
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BENEFITS AND LIMITATIONS OF COMMUNICATION IN
MULTI-AGENT REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Chain-of-thought prompting has popularized step-by-step reasoning in large lan-
guage models, yet model performance still degrades as problem complexity and
context length grow. By decomposing difficult tasks with long contexts into
shorter, manageable ones, recent multi-agent paradigms offer a promising near-
term solution to this problem. However, the fundamental capacities of such sys-
tems are poorly understood. In this work, we propose a theoretical framework
to analyze the expressivity of multi-agent systems. We apply our framework to
three algorithmic families: state tracking, recall, and k-hop reasoning. We derive
bounds on (i) the number of agents required to solve the task exactly, (ii) the quan-
tity and structure of inter-agent communication, and (iii) the achievable speedups
as problem size and context scale. Our results identify regimes where communi-
cation is provably beneficial, delineate tradeoffs between agent count and band-
width, and expose intrinsic limitations when either resource is constrained. We
complement our theoretical analysis with a set of experiments on pretrained LLMs
using controlled synthetic benchmarks. Empirical outcomes confirm the tradeoffs
between key quantities predicted by our theory. Collectively, our analysis offers
principled guidance for designing scalable multi-agent reasoning systems.

1 INTRODUCTION

Chain-of-thought (CoT) prompting has become the de facto standard for tackling complex reasoning
problems. By encouraging models to ”think step-by-step”, CoT significantly improves performance
on tasks requiring mathematical and logical reasoning (Wei et al., 2022). Building on this, recent
approaches view reasoning as a structured traversal over thoughts, exploring methods such as self-
consistency (Wang et al., 2022), tree-of-thoughts (Yao et al., 2023), and stream-of-search (Gandhi
et al., 2024). In parallel, post-training for large reasoning models (LRMs) increasingly relies on
reinforcement learning over generated CoTs (OpenAI, 2025; Guo et al., 2025).

Despite these advances, several limitations have emerged. The reasoning abilities of LRMs degrade
as the complexity of problem instances increases or as the context length grows (Shojaee et al.,
2025; Sun et al., 2025). To address this, new approaches based on multi-agent collaboration (e.g.,
Zhang et al., 2024b; Tran et al., 2025; Xiao et al., 2025; Hsu et al., 2025) decompose complex tasks
into simpler subproblems, coordinating multiple agents to achieve stronger performance. These
frameworks offer promising near-term solutions, yet the theoretical underpinnings of their expres-
sive capacity remain poorly understood. While the expressive power of Transformers with CoT
prompting has been studied in depth (Merrill & Sabharwal, 2023; Amiri et al., 2025), little is known
about the fundamental limits and tradeoffs of communication and resource allocation in multi-agent
reasoning schemes. This gap motivates the central question of our work:

From an algorithmic perspective, are there tasks that provably benefit from communication and
dynamic resource allocation in multi-agent reasoning systems?

We address this question by proposing a theoretical framework for analyzing the expressivity of
collaborative multi-agent reasoning strategies. Our analysis applies to settings where both problem
complexity and context size scale, and focuses on three representative algorithmic families: state
tracking, recall, and k-hop reasoning. For each task family, we establish bounds on the number of
agents and the quantity of communication required, and we characterize the tradeoffs between these

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

quantities. Finally, we complement our theoretical results with empirical validation using pretrained
large language models. Our contributions are as follows:

• We propose a formalization of multi-agent reasoning systems grounded in the rich literature
on Transformer expressivity.

• For three distinct families of algorithmic tasks—recall, state tracking and k-hop
reasoning—we derive bounds on the number of agents and the communication required,
highlighting the tradeoffs between these resources. These tasks capture key aspects of
practical reasoning problems, making the results broadly applicable.

• We provide empirical validation of our theoretical insights by implementing the optimal
communication protocols given by theory. Our analysis shows the performance in terms of
accuracy, communication and token usage closely aligns with theoretical predictions.

Our work focuses on Transformer-based multi-agent systems which partition an input of size N
equally betweenw agents, an abstraction of many settings where multiple agents cooperate by taking
responsibility for different parts of the input, such as different document chunks in long-context
summarization or question answering, corpus shards or knowledge-graph subgraphs in multi-agent
RAG, web pages or site sections in browser-style agents, and map–reduce pipelines where workers
process disjoint partitions before a coordinator aggregates the partial results (e.g., Zhou et al., 2025;
Chang et al., 2025; Zhang et al., 2024a; Guo et al., 2024; Salve et al., 2024; Yang et al., 2025b; Xiao
et al., 2025; Liu et al., 2025; Xu et al., 2025).

Our results reveal three distinct regimes for multi-agent tasks, each instantiated by natural tasks of
broad relevance (Table 1). First, some tasks require almost no communication overhead even when
the input is partitioned between agents, such as key-query retrieval. Second, some tasks not only
allow partitioning but also benefit from it, achieving reduced wall-clock time compared to a single-
agent setup; state tracking is a prime example. Finally, some tasks can be solved through partitioning
but require significant communication among agents, such as reasoning over multiple hops.

Size Depth Communication

Associative recall Θ(w) Θ(1) Θ(1)
State tracking Θ(N) O(Nw + logw) Θ(w)
k-hop reasoning O(wk) O(k) Θ(k) (when w > 1)

Table 1: Summary of results. w denotes the number of agents. N represents the length of the input.
Size corresponds to total computation. Depth loosely corresponds to wall-clock time. Communica-
tion refers to the overall amount of communication between agents. We will define these formally
in Section 3. O(·) indicates existence of a protocol; Θ(·) indicates that we prove it optimal.

2 MODEL OF TRANSFORMERS

We assume causally masked (decoder-only) unique hard attention Transformers (UHAT) (e.g., Hahn,
2020; Hao et al., 2022; Yang et al., 2024a; Amiri et al., 2025; Jerad et al., 2025a; Bergsträßer et al.,
2024), a popular abstraction where attention heads concentrate attention on the position maximizing
the attention score. Some work suggest that pretrained models concentrate their attention only few
positions (Voita et al., 2019; Clark et al., 2019). Importantly, UHAT subsumes expressivity of ordi-
nary softmax Transformers with fixed precision (Jerad et al., 2025a), making it a plausible model of
Transformers in the regime of long contexts and large reasoning problems (see Appendix I).

Each layer of a Transformer has an attention block followed by an MLP block. The attention block
takes as input X ∈ RN×d and applies the operation Att(X) = fAtt(XWQW

⊤
KX⊤)XW⊤

V where
WQ,WK ,WV ∈ Rd×m and fAtt(·) = UHAT(·), where for any matrix A ∈ RN×M :

UHAT(A)i,j =

{
1 if j = argmaxAi,:

0 else
, (1)

where in case of a tie, the rightmost element is selected. Multi-head attention withH heads is defined
as M-AttH(X) = [Att1(X), . . . ,AttH(X)]WO where each Atti(X) has its own set of parameters.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The matrix WO ∈ RmH×d projects the concatenated vector to a vector of dimension d. For an input
X ∈ RN×d, the output of a Transformer layer is ψ(M-AttH(X)) ∈ RN×d where ψ : Rd → Rd

corresponds to the function computed by the MLP. The model has access to arbitrary positional
embedding vectors pi ∈ Rd, for each i ∈ [Nmax], where Nmax is the model’s context window and
[Nmax] denotes {1, . . . , Nmax}.

3 FORMALIZATION OF MULTI-AGENT SYSTEMS

We formalize multi-agent systems as graphs, with a node representing an agent at a given timestep,
and edges describing both the emission of CoT tokens, and communication between different agents.
We discuss connections to applied systems in Section 3.1, and illustrate the definition in Figure 1.
Definition 3.1 (Multi-agent system). Let Σ be a (finite or infinite) input alphabet and Ξ ⊃ Σ an
(infinite) CoT alphabet. For broad generality, depending on the task, we’re allowing both input and
CoT alphabets to grow with the input length, such that Σ1 ⊂ Σ2 ⊂ · · · ⊂ Σ and Ξ1 ⊂ Ξ2 ⊂ · · · ⊂
Ξ, where |ΣN |, |ΞN | ∈ O(poly(N)). We write the set of input strings as S :=

⋃∞
N=1 (ΣN)

N . We
reserve agent identifiers ID1, . . . , IDN ∈ ΞN .

A multi-agent system A maps strings x ∈ S to labeled DAGs A(x) with w(x) ≤ |x| agents where:

1. Each node is uniquely labeled as T (t)
i , where i ∈ [w(x)] and t ∈ N. Informally, it represents

agent i’s state at time t. For each agent i ∈ [w(x)], there is Di ∈ N such that there are
nodes T (t)

i exactly for t ∈ [Di] and for no other t.
2. We define two types of edges:

(a) communication edges {c, σ} (σ ∈ Ξ|x|) from T
(t)
i to T (t+1)

j , which represent com-
municating a symbol between two different agents (i ̸= j)

(b) CoT edges {a, σ} (σ ∈ Ξ|x|), which correspond to autoregressive decoding of the
model from T

(t)
i to T (t+1)

i

3. Every node T (t)
i (t > 1) has exactly one incoming edge.

4. Every node T (t)
i can have (i) no outgoing edge, (ii) one outgoing edge, (ii) outgoing edges

edge with the same label {c, σ} to each other agent, j ̸= i.
5. One agent i ∈ [w(x)] is designated as a manager agent.

By definition, agents can only send or receive a single token w ∈ Ξ at a time.* Every agent can only
receive one incoming edge at a time. Intuitively, the symbol provided by the incoming edge at time
t (whether it is a CoT or communication edge) is appended to the agent’s context at this time step.
Definition 3.2 (Complexity of Multi-Agent System). We use the following notions to characterize
the complexity of a multi-agent system:

• Computation depth is the length of the longest path in the graph, irrespective of edge type.
We write Depth(N) for the maximum depth on any input x of size |x| ≤ N . Computation
depth is a proxy for the wall-clock time.

• Width of the graph corresponds to the number of agents in the system. Typically we use
w(N) when the number of agents is a function of input length. As the input is partitioned
into chunks of size N/w, we consider w(N) ∈ [N].

• Size corresponds to the number of nodes in the graph. We write Size(N) for the maximum
size on any input of size N .

• Communication budget is the number of nodes with an outgoing communication edge.

We say a multi-agent system A computes a function f : S → Σ if for all x ∈ S, the last CoT edge
of the manager agent in A(x) has the label f(x) ∈ Σ.
Definition 3.3 (Agent computation). Given a multi-agent system A(x) on input x ∈ S , for each
agent i ∈ [w(x)], we construct a string ξ(i) ∈ (Ξ|x|)

∗. Intuitively, this is the sequence of tokens that
is processed by this agent over the course of reasoning. The string ξ(i) is constructed as follows:

*An extension to words of bounded length w ∈ Ξ≤C would be straightforward, but we find it easiest to
formalize the setup with single-token messages. Our theoretical results hold irrespective of this choice (App. G).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

T
(1)
1

T
(2)
1

T
(1)
2

T
(2)
2

T
(1)
3

T
(2)
3

4:C, 8:A
7:?

6:E, 1:H
7:?

7:D, 2:X
7:?

T
(1)
M

D

Answer: D

(a) Graphical representation of
recall protocol (Sec. 4.2). T1, T2

and T3 are worker agents given
chunks of 2 key-value pairs. Only
T3 has the query in its context and
thus communicates the answer to
the manager TM after reasoning.

T
(1)
1 T

(1)
2 T

(1)
3 T

(1)
4

11 10 01 00

T
(2)
1 T

(2)
2 T

(2)
3 T

(2)
4

T
(3)
2 T

(3)
4

T
(4)
4T

(4)
2

T
(5)
4

Answer: 0

0 1 1 0

0 1

11

0

0

(b) Example of a prefix sum protocol
for state tracking (Sec. 4.3) on input
11100100. Here T2 and T4 act as in-
termediate managers composing to-
gether the answers of T1 and T3 with
their own. T4 also acts as the final
manager, providing the final output.

T
(1)
1

T
(2)
1

T
(3)
1

T
(4)
1

T
(1)
2

T
(2)
2

T
(3)
2

T
(4)
2

T
(1)
3

T
(2)
3

T
(3)
3

T
(4)
3

T
(5)
2

boss(b)? boss(b)?

friend(a)? friend(a)?

c

a

boss(b)=a friend(boss(b))? friend(a)=c

Answer: c

(c) Example of the Iterative
Query protocol (Sec. 4.4). Each
agent holds one fact. The full
query, friend(boss(b)), is man-
aged by T2, which receives an-
swers at t = 3, 5 and broadcasts
followup queries at t = 2, 4.

Figure 1: Graphical representations of the protocols analyzed in Section 4.

1. First, take the input chunk x⌈
|x|· i

w

⌉
,··· ,

⌈
|x|· i+1

w−1

⌉ ∈ S
2. Then append IDi ∈ Ξ|x|

3. Then traverse the nodes associated to the agent, T (i)
1 , T

(i)
2 , . . . :

(a) If there is an incoming communication edge {c, σ}, append the token RECEIVE σ.
(b) If there is an outgoing CoT edge {a, σ}, append the symbol σ.
(c) If there is an outgoing communication edge,

i. Either the message is sent to a single agent j – in this case, append the token
SEND σ IDj – or,

ii. the message is broadcast to all agents, append the token BROADCAST σ.
4. We append the EOS symbol.

We assume all tokens to be part of Ξ|x|.† A Transformer T implements A(x) on input x ∈ S if and
only if each of these strings ξ(i) fits into the Transformer’s context size, and the transformer predicts
all tokens arising from outgoing edges and EOS (cases 3b,3c,4) when run autoregressively on ξ(i).
Intuitively, in each reasoning step, the transformer generates the next token, unless it is overridden
by incoming communication.

A protocol A is expressible in UHAT if, for each input length n, there is a UHAT Transformer Tn
implementing A(x) on each input x with length |x| ≤ n, and the number of heads and layers are
uniformly bounded across all Transformers Tn. We do not require the width d to stay bounded; e.g.,
growing width can allow positional encodings to keep unboundedly many positions distinct.

The above generalizes the setup of Amiri et al. (2025) to the multi-agent setup. Requiring the system
to be implemented by models with bounded layers and heads across input lengths is a very weak
assumption, much weaker than the uniformity of the Transformer across input lengths often required
in theoretical work on CoT (e.g., Pérez et al., 2019; Merrill & Sabharwal, 2023) – nonetheless, it
allows us to prove essentially matching upper and lower bounds on the cost of multi-agent systems.

3.1 CONNECTION TO APPLIED WORKS

Our formalization covers a broad range of LLM-based protocols which (i) split long contexts
into non-overlapping chunks, (ii) process these chunks in parallel with worker agents, (iii) re-

†We assume single tokens for simplicity; they could be bounded-length words without change to our results.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

lay info to a manager to generates the final answer. The primary distinctions lie in coordina-
tion: CoA (Zhang et al., 2024b), LLM×MapReduce (Zhou et al., 2025), NexusSum (Kim & Kim,
2025), AgentSimp (Fang et al., 2025), and Multi2 (Cao et al., 2025) run workers in parallel with
minimal communication, whereas LongAgent (Zhao et al., 2024), XpandA (Xiao et al., 2025),
AgentGroupChat-V2 (Gu et al., 2025), and certain task-specific pipelines (e.g., DocAgent (Yang
et al., 2025a), Multi-Agent QG (Wang et al., 2025a)) support targeted message-based communica-
tion to resolve conflicts. Each of these approaches can be described by a communication graph as
in Figure 1. Notably, all of these implement communication using messages written to the recipient
agent’s context, consistent with our framework.

4 RESULTS

4.1 GENERAL RESULTS: THREE REGIMES FOR DEPTH AND COMMUNICATION

In this section, we present theoretical results which hold for all tasks and all multi-agent systems
which follow from Definition 3.1. Throughout, by “multi-agent systems”, we always refer to sys-
tems computed by Transformers. The first result we present relates to the size of the system:
Proposition 4.1 (Conservation of size). Any protocol can be converted into an equivalent single-
agent protocol with the same size up to constant factor.

The proof idea is to construct a single agent that alternates between simulating each of the agents
of the original protocol, see Appendix C.2. Thus, the size of the protocol cannot be reduced using
multiple agents beyond a constant factor. However, we will see that it may increase in some tasks
with the number of agents. In a multi-agent protocol, two other key determinants of cost are (i)
depth, and (ii) communication budget. There are two fundamental a priori considerations about
these quantities. First, any protocol as defined in Definition 3.1 satisfies the inequality:

Size(N)

w(N)
≤ Depth(N) (2)

Proof. The size is upper-bounded by the number of agents times the maximum number of nodes
assigned to any individual agent, which is upper-bounded by the maximum length of any path.

This inequality might lead one to hope that multi-agent protocols reduce depth even if size cannot
be reduced. We show that such a gain in depth is realizable in some tasks (Section 4.3), but there
are other tasks where no asymptotic gain in depth is possible (Section 4.4). A second fundamental
observation is that reduction in depth due to multi-agent reasoning is only possible at an increase in
communication. In fact, any task solvable at bounded communication cost can already be solved at
bounded depth by a single agent, ruling out gains in depth from a multi-agent setup:
Proposition 4.2. Consider a task with a multi-agent system whose communication budget is O(1)
in N across all w ∈ [N]. Then this task has a single-agent CoT with depth (and hence size) O(1).

Communication

Depth O(1) increases

∼Size/w impossible Section 4.3
No Gain Section 4.2 Section 4.4

Figure 2: Three possible and one im-
possible regimes for depth-communication
tradeoffs.

See proof in Appendix C.2. Taken together, this leaves
us with three distinct feasible regimes of multi-agent
reasoning (Table 2). The first one (Section 4.2) is
where both depth and communication are O(1) as the
number of agents increases. In this setting, multi-agent
setups simply enable processing larger contexts, with-
out associated cost. The second regime (Section 4.3)
is where depth can be reduced by using more agents
(almost up to (2)), though at the cost of increased com-
munication. That is, there is a depth-communication
tradeoff. The third regime (Section 4.4) is where, at
least in the worst case, multi-agent setups require a large amount of communication, without reduc-
tion to the required depth. In this regime, multi-agent setups allow processing larger contexts, with
a high cost of communication and no reduction in depth. A seeming fourth regime, where commu-
nication stays O(1) but depth decreases as (2), is impossible by Proposition 4.2. Importantly, we
will next demonstrate that all three regimes are instantiated by naturalistic tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 ASSOCIATIVE RECALL

The first task we consider is simple, associative recall. In this setup, given multiple key value pairs,
and a queried key, agents must return the associated value. In this case, multi-agent setups permit
processing a larger input without associated cost in communication or depth:

Proposition 4.3. Given an input consisting ofN pairs (xi, yi) ∈ ΣN×ΣN , and a query x, consider
the task of retrieving the (unique) y such that (x, y) appears in the input. Assume that the input is
partitioned disjointly into parts provided to k agents, which also have access to the query. Then they
can solve the task with depth O(1) and communication O(1).

Sketch of proof (Full proof in Appendix C.3). Each agent uses attention to check if the query x
appears in the input, and uses an induction head to retrieve the associated y if it appears. By design,
only one agent will find such a y; it then reports it to a designated manager agent that outputs y. □

Tradeoffs for Simple Retrieval
1. Computation depth O(1)
2. Number of agents w(N) and chunk size: N

w(N)

3. Communication budget O(1)
4. Size: O(w(N))

is both realizable and optimal for retrieval.

4.3 STATE TRACKING

Another foundational task is state tracking. State tracking is at the heart of many reasoning problems,
such as tracking chess moves in source-target notation, evaluating Python code, or entity tracking
(Kim & Schuster, 2023; Merrill et al., 2024). State tracking can be conveniently formalized in terms
of evaluation over finite monoids (e.g., Merrill et al., 2024; Grazzi et al., 2025):

Definition 4.1 (State tracking problem). LetM be a finite set, and (M, ·) a finite monoid (M with an
identity element and associativity). A state tracking problem on M is defined as sending a sequence
m0m1 . . .mk ∈M∗ to m0 ·m1 · ... ·mk ∈M . Here, the input alphabet is Σ :=M .

Elements of the monoid represent operations (e.g., list manipulation instructions in Python or chess
moves). Composing them leads to new monoid elements (e.g., compositions of instructions, or
a sequence of chess moves). This problem class subsumes deciding membership for all regular
languages, such as PARITY, which corresponds to the monoid ({0, 1},⊕). Amiri et al. (2025)
showed that PARITY requires a CoT of length Ω(N). Can a multi-agent system with a large amount
of total communication do better? In terms of the size of the graph, this cannot be the case:

Proposition 4.4. Any multi-agent system computing PARITY requires size Ω(N).

The proof is in Appendix C.4. However, if we consider a parallel computation budget, we can obtain
a speedup in the depth of the computation graph. We assume the setup where each agent receives a
disjoint contiguous substring of the input. Then:

Proposition 4.5. LetM be a finite monoid. There exists a communication protocol withw(N) = N ,
depth O(logN) computing the state tracking for M .

The key idea for this protocol is to compute the prefix sum (or recursive parallel scan) algorithm
with the LLM agents, as shown in Figure 1(c). The above protocol has a width of N agents, but it
can be generalized to other widths given by some function w(N) of the input size N :

Proposition 4.6. Given a finite monoid M and any number of agents (w : N → N with w(N) ∈
[N]), there exists a O(logw(N) + N

w(N)) depth and O(N) size multi-agent system computing state
tracking on M with communication budget w(N).

This means that given enough parallel computation budget, we indeed recover a speedup in terms of
effective or wall-clock time. The proof for this result is given in Appendix C.4; Proposition 4.5 is a
corollary. The above result is essentially optimal, in that essentially no shorter depth is attainable:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Proposition 4.7 (Optimality, see App. C.4 for proof). Assume the finite monoid M is a nontriv-
ial group, and A a multi-agent system computing state tracking over M . Then A has Ω(w(N))
communication budget, and computation depth Ω(N

w(N)).

We summarize our results for state tracking below:

Tradeoffs for State Tracking Assume w(N) ∈ [N] agents, each provided a disjoint contiguous
portion of the input. Then

1. Computation depth O
(
logw(N) + N

w(N)

)
2. Number of agents: w(N) and chunk size: N

w(N)

3. Communication budget O(w(N))
4. Size: N

are realizable for performing state tracking. Communication budget and size are optimal. Com-
putation depth is optimal at least up to O(logw(N)).

4.4 MULTI-HOP REASONING

We instantiate the third regime with k-hop reasoning (e.g., Yang et al., 2024b; Wang et al., 2025b;
Yao et al., 2025). In this task, we have a domain D of objects and a vocabulary F , intended to denote
functions. We have a set of N facts f(x) = y (f, x, y ∈ ΣN) contextually given, where for each x
and f at most one such fact is included. Each agent receives a disjoint equal sized partition of the
set of facts, and a common query of the form f1(. . . (fk(x)) . . .) where fi ∈ F , x ∈ D. The overall
size of the input is N + k; each agent has N

w facts and the k-hop query.

Proposition 4.8. Let the number of agents be w : N → N (w(N) ∈ [N]). The k-hop composition
task with N facts can be solved with computation depth O(k), communication budget O(k), and
size O(w(N) · k). The communication budget is optimal. The computation depth O(k) is optimal
at least up to a log(N + k) factor.

The proof is in Section C.5. The idea is that worker agents perform an iterative lookup, where
each agent tries to find the next answer in the own context, with one step for each of the k hops
fk(x), fk−1(fk(x)), . . . , f1(. . . (fk(x)) . . .). The regime of this task is different from the previous
ones; in the worst case, there is no reduction of computation depth when increasing the number
of agents: Depending on how the facts are distributed among the agents, computation depth and
communication budget may be Ω(k) in the worst case, as long as more than one agent are involved.
The intuition here is that the relevant facts can be distributed between different agents, making
iterative lookup the optimal strategy. We thus have:

Tradeoffs for k-hop Composition for k-hop composition and N facts, when w(k) > 1:
1. Computation depth O(k)
2. Number of agents: w(k) and chunk size: N

w(k)

3. Communication budget O(k)
4. Size: O(wk)

are realizable for k-hop composition. Communication budget is optimal. Computation depth is
optimal at least up to a log(N + k) factor.

5 EXPERIMENTAL VALIDATION

In this section, we experimentally validate whether the protocols of Section 4 work in practice and if
computation depth and communication exhibit the three predicted regimes. We evaluate Llama-3.3-
70B-Instruct-Turbo and Llama-3.1-8B-Instruct-Turbo (results in Appendix F) on associative recall,
state tracking and k-hop reasoning tasks in order to empirically validate each of the three regimes
analyzed in theory. We employ pretrained LLMs which are prompted with their roles in the protocol
and the instructions to solve the task. We use hard coded communication protocols similar to the
protocol implementation of Zhang et al. (2024b). For more details please refer to Section E.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.1 RECALL

64 128 256 512 1024 2048
Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Av
era

ge
 A

cc
ura

cy

Maj. Voting CoA

Figure 3: Llama-70B accuracy on RE-
CALL across sequence lengths. CoA is
the theoretically optimal protocol.

We validate experimentally the abilities of different multi-
agent systems to perform associative recall on two dis-
tinct tasks. The first is a synthetic recall task: given a
string of key-value pairs and a queried key, models must
return the associated value. The second is the needle-in-a-
haystack test (Kamradt, 2024). This task involves finding
a ”needle” (an answer to some query) in a large document
(the ”haystack”). We use self-consistency with major-
ity voting (Wang et al., 2022) as our baseline and use an
implementation of Chain-of-Agent (CoA) for the optimal
protocol, given its similarity.

Recall task Figure 3 shows accuracy for different se-
quence lengths. For shorter sequences (64–512), performance is similar, with Majority Voting
sometimes outperforming CoA, but the multi-agent approach gains an edge as length increases.
This trend is consistent with theoretical understanding. Recall is a task easily solved by Transform-
ers, even with limited CoT (Arora et al., 2023; Bhattamishra et al., 2024). Thus, at shorter sequence
lengths, the communication overhead may be detrimental by e.g., leading to hallucinations in models
that do not have the key-value pair in their context.

10000.0 19000.0 28000.0 37000.0 48000.0 55000.0 64000.0 73000.0 82000.0 91000.0 100000.0

Context Length (words)

10
0%

90
%

80
%

70
%

60
%

50
%

40
%

30
%

20
%

10
%

0%N
ee

dl
e

D
ep

th
 (%

 th
ro

ug
h

do
cu

m
en

t) 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 0.40 0.90 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10

1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 0.90 1.00 1.00

1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 0.00

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.90
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Heatmap of accuracy vs needle
depths and context lengths for Major-
ity Voting. Performance degrades for
large contexts.

10000.0 19000.0 28000.0 37000.0 48000.0 55000.0 64000.0 73000.0 82000.0 91000.0 100000.0

Context Length (words)

10
0%

90
%

80
%

70
%

60
%

50
%

40
%

30
%

20
%

10
%

0%N
ee

dl
e

D
ep

th
 (%

 th
ro

ug
h

do
cu

m
en

t) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Heatmap of accuracy vs needle
depths and context lengths for CoA.
Performance remains constant across
context size.

4000 8000 12000 16000 20000
Chunk Size (words)

0

6

12

18

24

30

C
om

pu
ta

tio
n

D
ep

th

N = 73000
N = 82000
N = 91000

(c) Token usage for CoA.
Usage remains constant
across chunk size and con-
text length, which is con-
sequent with our theory.

Figure 4: Results for the needle-in-a-haystack test.

Needle-in-a-haystack Figure 4 shows the performance of both Majority Voting and CoA across
needle depth (how far in the corpus the needle is) as well as context length. As it can be seen
across Figure 4(a), Majority Voting degrades in performance as sequence length increases. We
note also that extremities are also slightly problematic; Majority Voting also fails when needle is at
the beginning or end of the corpus. CoA does not suffer from such degradation: the “divide-and-
conquer” strategy of the protocol makes the task more manageable.

5.2 STATE TRACKING

We next experimentally evaluate multi-agent systems on state tracking tasks. We evaluate models
on PARITY i.e., determining if the number of 1s in a bitstring is even or odd.

Figure 5(a) shows that Prefix Sum consistently outperforms all other methods, especially as se-
quence length grows. Compared to Majority Voting, CoA degrades less with longer sequences,
supporting our intuition that chunking complex reasoning into shorter parts helps. In terms of com-
munication, Figure 5(b) shows the tradeoff between the computation depth and the total amount of
communication for Prefix Sum, calculated by summing the average token usage at every level. This
trend is consequent with the theoretically predicted tradeoffs between communication and computa-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Llama-70B accuracy on PARITY for dif-
ferent sequence lengths. Prefix Sum repre-
sents the theoretically optimal communica-
tion protocol.

(b) Computation depth against the total amount of com-
munication used. This trend is consistent with the
N/w(N) computation depth vs w(N) total communi-
cation tradeoff predicted in Section 4.3.

Figure 5: Empirical validation for PARITY.

(a) Accuracy vs. number of
hops in the query for 100
facts. Iterative Query outper-
forms Majority Voting baseline
as number of hops increases.

(b) Accuracy vs number of
hops in the query for 500 facts.
The difference in performance
is more pronounced in this
regime.

(c) Computation depth vs.
number of hops in the query.
Computation depth shows an
increasing trend as hop count
increases.

Figure 6: Empirical validation for k-hop reasoning.

tion. Indeed, in Section 4.3 we predict a tradeoff between depth N/w(N) and total communication
w(N). We note, however, a slight increase in computational depth for high levels of communica-
tion. This is due to poor instruction following; models add a constant token overhead by repeating
the query and explaining the procedure, especially noticeable in high-communication regimes.

5.3 k-HOP REASONING

Finally, we evaluate models on a k-hop reasoning task, where agents are given facts (e.g., ”Paula is
the boss of Mary”) and a query (e.g., ”Who is the boss of the friend of George?”). Task difficulty
depends on the number of facts and query hops. We compare two protocols: Majority Voting and
Iterative Query, an implementation of the protocol proved optimal in Section 4.4. As we can see
in Figure 6, Iterative Query generally outperforms Majority Voting. This trend is accentuated as
the number of hops increases. We note that for the smallest number of hops (four), there are cases
where Majority Voting outperforms Iterative Query; we posit that the probability of failing at a given
round seems to outweigh the difficulty of retrieving facts in a larger corpus in this regime. Finally,
we analyze how the computation depth varies as a function of number of hops in the query. As can
be seen in Figure 6(c), the trend we observe is consistent with theory; as depth of queries increases,
so does the computation depth.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 DISCUSSION AND CONCLUSION

In summary, our work provides principled foundations for understanding the algorithmic benefits
and limitations of collaborative multi-agent systems. By formalizing communication and resource
tradeoffs, we bridge theoretical analysis with empirical observations, shedding light on when collab-
oration enhances reasoning efficiency and when it imposes inherent costs. These results open new
avenues for designing reasoning systems that balance scalability, expressivity, and performance..

Relationship to Self-Consistency Our results show that multi-agent systems with sophisticated
communication protocols outperform majority-vote strategies; Mirtaheri et al. (2025) find that self-
consistency with polynomially many agents yields limited gains on tasks hard for Transformers,
whereas advanced protocols achieve substantial improvements. We further take up this relationship
in Appendix H. There, we show that a majority voting scheme for PARITY must have w(N) =
2Ω(Nc) agents (for some c > 0) even if the agents are allowed to produce CoTs of length O(logN),
whereas our results in Section 4.3 demonstrate a multi-agent protocol requiring just w(N) = N
agents solving PARITY perfectly at that computation depth.

Implications for Protocol Design Our results characterize depth (wall-clock time) and communi-
cation cost, identifying three regimes of multi-agent systems (Figure 2) with implications for multi-
agent LLM design. Systems with many workers and a single manager (e.g., CoA Zhang et al.
(2024b), LLM×MapReduce (Zhou et al., 2025), NexusSum (Kim & Kim, 2025), AgentSimp (Fang
et al., 2025), Multi2 (Cao et al., 2025)) only shift the context bottleneck to the manager, risking
errors when aggregating many responses. To address this, we propose a prefix-sum–style cascade:
iterative summarization reduces the final-agent bottleneck, with branching factor and depth as tun-
able hyperparameters. We also believe the Iterative Query protocol for k-hop reasoning could have
practical relevance. For complex queries, a similar architecture may be promising: a manager first
decomposes the main query into subqueries, each processed through iterative worker–manager com-
munication rounds, with the manager updating the query after every round

Relation to Parallel Computing Frameworks. Our setting is related to classic models of par-
allel and cooperative computation: communication complexity, PRAM (Fortune & Wyllie, 1978),
Massively Parallel Computation (Im et al., 2023), BSP (Valiant, 1990), and LOCAL (Peleg, 2000).
Conceptually, our measures of Computation Depth and Size mirror Time (parallel steps) and Work
(total operations) in PRAM. The key difference is that our analysis relies on the expressivity of
the Transformer architecture. This formalization leads to the sharp contrast between Associative
Recall (Section 4.2), which a Transformer can perform in one attention step, and State Tracking
(Section 4.3), which is more challenging and requires an explicit multi-step reasoning chain. Other
agent choices yield different predictions: multi-agent systems instantiated with recurrent networks
would make retrieval harder (Bhattamishra et al., 2024; Arora et al., 2023) and may enable more
efficient state tracking than Transformers; unconstrained agents solve both tasks in constant time;
and Turing machines or RAM models require linear time for both. Frameworks that treat agents as
unconstrained processors (with memory/communication as the main bottleneck) predict low depth
for both tasks, while frameworks that model agents as RAM-like units predict high depth. It is
only by considering the capabilities of Transformers that we achieve a more fine-grained analysis
appropriate to LLM-based multi-agent systems, predicting tradeoffs realized by actual LLMs.

Limitations and Future Work There are many directions in which this work could be extended.
Empirically, ideas discussed in the above paragraph could be incorporated into the design of novel
multi-agent systems. Theoretically, our work could be extended to different algorithmic tasks e.g.,
graph reachability or to different multi-agent paradigms such as adversarial games or cooperative
reinforcement learning tasks, where agents collaborate to reach a common goal.

REPRODUCIBILITY STATEMENT

We provide a complete reproducibility package to facilitate replication of our results. All code will
be released alongside the camera-ready version of the paper. Appendix E details the experimental
setup, including the hyperparameters and parameter ranges considered, as well as all system prompts
used. Complete proofs for all propositions presented in the paper are included in Appendix C.2.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Alireza Amiri, Xinting Huang, Mark Rofin, and Michael Hahn. Lower bounds for chain-of-thought
reasoning in hard-attention transformers. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=Oh9sG5ae2b.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher Ré. Zoology: Measuring and improving recall in efficient language mod-
els. arXiv preprint arXiv:2312.04927, 2023.

James Aspnes, Richard Beigel, Merrick Furst, and Steven Rudich. The expressive power of voting
polynomials. In Proceedings of the twenty-third annual ACM symposium on Theory of Comput-
ing, pp. 402–409, 1991.

Pascal Bergsträßer, Chris Köcher, Anthony Widjaja Lin, and Georg Zetzsche. The power of hard
attention transformers on data sequences: A formal language theoretic perspective. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=NBq1vmfP4X.

Satwik Bhattamishra, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the repre-
sentational capabilities of transformers and recurrent architectures. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Juntai Cao, Xiang Zhang, Raymond Li, Chuyuan Li, Shafiq Joty, and Giuseppe Carenini.
Multi2: Multi-agent test-time scalable framework for multi-document processing. arXiv preprint
arXiv:2502.20592, 2025. doi: 10.48550/arXiv.2502.20592. URL https://arxiv.org/
abs/2502.20592.

Chia-Yuan Chang, Zhimeng Jiang, Vineeth Rakesh, Menghai Pan, Chin-Chia Michael Yeh, Guanchu
Wang, Mingzhi Hu, Zhichao Xu, Yan Zheng, Mahashweta Das, and Na Zou. MAIN-RAG:
Multi-agent filtering retrieval-augmented generation. In Wanxiang Che, Joyce Nabende, Eka-
terina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2607–2622,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
251-0. doi: 10.18653/v1/2025.acl-long.131. URL https://aclanthology.org/2025.
acl-long.131/.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look
at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz,
and Jason Weston. Chain-of-verification reduces hallucination in large language models. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Com-
putational Linguistics: ACL 2024, pp. 3563–3578, Bangkok, Thailand, August 2024. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.212. URL https:
//aclanthology.org/2024.findings-acl.212/.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https:
//arxiv.org/abs/2305.14325.

Dengzhao Fang, Jipeng Qiang, Xiaoye Ouyang, Yi Zhu, Yunhao Yuan, and Yun Li. Collaborative
document simplification using multi-agent systems. In Owen Rambow, Leo Wanner, Marianna
Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), Proceedings of
the 31st International Conference on Computational Linguistics, pp. 897–912, Abu Dhabi, UAE,
January 2025. Association for Computational Linguistics. URL https://aclanthology.
org/2025.coling-main.60/.

Steven Fortune and James Wyllie. Parallelism in random access machines. In Proceedings of the
tenth annual ACM symposium on Theory of computing, pp. 114–118, 1978.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D Goodman. Stream of search (sos): Learning to search in language. arXiv preprint
arXiv:2404.03683, 2024.

11

https://openreview.net/forum?id=Oh9sG5ae2b
https://openreview.net/forum?id=NBq1vmfP4X
https://openreview.net/forum?id=NBq1vmfP4X
https://arxiv.org/abs/2502.20592
https://arxiv.org/abs/2502.20592
https://aclanthology.org/2025.acl-long.131/
https://aclanthology.org/2025.acl-long.131/
https://aclanthology.org/2024.findings-acl.212/
https://aclanthology.org/2024.findings-acl.212/
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://aclanthology.org/2025.coling-main.60/
https://aclanthology.org/2025.coling-main.60/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Riccardo Grazzi, Julien Siems, Arber Zela, Jörg KH Franke, Frank Hutter, and Massimiliano Pontil.
Unlocking state-tracking in linear rnns through negative eigenvalues. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025.

Zhouhong Gu, Xiaoxuan Zhu, Yin Cai, Hao Shen, Xingzhou Chen, Qingyi Wang, Jialin Li, Xi-
aoran Shi, Haoran Guo, Wenxuan Huang, Hongwei Feng, Yanghua Xiao, Zheyu Ye, Yao Hu,
and Shaosheng Cao. Agentgroupchat-v2: Divide-and-conquer is what llm-based multi-agent
system need. arXiv preprint arXiv:2506.15451, 2025. doi: 10.48550/arXiv.2506.15451. URL
https://arxiv.org/abs/2506.15451.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tiezheng Guo, Chen Wang, Yanyi Liu, Jiawei Tang, Pan Li, Sai Xu, Qingwen Yang, Xianlin
Gao, Zhi Li, and Yingyou Wen. Leveraging inter-chunk interactions for enhanced retrieval in
large language model-based question answering. 2024. doi: 10.48550/arXiv.2408.02907. URL
https://arxiv.org/abs/2408.02907v1. Version v1.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? arXiv preprint
arXiv:2402.09963, 2024.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800–810, 2022.

Chan-Jan Hsu, Davide Buffelli, Jamie McGowan, Feng-Ting Liao, Yi-Chang Chen, Sattar Vakili,
and Da-shan Shiu. Group think: Multiple concurrent reasoning agents collaborating at token level
granularity. arXiv preprint arXiv:2505.11107, 2025.

Sungjin Im, Ravi Kumar, Silvio Lattanzi, Benjamin Moseley, Sergei Vassilvitskii, et al. Massively
parallel computation: Algorithms and applications. Foundations and Trends® in Optimization, 5
(4):340–417, 2023.

Selim Jerad, Anej Svete, Jiaoda Li, and Ryan Cotterell. Unique hard attention: A tale of two
sides. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pp. 977–996, Vienna, Austria, July 2025a. Association for Com-
putational Linguistics. ISBN 979-8-89176-252-7. doi: 10.18653/v1/2025.acl-short.76. URL
https://aclanthology.org/2025.acl-short.76/.

Selim Jerad, Anej Svete, Jiaoda Li, and Ryan Cotterell. Unique hard attention: A tale of two sides.
arXiv preprint arXiv:2503.14615, 2025b.

William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert
space. Contemporary mathematics, 26(189-206):1, 1984.

Greg Kamradt. Llmtest needleinahaystack: Doing simple retrieval from llm models at vari-
ous context lengths to measure accuracy. https://github.com/gkamradt/LLMTest_
NeedleInAHaystack, 2024.

Hyuntak Kim and Byung-Hak Kim. NexusSum: Hierarchical LLM agents for long-form narrative
summarization. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 10120–10157, Vienna, Austria, July 2025. Association
for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.500.
URL https://aclanthology.org/2025.acl-long.500/.

Najoung Kim and Sebastian Schuster. Entity tracking in language models. arXiv preprint
arXiv:2305.02363, 2023.

12

https://arxiv.org/abs/2506.15451
https://arxiv.org/abs/2408.02907v1
https://aclanthology.org/2025.acl-short.76/
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://aclanthology.org/2025.acl-long.500/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiaoda Li and Ryan Cotterell. Characterizing the expressivity of fixed-precision transformer lan-
guage models. In The Thirty-ninth Annual Conference on Neural Information Processing Systems,
2025. URL https://openreview.net/forum?id=29LwAgLFpj.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Pei Liu, Xin Liu, Ruoyu Yao, Junming Liu, Siyuan Meng, Ding Wang, and Jun Ma. Hm-rag:
Hierarchical multi-agent multimodal retrieval augmented generation, 2025. URL https://
arxiv.org/abs/2504.12330.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
arXiv preprint arXiv:2310.07923, 2023.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
arXiv preprint arXiv:2404.08819, 2024.

Parsa Mirtaheri, Ezra Edelman, Samy Jelassi, Eran Malach, and Enric Boix-Adsera. Let me
think! a long chain-of-thought can be worth exponentially many short ones. arXiv preprint
arXiv:2505.21825, 2025.

Phuong Nguyen and Stephen Cook. Theories for tc0 and other small complexity classes. Logical
Methods in Computer Science, 2, 2006.

Thang Nguyen, Peter Chin, and Yu-Wing Tai. Ma-rag: Multi-agent retrieval-augmented genera-
tion via collaborative chain-of-thought reasoning. arXiv preprint arXiv:2505.20096, 2025. URL
https://arxiv.org/abs/2505.20096.

OpenAI. OpenAI o3 and o4-mini System Card. Technical report,
OpenAI, San Francisco, CA, April 2025. URL https://cdn.
openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/
o3-and-o4-mini-system-card.pdf. PDF available online.

David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
network architectures. arXiv preprint arXiv:1901.03429, 2019.

Michael Rizvi-Martel, Maude Lizaire, Clara Lacroce, and Guillaume Rabusseau. Simulating
weighted automata over sequences and trees with transformers. In International Conference on
Artificial Intelligence and Statistics, pp. 2368–2376. PMLR, 2024.

Aniruddha Salve, Saba Attar, Mahesh Deshmukh, Sayali Shivpuje, and Arnab Mitra Utsab. A
collaborative multi-agent approach to retrieval-augmented generation across diverse data. 2024.
doi: 10.48550/arXiv.2412.05838. URL https://arxiv.org/abs/2412.05838. Version
v1.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn
Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional,
and transformative generalization. arXiv preprint arXiv:2506.18880, 2025.

Pascal Tesson and Denis Thérien. Diamonds are forever: The variety da. In Semigroups, algorithms,
automata and languages, pp. 475–499. World Scientific, 2002.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint
arXiv:2501.06322, 2025.

Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):
103–111, 1990.

13

https://openreview.net/forum?id=29LwAgLFpj
https://arxiv.org/abs/2504.12330
https://arxiv.org/abs/2504.12330
https://arxiv.org/abs/2505.20096
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://arxiv.org/abs/2412.05838

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. Size and depth separation in ap-
proximating benign functions with neural networks. In Conference on Learning Theory, pp.
4195–4223. PMLR, 2021.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Haotian Wang, Xiyuan Du, Weijiang Yu, Qianglong Chen, Kun Zhu, Zheng Chu, Lian Yan, and
Yi Guan. Learning to break: Knowledge-enhanced reasoning in multi-agent debate system,
2024a. URL https://arxiv.org/abs/2312.04854.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities, 2024b. URL https://arxiv.org/abs/2406.04692.

Kesen Wang, Daulet Toibazar, Abdulrahman Alfulayt, Abdulaziz S. Albadawi, Ranya A. Alka-
htani, Asma A. Ibrahim, Haneen A. Alhomoud, Sherif Mohamed, and Pedro J. Moreno. Multi-
agent interactive question generation framework for long document understanding. arXiv preprint
arXiv:2507.20145, 2025a. doi: 10.48550/arXiv.2507.20145. URL https://arxiv.org/
abs/2507.20145.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Zixuan Wang, Eshaan Nichani, Alberto Bietti, Alex Damian, Daniel Hsu, Jason D Lee, and Denny
Wu. Learning compositional functions with transformers from easy-to-hard data. arXiv preprint
arXiv:2505.23683, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Sibo Xiao, Zixin Lin, Wenyang Gao, and Yue Zhang. Long context scaling: Divide and conquer via
multi-agent question-driven collaboration. arXiv preprint arXiv:2505.20625, 2025.

Zhen Xu, Shang Zhu, Jue Wang, Junlin Wang, Ben Athiwaratkun, Chi Wang, James Zou, and
Ce Zhang. When does divide and conquer work for long context llm? a noise decomposi-
tion framework. 2025. doi: 10.48550/arXiv.2506.16411. URL https://arxiv.org/abs/
2506.16411v1. Version v1.

Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize ex-
actly the star-free languages. In The Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024a. URL https://openreview.net/forum?id=FBMsBdH0yz.

Dayu Yang, Antoine Simoulin, Xin Qian, Xiaoyi Liu, Yuwei Cao, Zhaopu Teng, and Grey Yang.
Docagent: A multi-agent system for automated code documentation generation. In Proceedings
of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System
Demonstrations), pp. 460–471, Vienna, Austria, 2025a. Association for Computational Linguis-
tics. URL https://aclanthology.org/2025.acl-demo.44/.

Ruiyi Yang, Hao Xue, Imran Razzak, Hakim Hacid, and Flora D. Salim. Divide by question, conquer
by agent: Split-rag with question-driven graph partitioning. arXiv preprint arXiv:2505.13994,
2025b. doi: 10.48550/arXiv.2505.13994. URL https://arxiv.org/abs/2505.13994.

Sohee Yang, Nora Kassner, Elena Gribovskaya, Sebastian Riedel, and Mor Geva. Do large lan-
guage models perform latent multi-hop reasoning without exploiting shortcuts? arXiv preprint
arXiv:2411.16679, 2024b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

14

https://arxiv.org/abs/2312.04854
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2507.20145
https://arxiv.org/abs/2507.20145
https://arxiv.org/abs/2506.16411v1
https://arxiv.org/abs/2506.16411v1
https://openreview.net/forum?id=FBMsBdH0yz
https://aclanthology.org/2025.acl-demo.44/
https://arxiv.org/abs/2505.13994

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yuekun Yao, Yupei Du, Dawei Zhu, Michael Hahn, and Alexander Koller. Language models can
learn implicit multi-hop reasoning, but only if they have lots of training data. arXiv preprint
arXiv:2505.17923, 2025.

Yizhou Zhang, Lun Du, Defu Cao, Qiang Fu, and Yan Liu. Prompting large language models with
divide-and-conquer program for discerning problem solving. 2024a. doi: 10.48550/arXiv.2402.
05359. URL https://arxiv.org/abs/2402.05359v3. Version v3.

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Arik. Chain of agents:
Large language models collaborating on long-context tasks. Advances in Neural Information
Processing Systems, 37:132208–132237, 2024b.

Jun Zhao, Can Zu, Xu Hao, Yi Lu, Wei He, Yiwen Ding, Tao Gui, Qi Zhang, and Xuanjing
Huang. LONGAGENT: Achieving question answering for 128k-token-long documents through
multi-agent collaboration. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
16310–16324, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.912. URL https://aclanthology.org/2024.
emnlp-main.912/.

Zihan Zhou, Chong Li, Xinyi Chen, Shuo Wang, Yu Chao, Zhili Li, Haoyu Wang, Qi Shi, Zhixing
Tan, Xu Han, Xiaodong Shi, Zhiyuan Liu, and Maosong Sun. LLM
timesMapReduce: Simplified long-sequence processing using large language models. In Wanx-
iang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceed-
ings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 27664–27678, Vienna, Austria, July 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1341. URL
https://aclanthology.org/2025.acl-long.1341/.

15

https://arxiv.org/abs/2402.05359v3
https://aclanthology.org/2024.emnlp-main.912/
https://aclanthology.org/2024.emnlp-main.912/
https://aclanthology.org/2025.acl-long.1341/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

A Use of Large Language Models 16

B Clarifications 16

C Proofs 18

C.1 Notation . 18

C.2 Proofs for General Results (Section 4.1) . 19

C.3 Proof for Associative Recall (Section 4.2) . 19

C.4 Proofs for State Tracking results (Section 4.3) . 21

C.5 Proofs for k-hop Reasoning (Section 4.4) . 23

D Parity Error Analysis 24

E Experimental Details 26

E.1 Associative Recall Task . 26

E.2 Parity Calculation Task . 27

E.3 S5 Permutation Tracking Task . 29

E.4 k-Hop Reasoning Task . 31

E.5 Needle-in-a-haystack . 33

F Additional Experiments 33

F.1 Parity . 33

F.2 S5 Permutations . 34

F.3 k-Hop Reasoning . 35

G Beyond Single-Token Communication 39

H Comparison to self-consistency and voting approaches 39

I Implications for Fixed Precision Transformers 40

A USE OF LARGE LANGUAGE MODELS

We used a large language model (GPT-5) in two ways during the research and writing of this paper.
First, we used it to refine phrasing and to provide revision suggestions on draft manuscripts. Second,
we used it to conduct preliminary literature reviews of the field. Research ideas, proof, and empirical
analysis were conducted by the authors.

B CLARIFICATIONS

(i) Similar work has been already been done in the parallel computation and communication
complexity literatures. What is the key difference here?
Indeed, there are various frameworks for modeling parallel and cooperative computation
(such as communication complexity, Parallel RAM (Fortune & Wyllie, 1978), Massively

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Parallel Computation (Im et al., 2023), BSP Valiant (1990), LOCAL (Peleg, 2000)). There
are some conceptual similarities, for instance our analysis of Computation Depth and Size
mirrors the concepts of Time (number of parallel steps) and Work (total operations across
all processors) in the Parallel RAM model.
Our work differs in making essential use of arguments about the expressivity of the Trans-
former architecture, and no prior framework would have enabled us to show the set of
results in this paper. For instance, the very different behavior between Associative Re-
call (Section 4.2) and State Tracking (Section 4.3) builds on properties of the Transformer
architecture: A Transformer performs retrieval in one step with attention, whereas state
tracking is challenging unless a full reasoning chain is used. In contrast, if one instanti-
ates a multi-agent system based on recurrent networks, then retrieval would be challeng-
ing (Bhattamishra et al., 2024; Arora et al., 2023) and state-tracking could perhaps be done
more efficiently than a Transformer-based system. An unconstrained agent performs both
in constant time; a Turing machine or a RAM needs a linear number of steps in both cases.
Models based on unconstrained individual agents (with memory and communication as
the primary bottleneck, as in PRAM) predict low computation depth in both tasks; models
where individual agents are based on RAM (as in PRAM) predict similarly high depth in
both tasks. It is only by considering the specific abilities of Transformers that we achieve a
more detailed analysis appropriate to LLM-based multi-agent systems, predicting tradeoffs
realized by actual LLMs.

(ii) What are the impacts/takeaways of the experimental results for practitioners?
The main objective of our experiments is to validate the theoretical claims we provide. To
this end, we provide experimental results which corroborate token usage with theoretical
predictions about computation depth. Moreover, we report accuracy and compare to a self-
consistency baseline in order to illustrate that using the optimal protocol for a given task
can also lead to performance gains. We stress that the implementation of the protocols we
use is kept simple. Our work is an analysis paper, not a methods paper and thus its main
aim is to better understand the interplay of agent count, token usage and communication
in multi-agent systems. Refinement and engineering of the considered protocols is left for
future work

(iii) What is the practical impact of the results? Do the results relate to any specific NLP tasks?
RECALL, PARITY and k-hop reasoning are fundamental problems that serve as simple
models of reasoning tasks and are of broad interest. RECALL has been shown by Arora et al.
(2023) to play in important part in the impressive linguistic abilities of modern transformer-
based LLMs. PARITY and other state tracking problems are of great interest as they are
directly connected to reasoning problems such as code evaluation, entity tracking in lin-
guistics and generally require some form of world modeling abilities (Merrill et al., 2024;
Kim & Schuster, 2023; Rizvi-Martel et al., 2024). Moreover, PARITY is a prime example of
a sensitive function, which have been shown to be difficult for Transformer models (Hahn,
2020; Hahn & Rofin, 2024). Finally, k-hop reasoning is foundational to many aspects of
reasoning involving the composition of multiple reasoning steps.

(iv) Why are there no experiments on large reasoning models such as OpenAI-o3 or DeepSeek-
R1?
In the experiments, we typically prompt models to use a specific reasoning strategy for
consistency. LRMs typically reason in the way they see best, not necessarily respecting the
reasoning strategy given in the prompt. Moreover, using the TogetherAI API, such models
typically reason using a large CoT which is hidden to the user, thus rendering it impossible
to monitor the exact CoT used by the model.
Moreover, in many experiments, we evaluate token usage as a proxy for certain metrics e.g.
computation depth. The long reasoning chains produced by these models make it difficult
to see any trends in the token usage as problem complexity increases.

(v) Section 3 assumes that each agent can only receive bounded communication at each step.
What about protocols where each agent can see each other agent’s tokens, as in Group-
Think (Hsu et al., 2025)?
One of our key aims here is to understand the cost of communication introduced in multi-
agent setups and how it trades off with computation depth, which is easiest to do if we

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

consider a framework that explicitly counts each communication link. In contrast, this is
not straightforward in scenarios where all agents have access to the same information.

It may be possible to extend the current framework to protocols with unbounded communi-
cation, but this would require careful consideration of what it would mean for transformers
to access the contexts of all agents, and how to quantify the amount and cost of communica-
tion in scenarios where, at least in principle, all agents have access to the same information.

(vi) The paper assumes that the input is partitioned between agents. What about frameworks
such as multi-agent debates and voting, where multiple agents process the same input?

Indeed, various papers have proposed strategies where different agents process the same
input and solve the problem through mechanisms such as debating or voting (Wang et al.,
2022; Dhuliawala et al., 2024; Du et al., 2023; Wang et al., 2024b). An important special
case is Self-Consistency (Wang et al., 2022), where agents solve a problem independently
and vote at the end.

These techniques fall outside of the scope of our research, which focuses on the expressiv-
ity of collaborative and multi-agent reasoning strategies. In contrast, these strategies funda-
mentally leverage the inherent stochasticity of trained LLMs to reduce noise and overcome
failures. However, these techniques do not increase the intrinsic expressivity of the multi-
agent system (e.g., using multiple agents to solve the same state tracking problem and
performing voting may reduce error rate, but does not increase the worst-case expressivity
of the model.). We further take this up in Appendix H.

(vii) Some of the protocols described in the theory seem quite intricate. Can the protocols
described in the theory be linked to protocols from the applied literature?

Indeed, our results provide a rigorous foundation for certain approaches that have links to
ideas from the applied literature. Related to the first regime in our theory (Section 4.2),
in various studies, a single query is broadcast and worker agents each inspect only their
local shard for an answer, returning a candidate and confidence to a lightweight aggrega-
tor that selects or fuses the outputs (e.g., (Zhou et al., 2025; Chang et al., 2025; Zhang
et al., 2024a; Salve et al., 2024; Yang et al., 2025b). In our second regime (Section 4.3),
recursive aggregation is optimal; this again is related to some existing approaches in the ap-
plied literature: agents iteratively compose partial states via tree-structured reduce/merge
operators (e.g., parallel scan/prefix-sum and divide-and-conquer), so a global answer is as-
sembled from local summaries with shallow, e.g. logarithmic, communication depth (e.g.,
(Kim & Kim, 2025; Zhou et al., 2025; Xiao et al., 2025; Xu et al., 2025)). In our third
regime (Section 4.4), we prove sequential, multi-hop handoffs optimal; this again links to
approaches where the system must iteratively query different agents’ shards in a back-and-
forth chain—passing intermediate facts as state—so communication depth scales with the
hop count (e.g., Yang et al. (2025b); Liu et al. (2025); Nguyen et al. (2025); Wang et al.
(2024a)).

Importantly, our results rigorously clarify in which regimes such communication protocols
are optimal. Simultaneously, as discussed in Section 6, our results show how, in a rigorous
sense, such more sophisticated protocols may improve over simpler but popular strategies
such as chain-of-agents or majority voting.

C PROOFS

C.1 NOTATION

We denote with N, Z and R the set of natural, integers and real numbers, respectively. We use bold
letters for vectors (e.g. v ∈ Rd1), bold uppercase letters for matrices (e.g. M ∈ Rd1×d2). All
vectors considered are column vectors unless otherwise specified. The i-th row and the j-th column
of a matrix M are denoted by Mi,: and M:,j . Let Σ be a fixed finite alphabet of symbols, Σ∗ the set
of all finite strings (words) with symbols in Σ and Σn the set of all finite strings of length n. We use
ε to denote the empty string. Given p, s ∈ Σ∗, we denote with ps their concatenation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.2 PROOFS FOR GENERAL RESULTS (SECTION 4.1)

Proposition C.1 (Conservation of size, repeated from Proposition 4.1). Any protocol can be con-
verted into an equivalent single-agent protocol with the same size up to constant factor.

Proof. By constructing a single agent that alternates between simulating each of the agents of the
original protocol, computed by a Transformer TSingleAgent.

Recall that all agents have the same Transformer parameters, TMultiAgent.

We extend Ξ with tokens ⟨AgentID⟩, one for each agent ID. We assume some fixed arbitrary
ordering over all agent IDs.

The tokens of the reasoning chain record for each step which agent it is associated with. It alter-
natingly consists of ⟨AgentID⟩ and ⟨CoT/communication token⟩. Say, the even positions
are the CoT/communication tokens (the nodes of the original chains); the odd positions are agent
indices.

Now, the transformer TSingleAgent alternates between two modes, depending on the position.

At an ⟨AgentID⟩ position, the transformer knows from the input which agent to simulate. It then
restrict attention to those tokens that are relevant to this agent, and otherwise performs the compu-
tations done by TMultiAgent. The top layer then outputs whatever TMultiAgent would have output.

In the other mode, TSingleAgent needs to figure out which agent’s turn it is next: It is the first agent
in the ordering which is higher than the last agent but hasn’t terminated yet. To achieve this, first
retrieve the last agent’s last previous turn, using a single attention head. Then find the first non-
TERMINATE action succeeding that turn; this gives us the agent whose turn it is. The transformer
then outpts this agent’s ID as the next token.

Proposition C.2 (Repeated from Proposition 4.2). Consider a task with a multi-agent system whose
communication budget is O(1) in N across all w ∈ [N]. Then this task has a single-agent CoT with
depth (and hence size) O(1).

Proof. We take w towards N , so that the chunk size becomes 1. Assume that the communication
budget is O(1) in N across all w ∈ [N]. Then we can find a protocol with communication budget
O(1) where the depth at w = N is O(1), as each agent only has a bounded number of tokens to
process, which can be hard-coded into a UHAT transformer.

Now we use this to construct a protocol computing the function at depth O(1) at w = 1. To
realize this, we increase the Transformer’s number of layers to immediately compute the relevant
agent’s O(1) computation steps when processing the input in the context window; we code the agent
identifiers into the positional embeddings. The only exception here is in the communication edges;
for this, the transformer flags places where it would emit a communication edge. After reading the
full context, the transformer performs O(1) CoT steps to simulate the O(1) communication steps
and re-simulating the affected agents.

We also present here a technical lemma from the work of Vardi et al. (2021) we will use for the
MLPs in some of our constructions
Lemma C.1 ((Adapted from Lemma 22 of Vardi et al. (2021)). Let T be a threshold circuit with d
inputs, q outputs, depth m and size s. There is a neural network N with q outputs, depth m+ 1 and
size 2s+ q, such that for every input x ∈ {0, 1}d we have N(x) = T (x). Moreover, for every input
x ∈ Rd the outputs of N are in [0, 1].

C.3 PROOF FOR ASSOCIATIVE RECALL (SECTION 4.2)

Lemma C.2. Given an input consisting of N key-value pairs (xi,yi), and a queried key xquery,
there exists a two layer Transformer with O(logN) width which returns the associated value.

Proof. We consider that the Transformer agent receives the following input

X = [x1 y1 . . . xn yn xquery]
⊤ ∈ R2n+1×d, (3)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where xi is a vector representing the key and yi is a vector representing the value in a sequence of
key-value pairs. We assume that every key value xi has a unique associated value yi. We use the
following embeddings for tokens:

xi = [T (i) T (y∅) P1(t) P2(t)] (4)

yi = [0 T (yi) P1(t) P2(t)] , (5)

where both vectors are of size log n + log(n + 1) + 2, . The first log n dimensions are Johnson-
Lindenstrauss (J-L) vectors Johnson et al. (1984) with the property that ⟨T (i), T (j)⟩ ≤ 1/4 for
i ̸= j and ⟨T (i), T (j)⟩ ≥ 3/4 for i = j. These are used to embed the position i and perform
retrieval. The set of log(n + 1) dimensions are used to embed the semantic information of each
value vector. These also satisfy the same property as above. Each unique value is embedded in a
different vector. Moreover we also define T (y∅) to be the embedding vector corresponding to ”no
value found” Finally the positional encodings are defined as P1(t) = cos πt

N and P2(t) = sin πt
N .

Here, t corresponds to the index of each token s.t. t ∈ [2n+1]. Not that this should not be confused
with i, which indexes key-value pairs. The proof uses a 2-layer transformer model. The first layer
copies the T (yi) vector from yi over to the corresponding xi. This is done with two heads which
we index (L) and (R) (for left and right respectively. We set the following:

W
(L)
Q = W

(R)
Q = W

(R)
K = [0 I2]

⊤ (6)

W
(L)
K = [0 ρθ]

⊤ (7)

where ρθ is the rotation matrix given by

ρθ =

[
cos θ sin θ
− sin θ cos θ

]
, (8)

and θ is defined as

θ = − π

N
, (9)

where N is the length of the full sequence. The three first matrices directly select the positional
embeddings from the input, and the last matrix selects the positional embeddings and shifts them by
1. Finally, we set

W
(L)
V =

[
In 0 0
0 0 0
0 0 0

]
(10)

W
(R)
V =

[
0 0 0
0 I|D| 0
0 0 0

]
(11)

The MLP for the first layer trivially computes an identity map. For the second layer, we use a
construction similar to that of the retrieval heads used in the proof for Prop. 4.7. In essence we
select the first log n dimensions of the vectors with both key and query matrices. This gives us
an attention matrix which selects key-value vector which is equivalent to the query and puts it in
the last component. Then, the MLP for the second layer extracts the T (yi) vector. The output
matrix mapping to tokens is defined s.t. each row is a J-L vector T (yi),∀i ∈ [n + 1]. Thus when
computing the dot product with the extracted J-L vector, the majority of the probability mass is put
on the correct output token. If the key vector xi was not in the agent’s chunk, the last token should
still encode T (y∅), which corresponds in the output matrix to a special ”query not found” token.
Using arg max decoding, this thus provides the correct behavior.

Note on MLPs Both computing the identity map and selecting a constant number of values in a
vector are tasks that are trivially computable by a TC0 circuit. By appealing to Lemma C.1, we can
thus obtain RELU-FFNs that can also perform such operations.

Lemma C.3. Given a sequence of tokens {x1, . . . , xn}, where all but one xi = x∅, there exists a
one-layer Transformer which can retrieve xi ̸= x∅

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof. Consider the Transformer agent receives the following input

X = [x1 . . . xn]
⊤ ∈ Rn×d, (12)

where for some i∗ ∈ [n], xi∗ is a one-hot encoding of an entity in D and xi = x∅ otherwise. We
use the following embeddings for tokens:

xi = [T (i) T (xi)] , (13)

where both vectors are of size log n+ log(n+1). The first log n dimensions are J-L vectors similar
to those used in the proof for Proposition 4.7, with the property that ⟨T (i), T (j)⟩ ≤ 1/4 for i ̸= j
and ⟨T (i), T (j)⟩ ≥ 3/4 for i = j. The second log(n+1) dimensions are J-L vectors corresponding
an encoding of each possible entity plus an encoding for the ”not found” token x∅. The construction
is essentially the same as the second layer of Lemma C.2. The key difference being that there are
just ”value” vectors and no keys, thus the first layer which copies the one-hot vector for the value
vectors to the key vectors is not necessary.

Proposition C.3. Given an input consisting of N pairs (xi, yi), and a query x, consider the task of
retrieving the (unique) y such that (x, y) appears in the input. Assume that the input is partitioned
disjointly into parts provided to k agents, which also have access to the query. Then they can solve
the task with depth O(1) and communication O(1).

Proof. The proof follows from Lemmas C.2 and C.3. The protocol is as follows:

Consider a setup with w agents, and an input consisting of N key-value pairs. Thus each agent
receives a contiguous non-overlapping chunk of size N/w as well as the same queried x. Each
agent searches their subset of key-value pairs. The agent that finds the correct key communicates
the associated value to a manager agent. All other agents return a special ”null” token indicating
they did not find the key. The manager then searches through the worker outputs and returns the
value.

The worker agents can be simulated using Lemma C.2, and the manager agent extracting the correct
answer from all returned agent tokens can be simulated using Lemma C.3.

C.4 PROOFS FOR STATE TRACKING RESULTS (SECTION 4.3)

Proposition C.4 ((Repeated from Proposition 4.4). Any multi-agent system computing PARITY re-
quires size Ω(N).

Proof. By proposition 4.1, we know that any protocol computing PARITY can be converted into an
equivalent single agent protocol with some CoT length L. By Theorem 4.2 of Amiri et al. (2025),
we have that any UHAT CoT for PARITY has length Ω(N).

Thus we must have L ∈ Ω(N).

Proposition C.5 (Repeated from Prop 4.6). Given a finite monoid M and any number of agents
(w : N → N with w(N) ∈ [N]), there exists a O(logw(N) + N

w(N)) depth and O(N) size multi-
agent system computing state tracking on M with communication budget w(N).

Proof. Let an input x of length N be given, where each symbol is an element of M . We assume for
simplicity (otherwise padding) that N is a multiple of the number w of agents. We build a DAG as
follows.

The context given to agent j is x1,j , . . . , xN/w,j ,EOS where EOS is the end of sequence (EOS)
token. The context length of the sequence given to each agent is thusN/w+1 (chunk size plus EOS
token).

For each agent j, we create nodes n1,j , n2,j , . . . , nN/w,j , with CoT edges ni,j → ni+1,j with
{t, x1,j . . . xi+1,j}.

An agent can use a call SENDσ, where SEND is a special token to transmit information to other
agents. Without loss of generality, we assume that this command transmits the symbol σ to the next
agent with ID j + 1. The final agent, which we call the receiver, only receives information and

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

does not transmit. The protocol computes a prefix sum algorithm with branching factor 2: at the
beginning of runtime, all agents compute the composition of their N/w elements. Then the agents
with odd indices j send their result to those with even indices, who compute the composition of their
result with that of their odd index neighbor and so forth in a prefix sum fashion.

We show this is implementable in UHAT with 3 heads and a single layer, with width O(logN).
Essentially we use 2 heads to extract the value of the monoid elements and then store them in the
EOS token and use the MLP to perform the rest of the processing.

Embeddings We will use quasi-orthogonal vectors to keep track of the positions of different ele-
ments in the sequence. Formally, let T (1), . . . , T (2N/w + 1) be 2N/w + 1 vectors of dimension
k = O(logN) such that ⟨T (i), T (j)⟩ ≤ 1/4 for i ̸= j and ⟨T (i), T (j)⟩ ≥ 3/4 for i = j. Such vec-
tors can be obtained using the Johnson-Lindenstrauss Lemma. We define E(σ) to be the embedding
vector of some symbol σ ∈ Ξ. Embeddings have the following structure

E(σ) = [ohe(σ) ohe(σ) T (i) 0 0 SEND] , (14)

where ohe(σ) ∈ {0, 1}|Ξ| is the one hot encoding (OHE) of σ ∈ Ξ, T (i)s are quasi orthogonal
vectors, the two last dimensions are also of dimension k and where [send] ∈ {0, 1} are flags which
are set to 0 by default. Equally, we define the embedding of the end of sequence token as

E(EOS) = [0 0 0 T (1) T (2) SEND] (15)

Construction for composition of monoid elements The construction for composition requires
one layer and three heads. The key idea of the construction is to use two heads to extract the two
elements to be composed at a given timestep, then concatenate them in the embedding of the $ token.
The MLP can then perform the composition, which it returns in the embedding of the last token. The
third head is only there to copy back the remaining embedding values. For the first head, we would
have the following key, query and value matrices:

WQ =


0
0
0
I
0

 WK =


0
0
I
0
0

 WV =


I 0 0 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 0
0 0 0 0 0

 (16)

The output of the attention layer is thus all zeros except for the embedding at the EOS symbol which
would be

E(EOS) = [ohe(σ) 0 0 T (i) 0 SEND] , (17)

The construction for the second head is very similar, with the main differences being the query
matrix has the all 0s and identity at the last block and the value matrix is like that of the previous
head with the two last columns swapped. This would give us a similar sequence of all 0 vectors,
except for the embedding at the EOS symbol which would be

E(EOS) = [0 ohe(σ) 0 0 T (i) SEND] , (18)

The third head trivially computes the identity matrix (but with 0s at the EOS position) by using both
key and query matrices to extract the J-L vectors found at the ”third” embedding block. We then use
the WO matrix to select the relevant parts of out of each head. Once this is done, we use the MLP
to compute composition.

MLP The MLP computes a map as defined below. If SEND = 0:

[ohe(σ1) ohe(σ2) 0 T (i1) T (i2) SEND] 7→
[ohe(σ1) ◦ ohe(σ2) ohe(σ1) ◦ ohe(σ2) 0 T (i1 + c) T (i2 + c) SEND] ,

where c is the token count between the first token and the EOS token, with ohe(σ)◦ohe(σ) 7→ ohe(σ)
and 0 7→ 0 in the last two J-L positions.

If T (i2 + c) = T (2N/w), the model computes this slightly different map:[
ohe(σ2N/w−1) ohe(σ2N/w) 0 T (2N/w − 1) T (2N/w) SEND

]
7→[

ohe(SEND) ohe(σ2N/w−1) ◦ ohe(σ2N/w) T (2N + 1) T (2N/w + 1) 0 SEND
]
,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Thus at the next step of decoding the final vector would stay the same.

If the SEND flag is equal to 1, the MLP simply swaps the values in the first |Ξ| dimensions with
those in the second |Ξ| dimensions. Thus, once it is time to communicate the model outputs SENDσ.

Such a map can be defined by a threshold circuit. Composition of elements from a finite monoid
can trivially be evaluated constant time by framing the problem as constant lookup. The shifting of
indices is also in TC0 as this is reducible to counting/addition which is known to be in TC0 Nguyen
& Cook (2006). Finally, TC0 is closed under boolean combination. Thus performing the conditional
routing of which circuit to used based on the flag value is also in TC0. Finally, by Lemma C.1, we
know that if such a circuit exists, it can be converted into an MLP which is linear in the circuit
parameters.

Output matrix Every row of the output matrix is a OHE of one of the symbols in Ξ. The output
matrix is a combined transformation which first selects the top |Ξ| dimensions and uses the OHE
vector found there to put a 1 at the underlying position in the output vocabulary vector. Only the last
token is used for prediction.

Receiving and sending communication We assume all agents decode synchronously. When an
agent receives a symbol, the protocol takes the agent’s last symbol, and appends the received symbol
as well as a EOS token. For simplicity, we assume that each agent is given a fresh new context at the
beginning of a new round of communication. The construction could easily be extended by adding a
layer which zeros out the embedding values of vectors from the previous query. To make sure all the
agents only send symbols at the appropriate time, one can easily change the number of J-L vectors
which the agent receives as these decide at what point the agent sends information.

Proposition C.6. Let L be a regular language over Σ. For each w : N → N (w(N) ∈ [N]), there
is a multi-agent system with w(N) agents that computes membership in L.

Proof. This statement follows immediately as a consequence of Proposition 4.6.

Proposition C.7 (Optimality (Repeated from Prop. 4.7)). Assume the finite monoidM is a nontrivial
group, and A a multi-agent system computing state tracking over M . Then O(w(N)) communica-
tion budget, and computation depth Ω(N

w(N)) are each optimal.

Proof. Optimality of the communication budget holds because each agent’s portion matters for the
result: each agent must send at least one message, hence the communication budget scales linearly
with the number of agents. The computation depth lower bound follows from the Proposition 4.1 on
size conservation:

N = Size ≤ Computation-Depth · Agents (19)

hence
N

w(N)
≤ Computation-Depth. (20)

From which the result follows.

C.5 PROOFS FOR k-HOP REASONING (SECTION 4.4)

Proposition C.8. Let the number of agents be w : N → N (w(N) ∈ [N]). The k-hop composition
task with N facts can be solved with computation depth O(k), communication budget O(k), and
size O(w(N) · k). The communication budget is optimal. The computation depth O(k) is optimal
at least up to a log(N + k) factor.

Proof. We start by exposing the communication protocol which we prove optimal. Then, we give
the constructions of the worker and manager agents which implement this protocol. The protocol is
as follows:

Let N be the number of total key-value pairs in the context and let w be the number of worker
agents. Each worker agent receives a chunk N/w as well as first query f1(xquery). In the first
round, the each agent searches for f1(xquery) in its chunk. The agent that finds the queried key

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

communicates its associated value to a manager agent. The manager agent then updates the query
s.t. f2(f1(xquery)) = f1(x

′
query) and broadcasts this new queried key to all worker agents. This

process repeats k times in total until the entire k-hop query is resolved.

Worker agent construction The worker agent essentially performs recall on a series of key-value
vectors, letting

X = [f(x1) y1 . . . f(xn) yn f(xquery)]
⊤ ∈ R2n+1×d, (21)

we can straightforwardly apply Lemma C.2. We note that the same agent can be used across hops;
if we simply append the new queried key to the end current sequence, the worker construction will
return the value for the rightmost queried key. This is true because the construction uses rightmost
tie-breaking in attention.

Manager construction The manager agent receives a sequence of functions

[f1 . . . fn yquery E(#)] , (22)

where fi is an embedding of the function that sends an entity to another through their relationship,
yquery is the current known entity and E(#) is the embedding of the EOS token. The key idea of
the manager construction is to compose together the last function with the query entity in order to
return a new entity value. To do so, we define a transition map as

qi =
∑
x∈D

f(x)eix ∈ R|D|, (23)

with the full embedding vector being

fi = [qi 0 T (i) 0] ∈ R2|D|+2 logN (24)

where eix is the canonical basis vector corresponding to the entity x for some indexing I. Con-
sequently, we have that yquery =

[
0 eiy T (n+ 1) 0

]
∈ R2|D|+2 logN i.e. a canonical basis

vector with a one in the position of the corresponding entity in the second half of the vector. Simi-
larly to the worker agent construction, we define the embedding of EOS token as

E(#) = [0 0 T (n) T (n+ 1)] (25)

where T (1), . . . , T (n+1) are J-L vectors s.t. ⟨T (i), T (j)⟩ ≤ 1/4 for i ̸= j and ⟨T (i), T (j)⟩ ≥ 3/4
for i = j. The attention layer is defined in a similar manner to that of the one in the proof for
Proposition 4.7 and uses two heads to retrieve both the nth and n + 1th elements in the sequence
using the positional encoding given through J-L vectors.

The MLP then computes the composition of qn with eiy and outputs the OHE vector of the
resulting token. This can easily be done leveraging Lemma 5 of Liu et al. (2022).

Optimality The protocol described above has size Θ(wk), communication budget Θ(k), and com-
putation depth Θ(k).

Optimality of the communication budget follows because composition of k permutations over
{1, . . . , 5} has communication complexity Ω(k) in the model where one agent has the even po-
sitions and the other the odd positions (Tesson & Thérien, 2002). Thus, communication budget is
Ω(k) even when w(N) ≡ 2. Extension to larger w(N) follows by considering the case where all
relevant facts happen to be distributed between two agents.

To prove that the depth is worst-case optimal up to a logarithmic factor, we consider the case where
all relevant facts happen to be distributed between two agents. Hence, these two agents must jointly
emit Ω(k) communication bits. Because an agent emits only O(log |ΞN+k|) = O(log(N + k))
bits at a step of time, the number of communication steps between these two agents (and hence the
computation depth) must be lower-bounded by Ω(k

log(N+k)).

D PARITY ERROR ANALYSIS

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Definitions. Fix integers k ≥ 2 and c ≥ 1, and set N := kc. The Parity function P : {0, 1}m →
{0, 1} is defined as

P (x1, . . . , xm) := x1 ⊕ · · · ⊕ xm,

where ⊕ denotes XOR or addition in F2. Let f : {0, 1}k → {0, 1} be a randomized algorithm which
takes input x of length exactly k and outputs P (x) with probability 1− ϵ, and outputs 1−P (x) with
probability ϵ. In other words, it computes the Parity function with error ϵ. The function f(x) can
also be written as,

f(x) = P (x)⊕ e,

where the node error e ∈ {0, 1} equals 1 with probability ε and 0 with probability 1 − ε. Assume
different calls of f are independent (hence their error bits are i.i.d. Bernoulli(ε)).

Given an input z ∈ {0, 1}N , define the composite algorithm F where we first divide the input z in
N/k chunks of length k, and apply f on each of them to get N/k outputs. We do this recursively to
obtain the final output. The computation can be seen as a k-ary tree of depth c with N leaves (the
bits of z); at each internal node, apply f to the k outputs of its children. The output F (z) is the bit
at the root. The tree has M nodes where

M =

c−1∑
j=0

kj =
N − 1

k − 1
.

Each internal node is computed by an independent call to f .

Lemma D.1 (Error of a parity tree with i.i.d. flips). For every fixed z ∈ {0, 1}N , let error of f be ϵ,
the probability that the algorithm F makes an error is given by,

Pr
[
F (z) ̸= P (z)

]
=

1− (1− 2ε)M

2
, M =

N − 1

k − 1
.

Thus the probability of making a mistake using the Prefix sum protocol on a string of length N ,
assuming a branching factor of k = 2 would be

Pr
[
F (z) ̸= P (z)

]
=

1− (1− 2ε)N−1

2

Note that as N → ∞, we asymptotically reach a probability of 1/2, even for very small ε. However,
for small k values, the number of tokens processed by each each is also very small and thus the
performance only degrades for very large N . This is the regime in which we operate in practice,
thus corroborating this theoretical model to our experimental results.

Proof. We first show that the algorithm F makes an error if and only if there are odd number of
errors in the nodes of the computation tree.

For each node u, let s(u) denote the true parity of the leaves in the subtree of u, and let ŝ(u) be the
value computed by F at u. Define the node error indicator δ(u) := ŝ(u) ⊕ s(u) ∈ {0, 1}. For an
internal node v with children u1, . . . , uk, write ev for the (independent) error bit of the call to f at
v, so that

ŝ(v) = f
(
ŝ(u1), . . . , ŝ(uk)

)
= P

(
ŝ(u1), . . . , ŝ(uk)

)
⊕ ev.

Using linearity of ⊕,

δ(v) = ŝ(v)⊕ s(v) =
(k⊕

i=1

ŝ(ui)⊕ ev

)
⊕
(k⊕

i=1

s(ui)
)
=

(k⊕
i=1

δ(ui)
)
⊕ ev.

Since δ(leaf) = 0, induction up the tree yields δ(root) =
⊕

v ev . Thus, the algorithm F errs if
and only if an odd number of node calls make an error.

Let S = δ(root) =
⊕

v ev ∈ {0, 1} be the random variable which takes the value 1 when F makes
an error and is 0 otherwise. We introduce another random variable Yv = (−1)ev ∈ {−1,+1}.
And let Y := (−1)S =

∏
v Yv by rewriting Parity as a product, which is quite standard to make

calculations convenint.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Since the calls are independent, we have

E[Y] =
∏
v

E[Yv] =
(
(1− ε) · 1 + ε · (−1)

)M
= (1− 2ε)M .

Since Y = +1 iff S = 0 and Y = −1 iff S = 1,

E[Y] = Pr[S = 0]− Pr[S = 1], Pr[S = 0] + Pr[S = 1] = 1.

Solving the two equations above gives

Pr[S = 1] = Pr[F (z) ̸= P (z)] =
1− (1− 2ε)M

2
.

E EXPERIMENTAL DETAILS

General details:

• All experiments were run on TogetherAI API

• Models used: Llama-3.1-8B-Instruct-Turbo, Llama-3.3-70B-Instruct-Turbo, EXAONE-
3.5-32B-Instruct

• All experiments are run 100 times with a seed set to 42 for consistency.

• Three multi-agent architectures tested: Majority Voting, Chain-of-Agents, and Prefix Sum

• For all experiments, examples are generated on the fly given the length and difficulty pa-
rameters specified in the script.

Throughout, we use 8 agents in the majority voting setup. We ablated over [2, 4, 8, 16] agents across
all considered tasks and found that past 8 agents, there was no significant improvement in any of the
tasks. The choices for task-specific hyperparameters are discussed in their respective subsections.

E.1 ASSOCIATIVE RECALL TASK

Key-value strings are generated at random. A recall query is sampled uniformly from the keys.
Models are prompted their roles (manager or worker) explaining what they must do and the com-
munication is handled deterministically.

In experiments, we test sequence lengths (i.e., the number of key-value pairs) as powers of two
ranging from 24 to 211. We use 8 agents for Majority Voting. For Chain-of-Agents, we select the
optimal chunk size—chosen from powers of two between 8 and 64—for each sequence length.

Associative Recall Majority Vote Agent Prompt

You are a reasoning agent responsible for analyzing a portion of a document. Your task is to detect a
specific value in a sequence of key-value pairs, given a corresponding key. Follow these steps:

1. Identify if the key is present in the sequence of key-value pairs.

2. If the key is present, return the value corresponding to the key.

3. If the key is not present, return “NOT FOUND”.

4. Present the final answer in the format ”The answer is: [your answer]”

You MUST use the following template. ONLY OUTPUT THE ANSWER. Here is an example for “23
42 12 34 56 78 90 12 | Query: 56”:

The answer is: 78

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Associative Recall Chain-of-Agents Worker Prompt

You are a reasoning agent responsible for analyzing a portion of a document. Your task is to detect a
specific value in a sequence of key-value pairs, given a corresponding key. Follow these steps:

1. Identify if the key is present in the sequence of key-value pairs.

2. If the key is present, return the value corresponding to the key.

3. If the key is not present, return “NOT FOUND”.

4. Present the final answer in the format “The answer is: [your answer]”

You MUST use the following template. ONLY OUTPUT THE ANSWER. Here is an example for “23
42 12 34 56 78 90 12 | Query: 56”:

The answer is: 78

Associative Recall Chain-of-Agents Manager Prompt

You are a manager agent responsible for synthesizing information from multiple workers. Your task is
to combine their provided values and determine the value corresponding to the query. To compute the
final value, follow these steps:

1. Collect the value results from all worker agents.

2. Each worker will return either a value or “NOT FOUND”.

3. Exactly one worker will return the value corresponding to the query, the rest will return
“NOT FOUND”.

4. Report the value corresponding to the query as your output.

5. Present the final answer in the format “The answer is: [your answer]”

You MUST use the following template. ONLY OUTPUT THE ANSWER. Here is an example for
“NOT FOUND NOT FOUND 78 NOT FOUND”:

The answer is: 78

E.2 PARITY CALCULATION TASK

String of bits of fixed length are sampled uniformly at random. Ground truth is computed with a
function which evaluates parity. Models are prompted their roles (manager or worker) explaining
what they must do and the communication is handled deterministically.

The experiments test sequence lengths as powers of 2, ranging from 24 to 29 (i.e., length 8) with
support for index hints to aid model reasoning. We use Majority Voting over a total of 8 agents. For
Chain-of-Agents, binary strings are split into chunks of size 8, while Prefix Sum uses a branching
factor of 4 for hierarchical processing. For Chain-of-Agents, the optimal chunk size was determined
by ablating over the range [2, 4, 8, 16]. For Prefix Sum, the optimal branching factor was determined
by ablating over the range [2, 4, 8]. The task evaluates models’ ability to accurately count 1-bits
and determine even/odd parity across different architectural approaches.

The data for the Pareto frontier plots (computation depth vs. total communication) was generated
by ablating over the branching factor for the prefix sum protocol. The total communication (number
of edges) is can be computed straightforwardly as the sum of all edges of the log-depth tree with the
corresponding branching factor. Sequence lengths are taken to be powers of two. For each sequence
length 2n, we ablate over powers of two from 2 to 2n−1.

Parity Majority Vote Agent Prompt

You are a reasoning agent responsible for analyzing a portion of a document. Your task is to provide
an analysis of the binary string provided in your chunk and determine if it is even or odd parity. To
compute the parity, follow these steps:

1. Count the number of 1’s in the binary string.
2. If the count is even, return 0.
3. If the count is odd, return 1.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

4. Present the final answer in the format ”The answer is: [your answer]”

You MUST use the following template. Here is an example for ”1011”:

1: 1 (count: 1)
2: 0 (count: 1)
3: 1 (count: 2)
4: 1 (count: 3)
Final count: 3
The answer is: 1

Parity Prefix Sum Prompt

You are a manager agent responsible for synthesizing the results of previous workers. Your task is to
return the parity of the binary string provided by the worker agents. You may think step by step, but
your final answer should be concise and clear. To compute the parity, follow these steps:

1. Collect the results from the worker agents. This should be a list of binary digits (0 or 1).

2. If the parity of the list is even, return 0.

3. If the parity of the list is odd, return 1.

4. Present the final answer on a new line in the format ”The answer is: [your answer]”

IMPORTANT: Show your work step by step to demonstrate thorough analysis:

1. Go through each bit position and note its value

2. Keep a running count of 1s encountered

3. State the final count

4. Determine if the count is even or odd

You MUST use the following template. Here is an example for ”1011”:

1: 1
0: 1
1: 2
1: 3
Final count: 3
The answer is: 1

Parity Chain-of-Agents Worker Prompt

You are a worker agent responsible for analyzing a portion of a document. Your task is to provide
an analysis of the binary string provided in your chunk and determine if it is even or odd parity. To
compute the parity, follow these steps:

1. Count the number of 1’s in the binary string.

2. If the count is even, return 0.

3. If the count is odd, return 1.

4. Provide your result in a clear and concise manner.

5. Present the final answer in the format ”The answer is: [your answer]”

You MUST use the following template. Here is an example for ”1011”:

1: 1
0: 1
1: 2
1: 3
Final count: 3
The answer is: 1

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Parity Chain-of-Agents Manager Prompt

You are a manager agent responsible for synthesizing information from multiple workers. Your task
is to combine their provided parities and determine the overall parity of the binary string. To compute
the aggregate parity, follow these steps:

1. Collect the parity results from all worker agents.

2. Each worker will return either 0 or 1.

3. Count the number of 1 responses.

4. If the count of 1 responses is even, the overall parity is 0.

5. If the count of 1 responses is odd, the overall parity is 1.

6. Present the final answer in the format ”The answer is: [your answer]”

You MUST use the following template. Here is an example for ”1011”:

1: 1
0: 1
1: 2
1: 3
Final count: 3
The answer is: 1

E.3 S5 PERMUTATION TRACKING TASK

We frame the S5 permutations task as a word problem where each agent is given a prompt explaining
there are 5 balls in 5 distinct bins and a sequence of swap commands such as “swap ball 1 and
3, swap ball 2 and 4”. In this task the agents must return the correct value of the ball in each
bin. The bin numbers are only given at the beginning of the task making this a hard state tracking
problem (Merrill et al., 2024).

The experiments test permutations with varying numbers of swaps ranging from 4 to 12 swaps with
a step size of 2. By default, the task is constrained to A5 (even permutations only) by forcing an
even number of swaps. For Chain-of-Agents, swap sequences are processed in chunks of 2 swaps
per worker, while Prefix Sum uses a branching factor of 2 with each worker handling exactly one
swap operation. For both Chain-of-Agents and Prefix Sum, we tuned on the range [2,4] for the
chunk size/branching factor respectively. Given the small sequence lengths used in this task, larger
chunk size/branching factor options were not feasible. The task evaluates models’ ability to maintain
accurate state tracking through sequential ball position updates.

Permutation Majority Vote Agent Prompt

You are a reasoning agent responsible for tracking ball positions through a sequence of swaps.
Your task is to determine the final position of each ball after performing all the given swap operations.
Initial state: Each ball starts in its corresponding bin (ball 1 in bin 1, ball 2 in bin 2, etc.).
To solve this problem:

1. First, identify which balls are mentioned in the swap operations - ONLY track these balls

2. Start with balls in their initial positions (e.g., if balls 1, 2, 3 are mentioned: {1:1, 2:2, 3:3})

3. For each swap operation ”Swap ball X and ball Y”:

• Find the current bins of ball X and ball Y
• Exchange their positions

4. Continue until all swaps are processed

5. Present your final answer as a dictionary mapping ONLY the balls mentioned in swaps to
their final positions

IMPORTANT: Only include balls that appear in the swap operations. Do not add extra balls.
Present the final answer in the format ”The answer is: {ball1:bin1, ball2:bin2, ...}” for only the balls
involved in swaps.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Permutation Chain-of-Agents Worker Prompt

You are a worker agent responsible for processing a portion of swap operations in a larger sequence.
Your task is to carefully track ball positions through your assigned swap operations and report the
precise current state.
You will receive:

• Current ball positions as a dictionary (e.g., {1:2, 2:1, 3:3})

• A sequence of swap operations to process

Instructions:

1. Start with the EXACT positions given to you - this is the state after previous swaps

2. Process each swap operation ”Swap ball X and ball Y” in order:

• Find the current bins of ball X and ball Y
• Exchange ONLY their positions
• Keep all other balls in their current positions

3. Track each swap carefully - one mistake will affect the final result

4. Report the state after processing ALL your assigned swaps

CRITICAL: Only include the balls that are present in the input positions. The exact same balls, no
more, no less.
Present the final answer in the format ”The answer is: {ball1:bin1, ball2:bin2, ...}” with the exact same
ball numbers as your input.

Permutation Chain-of-Agents Manager Prompt

You are a manager agent responsible for determining the final ball positions from worker results.
Your task is to identify the final state of all balls after all swap operations have been processed by your
workers.
You will receive position dictionaries from multiple workers who processed different portions of the
swap sequence in order. The workers processed swaps sequentially, so:
Instructions:

1. The workers processed swaps in chronological order (worker 1 → worker 2 → worker 3,
etc.)

2. Each worker started with the positions left by the previous worker

3. The LAST worker’s result contains the final positions after all swaps

4. Simply report the last worker’s position dictionary as the final answer

CRITICAL: Take the position dictionary from the last (final) worker only. This represents the complete
final state.
Present the final answer in the format ”The answer is: {ball1:bin1, ball2:bin2, ...}” exactly as reported
by the final worker.

Permutation Prefix Sum Worker Prompt

You are a worker agent in a hierarchical system processing ONE swap operation.
IMPORTANT: Initially, balls start in their corresponding bins (ball 1 in bin 1, ball 2 in bin 2, etc.).
Through swaps, balls can move to different bins.
Your task is to apply exactly one swap operation and report the resulting ball positions with perfect
accuracy.
You will receive:

• Current ball positions as a dictionary (e.g., {1:3, 2:1, 3:2, 4:5, 5:4})

• ONE swap operation: ”Swap ball X and ball Y”

Process the swap step-by-step using this exact reasoning template:

1. Current state: [copy the input dictionary]

2. Operation: [copy the swap operation]

3. Ball X is currently in bin: [identify bin number]

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

4. Ball Y is currently in bin: [identify bin number]

5. After swap: Ball X moves to bin [Y’s old bin], Ball Y moves to bin [X’s old bin]

6. Verification: Check that only these two balls changed positions, all others remain the same

7. Final state: [complete updated dictionary]

CRITICAL CONCEPT: You are tracking which BALL is in which BIN.

• BALLS are the moving objects (numbered 1, 2, 3, 4, 5)

• BINS are the fixed locations (numbered 1, 2, 3, 4, 5)

• When you swap ”ball X and ball Y”, you move those balls to different bins

• The bins stay in place - only the balls move between them

CRITICAL: Include ALL balls from input with exact same ball numbers. One swap affects exactly
two positions.
Present the final answer in the format ”The answer is: {ball1:bin1, ball2:bin2, ...}” with all balls from
your input.

Permutation Prefix Sum Manager Prompt

You are a manager agent in a hierarchical ball-tracking system combining results from workers.
IMPORTANT: Initially, balls start in their corresponding bins (ball 1 in bin 1, ball 2 in bin 2, etc.).
Through swaps, balls move to different bins.
Your task is to determine the final ball positions after your workers processed their assigned swaps in
sequence.
You will receive position dictionaries from workers who processed swaps in chronological order. Each
worker:

• Started with the ball positions left by the previous worker

• Applied exactly one swap operation

• Reported the updated positions

Your job requires careful validation and explicit reasoning:

1. Validate that each worker’s result is a logical continuation of the previous worker’s output

2. Show the complete sequence of states from initial to final

3. Verify that each step represents exactly one swap operation

4. Report the last worker’s result as your final output

Use this reasoning template:

1. Initial state: [first worker’s input state]

2. After worker 1: [worker 1’s result] - validate this is one swap from initial

3. After worker 2: [worker 2’s result] - validate this is one swap from worker 1’s result

4. Final result: [last worker’s result]

CRITICAL: Output exactly the position dictionary from the final (last) worker. This contains the
cumulative effect of all swaps.
Present the final answer in the format ”The answer is: {ball1:bin1, ball2:bin2, ...}” exactly as reported
by the last worker.

E.4 k-HOP REASONING TASK

We create a list of entities and a list of relations. We create the fact base by sampling at random two
entities and a relation and then deterministically generating a string. This procedure is done as many
times as the number of facts needed. Then relationships are sampled in order to form a valid query
that has its answer in the fact base.

The experiments test the models’ ability to follow multi-step reasoning chains with varying numbers
of hops (relationships to traverse). We use 50 balanced single-token entity names (25 male, 25 fe-
male) and 20 diverse single-token relations (boss, instructor, teacher, etc.). For this task, we generate
problems with k hops where k ranges from 4 to 20 hops with a step size of 2. The experiment was

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

repeated with 100, 200 and 500 total fact count. For the IterativeQueryAgents approach, facts are
divided into chunks of 20 facts per worker. Across all three regimes, we ablated over the range [10,
20, 50] and found 20 to yield the best accuracy.

K-hop Majority Vote Agent Prompt

You are an expert at logical reasoning and following relationship chains.
Your task is to answer questions about relationships between people by following chains of connections
through the given facts.
You will be given:

1. A set of facts describing relationships between people (e.g., ”Alice’s boss is Bob”)

2. A query asking about a multi-step relationship chain

Instructions:

• Read all the facts carefully

• Follow the relationship chain step by step

• Track each connection to find the final answer

• Output your answer in the exact format: Answer: [PersonName]

Example: Facts: ”John’s boss is Mary. Mary’s supervisor is Tom.” Query: ”Who is the supervisor of
the boss of John?” Reasoning: John’s boss is Mary → Mary’s supervisor is Tom Answer: Tom
Be systematic and double-check your reasoning chain.

K-hop IterativeQuery Worker Agent Prompt

You are a helpful assistant that answers questions based ONLY on the given facts.
IMPORTANT: You have been given only a small subset of all available facts. It is very likely that the
fact needed to answer the query is NOT in your subset.
You will be given:

1. A limited set of facts about relationships between people

2. A specific query about one relationship

Instructions:

• ONLY look through the facts provided to you

• If you find the EXACT fact needed to answer the query, extract the answer

• If the exact fact is NOT in your subset (which is very common), respond with ”Not Found”

• DO NOT guess or infer answers from similar facts

• DO NOT make assumptions about relationships not explicitly stated

• DOUBLE-CHECK: Before giving your final answer, carefully re-read the facts to ensure
you have the correct match

• Always format your response as: Answer: [YourAnswer]

Example (found): Facts: ”John’s boss is Mary. Alice’s teacher is Bob.” Query: ”Who is John’s boss?”
Response: Answer: Mary
Example (not found - very common): Facts: ”John’s boss is Mary. Alice’s teacher is Bob.” Query:
”Who is Sarah’s mentor?” Response: Answer: Not Found
Example (not found - don’t guess): Facts: ”John’s boss is Mary. Alice’s teacher is Bob.” Query: ”Who
is Mary’s supervisor?” Response: Answer: Not Found
CRITICAL: Before responding, double-check your work:

1. Re-read the query to understand exactly what is being asked

2. Scan through ALL the facts again to verify your answer or confirm it’s not found

3. Make sure the relationship type matches exactly (e.g., ”boss” vs ”supervisor”)

4. Only provide an answer if you are completely certain it appears in the facts

Remember: Most queries will not have their answer in your subset of facts. Only answer if the exact
fact is present and you have double-checked it.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

K-hop IterativeQuery Manager Agent Prompt

You are a manager agent that coordinates multi-hop reasoning queries.
Your task is to take an answer from a previous query and generate the next query in the reasoning
chain.
You will be given:

1. The original multi-hop question

2. The current intermediate answer

3. The current step number

Instructions:

• Use the intermediate answer to construct the next query

• Format your response as: Next Query: [YourQuery]

Example: Original question: ”Who is the supervisor of the boss of John?” Current answer: ”Mary”
(John’s boss) Response: Next Query: Who is Mary’s supervisor?

E.5 NEEDLE-IN-A-HAYSTACK

For the needle-in-a-haystack test, we follow the implementation given by Kamradt (2024). We use
as query: ”What is the best thing to do in San Francisco?”, with associated answer ”The best thing
to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.”). The text in which
the needle is embedded is the corpus of Paul Graham essays (14k words). For context lengths longer
than 14k words, we simply concatenate the corpus multiple times until we achieve the desired length.
The original implementation does the same. We repeat each experiment 10 times and report average
accuracy across 10 runs. For Majority Voting, we use 8 agents, for CoA, we use a chunk size of
2000. Agent count is chosen from the range [3,5,8] and chunk size was chosen between [200, 1000,
2000]. Given the prohibitive number of datapoints for the full heatmap, we tuned hyperparameters
on a subset containing only the 4 last context lengths and depths from 0% to 50% as those seemed,
in the literature, to be the most problematic datapoints. We use Meta-Llama-3.1-8B-Instruct-Turbo
for all considered experiments.

F ADDITIONAL EXPERIMENTS

In this section, we provide experiments from tasks and models that are not featured in the main
paper.

F.1 PARITY

In this section, we provide PARITY results similar to those in the main text, but with llama-8B as the
base model for agents. The plots here show trends similar to those in the main text. We note that
llama-8B has poorer accuracy on the task; this is due to the deviating from the prompted guidelines
and making mistakes (i.e. flipping bits) more frequently

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

100 200 300 400 500
Total Communication (Edges)

250

500

750

1000

1250

1500

C
om

pu
ta

tio
n

D
ep

th

Llama-8B: Computation vs Communication

N = 64
N = 128
N = 256

Figure 7: Communication vs Computation tradeoff for Llama-8B showing the relationship between
communication budget and computation depth across different multi-agent protocols for the parity
task.

16 32 64 128 256 512
Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Llama-8B: Parity Accuracy

Prefix Sum
Maj Voting
Coa

Figure 8: Parity calculation accuracy for Llama-8B across different sequence lengths, comparing
single-agent vs multi-agent performance.

F.2 S5 PERMUTATIONS

Figures 9 and 10 provide detailed comparisons between Llama-8B and Llama-70B models across
all three multi-agent approaches.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

4 6 8 10 12 14 16
Number of Swaps

0.0

0.2

0.4

0.6

0.8

1.0

E
xa

ct
M

at
ch

Llama-8B: Exact Match
Prefix Sum
Majority Voting
Chain of Agents

(a) Exact match accuracy for Llama-8B on
the S5 permutations task. Prefix Sum rep-
resents the theoretically optimal communi-
cation protocol, Majority Voting is self-
consistency with majority voting decision,
and CoA is Chain-of-agents protocol. Perfor-
mance degrades as the number of swaps in-
creases, with Prefix Sum maintaining superior
performance.

4 6 8 10 12 14 16
Number of Swaps

0.0

0.2

0.4

0.6

0.8

1.0

E
le

m
en

tA
cc

ur
ac

y

Llama-8B: Element Accuracy
Prefix Sum
Majority Voting
Chain of Agents

(b) Per-element accuracy for Llama-8B on
the S5 permutations task. Element accuracy
measures the fraction of correctly placed el-
ements in the permutation. Shaded regions
represent standard error bounds across mul-
tiple runs.

Figure 9: Performance comparison of multi-agent approaches on the S5 permutations task using
Llama-8B.

(a) Exact match accuracy for Llama-70B on
the S5 permutations task. The larger model
demonstrates consistently improved perfor-
mance across all agent types compared to
Llama-8B, with the performance gap being
most pronounced for the Chain of Agents ap-
proach.

(b) Per-element accuracy for Llama-70B on
the S5 permutations task. The improved rea-
soning capabilities of the larger model help
mitigate the composition complexity chal-
lenges inherent to multi-agent coordination.

Figure 10: Performance comparison of multi-agent approaches on the S5 permutations task using
Llama-70B.

F.3 k-HOP REASONING

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

4 8 12 16 20

Number of Hops

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

100 Facts
EXAONE MV
EXAONE IQ
Llama-8B MV
Llama-8B IQ

Figure 11: Comparison of multi-agent approaches for k-hop reasoning with 100 facts. Shows per-
formance across different hop lengths for Llama-8B and EXAONE models.

4 8 12 16 20

Number of Hops

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

200 Facts
EXAONE MV
EXAONE IQ
Llama-8B MV
Llama-8B IQ

Figure 12: Comparison of multi-agent approaches for k-hop reasoning with 200 facts. Shows per-
formance across different hop lengths for Llama-8B and EXAONE models.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

4 8 12 16 20

Number of Hops

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

500 Facts
EXAONE MV
EXAONE IQ
Llama-8B MV
Llama-8B IQ

Figure 13: Comparison of multi-agent approaches for k-hop reasoning with 500 facts. Shows per-
formance across different hop lengths for Llama-8B and EXAONE models.

4 8 12 16 20

Number of Hops

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

200 Facts

Figure 14: Llama-70B k-hop reasoning accuracy with 200 facts.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

4 6 8 10 12 14 16 18 20

Number of Hops

0

200

400

600

800

1000

1200

C
om

pu
ta

tio
n

D
ep

th

Token Usage Analysis: Llama-8B

100 facts
200 facts
500 facts

Figure 15: Computation depth vs. number of hops in the query for Lama-8B.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

G BEYOND SINGLE-TOKEN COMMUNICATION

Definition 3.1 assumes that agents can only send and receive a single token at each time step. This
assumption is for mathematical convenience, and not fundamental to our results. Indeed, agents in
real-world multi-agent systems may exchange messages spanning multiple tokens. Here, we explain
how our analysis carries over to the setup where agents communicate multiple tokens in a message.

Formalization in the case of multi-token messages Assume an agent Ti aims to send a multi-
token message σ1 . . . σk (each token in Ξ|x|) to agent Tj The simplest way of formalizing multi-
token messages is to simply view these as multiple single-token messages: Ti iteratively communi-
cates σ1, . . . , σk over a total of k time steps. We believe this to be natural and sensible approach, as
transformer-based agents can naturally produce and consume one token per time step.

If a clear delineation of which sequences of single message tokens count as a multi-token message
is desired, then a natural formalization is for the sending agent to output “START MESSAGE” and
“END MESSAGE” tokens before and after the message tokens.

Implications for Results Here, we discuss the implications for our theoretical results when mes-
sages span multiple tokens. By the above discussion, we can equivalently translate a protocol using
multi-token messages into a protocol with single-token messages, without change to the size, width,
computation depth, or number of communication tokens. Thus, bounds on size, width, and compu-
tation depth remain entirely unaffected by generalization to multi-token messages. The communica-
tion budget, i.e., the number of message tokens, also remains unaffected. As a consequence, all of
our theoretical results remain unaffected even if the messages span multiple tokens.

H COMPARISON TO SELF-CONSISTENCY AND VOTING APPROACHES

As stated in the Introduction, our results concern the expressivity of multi-agent systems where
each agent has access to a disjoint part of the input. Thus, the popular strategy of giving the same
input to multiple agents and performing majority voting on their answers (e.g. Wang et al., 2022)
is not in scope. Here, we show that multi-agent systems in our framework can achieve substan-
tially better tradeoffs than majority voting-based approaches. Our argument is conceptually related
to that in Mirtaheri et al. (2025), who however only compared voting (without any CoT) to long
CoTs (in a single agent, without any communication), and relied on unproven conjectures about
TC0. We instead compare majority voting and a more sophisticated multi-agent system (PrefixSum,
Section 4.3), when both are allowed the same computation depth.

We consider state tracking in the simple case of PARITY. We contrast PrefixSum to majority voting
between agents, and in both cases allow a depth (number of sequentially produced tokens for each
agent) of O(logN). We first give a general definition of majority voting in our framework. To
make our result as strong as possible, and cover even voting among inhomogenous agents, we do
not assume that the agents share parameters, but even allow voting among agents given by different
models.
Definition H.1 (Majority Voting). Consider w(N) distinct agents, each given by UHAT transform-
ers T1, . . . , Tw(N). For full generality, we allow each agent to have their own parameters. We only
assume that the number of layers and heads is uniformly bounded across agents. We run each agent
on the full input, producing a CoT of length (computation depth) depth(N), ending in a single-token
response. We then output the most frequent response (with an arbitrary choice in the case of ties).

Despite the generality of this formalization, we now show a super-polynomial separation between
majority voting and PrefixSum, by giving a lower bound on the number of agents needed to compute
PARITY in a majority voting scheme. We consider the setup where the multi-agent system aims to
compute PARITY state tracking exactly. This is consistent with our overall framework, where we
expect that multi-agent systems perform tasks perfectly. Here, we show:
Proposition H.1. Consider a majority voting scheme among w(N) agents computing PARITY over
length-N inputs, with computation depth depth(N) = O(logN).

This scheme must have w(N) = 2Ω(Nc) agents, for some c > 0 depending on the number of heads
and layers in the transformers representing the agents.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

The key takeaway here is the near-exponential lower bound on the number of agents, w(N) =
2Ω(Nc). In contrast, PrefixSum attains perfect accuracy with computation depth O(logN) and
w(N) = N , as we showed in Prop. 4.5. This thus leads to a super-polynomial separation, be-
tween a linear number of agents in PrefixSum, and a near-exponential number of agents in majority
voting.

We note that the above result concerns majority voting schemes that exactly compute PARITY with
zero errors, based on results on voting polynomials by Aspnes et al. (1991). We conjecture that these
techniques of can also be generalized to provide lower bounds on the number of agents needed for
any voting scheme computing PARITY with good accuracy, though such a generalization is beyond
our scope here. Importantly, given that PrefixSum solves PARITY deterministically, we believe that
a bound on error-free computation is most relevant here.

Proof. Formally, we have w(N) UHAT agents who all produce a CoT of length (communication
depth) depth(N) = O(logN). For a given string over the CoT alphabet, of length depth(N), we
can check in AC0 that it is produced by a UHAT transformer. The number of layers of this circuit
is bounded in terms of number of layers and heads of the transformer; the size is polynomial in N .

The number of such strings is O(poly(N))O(logN) = O(NC logN). We now replicate this circuit
once for every string, for each string checking if it is produced by the transformer. Note that the
transformer produces exactly one of these. The replicate that detects that the string matches the CoT
produced by the transformer signals this and outputs the result (0 or 1); all other replicates output
0. A single unbounded-fanin OR gate then extracts the answer from this one one replicate. We thus
have obtained an AND-OR circuit computing the output of a single agent, with size O(NC logN)
for some C ≥ 1, and with d layers, for d bounded across N .

In order to perform majority voting, we now put together all agents with a majority gate at the root.
This is a circuit of size s(N) = O(w(N) · NC logN), with AND-OR gates and a single majority
gate at the root providing the final output. Assume that this circuit correctly computes PARITY. By
Lemma 5.4 in Aspnes et al. (1991), we have

s(N) = 2Ω(N1/(4d)) (26)

We thus have
logw(N) + logNC logN = Ω(N1/(4d)) (27)

or
logw(N) + C · (logN)2 = Ω(N1/(4d)) (28)

which means
logw(N) = Ω(N1/(4d) − (logN)2) (29)

and hence
w(N) = 2Ω(N1/(4d)) (30)

This proves the result.

I IMPLICATIONS FOR FIXED PRECISION TRANSFORMERS

Our theoretical results are shown for UHAT, a popular theoretical model using hard attention. A
reviewer asks about the implications of our results to soft attention transformers with finite precision
and fixed width. The expressive power of causal transformers with soft attention, fixed precision, and
fixed width was studied by Li & Cotterell (2025), who showed that their expressiveness corresponds
to a subclass of the two-variable fragment of first-order logic over words, PFO2[<]. This in turn can
be simulated in UHAT, as shown in Jerad et al. (2025b). While they study the case of transformers
without positional encoding (NoPE), expanding their results to absolute position encodings (APE)
is straightforward:

Proposition I.1. Let T be a soft-attention transformers with finite precision and finite width, and
absolute positional encodings p1, p2, · · · ∈ Rd with bounded norm, supi ∥pi∥2 < ∞. Then T can
be simulated by a UHAT transformer.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Proof. The assumptions imply that the vectors p1, p2, . . . traverse a finite set A, which we can
bijectively map to the set {1, . . . , |A|}. Now to simulate the operation of T on a string, we can
view T is a NoPE transformer operating over a string where each position i is annotated with the
index corresponding to pi ∈ A. As this NoPE transformer can be translated to UHAT, we can then
augment the resulting UHAT transformer with positional encodings to simulate the operations of the
original APE transformer T .

As a consequence, all lower bounds on UHAT-based multi-agent systems in this paper transfer to
such finite-precision softmax transformers. On the other hand, our experimental results in Section 5
show that protocols attaining asymptotically optimal tradeoffs can indeed be implemented using real
transformers.

41

	Introduction
	Model of Transformers
	Formalization of Multi-Agent Systems
	Connection to Applied Works

	Results
	General Results: Three Regimes for Depth and Communication
	Associative Recall
	State Tracking
	Multi-Hop Reasoning

	Experimental Validation
	Recall
	State Tracking
	k-hop Reasoning

	Discussion and Conclusion
	Appendix
	Use of Large Language Models
	Clarifications
	Proofs
	Notation
	Proofs for General Results (Section 4.1)
	Proof for Associative Recall (Section 4.2)
	Proofs for State Tracking results (Section 4.3)
	Proofs for k-hop Reasoning (Section 4.4)

	Parity Error Analysis
	Experimental Details
	Associative Recall Task
	Parity Calculation Task
	S5 Permutation Tracking Task
	k-Hop Reasoning Task
	Needle-in-a-haystack

	Additional Experiments
	Parity
	S5 Permutations
	k-Hop Reasoning

	Beyond Single-Token Communication
	Comparison to self-consistency and voting approaches
	Implications for Fixed Precision Transformers

