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Abstract— We present a novel approach, MAGIC (manipulation
analogies for generalizable intelligent contacts), for one-shot
learning of manipulation strategies with fast and extensive
generalization to novel objects. By leveraging a reference action
trajectory, MAGIC effectively identifies similar contact points and
sequences of actions on novel objects to replicate a demonstrated
strategy, such as using different hooks to retrieve distant objects
of different shapes and sizes. Our method is based on a two-
stage contact-point matching process that combines global shape
matching using pretrained neural features with local curvature
analysis to ensure precise and physically plausible contact points.
We experiment with three tasks including scooping, hanging,
and hooking objects. MAGIC demonstrates superior performance
over existing methods, achieving significant improvements in
runtime speed and generalization to different object categories.
Website: https://magic-2024.github.io/.

I. INTRODUCTION

A hallmark of human intelligence is flexible tool use:
humans can quickly acquire new manipulation “strategies”
from just a handful of demonstrations and apply these
strategies across various scenarios, including generalization to
novel objects of unseen categories. For example, as illustrated
in Fig. 1, even from a single demonstration of using a hook
to reach distant objects or putting hangers on a rod, we can
generalize to different object positions, sizes, and diverse
categories, such as hangers and mugs.

Traditionally, two main approaches have been widely
studied to build machines that can flexibly use tools: model-
based and analytic approaches which take novel scenarios
and goals and use built-in physical models to compute
plans [1]–[4], and policy learning, which leverages various
types of priors (e.g., object-based and part-based models) and
pretrained neural features for generalization [5]–[8]. However,
both approaches have their limitations. Model-based planning
generalizes well given accurate object and physical models.
However, it is slow and usually does not benefit from learning.
Policy learning approaches, on the other hand, are very
efficient at performance time but usually exhibit limited
generalization to novel objects and scenarios, particularly
when the shape of the novel objects differs significantly
from objects seen during training, such as generalizing from
hangers to mugs.

In this paper, we present a novel approach, MAGIC
(manipulation analogies for generalizable intelligent contacts),
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for one-shot manipulation strategy learning. Shown in Fig. 1,
given a single reference action trajectory (e.g., using a hook
to reach for a distant object) and a novel scenario (e.g.,
with different tools and different objects), the goal of the
algorithm is to generate a sequence of robot actions that
apply a “similar” strategy to the test objects specified by
users: in this example, having the target object moving along
a certain direction for a given distance. MAGIC extends two
critical insights into a broad class of manipulation strategies.
First, many strategies such as hooking, hanging, hammering,
pushing, reaching [9], [10], stacking, pouring [11]–[13], and
cutting [13] can be characterized by a sequence of contact
waypoints (i.e., the order in which contacts between objects
and robot bodies are made); second, these contacts are
characterized by forceful affordances between object pairs: a
specific pair of contact points on two objects would enable
the application of forces along certain directions. However,
searching for contact points that would enable the specific
affordance is generally challenging due to complex constraints
on reachability, collision avoidance, and motion stability.

MAGIC tackles these challenges by combining data-driven
and analytic approaches to generate contact waypoints in
novel scenarios. In particular, it first extracts the sequence
of contacts among objects in the reference trajectory and
then proposes (pairs of) contact points that have similar
global and local shape properties as the contact points in the
reference, which can be used as guidance for motion planning
or motion retargeting. Finally, it utilizes a physical simulator
to discard trajectories that fail to achieve the goal due to
collisions, unstable physical contact, or violations of joint
and torque limits. Our key innovation lies in a novel global-to-
local matching algorithm to find functional correspondences
between the target objects and reference objects. Intuitively,
a “good” contact point would satisfy both a global and a
local matching property. First, the points on two objects
should be on similar parts of the global shape (e.g., in the
hook-using example, we need a contact point on the tool that
is at the end of a long rod). Second, the hooking contact
point should have a matched local curvature with the target
object being hooked so that we can execute the actions stably.
Therefore, we propose to use a pretrained visual feature-
based correspondence matching to resolve the global matching
property. This enables us to quickly search over different
parts of the objects but the resulting contact point is usually
not precise. Next, we use a local curvature-based matching
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Fig. 1: We introduce MAGIC (Manipulation Analogies for Generalizable Intelligent Contacts), a pipeline that is capable of learning manipulation strategies
from single demonstrations and applying them to novel objects.

algorithm to find the best contact point within a local region of
the previously proposed contact point, which gives us precise
and physically plausible (e.g., collision-free and physically
stable) contacts.

Overall, MAGIC tackles the problem of one-shot manip-
ulation strategy learning by making analogies in contact
waypoints. We validate the effectiveness of our approach
on three challenging tasks: scooping a ball against a concave
arc with a spoon, hanging a mug onto a mug tree, and
using tools to hook objects of varying sizes. Compared to
global shape-matching algorithms, our framework achieves
significant improvements when the reference objects are
from different categories than the test objects. Compared
to local shape-matching and simulation-based approaches,
our framework is orders of magnitude faster — for most
test objects, we need to run simulations on fewer than three
candidate contact points to find a solution. Finally, compared
to pretrained feature-matching-based approaches, our method
finds more precise and physically plausible solutions.

II. RELATED WORK

Our algorithm is inspired by contact-based modeling
techniques used in robotic manipulation. Various approaches
have been developed for planning manipulations in contact
space, involving both rigid bodies and robotic hands [14]–
[22]. Techniques such as CMGMP [1], [2], [23] and the
work of [3] perform search over the exponential space of
possible contact sequences to determine possible contact
modes using three basic types: fixed, separating, and sliding
contact, while [4] learns the types of the contact sequence
from a single demonstration to guide the planning around
them. By contrast, in this paper, we focus on leveraging global
and local shape matching to generate analogical contact points
using a single demonstration, which significantly improves
the runtime efficiency of existing methods as well as the
generalizations to unseen objects.

Recently, researchers have explored learning object af-
fordances [9], [11], [24]–[28], usually from a large set of
demonstrations. In contrast, this paper focuses on generating
trajectories with novel objects from a single demonstration
leveraging pretrained visual features and shape analysis
algorithms, requiring no additional training data.

For many years, people have attempted to harness shape
information to guide tool usage through mathematical analysis
[29]–[33] and data-driven approaches [5], [10], [34]–[37].
These methods often necessitate intricate human specifications

or extensive in-domain datasets. In contrast, our approach
integrates the off-the-shelf visual models, pretrained on gen-
eral image datasets, with the generic geometrical property of
curvature. This combination allows us to achieve effective and
efficient tool-using guidance with minimal human intervention
and without the need for large specialized datasets.

III. ONE-SHOT MANIPULATION STRATEGY LEARNING

We propose MAGIC (manipulation analogies for general-
izable intelligent contacts), a novel approach for fast and
generalizable manipulation strategy learning from a single
demonstration. Fig. 2 shows the overall framework. First, we
extract the contact points among objects from the reference
trajectory. Subsequently, we find the candidate contact points
that support the functional affordances on unseen test objects
through a global-to-local matching process, in which we
first perform coarse correspondence point matching using
pretrained vision transformer (ViT) features DINOv2 [38]
(Section III-B), followed by a local alignment based on shape
curvatures to find stable local contact patches (Section III-C).
Finally, the candidate contact points and their matching scores
can be used for tool selection, for retargeting reference object
trajectories, or as waypoints for motion planning (Section III-
D). The generated trajectories will be verified in a physical
simulation and then output to the robot for execution.

A. Problem Definition

We introduce the task of one-shot manipulation strategy
learning. Specifically, we start with a single demonstration
involving the SE(3) trajectories of objects that execute a
particular manipulation strategy to achieve a goal (e.g.,
hanging a hanger) in the reference scene. Our goal is to
generate the trajectories of objects in a target scene that apply
a similar manipulation strategy to a different object (e.g.,
attaching a mug to a mug tree). We simplify this problem by
assuming the robot is only manipulating one of the objects
(i.e., the “tool” that the robot is holding), and the desired
motion can be explained by achieving a sequence of contact
waypoints. Many rigid-body tool-using tasks such as hooking,
poking, stacking, and funneling, all fall into this category. For
now, we assume that the strategy to apply and the manipulanda
in both the reference and target scenes (e.g., the hanger or
the mug) are already identified, and later we will discuss
strategies for selecting the best tool object to accomplish a
certain task. Therefore, the problem can be cast as making the
analogy between the reference object motion and the target
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Fig. 2: The overall pipeline of MAGIC. (a) We first extract contact points from the reference trajectory. (b) Then, we compute a global and local contact
point matching score to select candidate contact points on novel objects. (c) The generated contact points will be used for motion retargeting or motion
planning, and the final motion will be simulated and verified by a physical simulator.

object motion, taking into consideration other environmental
constraints such as robot reachability and collisions.

Based on our insights into decomposing manipulation
trajectories into contact point sequences, this task further
reduces to establishing a functional correspondence between
the demonstrated object and the novel object, which can be
represented as an SE(3) transformation between two rigid
bodies for each contact waypoint. For tasks considered in
this paper, we only consider scenarios where there is a
single contact waypoint responsible for the target motion
(but it generalizes to finding correspondences in multiple
waypoints), and there is a reduced degree of freedom that
can be reasoned about in 2D. In particular, we only model
contacts on a canonical 2D cross-sectional view of the objects.
For example, when we consider hooking objects on a table,
we only consider object motions and shape properties on the
surface that is perpendicular to the table’s surface normal.
This is equivalent to assuming access to a canonical pose of
the object: for hooks, this will be the top-down view when
the hook is placed on the table; for mugs, this will be the
side view that contains the handle of the mug. In this paper,
we assume that this canonical view is given, and in general,
it can be predicted by external modules. Therefore, now, our
goal is to establish a single correspondence between two 2D
images of the objects in E(2) (translations, rotations, and
reflections in 2D) plus scaling; and then we can recover the
SE(3) correspondences based on the canonical object poses.

Overall, the input to MAGIC is an image IT of the reference
object T , an image IT ′ of the target object, and a point
of interest pT on the reference image. Our goal is to find
the corresponding point pT ′ on IT ′ . When we have two
objects interacting: the tool object T being directly held
by the robot (e.g., the hook) and another object O in contact
with T (e.g., the target object we want to hook), our goal
would be to find a contact point pair pT ′ on IT ′ and pO′

on IO′ given the reference (T,O, pT , pO) that maximizes a
score function: score(X ,X ′), where X = (T,O, pT , pO) is the
reference contact and X ′ = (T ′,O′, pT ′ , pO′) is the target
contact. In this paper, we employ a two-stage global-to-
local matching process, therefore, the score function will
be composed of two parts: a global matching score sdino, and
a local matching score scurv:

score
(
X ,X ′)= sdino(T,T ′, pT , pT ′)+λ · scurv(X ,X ′),

where λ is a constant hyperparameter. pO and pT are

automatically extracted using the contact information in
simulation and will be manually annotated for real-world
objects (they can also be automatically recovered using video-
based contact point detector such as [39]). After generating
top candidates for pT ′ and pO′ based on score, for additional
validation, we will simulate the computed trajectory with the
target object and select the first one that succeeded in the
task in simulation. All tasks studied in this paper involve only
stable quasi-static motion. Therefore, they can be simulated
using mild assumptions on point clouds, uniform object
densities, and frictions. When the simulation is unavailable
in challenging dynamic tasks (e.g., hammering), we fall back
to using the highest-scoring contact match.

B. Global Contact Point Matching with Pretrained Features

The global matching score sdino is only computed between
the tool objects T and T ′. In this stage, we will find a candi-
date set of contact points “globally” on the target object T ′,
leveraging visual features pretrained on large image datasets
for capturing global and semantic correspondences [40].
Specifically, we adopt DINOv2 [40] as our visual feature
extractor. Fig. 3a shows the pipeline: we first extract visual
features for both objects (with different image rotations and
reflections) and then find a candidate set of matching points.
Feature extraction. We feed IT and IT ′ into DINOv2
respectively, and get feature maps FT and FT ′ . In practice,
to eliminate the effects of rotation and reflection in 2D, we
apply horizontal flips and 12 rotations on IT ′ and get a total
of 24 images {F i

T ′}24
i=1. Next, we apply a principal component

analysis (PCA) on the feature vectors. Given feature maps
FT ,F i

T ′ ∈ Rn×n×d , let flatten(F) be flattened version of F in
Rn2×d , we have W = PCAd,d′

{
flatten(FT ),{flatten(F i

T ′)}24
i=1

}
,

where n is the spatial resolution, d and d′ are the original
feature dimension and the feature dimension after reduction,
respectively, and W ∈ Rd×d′ is the matrix of principal
component vectors. The output is F̃ = F ×W ∈ Rn×n×d′ .
Matching by patches. Next, we aggregate the features within
a local region (instead of a single point) so as to increase the
receptive field. Formally, let patch(p) denote the m×m local
area centered at point p, we find a point across all rotations
of the target image pT ′ that maximizes the patch-aggregated
cosine similarity with the reference point pT :

sdino
(
T,T ′, pT , pT ′

)
= ∑

p∈patch(pT ),
p′∈patch(pT ′ )

〈
F̃T (p), F̃ i

T ′(p′)
〉
.
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Fig. 3: Global and Local Contact Point Matching. The contact point matching process consists of two phases: (a) global matching using DINOv2 [38]
features; (b) local matching involving multi-scale curvature estimation and refinements using irrelevant point suppression and convexity matching.

We select the top k = 3 matches with the highest sdino to
perform the local contact point matching in the next stage.

C. Local Contact Point Matching with Curvature Estimation

Although DINOv2 can propose contact points within a
coarse global region, it is not accurate enough in terms
of local geometric properties to support collision-free and
stable physical motion. We leverage curvatures to refine
the correspondence matching. Illustrated in Fig. 3b, our
local alignment has four steps. We first construct a multiple
observation scale pyramid: we estimate the curvatures of
the reference contact point and the contact point proposed
by DINOv2 on the target object at multiple scales. Then,
based on the normal direction and the sign of the estimated
curvatures, we perform irrelevant point suppression and
convexity matching to find a physically plausible contact
point for each scale. After that, we repeat the curvature
estimation process on the updated contact points to get a
more accurate curvature and normal direction. Finally, we
accept the best contact point across scales.
Curvature estimation at a given scale. Given an image
of the object with segmentation, we first use the Canny
edge detector [41] to get the object edges. We define the
observation scale as the radius of the region centered at
the point of interest (e.g., the contact point) on the object
edge. For a certain observation scale s of the point c, we
can use the edge points {(xi,yi)}n

i=1 inside s to estimate the
magnitude κ of the curvature and the radius of curvature r.
Specifically, we first find the direction x′ with the largest
variance on {(xi,yi)}n

i=1, and construct a local coordinate
system x′y′ centered at c, then represent {(xi,yi)}n

i=1 in x′y′
to get {(x′i,y′i)}n

i=1. Afterwards, we fit a parabola y′ = ax′2

on points {(x′i,y′i)}n
i=1, i.e.,

a = argmin
a

n

∑
i=1

(
y′i −ax′2i

)2
,

then by the definition of curvature, we have κ = 2|a|,r = 1/κ..

Now, for a pyramid of observation scales {s j}m
j=1, we can

compute a series of radii of curvature {r j}m
j=1. The motion

functional scale is defined as s j,where j = argmin j′

∣∣∣ s j′
r j′

−α

∣∣∣,
where α is a parameter, and in practice, we select α = 3.5 for
all objects across all experiments. This constant corresponds
to a scenario where the observation scale is similar to the
radius of curvature estimated using the points inside the
observation scale. Furthermore, the sign of the curvature (that
is, whether the point on the curve is convex or concave) can
be computed based on the mask of the object. Given both
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the tool object T ′ and target object O′, we define the local
matching score as:

scurv
(
⟨T,O, pT , pO⟩,⟨T ′,O′, pT ′ , pO′⟩

)
=

∣∣∣∣ r(pT )

r(pO)
− r(pT ′)

r(pO′)

∣∣∣∣ .
Irrelevant point suppression and convexity matching.
Direct application of the curvature estimation algorithm is
not robust enough for two reasons. First, the choice of the
observation scale will significantly affect the estimation of the
curvature. As illustrated in Fig. 4a, selecting a very small scale
(scale 1) will make the estimation sensitive to local noise.
Second, for large observation scales, irrelevant points (i.e.,
points on a different “edge” of the object) will be included
and inject noise in the estimation, especially for thin objects
as shown in Fig. 4b.

To eliminate these irrelevant points around the contact point
of interest, we compute the curvature twice. First, we include
all points within the observation scale. After computing the
initial contact point C on the edge of the object and its
curvature, we pick a point S that is at a small distance ∆

from the contact point C along the direction of the radius
of curvature

−→
CO in the initial estimation. Then, we select

all points on the same “edge” as C on the side of S. This
is done by emitting “rays” in all directions from S and for
each ray selecting the point that is hit first. We then use
these points to estimate the curvature again, as shown on the
right of Figure 4b. Moreover, we ensure that the curvature
sign (i.e., the convexity) of the corresponding point in the
target image is consistent with that in the reference image
by performing a local search within the observation region
of the target image, which is depicted in Fig. 4c.

D. Generating Object Motions by Making Contact Analogies

So far we have presented a general mechanism for finding
geometric functional correspondence between reference and
target objects, and it can be used in many downstream
modules. In the one-shot manipulation strategy learning
setting, we consider three particular use cases.
Object motion retargeting. This is the most straightforward
way to generate target object motions assuming there is



a single contact that accounts for the motion. Given the
reference contact point pT , the direction vector v of the
view angle, the normal vector nT of pT estimated from
curvature calculation, we can construct two local frames
for the reference and the target object, and directly retarget
the reference object motion by aligning two local frames.
Motion planning based on contact waypoints and force
directions. We can generate object motion by leveraging
analogical contact points as waypoints for a motion planner.
For example, if our goal is to hang an object at a particular
position, we can first compute the hanging pose by making
analogies with the reference object pose and use a collision-
free motion planner to generate the robot motion. This also
applies to hook-using tasks where the goal is specified as to
apply a particular force along a target direction on an object.
Tool selection. Our pipeline also supports tool selection,
where the goal is to select one “tool” object (e.g., a hook) from
a set of available objects that can best execute the strategy
in the new scenario, given the other object to manipulate
(e.g., the object to be hooked). We apply our algorithm on
all available tools, and select the tool with the highest score.

IV. EXPERIMENTS

In this work, we have conducted experiments both in
simulation and in the real world. For simulation experiments,
we adopt the simulation environment SAPIEN 2 [42] using a
Franka Emika Panda arm. We evaluate different one-shot
manipulation strategy learning algorithms on three tasks,
as shown in Fig. 9: (Scooping) scooping balls of different
sizes with various spoons against a concave arc, given a
demonstration with a reference spoon; (Hanging) hanging
a mug onto a mug tree, given a demonstration of hanging a
hanger on a rod; (Hooking) selecting a tool from a set to hook
objects of varying shapes and sizes, given a demonstration
of hooking a ball with a hook. To generate object motions,
we adopt object motion retargeting for Scooping and motion
planning for Hanging and Hooking from Section III-D. For
all tasks, we have two variants: Floating-Gripper (FG) where
the tool will be manipulated by a floating gripper, and the
harder Arm variant where the tool needs to be grasped and
manipulated by the robot. In this variant, we use a general
antipodal grasp sampler [43] and RRT-Connect [44] for
generating robot trajectories, of which we utilize MPlib [45]
as the implementation. For Hooking, we also have a variant
where we provide a random tool to the floating gripper
(no tool selection). For all tasks, we only provide a single
demonstration of object motion trajectories, the canonical
view, and the pair of contact points on reference objects.
Baselines. We implemented two sets of baselines: global
shape-matching and local shape-matching methods. For global
shape-matching methods, we use two different methods:
principal component analysis (PCA) and iterative closest
point with FPFH features (FPFH+ICP) [46]–[48] on object
point clouds to find the best transformation that would align
the target object and the reference object. Then, we retarget
the object motion or transform the waypoints. For local
shape-matching baselines, we also implemented two methods:

Method Scooping Hanging Hooking

FG Arm FG Arm No Tool Sel. FG Arm

PCA 27.6 16.7 0.0 0.0 5.0 0.0 0.0
FPFH+ICP 32.9 27.2 0.0 0.0 6.7 0.0 0.0
DINO Matching 55.7 41.4 23.9 21.6 49.2 66.7 24.0
Curvature-Only 13.9 5.6 68.7 38.1 60.0 76.7 3.3
MAGIC 94.4 65.4 92.9 84.3 65.0 100 63.3

TABLE I: Average success rates (%) of 3 tasks. ‘floating gripper (FG)’
indicates manipulation by directly setting positions and velocities of objects,
focusing only on object-object interactions, excluding the robot. All methods
except for Curvature-Only run almost deterministically. Curvature-Only has
an average std. of 6.6%.
DINO matching which directly finds the best functional
correspondence based on the DINOv2 features, and curvature
matching which uses the random contact point sampling
method from [4] and applies the curvature filtering algorithm
from MAGIC to rank all contact points. Since this method
involves random sampling of contact points and simulation,
we cap its runtime to 180 seconds and use the contact point
with the highest matching score found at that time. Note that
all methods except for the sampling-based curvature-matching
algorithm have very small variances across different runs
(our algorithm is almost deterministic). Therefore, we do
not include performance variances for different methods. We
do not compare with methods such as NDF [5], KETO [9],
and GIFT [10] in the main experiment, because they assume
access to a fairly large dataset of 3D object models for
representation learning, but we provide a case study of
comparing MAGIC with KETO in Table IV.

A. Experiment Results in Simulation

Table I summarizes the overall performances of variants
of our methods and other baselines. The success rates are
computed over 6 spoons and 3 objects for Scooping, 134
mugs for Hanging adopted from [5], and 4 tools and 5 objects
for Hooking adopted from [4]. Overall, our model MAGIC
performs the best. We break down our analysis into the
following bullet points.
Local shape matching can significantly improve perfor-
mance over global shape matching. We compare MAGIC
with global shape matching methods, PCA and FPFH+ICP. As
shown in Table I, global shape matching is ineffective because
it lacks an understanding of the local contact points. Fig. 5(a)
illustrates an example of the correspondence established by
global shape matching (left) and MAGIC (right). To further
demonstrate the effectiveness of local shape matching, we
also provide an additional study on the mug-hanging task in
Table II, where the demonstration includes the trajectory of
hanging a held-out mug on the mug tree (i.e., intra-category
transfer), rather than the hanger. In this setting, FPFH+ICP
achieves a success rate of 41.1% (c.f . 94.0% for MAGIC). The
results indicate that PCA and FPFH+ICP (as well as the DINO
matching algorithm) can sometimes successfully achieve intra-
category transfer by aligning overall shapes. However, they
perform poorly at inter-category transfer due to the lack of
local contact point alignment. By contrast, MAGIC excels in
both intra-category and inter-category transfers by accurately
identifying contact points that satisfy both global and local
constraints.
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PCA FPFH+ICP DINO Match Curvature-Only MAGIC

Hanging (intra-cat.) 5.2 41.1 64.9 67.9 94.0
Hanging (inter-cat.) 0.0 0.0 23.9 68.7 92.9

TABLE II: Average success rates (%) of Hanging (intra-category transfer
vs. inter-category transfer). While PCA and FPFH+ICP can occasionally
achieve intra-category transfer, they fail to perform inter-category transfer.
The experiments are conducted on the FG variant.

Local curvature matching is crucial, in addition to
pretrained features. The comparison between MAGIC and
other methods that do not use local curvature information (e.g.,
PCA, FPFH+ICP, and DINO Match) shows the importance
of local curvature matching. As an illustration, as shown in
Fig. 5(b), the contact points proposed solely by the pretrained
model are likely to fail due to incorrect curvature sign and
incorrect interaction direction. By contrast, MAGIC leverages
local curvature information to identify the appropriate contact
points and correct force direction through the curvature
estimation. Moreover, on the Hooking task, pairwise curvature
matching plays an important role in selecting the most
appropriate tool for different objects, as shown in the
comparison between the No Tool Sel. and the FG variant in
the hooking task.
Using pretrained features as guidance significantly im-
proves contact point selection. In Table I, MAGIC shows
superior performance over the sampling-based curvature
matching algorithm. In principle, without noise in curvature
computation and given a sufficient number of sampled points,
the curvature-based method would be capable of finding the
best contact. However, it will be very slow (e.g., in [4], the
authors set the timeout to 600 seconds for the search). In this
work, we leverage the global and semantic correspondence
provided by DINOv2 features to reduce the searching space
of local geometry matching. In Fig. 5(c), we visualize how
pretrained DINOv2 features can improve data efficiency by
identifying the best contact and grasping points that curvature
alone cannot differentiate.

Moreover, we provide additional comparison of different
pre-trained features such as DIFT [49] and SD-DINO [40] in
Table III. The results indicate that DINOv2 not only provides
better guidance for shape matching but it also runs faster. This
difference can be attributed to the distinct pretraining tasks
and model architectures of DINOv2. DINOv2 employs self-
supervised learning techniques, involving contrastive learning
and a teacher-student training paradigm, where the teacher
network has access to global views and distills knowledge
to the student network — which has access to both global
and local views [38]. This approach enhances the model’s
understanding of global information. By contrast, diffusion
models are trained on generation tasks through a denoising
process, which focuses more on local textures [50]. Regarding

model structures, DINOv2 uses Vision Transformer (ViT) [51]
with an attention mechanism applied to patches of the input
image, whereas diffusion models are based on U-Net [52]
and process the input and output as full-resolution images,
requiring more computation time.

Method Scooping Hanging Hooking Avg. Time

MAGIC (DIFT + Curvature) 62.2 81.3 100 60.8s
MAGIC (SD-DINO + Curvature) 73.8 91.8 96.0 50.7s
MAGIC (DINOv2 + Curvature) 94.4 92.9 100 34.0s

TABLE III: Additional studies on the choice of pretrained image features.
We substitute DINOv2 with SD-DINO [40] and DIFT [51]. We present the
average success rates (%) and average time consumed of the methods. The
experiments are conducted on the FG variant.

Further comparison with dataset-dependent methods.
KETO [9] and GIFT [10] introduce keypoints as the guidance
for tool-using strategies and utilize self-supervised learning
on the positive samples obtained from trial-and-error with the
tools from a large tool dataset. While MAGIC also introduces
a similar concept, contact points, we propose to consider
contacts as pairs of contact points. In contrast, keypoints
only focus on the tool object. Moreover, both KETO and
GIFT need a dataset of tools, while MAGIC only requires one
single demonstration and can be generalized to tools with
very different shapes.

In Table IV, we provide additional experiment results
comparing MAGIC with KETO over the Hammering and
Pushing tasks from KETO. Since KETO requires a decently
large dataset of tool meshes to perform self-supervised
learning, which is not available for those tasks in our main
experiment, we perform experiments on their tasks. The
single demonstration for MAGIC is composed of an image
of a reference hammer taken in the simulator and the pixel
coordinates of the function point and the effect point. The
results indicate that MAGIC outperforms KETO on both tasks.
To further investigate the generalizability, we provide the
success rate of transferring from hammers to hammers and
non-hammers, respectively. For both intra-category and inter-
category generalization, MAGIC performs better than KETO.
Ablation studies. Table V provides additional ablation studies
on different design choices of our method MAGIC. First, there
is a significant performance drop observed in the scooping

Method

Hammering Pushing

Hammers →
Hammers

Hammers →
Non-hammers Average Average

KETO 66.4 46.3 56.4 71.7
MAGIC 75.6 53.7 64.4 76.3

TABLE IV: Comparison between MAGIC and KETO [9] (Learning
Keypoint Representations for Tool Manipulation). We present the average
success rates (%). We also investigate the intra-category and inter-category
generalizablity of MAGIC and KETO, indicated by Hammers → Hammers
and Hammers → Non-hammers, respectively.



Method Scooping Hanging Hooking Avg. Time

DINO Matching (Best Baseline) 55.7 23.9 66.7 12.4s
MAGIC (DINOv2 + Curvature) 94.4 92.9 100 34.0s

(w/o. Feature PCA and Patch) 71.7 93.3 62.0 33.8s
(w/o. Two-Step Curvature) 83.3 53.7 75.6 14.1s
(w/o. Simulation Verification) 77.8 71.6 50.0 19.7s

TABLE V: Ablation studies. We present the average success rates (%) and
average runtime of all methods, on the FG variant.

Camera 1 Camera 2

Franka Emika 
Panda Arm

(a) Hanging (b) Hooking

Fig. 6: Real-world experiment setup.

and hooking tasks if we remove feature PCA and patch-
based score aggregation. This demonstrates that both methods
reduce noise in the feature maps and improve the accuracy
of contact point matching. Second, we consider removing
the irrelevant point suppression and convexity matching.
The model still surpasses vanilla DINO matching, which
demonstrations the effectiveness of curvature estimation, but
we see a clear performance drop compared with the full
algorithm MAGIC. Finally, we demonstrate that removing
additional geometric and physical feasibility checks based on
the simulator, and instead selecting only the trajectory with
the highest matching score, results in a notable performance
decline. While our matching pipeline and motion generator
can generate plausible contact points and actions, simulation
verification remains essential to ensure that the executed
trajectory is collision-free and maintains physical stability.

B. Real-World Experiments

To evaluate the effectiveness of MAGIC in real-robot
systems, we conducted experiments on Hanging and Hooking
utilizing a Franka Emika Panda arm with a parallel gripper, as
depicted in Fig. 6. We capture the RGB and depth image of
the scene with two RealSense D435 cameras, whose extrinsics
are calibrated to the frame of the base link of the robot.

We perform contact point matching on the RGB image
captured by the camera, then import a reconstructed (possibly
partial) object mesh from the RGBD camera into the SAPIEN
2 simulator for motion retargetting, motion planning, and
verification. To reconstruct the mesh of the objects from the
RGBD image, we first use the Segment Anything model [53]
to get the mask of the objects, and extract the corresponding
point cloud of each object. Then, we remove outliers with
DBSCAN [54] and select the cluster with the largest number
of points. We then perform object completion by projecting
the point cloud down to the table plane, and using Alpha
Shape [55] to reconstruct the surfaces of the object mesh.

To provide a quantitative assessment, we perform a total
of 10 trials for each object. We report the success rates of
various methods for Hanging across three visually distinct
cups and Hooking across four tools from different categories,
as shown in Fig. 7. MAGIC has consistently achieved the

Hanging Hooking0

20

40

60

80

Su
cc

es
s R

at
e 

(%
)

37
50

27

48

77
65

DINO Matching
Curvature-Only
MAGIC

Fig. 7: Average success rates of real-world experiments.

Hooking

Hanging

Fig. 8: Contact point matching results on real-world objects.

highest performance, which validates the effectiveness and
practical applicability of MAGIC in the real world. We also
illustrate the contact point matching found by MAGIC on
more real-world objects in Fig. 8. For failure case analysis,
please check out our project website.

V. CONCLUSION

We have presented MAGIC, a framework for one-shot
manipulation strategy learning, enabling robots to quickly
adapt and execute tool-using tasks with novel objects. We
integrate both data-driven and analytical shape-matching
algorithms for the best of both worlds, to quickly generate
precise and physically plausible contact points. Noteably,
our algorithm is generic in the sense that we do not need
task-specific information for the matching algorithm other
than the reference contact waypoints. Experiments on three
representative tasks illustrate the effectiveness of our method.
Limitations. Currently, our pipeline is designed for making
contact analogies for a single contact patch between two
objects. Future work should consider interactions among
multiple objects with multiple contact points, and extend the
current shape-based matching criteria to consider forceful
affordance. Another future direction would be to consider
predicting or searching over 2D views of objects for corre-
spondence matching. Moreover, our overall framework of
coarse-to-fine and semantic-to-geometric matching can be
extended to 3D pretrained features [56]–[58] and curvatures.
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Demonstration Novel Scenes Novel Objects
Fig. 9: Visualization of demonstrations and novel scenes/objects. We evaluate the ability of one-shot manipulation strategy learning by providing a single
demonstration for three tasks: Scooping, Hanging, and Hooking (shown in the first column), and then testing on various unseen instances.

APPENDIX

Visualization of novel scenes and diverse objects. In Fig. 9,
we present the demonstrations, the novel scenes, and examples
of novel objects for each task.
1) Scooping: Demonstrated on a reference spoon and a
reference ball; evaluated on 4 spoons, a soup ladle, a
measuring cup, and 3 different balls.
2) Hanging: Demonstrated on hanging a hanger to a rod;
evaluated on hanging mugs to a mug tree [5]. where the
meshes of the mugs are adopted from ShapeNet [59]. We
filter out those meshes unsuitable for hanging (e.g., mugs
without handles), and use 134 mugs for evaluation.
3) Hooking: Demonstrated on hooking a reference object
with a hook; Evaluated on hooking 5 different cylinders with
4 tools (a pair of scissors, a hanger, a caliper, and a watch).

Visualization of trajectories for simulation tasks. In
Fig. 11, 12 and 13, we provide two example trajectories of
each task generated by MAGIC. Visualization of trajectories
for real-world tasks. We demonstrate an example trajectory
of Hanging and Hooking in Fig. 10.

Fig. 11: Two example episodes of Scooping in simulation.

Fig. 12: Two example episodes of Hanging in simulation.

Fig. 13: Two example episodes of Hooking in simulation.

Additional Experiments on Hanging and Hooking with
the Alphabet Toolkit. To further showcase our method’s
ability to generalize across objects of varying shapes, we
conducted additional experiments on Hanging and Hooking



Fig. 10: Example episodes of Hanging and Hooking in the real world.

Fig. 14: Visualization of Hanging alphabet objects in simulation (top)
and real-world (bottom) settings.

tasks using the Alphabet Toolkit in both simulation and
real-world settings. Visualizations of these experiments are
presented in Figures 14 and 15. Please visit our project
website for the videos of the additional experiments.
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