
lit_Latn 68.3 69.4 67.2 71.7 72.9 72.0
lug_Latn 39.9 29.4 31.6 47.8 34.7 34.7
luo_Latn 30.3 30.9 30.8 33.7 34.9 33.2
lvs_Latn 70.1 71.3 68.7 74.1 75.6 73.0

mal_Mlym 62.0 65.0 62.7 69.1 68.3 67.1
mar_Deva 62.6 65.2 60.8 69.2 68.8 67.2
mkd_Cyrl 67.8 69.3 65.7 71.0 73.8 72.8
mlt_Latn 37.9 57.1 38.1 40.2 63.7 42.7
mri_Latn 32.0 30.6 32.2 33.0 35.7 34.0

mya_Mymr 56.6 59.1 53.6 62.2 65.1 62.9
nld_Latn 68.4 71.7 71.0 68.6 74.0 72.8
nob_Latn 71.8 73.6 70.7 72.8 75.4 74.2
npi_Deva 58.4 60.7 55.7 64.4 65.8 62.7
npi_Latn 38.3 35.8 33.8 37.4 36.4 34.8
nso_Latn 45.9 31.3 30.0 53.2 34.1 34.7
nya_Latn 31.0 29.2 29.8 34.2 33.0 30.8
ory_Orya 60.8 62.1 58.6 65.6 65.4 63.9
pan_Guru 58.1 59.2 57.8 63.1 62.6 62.0
pbt_Arab 55.4 56.0 51.0 60.6 62.6 61.1
pes_Arab 68.3 69.1 68.2 70.8 73.6 72.0
plt_Latn 55.7 45.6 52.7 61.7 53.4 58.1
pol_Latn 69.0 70.4 67.4 72.1 73.7 72.7
por_Latn 70.9 74.3 70.6 73.8 77.1 74.0
ron_Latn 72.3 72.9 71.3 74.0 76.2 74.8
rus_Cyrl 71.9 73.8 72.2 75.4 76.8 77.1

shn_Mymr 26.9 25.2 26.3 25.0 26.4 27.0
sin_Latn 24.9 34.2 30.7 41.7 38.3 37.3
sin_Sinh 64.4 67.2 62.7 69.8 70.2 68.6
slk_Latn 69.3 71.9 70.2 72.6 76.7 73.0
slv_Latn 69.7 72.2 68.6 71.8 75.4 73.9
sna_Latn 34.8 37.2 33.2 37.1 38.6 35.9
snd_Arab 55.2 56.6 51.9 60.0 61.3 61.3
som_Latn 46.0 39.1 42.6 50.7 46.3 50.7
sot_Latn 46.8 29.3 31.3 52.0 31.9 32.7
spa_Latn 71.0 73.3 71.4 72.7 75.3 76.4
srp_Cyrl 71.0 70.9 71.1 73.6 76.1 75.9
ssw_Latn 39.8 30.6 34.3 47.1 34.3 38.9
sun_Latn 60.9 50.7 55.3 64.2 55.8 59.4
swe_Latn 73.0 75.0 74.2 74.2 76.9 75.1
swh_Latn 64.9 65.3 62.8 69.3 69.2 68.7
tam_Taml 61.8 64.6 61.7 67.4 69.4 65.3
tel_Telu 55.6 57.8 53.6 62.1 63.2 61.1
tgk_Cyrl 38.2 58.6 33.8 39.2 64.3 39.6
tgl_Latn 69.2 67.4 64.7 72.0 70.4 70.0
tha_Thai 63.8 68.1 65.8 69.0 68.9 70.1
tir_Ethi 33.3 36.7 33.8 39.9 42.1 37.7
tsn_Latn 49.0 35.0 30.8 49.8 35.7 34.3
tso_Latn 37.9 36.3 34.2 41.7 39.7 37.1
tur_Latn 66.7 70.2 66.8 70.6 72.0 72.0
ukr_Cyrl 70.4 70.9 71.0 72.3 74.9 75.0
urd_Arab 61.6 63.8 59.3 65.6 68.6 66.3
urd_Latn 42.2 42.6 40.8 49.4 48.9 48.4
uzn_Latn 65.2 66.9 64.4 69.1 70.6 70.2
vie_Latn 69.6 71.1 69.4 73.7 72.9 71.4
war_Latn 46.4 44.7 43.7 47.6 49.3 46.6
wol_Latn 36.8 32.2 30.4 40.6 32.3 32.2
xho_Latn 48.7 36.1 39.0 54.4 40.2 45.4
yor_Latn 35.0 29.3 28.7 38.6 32.0 27.9
zho_Hans 69.8 74.6 71.0 73.7 76.2 74.8
zho_Hant 69.2 72.4 67.1 73.1 74.3 71.3
zsm_Latn 69.1 72.6 69.9 72.4 73.3 72.2
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zul_Latn 46.9 36.4 39.0 54.2 39.8 44.1

Table 5: Results of Cross-Lingual MLMs in the two settings described in Section 4.

For all, the large version was used which is the same architecture across all three. XLM-V has a 1277

significantly larger vocabulary size, leading to more total parameters. We find that in general, INFOXLM 1278

and XLM-V are very similar and both out-perform XLM-R across the board. INFOXLM outperforms 1279

XLM-V in higher- and medium-resource languages, while XLM-V performs better on the lowest-resource 1280

languages. As a result, XLM-V has the most scores above 50, but INFOXLM has more scores above 70. 1281

A.6.2 LLMs 1282

Full Results for Large Language Models

Evaluation Zero-Shot for Instructed Models 5-shot In-Context Learning Translate-Train-All
Model Name GPT3.5-TURBO LLAMA-2-CHAT LLAMA 2 LLAMA 1 FALCON XLM-V
Size/Variant 70B 70B 65B 40B large

AVG 50.6 41.5 48.0 40.9 37.3 60.2
PCT Above 50 43.4% 27.1% 38.5% 25.4% 16.4% 76.2%
PCT Above 70 28.9% 2.5% 26.2% 12.3% 1.6% 33.1%

eng_Latn 87.7 78.8 90.9 82.5 77.2 77.8
acm_Arab 51.6 35.9 47.9 37.9 37.6 55.3
afr_Latn 78.3 57.9 75.9 60.7 53.4 72.3
als_Latn 67.1 36.0 45.4 34.9 36.6 70.8
amh_Ethi 28.7 28.9 27.5 27.8 24.8 61.6
apc_Arab 55.6 38.8 51.2 39.6 36.3 57.7
arb_Arab 69.3 42.3 61.7 44.1 38.3 70.6
arb_Latn 31.1 30.2 26.8 28.0 26.3 31.6
ars_Arab 55.1 37.4 50.2 40.7 32.1 61.1
ary_Arab 45.7 32.6 40.6 33.1 32.3 48.0
arz_Arab 56.7 37.3 50.7 37.4 33.0 61.4

asm_Beng 36.0 35.7 32.3 28.9 22.4 58.6
azj_Latn 54.9 33.4 42.2 33.6 34.1 65.0

bam_Latn 31.7 29.4 30.3 28.4 29.7 39.2
ben_Beng 43.6 34.9 39.1 33.4 22.6 65.6
ben_Latn 34.6 30.4 29.6 29.2 32.1 53.0
bod_Tibt 26.6 28.3 25.7 24.9 26.8 24.8
bul_Cyrl 76.0 65.0 80.4 69.3 41.9 74.0
cat_Latn 78.4 68.2 84.6 76.3 58.8 75.7
ceb_Latn 53.3 40.6 50.4 38.9 39.2 52.0
ces_Latn 76.9 65.0 81.1 70.7 65.0 72.3
ckb_Arab 31.8 32.8 28.7 31.6 28.9 36.9
dan_Latn 80.7 66.2 83.6 73.6 56.2 73.0
deu_Latn 83.3 69.4 84.6 76.0 70.1 74.1
ell_Grek 73.0 50.7 64.9 44.2 31.2 73.1
est_Latn 73.1 36.6 53.0 36.3 34.9 68.7
eus_Latn 40.9 31.1 34.7 32.8 38.9 68.2
fin_Latn 77.9 62.7 79.3 55.7 42.8 73.0
fra_Latn 83.1 72.2 86.4 77.5 69.7 74.6
fuv_Latn 26.1 29.8 24.9 25.4 25.1 32.8
gaz_Latn 30.3 29.3 27.8 29.1 24.9 52.6
grn_Latn 34.2 32.2 32.4 30.3 33.8 59.6
guj_Gujr 38.4 31.1 27.1 25.7 24.7 63.3
hat_Latn 51.6 34.1 37.4 33.7 36.2 63.2
hau_Latn 32.2 32.1 28.0 26.4 28.9 53.4
heb_Hebr 64.2 41.4 54.9 41.4 31.1 69.3
hin_Deva 49.1 42.0 52.6 38.4 27.1 63.8
hin_Latn 52.3 39.2 49.0 34.2 40.0 57.6
hrv_Latn 78.4 64.7 79.8 66.9 48.7 71.2
hun_Latn 74.6 61.1 78.8 66.7 37.7 73.1
hye_Armn 35.0 31.9 34.1 32.1 25.4 65.9
ibo_Latn 28.4 30.1 27.4 25.3 30.2 46.8
ilo_Latn 37.1 33.2 36.6 32.1 35.1 38.1
ind_Latn 74.2 61.3 81.4 55.7 52.1 71.3
isl_Latn 62.3 38.0 54.3 42.1 36.4 70.1
ita_Latn 80.0 68.6 84.5 76.1 66.4 71.8
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jav_Latn 46.7 37.0 40.3 33.0 36.8 67.2
jpn_Jpan 70.9 56.6 77.6 53.9 49.6 71.3
kac_Latn 30.9 30.7 27.7 28.6 27.8 33.8
kan_Knda 40.6 21.9 25.7 24.4 24.0 66.6
kat_Geor 33.0 34.6 37.8 34.3 23.4 68.0
kaz_Cyrl 35.0 32.4 29.3 32.4 32.6 64.9
kea_Latn 46.0 38.1 45.4 38.1 38.0 48.7
khk_Cyrl 32.0 31.1 29.8 28.4 27.4 61.1

khm_Khmr 30.4 30.6 27.0 28.2 25.0 63.0
kin_Latn 35.2 30.6 29.8 28.5 31.9 39.1
kir_Cyrl 37.9 32.2 34.6 32.5 31.9 68.3

kor_Hang 67.1 56.3 77.8 52.9 40.2 72.9
lao_Laoo 30.0 26.5 24.3 26.2 28.1 63.2
lin_Latn 33.8 31.0 28.0 30.4 29.3 50.9
lit_Latn 72.0 39.7 52.1 39.6 39.3 71.7
lug_Latn 28.4 30.9 29.2 28.3 28.9 47.8
luo_Latn 27.1 31.2 29.4 29.3 29.9 33.7
lvs_Latn 70.8 41.0 51.3 39.0 37.6 74.1

mal_Mlym 34.9 30.1 32.4 30.0 21.2 69.1
mar_Deva 38.3 34.8 41.2 32.9 25.0 69.2
mkd_Cyrl 69.4 55.7 72.5 56.2 38.1 71.0
mlt_Latn 44.8 36.2 44.9 36.7 35.4 40.2
mri_Latn 33.3 31.8 28.5 32.0 29.7 33.0

mya_Mymr 30.3 31.3 24.1 24.2 22.6 62.2
nld_Latn 80.4 66.2 82.2 73.3 66.7 68.6
nob_Latn 79.0 65.7 81.8 70.9 60.8 72.8
npi_Deva 40.4 32.9 40.4 33.0 25.4 64.4
npi_Latn 35.1 30.4 30.2 30.0 30.9 37.4
nso_Latn 33.6 30.1 30.4 27.4 29.3 53.2
nya_Latn 33.2 29.3 27.3 28.7 29.3 34.2
ory_Orya 29.2 24.8 23.9 23.7 65.6
pan_Guru 39.1 33.1 26.3 27.1 23.4 63.1
pbt_Arab 32.3 30.2 30.8 29.4 29.4 60.6
pes_Arab 61.8 41.8 53.9 41.0 35.9 70.8
plt_Latn 32.3 30.5 29.6 31.0 31.4 61.7
pol_Latn 74.7 61.7 79.2 67.0 59.9 72.1
por_Latn 83.0 70.2 86.1 75.4 68.3 73.8
ron_Latn 77.4 65.6 83.4 73.2 66.6 74.0
rus_Cyrl 78.4 67.0 82.7 73.1 48.1 75.4

shn_Mymr 28.2 25.6 22.7 24.0 25.0
sin_Latn 30.4 31.9 33.8 27.9 32.6 41.7
sin_Sinh 32.6 33.4 25.2 29.4 27.7 69.8
slk_Latn 77.3 58.8 75.2 60.4 57.0 72.6
slv_Latn 77.4 62.4 76.7 65.6 43.7 71.8
sna_Latn 35.4 30.2 27.4 28.3 31.6 37.1
snd_Arab 34.1 29.7 30.9 28.9 30.2 60.0
som_Latn 32.4 30.3 27.8 27.6 29.9 50.7
sot_Latn 33.9 30.0 28.9 26.8 29.9 52.0
spa_Latn 79.2 68.4 85.0 74.8 69.2 72.7
srp_Cyrl 74.8 65.1 81.0 70.7 40.2 73.6
ssw_Latn 32.0 30.7 27.7 28.0 30.1 47.1
sun_Latn 38.9 34.9 37.8 30.7 34.1 64.2
swe_Latn 81.7 67.4 82.7 73.7 67.3 74.2
swh_Latn 70.3 35.1 39.6 34.4 36.7 69.3
tam_Taml 32.8 34.4 33.2 31.6 24.4 67.4
tel_Telu 34.6 27.5 25.9 26.6 22.4 62.1
tgk_Cyrl 37.7 32.5 34.0 33.1 32.7 39.2
tgl_Latn 66.7 49.6 68.1 48.3 47.7 72.0
tha_Thai 55.7 38.9 46.2 35.0 33.0 69.0
tir_Ethi 28.4 29.6 24.5 23.5 25.0 39.9
tsn_Latn 31.8 30.1 28.5 24.7 31.2 49.8
tso_Latn 33.4 30.0 30.4 28.0 29.7 41.7
tur_Latn 69.9 47.3 65.4 42.1 39.6 70.6
ukr_Cyrl 72.8 65.7 80.8 69.7 41.9 72.3
urd_Arab 48.3 37.0 43.2 34.7 31.7 65.6
urd_Latn 40.3 34.1 38.0 30.1 34.2 49.4
uzn_Latn 44.1 33.1 35.1 30.6 33.1 69.1
vie_Latn 72.9 59.6 78.4 43.5 41.4 73.7
war_Latn 48.9 39.3 44.4 37.4 38.6 47.6
wol_Latn 29.0 28.9 27.6 26.0 26.8 40.6
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xho_Latn 30.0 29.9 28.2 27.6 30.2 54.4
yor_Latn 29.1 30.1 28.3 27.7 27.2 38.6
zho_Hans 77.6 62.4 83.7 64.6 66.0 73.7
zho_Hant 76.3 59.3 82.0 57.7 62.2 73.1
zsm_Latn 74.0 56.4 76.3 51.7 51.3 72.4
zul_Latn 30.4 30.2 29.7 27.1 30.7 54.2

Table 6: Results on LLMs, with comparison to full finetuning on XLM-V

The evaluation settings and models are described in more detail in Section 4. We see that none of 1283

these models can understand many of the 122 languages, while demonstrating excellent performance 1284

on high-resource languages. The 175B-parameter GPT3.5-TURBO outperforms LLAMA-2-CHAT (70B) 1285

across the board and has comparable results to LLAMA 2 (70B) even though it is in zero-shot. Note that 1286

GPT3.5-TURBO threw errors when processing characters in Shan (shn_Mymr) and Oriya (ory_Orya) 1287

and therefore we could not evaluate the results. For the purposes of aggregated scores, we consider this 1288

a score of 25.0. For comparison to fully-finetuned multilingual models, we re-provide the results of 1289

XLM-V-large. 1290

A.6.3 Scaling Effect on LLAMA 1 1291

Llama 1 Model Size in Billions of Parameters
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Figure 4: Impact of Models’ scale (from 7B to 65B parameters of LLAMA 1) on the performance on BELEBELE
for 6 language families and English. The number of languages in a given family is indicated as (#N). LLAMA 1 is
evaluated in the 5-shot settings with examples sampled from the training data in English. Scores are average over 3
runs.

A.6.4 Languages in Multiple Scripts 1292

Comparative Results for Languages with Multiple Scripts

Evaluation Zero-Shot Five-Shot Finetune in English
Model Name GPT3.5-TURBO LLAMA 2 (70B) FALCON (40B) INFOXLM-large AVG

arb_Arab 69.3 61.7 38.3 71.0 60.1
arb_Latn 31.1 26.8 26.3 32.2 29.1

ben_Beng 43.6 39.1 22.6 63.4 42.2
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ben_Latn 34.6 29.6 32.1 36.9 33.3

hin_Deva 49.1 52.6 27.1 60.2 47.3
hin_Latn 52.3 49.0 40.0 49.7 47.8

npi_Deva 40.4 40.4 25.4 60.7 41.7
npi_Latn 35.1 30.2 30.9 35.8 33.0

sin_Sinh 32.6 25.2 27.7 67.2 38.2
sin_Latn 30.4 33.8 32.6 34.2 32.8

urd_Arab 48.3 43.2 31.7 63.8 46.7
urd_Latn 40.3 38.0 34.2 42.6 38.8

zho_Hant 76.3 82.0 62.2 72.4 73.3
zho_Hans 77.6 83.7 66.0 74.6 75.5

Table 7: Selected results from 3 models in differing settings comparing languages present in multiple scripts.

We find that generally, the performance is higher in the native script than the romanized version, except1293

for FALCON which displays the opposite trend on the 5 Indo-Aryan languages. In Chinese, performance1294

on simplified & traditional are very similar with simplified being higher across all 4. For INFOXLM, we1295

display the English finetuning score.1296

A.6.5 Translate-Test1297

Translate-Test Results on 91 languages

Evaluation Zero-Shot Translate-Test, Zero-Shot Translate-Train-All
Model LLAMA-2-CHAT (70B) XLM-V-large

AVG 44.0 57.1 64.9
PCT Above 50 35.2% 78.0% 90.1%
PCT Above 70 2.2% 2.2% 42.9%

eng_Latn 87.7 87.7 77.8

fra_Latn 72.2 70.6 73.1
por_Latn 70.2 69.9 70.9
deu_Latn 69.4 65.7 72.6
ita_Latn 68.6 66.1 70.6
spa_Latn 68.4 69.3 71.0
cat_Latn 68.2 67.0 71.6
swe_Latn 67.4 66.1 73.0
rus_Cyrl 67.0 67.3 71.9
dan_Latn 66.2 66.8 70.8
nld_Latn 66.2 67.2 68.4
nob_Latn 65.7 68.3 71.8
ukr_Cyrl 65.7 66.0 70.4
ron_Latn 65.6 67.0 72.3
srp_Cyrl 65.1 66.2 71.0
bul_Cyrl 65.0 67.7 72.6
ces_Latn 65.0 65.6 69.9
hrv_Latn 64.7 65.3 70.0
fin_Latn 62.7 61.1 69.1
slv_Latn 62.4 61.2 69.7
zho_Hans 62.4 71.2 69.8
pol_Latn 61.7 63.0 69.0
ind_Latn 61.3 64.8 68.9
hun_Latn 61.1 62.9 69.7
vie_Latn 59.6 59.4 69.6
zho_Hant 59.3 65.8 69.2
slk_Latn 58.8 66.2 69.3
afr_Latn 57.9 65.0 69.3
jpn_Jpan 56.6 54.8 66.4
zsm_Latn 56.4 67.0 69.1
kor_Hang 56.3 56.7 70.1
mkd_Cyrl 55.7 66.7 67.8
ell_Grek 50.7 67.6 70.3
tgl_Latn 49.6 62.2 69.2
tur_Latn 47.3 62.6 66.7
arb_Arab 42.3 60.7 67.2
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hin_Deva 42.0 62.8 57.9
pes_Arab 41.8 59.6 68.3
heb_Hebr 41.4 62.0 67.2
lvs_Latn 41.0 60.9 70.1
ceb_Latn 40.6 62.6 45.4
lit_Latn 39.7 60.8 68.3
hin_Latn 39.2 52.7 53.1
tha_Thai 38.9 54.1 63.8
isl_Latn 38.0 58.1 67.3
jav_Latn 37.0 55.3 64.2
urd_Arab 37.0 59.4 61.6
est_Latn 36.6 59.4 63.2
als_Latn 36.0 63.1 68.4

asm_Beng 35.7 57.7 53.7
swh_Latn 35.1 57.8 64.9
ben_Beng 34.9 61.0 60.0
sun_Latn 34.9 50.8 60.9
mar_Deva 34.8 60.0 62.6
kat_Geor 34.6 57.7 64.7
tam_Taml 34.4 55.9 61.8
urd_Latn 34.1 43.0 42.2
hat_Latn 34.1 56.3 57.1
azj_Latn 33.4 55.6 59.7
sin_Sinh 33.4 57.7 64.4
pan_Guru 33.1 57.6 58.1
npi_Deva 32.9 62.0 58.4
ckb_Arab 32.8 51.3 29.7
kaz_Cyrl 32.4 53.2 60.1
hau_Latn 32.1 43.4 51.0
hye_Armn 31.9 58.0 59.4
mya_Mymr 31.3 46.6 56.6
khk_Cyrl 31.1 52.2 56.7
guj_Gujr 31.1 59.6 58.7
lin_Latn 31.0 40.3 44.7
lug_Latn 30.9 38.7 39.9
ssw_Latn 30.7 43.2 39.8

khm_Khmr 30.6 52.8 60.0
plt_Latn 30.5 46.7 55.7
ben_Latn 30.4 45.1 46.8
som_Latn 30.3 40.8 46.0
pbt_Arab 30.2 48.8 55.4
zul_Latn 30.2 44.4 46.9
nso_Latn 30.1 43.4 45.9
tsn_Latn 30.1 40.4 49.0
yor_Latn 30.1 37.7 35.0
ibo_Latn 30.1 35.3 40.1

mal_Mlym 30.1 63.0 62.0
xho_Latn 29.9 49.2 48.7
fuv_Latn 29.8 29.4 29.7
gaz_Latn 29.3 37.0 48.8
ory_Orya 29.2 57.8 60.8
amh_Ethi 28.9 50.4 53.1
wol_Latn 28.9 39.0 36.8
tel_Telu 27.5 54.3 55.6

lao_Laoo 26.5 47.4 55.8
kan_Knda 21.9 62.0 61.1

Table 8: Comparing LLAMA-2-CHAT Zero-Shot performance In-Language vs Translate-Test on 91 languages, with
an aditional comparison to Translate-Train-All finetuning on XLM-V.

We evaluate 91 of the 122 languages in Translate-Test and find that Translate-Test performance 1298

dominates in-language performance on a big majority of languages for LLAMA-2-CHAT (70B) in zero- 1299

shot. A few head languages such as German and Italian have higher scores in the traditional setting, but 1300

nearly all medium-resource languages are better understood with machine translation. For nearly all 1301

low-resource languages, the difference is over 20 accuracy points. For comparison, we see that machine 1302

translation lifts LLAMA-2-CHAT performance in zero-shot not far from fully finetuned XLM-V-large. 1303

This is illustrated more clearly in (Fig. 5) on the next page. 1304
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Figure 5: Comparison of LLAMA-2-CHAT (70B) zero-shot performance on Translate-Test and the standard in-
language evaluation.
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