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Abstract

High precision is required for ophthalmic robotic systems. This paper presents the kinematic 

calibration for the delta robot which is part of the next generation of Steady-Hand Eye Robot 

(SHER). A linear error model is derived based on geometric error parameters. Two experiments 

with different ranges of workspace are conducted with laser sensors measuring displacement. 

The error parameters are identified and applied in the kinematics to compensate for modeling 

error. To achieve better accuracy, Bernstein polynomials are adopted to fit the error residuals after 

compensation. After the kinematic calibration process, the error residuals of the delta robot are 

reduced to satisfy the clinical requirements.

I. Introduction

Vitreoretinal microsurgery is challenging due to the constrained workspace and extremely 

high accuracy requirements. Human hands are limited in terms of tremor and precision 

in manipulating surgical tools [1]. To reconcile these problems, a number of medical 

robotic systems with the ability to cancel tremor, and with sensor-servo functions have 

been developed [2].
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At the present time, there have been three broad classes of ophthalmic robots developed: 

handheld robots, teleoperated robots, and cooperative-control robots [3]. A handheld robot 

is directly held and manipulated by surgeons. It has fewer degrees of freedom (DOFs), 

smaller dimensions and simpler mechanisms, which make it less expensive and more 

intuitive in clinical applications [2]. The Micron system developed by Carnegie Mellon 

University is one of the most referenced handheld robot systems [4]. The AID [5] and 

ITrem [6] also belong in this category. The other class are teleoperated robots consisting 

of a patient-side robot and a user interface. Surgeons can manipulate the robot remotely 

with the benefit of motion scaling and tremor-free control. The Preceyes from Eindhoven 

University of Technology, which is able to improve precision by 10 to 20 times that 

of human hands, is well-known in this field [7]. This robotic system has been used in 

clinical applications. Another example is the master-slave robotic system developed by the 

University of Tokyo [8]. It has attained successful microvascular cannulation in an ex-vivo 
experiment. In cooperative-control robotic system class, the surgeon and the robot share 

control of surgical tools. The robotics manipulator from the University of Leuven is a typical 

cooperative-control system [9]. The Steady-Hand Eye Robot (SHER) developed by Johns 

Hopkins University also falls into this category [10].

The SHER is a 5-DOF cooperative-control system. While the operator is manipulating the 

shared surgical tool, the operator’s hand forces exerted on the robot are sensed by force/

torque sensors mounted on the tool, multiplied by a controller gain factor, and converted 

to desired velocity command of the robot end-effector. In this way, the robot can move 

precisely and in the absence of physiological tremor. The newest generation of SHER is 

shown in Fig. 1. This robotic platform consists of a 3-DOF stage based on a delta robot 

structure, and a 2-DOF robotic arm supporting a compact tool holder with a quick-release 

mechanism and a surgical tool. The delta robot and the robotic arm are connected serially, 

which means the accuracy of the delta robot can be independently analyzed to contribute to 

the entire robot precision. In this paper, we focus on the resulting improvement in accuracy 

of the surgical tool tip for subretinal injections. It is assumed that all the rotary motions are 

performed prior to the needle insertion process, thus only the Cartesian motion defined by 

the delta robot contributes to the accuracy during this process. Therefore, this paper focuses 

solely on the precision improvement of the delta robot.

The robotic system is subject to many sources of error, including machine tolerances, 

assembly errors, structural deformations, backlash, and component wear. Some of these 

errors are constant which means they could be reduced through kinematic calibration. To 

achieve accuracy improvement, an error model is needed. Common methods, including the 

product of exponential (POE) method and the vector loop method, may be used for error 

modeling [11]. These methods have been applied to parallel mechanics such as delta robots 

resulting in improved performance [12]. After parameter identification, the error can be 

compensated via the kinematics. In addition, a stiffness model can be introduced into the 

kinematic calibration process [11]. To acquire better results, some numerical methods such 

as polynomial fitting can be applied with the kinematic calibration [13].

In our study, the contribution is twofold. First, a linear error model with geometric error 

parameters for the delta robot is derived and combined with a Bernstein polynomial model 
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for correction. Second, experiments for kinematic calibration are then conducted to identify 

the parameters and coefficients of these two models and reduce the error residuals following 

compensation.

II. Methods

The SHER system is developed here in order to assist ophthalmologists in providing 

therapy to the subretinal domain which is the space between the internal limiting membrane 

(ILM) and the retinal pigment epithelium (RPE) cells layer [2]. The proposed positional 

accuracy requirement for this robotic system is 20 μm, which is more precise than the 

clinical accuracy of 25–30 μm needed for subretinal injections [2]. To achieve this proposed 

precision, the machining and assembly errors of the delta robot are minimized, followed 

by a kinematic calibration. The kinematic calibration workflow is shown in Fig. 2. First, 

the linear error model is derived using Jacobian matrix based on the selection of error 

parameters. Second, the error parameters are identified according to the experiment data. 

Then, the error can be compensated by applying identified parameters in the kinematics. 

Lastly, the error residuals after compensation are fitted by a Bernstein polynomial to further 

improve the accuracy of the delta robot.

A. Error Modeling and Parameter Identification

A vector loop method is used for error modeling since the delta robot is a parallel 

mechanism. Fig. 3 shows a 3-D view of the delta robot used in the SHER. It is composed 

of a base platform, a moving platform and three limbs. Each limb is built by two parallel 

rods and spherical joints. The moving platform remains parallel to the base platform because 

of this parallelogram mechanism. For the error model, the limbs are simplified as PUU 
limbs, where P represents the active prismatic joint and U represents the universal joint. 

The base frame {O} is attached to the center of the base platform, and the end-effector 

frame {O′} is attached to the center of moving platform. The orientation of the base frame 

and the end-effector frame always remains the same due to the parallelogram configuration. 

The Cartesian displacement of the moving platform are defined by x, y, z. For those three 

limbs, the nominal prismatic joint values are Li (i = 1, 2, 3). The nominal distances between 

the base frame and the prismatic joint are rbi. The nominal distances between end-effector 

frame and the universal joint are rpi. The relative angles for the prismatic joints on the base 

platform are θbi with respect to the base frame. The relative angles for the universal joints 

on the moving platform are θpi with respect to the end-effector frame. The nominal length of 

the limbs is li. The joint values of three prismatic joints are qi. The i-th vector loop closure 

equation is given by

r = rbi + Li + li − rpi, (1)

where r = [x, y, z]T, rbi = [rbi cos θbi, rbi sin θbi, 0]T, rpi = [rpi cos θpi, rpi sin θpi, 0]T, and Li 

= [0, 0, qi]T. All the vectors are expressed in the base frame {O}. Based on (1), the length of 

the limb li can be written as

li2 = li 2 = r + rbi − rpi − Li
2 . (2)
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The scalar form of (2) is

x2 + y2 + z2 + 2aix + 2biy − 2qiz + ci = 0, (3)

where ai = rpi cos θpi − rbi cos θbi, bi = rpi sin θpi − rbi sin θbi and ci = ai2 + bi
2 + qi2 − li2.

To derive the error model, all the geometric error sources are chosen as error parameters. As 

the source errors are much smaller than the nominal values, the first-order approximation of 

(3) is formulated by

2 x + ai Δx + y + bi Δy + z − qi Δz+xΔai + yΔbi − zΔqi + Δci = 0, (4)

Where

Δai = cos θpi Δrpi − rpi sin θ pi Δθpi − cos θbi Δrbi + rbi sin θbiΔθbi, (5)

Δbi = sin θpi Δrpi + rpi cos θpi Δθpi − sin θbiΔrbi − rbi cos θbiΔθbi, (6)

Δci = 2aiΔai + 2biΔbi + 2qiΔqi − 2liΔli . (7)

Substituting (5)–(7) into (4) and rewriting the equations result in the linearized error model 

of delta robot

Δr =
Δx
Δy
Δz

= Ja qi Δpa, (8)

where Ja is a 3×18 Jacobian matrix and Δpa is an 18×1 vector including all the errors of the 

geometric parameters Δrbi, Δrpi, Δθbi, Δθpi, Δqi, Δli.

Before identifying error parameters, their identifiability needs to be verified. After assigning 

arbitrary joint values, the rank of the Jacobian matrix Ja is calculated. By checking the 

dependence of each two rows, Δrbi and Δrpi are found to be dependent. Δθbi and Δθpi are 

found to be dependent as well. The final error model without redundant parameters can be 

written as

Δr =
Δx
Δy
Δz

= J qi Δp, (9)

where J is a 3×12 Jacobian matrix and Δp = [Δrb1, Δθb1, Δq1, Δl1, … , Δrb3, Δθb3, Δq3, 

Δl3]T is a 12×1 vector.

To identify the error parameters, the identification equation can be constructed as

δr* = J*Δp, (10)
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where Δr* = Δr1
T, Δr2

T, …, ΔrnT
T
, which is built by stacking the end-effector positional error 

at n different configurations and J* = J1
T, J2

T, …, Jn
T T

, which is built by stacking the 

corresponding Jacobian matrices. The least square algorithm can be adopted to solve for 

the parameters. The objective function could be expressed as

argmin
δp

δr* − J*Δp . (11)

The identified parameters can be applied in kinematics to achieve the accuracy improvement 

referred to as the Jacobian method.

B. Bernstein Polynomial Correction

Due to several reasons, the error residuals compensated by the Jacobian method may not 

meet the accuracy requirements. In order to achieve better accuracy, a Bernstein polynomial 

is applied to correct the residuals. Compared to the power-based polynomial, the Bernstein 

polynomial has better numerical stability and robustness [14]. The model we use can be 

expressed as

BP xd, yd, C, n = ∑
j = 0

n
∑

k = 0

n
Cj, k

n
k

n
j xdk 1 − xd

n − kydj 1 − yd
n − j , (12)

where xd and yd are desired end-effector position calculated by the forward kinematics, n 
is the order of the Bernstein polynomial, Cj,k is the undetermined coefficient, and C is a 

matrix including all (n + 1)2 coefficients. To fit the Bernstein polynomial, the input xd and 

yd are required to be normalized. The end-effector position z is not introduced in this model 

to prevent overfitting since the horizontal performance of the delta robot is assumed to be 

the same among different levels. Different Bernstein polynomials are used to fit the error 

in three directions. The Levenberg-Marquardt algorithm is applied to fit the coefficients 

because of its good performance in non-linear least square problems [15]. The objective 

function is written as

argmin
C

ejac − BP xd, yd, C, n , (13)

where ejac represents the error residual compensated by Jacobian method in one direction.

III. EXPERIMENT

To implement the kinematic calibration method proposed in the previous section, the desired 

position from forward kinematics and the actual position from the external measurement are 

required. In this case, the experiments are conducted on the prototype of the delta robot.

The setup is shown in Fig. 4. The prismatic joints of the delta robot are controlled with 

a Galil motion controller (DMC-4183, Galil Motion Control, Rocklin, CA) through three 

servomotors (Maxon RE25 10 W, Maxon Precision Motors, Inc., USA) and three magnetic 

linear absolute encoders (RLS, LA11DCB13BKA30DF00, 13-bit resolution, Renishaw, 
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Inc., West Dundee, IL). The controller is connected to a PC and the Galil Design Kit 

software is used to send control commands and record absolute encoder data. Three laser 

sensors (Keyence LK-H157, range 150±40 mm, linearity ±1.6 μm, Keyence Corporation of 

America, Itasca, IL), which are connected to the laser control box, are used for obtaining the 

3-D position of the moving platform. To reduce measurement error and the noise of sensors, 

an aluminum calibration cube with smooth surface and good perpendicularity (4×4×2 in, 

Tight-Tolerance Multipurpose 6061 Aluminum, McMaster-Carr Supply Company, Elmhurst, 

IL) is mounted on the moving platform of the delta robot.

The available workspace for the delta robot is a cylinder with the radius of 27.5 mm and the 

height of 40 mm. In clinical application, the SHER will be used with a human operator in a 

loop containing real-time microscope image feedback. Surgeons will start to manipulate the 

robot from somewhere in the workspace until the tool tip reaches the target. To accomplish 

the therapeutic maneuver in the subretinal domain, the robot is expected to be more accurate 

in the region of interest (ROI) on the retina. Since the human eye is approximately a 25 

mm sphere in diameter [2], the ROI of this robot is defined as a 20×20×20 mm cube in the 

center of the workspace and the center point of the ROI is defined as the home position. In 

this case, two experiments are designed and conducted. The first experiment is the whole 

workspace calibration. Three horizontal planes with a height of −20, 0, 20 mm relative to the 

home position are selected. In each plane, 14×14 grid points are tested for the delta robot. 

The moving range is from −20 mm to 20 mm in both the x and y directions. The second 

experiment is the local workspace calibration directed at the ROI. Similarly, three horizontal 

planes with a height of −10, 0, 10 mm are chosen, and 11×11 grid points are selected in each 

plane to be tested. The moving range is from −10 mm to 10 mm in both x and y directions.

Before the experiment, the reference position is set as the position where the moving 

platform and the base platform are concentric. The experiment starts with commanding the 

delta robot to the assigned position and staying for two seconds. The absolute encoder data 

and laser sensor data are recorded at the same time. For each configuration, the joint values 

are found from the encoder data, and the actual position of the moving platform is acquired 

using the difference of laser sensor readings between current position and reference position. 

The same experiment is repeated five times to check the repeatability of the delta robot. 

After the experiment, data for 588 poses of the whole workspace calibration and 393 poses 

of the local workspace calibration are collected. After converting the raw data to joint values 

and actual positions, the error of one pose can be calculated by

e0 =
ex0
ey0
ez0

=
xm
ym
zm

− F Li , (14)

where xm, ym, zm are measured positions in x, y, z direction and F(Li) is forward kinematics 

output.
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IV. RESULTS AND DISCUSSION

To assure that the kinematic calibration can be applied to this robot, the repeatability of 

two experiments is checked. The repeatability of motion in three directions for each point is 

calculated and the average in x, y, z for the whole workspace calibration experiment is ±19.1 

μm, ±14.9 μm, and ±14.5 μm respectively. For the local workspace calibration experiment, 

the average in x, y, z is ±3.7 μm, ±5.4 μm, and ±4.1 μm respectively.

To apply the kinematic calibration algorithm, the error residuals in x, y, z for all the 

configurations are calculated using (14). The results of two calibration experiments in one 

horizontal plane (z = 0) are shown in Fig. 5. The results indicate that the error varies 

smoothly in the workspace. The RMS error and standard deviation for all the points in two 

experiments are shown in Table 1. To compare the performance of different experiments, 

the RMS error of the whole workspace calibration in the ROI (x, y ∈ [−10,10] mm) is 

also calculated. The overall pattern and variation trends are consistent between different 

experiment methods.

With the error residuals of each pose and corresponding joint values, the error parameters 

for two experiments can be identified by least square algorithm with the objective function 

(11). The identified parameters are shown in Table 2, which can be applied to the forward 

kinematics. The error residuals after compensation are shown in Fig. 6 and the RMS errors 

are listed in Table 1. For Jacobian method, the performance in the middle of the workspace 

is better than overall workspace and is close to the result of local workspace calibration 

as expected. Comparing the results before and after calibration, except from some outliers 

at the extreme positions, the error is significantly reduced by 5 to 10 times. The Jacobian 

method successfully captures the majority of the error sources using a simple error model 

with 12 parameters. However, the result after compensation doesn’t meet the proposed 

requirement of 20 μm. One possible reason is that some conditions assumed in the error 

model are not satisfied. For example, the moving platform and the base platform might not 

stay parallel while moving. Another possible reason is that some measurement error, such as 

the misalignment between the laser beams and the surfaces of the calibration cube, are not 

being considered. Through the observation of the trend in the residual error, the polynomial 

correction is adopted over the Jacobian method.

The data from only one horizontal plane are used in the fitting process to prevent overfitting. 

The inputs of the Bernstein polynomial are normalized desired position calculated from 

the joint values, and the output is the error residuals compensated by Jacobian method. 

The data set is randomly split into three parts, 70% for training, 20% for validation, 

and 10% for testing [16]. The coefficients of the polynomial with different orders are 

solved by Levenberg-Marquardt algorithm with the objective function (13). The Bernstein 

polynomials from 2nd to 6th order are considered since the higher order polynomial may 

cause overfitting [17]. The final adopted model is chosen by finding the polynomial with 

the best performance which is defined as the lowest RMS error on the validation set. 

The model choice and RMS error of the test set are given in Table 3. To further validate 

the performance of this method and the assumption that the delta robot has the same 

performance between different horizontal planes, the trained models are also applied to the 
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error residuals from the other two horizontal planes that are not used for fitting. After the 

Bernstein polynomial correction, the error is further reduced for the two experiments. For 

the whole workspace calibration, the performance of the different levels are not consistent, 

which may verify the assumption that the moving platform and the base platform are not 

always parallel. The local workspace calibration has more accurate and more consistent 

performance in a smaller workspace as compared to the whole workspace calibration. The 

error residuals are reduced to less than 20 μm. To get better performance in the surgical tool 

tip accuracy, it is recommended to use the error parameters and Bernstein polynomial of 

the local workspace calibration when the tool tip is inside the region of interest. When the 

tool tip is outside the region of interest, using the error parameters and Bernstein polynomial 

of the whole workspace calibration is recommended. Since the cooperative control strategy 

is adopted for this robot, applying the error parameters to the Jacobian matrix of the joint 

velocities could also improve the control performance.

Finally, by applying the Jacobian method and Bernstein polynomial correction, we achieved 

a reduction in error by two orders of magnitude in the center of the workspace, thereby 

meeting the proposed accuracy requirement for clinical application.

V. Conclusion

Through this study, the following points have been achieved:

• A linear error model containing 12 independent geometric error parameters and 

a Bernstein polynomial model are proposed for the kinematic calibration of the 

delta robot to improve the accuracy of a cooperative-control ophthalmic robotic 

system.

• Two experimental methods having different ranges of workspace for the delta 

robot are conducted using three laser sensors to measure the external positions.

• The 12 geometric error parameters are identified using least square algorithm on 

the datasets for both whole workspace and local workspace calibration. After the 

compensation by error parameters, the error residuals are reduced by on the order 

of 5 to 10 times.

• The Bernstein polynomial is applied to fit the error residuals after the Jacobian 

method. The undetermined parameters are solved by the Levenberg-Marquardt 

algorithm. After compensation, the RMS error for the local workspace 

calibration is reduced to less than 20 μm following kinematic calibration, which 

now meets the accuracy requirement for the clinical application.

Future work including verification of the delta robot kinematic calibration, kinematic 

calibration of the robotic arm as well as analysis of resolution and rigidity for the whole 

robot will be performed to achieve the functional purposes of this new SHER system.
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Figure. 1. 
Demonstration of the clinical setup of the new SHER system
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Fig. 2. 
Workflow of the delta robot kinematic calibration. The green blocks are experiment steps, 

the blue blocks are analytical steps

Xiao et al. Page 12

Int Symp Med Robot. Author manuscript; available in PMC 2022 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
3-D view of the delta robot
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Fig. 4. 
Experiment setup of kinematic calibration
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Fig. 5. 
Error residuals in x, y, z direction of the whole workspace calibration (left) and the local 

workspace calibration (right) before calibration at the height of 0 mm
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Fig. 6. 
Error residuals in x, y, z direction of the whole workspace calibration (left, scale = 

0.5mm for error) and the local workspace calibration (right, scale = 0.1mm for error) after 

compensated by error parameters at the height of 0 mm
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TABLE II.

IDENTIFIED ERROR PARAMETERS

i

Whole Workspace Local Workspace

δr

bi

(mm)

δθ

bi

(deg)

δL

i

(mm)

δl

i

(mm)

δr

bi

(mm)

δθ

bi

(deg)

δL

i

(mm)

δl

i

(mm)

1 −2.31 0.38 −0.43 1.23 1.33 0.12 1.31 −0.70

2 5.19 0.21 −1.79 3.49 3.76 0.15 1.28 0.28

3 2.83 −1.32 0.68 0.44 2.57 −1.83 1.60 −0.49
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