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ABSTRACT

Plasticity, the ability of a neural network to evolve with new data, is crucial for
high-performance and sample-efficient visual reinforcement learning (VRL). Al-
though methods like resetting and regularization can potentially mitigate plastic-
ity loss, the influences of various components within the VRL framework on the
agent’s plasticity are still poorly understood. In this work, we conduct a systematic
empirical exploration focusing on three primary underexplored facets and derive
the following insightful conclusions: (1) data augmentation is essential in main-
taining plasticity; (2) the critic’s plasticity loss serves as the principal bottleneck
impeding efficient training; and (3) without timely intervention to recover critic’s
plasticity in the early stages, its loss becomes catastrophic. These insights suggest
a novel strategy to address the high replay ratio (RR) dilemma, where exacerbated
plasticity loss hinders the potential improvements of sample efficiency brought by
increased reuse frequency. Rather than setting a static RR for the entire training
process, we propose Adaptive RR, which dynamically adjusts the RR based on the
critic’s plasticity level. Extensive evaluations indicate that Adaptive RR not only
avoids catastrophic plasticity loss in the early stages but also benefits from more
frequent reuse in later phases, resulting in superior sample efficiency.

1 INTRODUCTION

The potent capabilities of deep neural networks have driven the brilliant triumph of deep reinforce-
ment learning (DRL) across diverse domains (Silver et al., 2017; Jumper et al., 2021; OpenAI, 2023).
Nevertheless, recent studies highlight a pronounced limitation of neural networks: they struggle to
maintain adaptability and learning from new data after training on a non-stationary objective (Lyle
et al., 2021; Sokar et al., 2023), a challenge known as plasticity loss (Lyle et al., 2023; Abbas et al.,
2023). Since RL agents must continuously adapt their policies through interacting with environ-
ment, non-stationary data streams and optimization objectives are inherently embedded within the
DRL paradigm (Kumar et al., 2023). Consequently, plasticity loss presents a fundamental challenge
for achieving sample-efficient DRL applications (Nikishin et al., 2022; D’Oro et al., 2022).

Although several strategies have been proposed to address this concern, previous studies primar-
ily focused on mitigating plasticity loss through methods such as resetting the parameters of neu-
rons (Nikishin et al., 2022; D’Oro et al., 2022; Sokar et al., 2023), incorporating regularization tech-
niques (Kumar et al., 2023; Lyle et al., 2023; 2021) and adjusting network architecture (Schwarzer
et al., 2023; Dohare et al., 2021; Abbas et al., 2023). The nuanced impacts of various dimensions
within the DRL framework on plasticity remain underexplored. This knowledge gap hinders more
precise interventions to better preserve plasticity. To this end, this paper delves into the nuanced
mechanisms underlying DRL’s plasticity loss from three primary yet underexplored perspectives:
data, agent modules, and training stages. Our investigations focus on visual RL (VRL) tasks that
enable decision-making directly from high-dimensional observations. As a representative paradigm
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of end-to-end DRL, VRL is inherently more challenging than learning from handcrafted state inputs,
leading to its notorious sample inefficiency (Ma et al., 2022; Yarats et al., 2021a; Tomar et al., 2022).

We begin by revealing the indispensable role of data augmentation (DA) in mitigating plasticity loss
for off-policy VRL algorithms. Although DA is extensively employed to enhance VRL’s sample
efficiency (Yarats et al., 2020; 2021a), its foundational mechanism is still largely elusive. Our inves-
tigation employs a factorial experiment with DA and Reset. The latter refers to the re-initialization
of subsets of neurons and has been shown to be a direct and effective method for mitigating plas-
ticity loss (Nikishin et al., 2022). However, our investigation has surprisingly revealed two notable
findings: (1) Reset can significantly enhance performance in the absence of DA, but show limited
or even negative effects when DA is applied. This suggests a significant plasticity loss when DA is
not employed, contrasted with minimal or no plasticity loss when DA is utilized. (2) Performance
with DA alone surpasses that of reset or other interventions without employing DA, highlighting the
pivotal role of DA in mitigating plasticity loss. Furthermore, the pronounced difference in plastic-
ity due to DA’s presence or absence provides compelling cases for comparison, allowing a deeper
investigation into the differences and developments of plasticity across different modules and stages.

We then dissect VRL agents into three core modules: the encoder, actor, and critic, aiming to identify
which components suffer most from plasticity loss and contribute to the sample inefficiency of VRL
training. Previous studies commonly attribute the inefficiency of VRL training to the challenges
of constructing a compact representation from high-dimensional observations (Tomar et al., 2022;
Laskin et al., 2020a; Wang et al., 2022; Stooke et al., 2021; Shah & Kumar, 2021). A natural
corollary to this would be the rapid loss of plasticity in the encoder when learning from scratch solely
based on reward signals, leading to sample inefficiency. However, our comprehensive experiments
reveal that it is, in fact, the plasticity loss of the critic module that presents the critical bottleneck
for training. This insight aligns with recent empirical studies showing that efforts to enhance the
representation of VRL agents, such as meticulously crafting self-supervised learning tasks and pre-
training encoders with extra data, fail to achieve higher sample efficiency than simply applying DA
alone (Li et al., 2022b; Hansen et al., 2023). Tailored interventions to maintain the plasticity of critic
module provide a promising path for achieving sample-efficient VRL in future studies.

Given the strong correlation between the critic’s plasticity and training efficiency, we note that the
primary contribution of DA lies in facilitating the early-stage recovery of plasticity within the critic
module. Subsequently, we conduct a comparative experiment by turning on or turning off DA at
certain training steps and obtain two insightful findings: (1) Once the critic’s plasticity has been
recovered to an adequate level in the early stage, there’s no need for specific interventions to maintain
it. (2) Without timely intervention in the early stage, the critic’s plasticity loss becomes catastrophic
and irrecoverable. These findings underscore the importance of preserving critic plasticity during
the initial phases of training. Conversely, plasticity loss in the later stages is not a critical concern.
To conclude, the main takeaways from our revisiting can be summarized as follows:

• DA is indispensable for preserving the plasticity of VRL agents. (Section 3)
• Critic’s plasticity loss is a critical bottleneck affecting the training efficiency. (Section 4)
• Maintaining plasticity in the early stages is crucial to prevent irrecoverable loss. (Section 5)

We conclude by addressing a longstanding question in VRL: how to determine the appropriate re-
play ratio (RR), defined as the number of gradient updates per environment step, to achieve optimal
sample efficiency (Fedus et al., 2020). Prior research set a static RR for the entire training process,
facing a dilemma: while increasing the RR of off-policy algorithms should enhance sample effi-
ciency, this improvement is offset by the exacerbated plasticity loss (Nikishin et al., 2022; Sokar
et al., 2023; Schwarzer et al., 2023). However, aforementioned analysis indicates that the impact of
plasticity loss varies throughout training stages, advocating for an adaptive adjustment of RR based
on the stage, rather than setting a static value. Concurrently, the critic’s plasticity has been identified
as the primary factor affecting sample efficiency, suggesting its level as a criterion for RR adjust-
ment. Drawing upon these insights, we introduce a simple and effective method termed Adaptive RR
that dynamically adjusts the RR according to the critic’s plasticity level. Specifically, Adaptive RR
commences with a lower RR during the initial training phases and elevates it upon observing sig-
nificant recovery in the critic’s plasticity. Through this approach, we effectively harness the sample
efficiency benefits of a high RR, while skillfully circumventing the detrimental effects of escalated
plasticity loss. Our comprehensive evaluations on the DeepMind Control suite (Tassa et al., 2018)
demonstrate that Adaptive RR attains superior sample efficiency compared to static RR baselines.
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2 RELATED WORK

In this section, we briefly review prior research works on identifying and mitigating the issue of
plasticity loss, as well as on the high RR dilemma that persistently plagues off-policy RL algorithms
for more efficient applications. Further discussions on related studies can be found in Appendix A.

Plasticity Loss. Recent studies have increasingly highlighted a major limitation in neural networks
where their learning capabilities suffer catastrophic degradation after training on non-stationary ob-
jectives (Sokar et al., 2023; Nikishin et al., 2024). Different from supervised learning, the non-
stationarity of data streams and optimization objectives is inherent in the RL paradigm, necessi-
tating the confrontation of this issues, which has been recognized by several terms, including pri-
macy bias (Nikishin et al., 2022), dormant neuron phenomenon (Sokar et al., 2023), implicit under-
parameterization (Kumar et al., 2020), capacity loss (Lyle et al., 2021), and more broadly, plasticity
loss (Lyle et al., 2023; Kumar et al., 2023). Agents lacking plasticity struggle to learn from new
experiences, leading to extreme sample inefficiency or even entirely ineffective training.

The most straightforward strategy to tackle this problem is to re-initialize a part of the network
to regain rejuvenated plasticity (Nikishin et al., 2022; D’Oro et al., 2022; Schwarzer et al., 2023).
However, periodic Reset (Nikishin et al., 2022) may cause sudden performance drops, impacting
exploration and requiring extensive gradient updates to recover. To circumvent this drawback,
ReDo (Sokar et al., 2023) selectively resets the dormant neurons, while Plasticity Injection (Nikishin
et al., 2024) introduces a new initialized network for learning and freezes the current one as resid-
ual blocks. Another line of research emphasizes incorporating explicit regularization or altering the
network architecture to mitigate plasticity loss. For example, Kumar et al. (2023) introduces L2-Init
to regularize the network’s weights back to their initial parameters, while Abbas et al. (2023) em-
ploys Concatenated ReLU (Shang et al., 2016) to guarantee a non-zero gradient. Although existing
methods have made progress in mitigating plasticity loss, the intricate effects of various dimensions
in the DRL framework on plasticity are poorly understood. In this paper, we aim to further explore
the roles of data, modules, and training stages to provide a comprehensive insight into plasticity.

High RR Dilemma. Experience replay, central to off-policy DRL algorithms, greatly improves the
sample efficiency by allowing multiple reuses of data for training rather than immediate discarding
after collection (Fedus et al., 2020). Given the trial-and-error nature of DRL, agents alternate be-
tween interacting with the environment to collect new experiences and updating parameters based
on transitions sampled from the replay buffer. The number of agent updates per environment step
is usually called replay ratio (RR) (Fedus et al., 2020; D’Oro et al., 2022) or update-to-data (UTD)
ratio (Chen et al., 2020; Smith et al., 2022). While it’s intuitive to increase the RR as a strategy
to improve sample efficiency, doing so naively can lead to adverse effects (Li et al., 2022a; Lyu
et al., 2024). Recent studies have increasingly recognized plasticity loss as the primary culprit be-
hind the high RR dilemma (Sokar et al., 2023; Nikishin et al., 2022; 2024). Within a non-stationary
objective, an increased update frequency results in more severe plasticity loss. Currently, the most
effective method to tackle this dilemma is to continually reset the agent’s parameters when setting
a high RR value (D’Oro et al., 2022). Our investigation offers a novel perspective on addressing
this long-standing issue. Firstly, we identify that the impact of plasticity loss varies across training
stages, implying a need for dynamic RR adjustment. Concurrently, we determine the critic’s plastic-
ity as crucial for model capability, proposing its level as a basis for RR adjustment. Drawing from
these insights, we introduce Adaptive RR, a universal method that both mitigates early catastrophic
plasticity loss and harnesses the potential of high RR in improving sample efficiency.

3 DATA: DATA AUGMENTATION IS ESSENTIAL IN MAINTAINING PLASTICITY

In this section, we conduct a factorial analysis of DA and Reset, illustrating that DA effectively
maintains plasticity. Furthermore, in comparison with other architectural and optimization interven-
tions, we highlight DA’s pivotal role as a data-centric method in addressing VRL’s plasticity loss.

A Factorial Examination of DA and Reset. DA has become an indispensable component in
achieving sample-efficient VRL applications (Yarats et al., 2020; Laskin et al., 2020b; Yarats et al.,
2021a; Ma et al., 2022). As illustrated by the blue and orange dashed lines in Figure 1, employing a
simple DA approach to the input observations can lead to significant performance improvements in
previously unsuccessful algorithms. However, the mechanisms driving DA’s notable effectiveness
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remain largely unclear (Ma et al., 2024). On the other hand, recent studies have increasingly rec-
ognized that plasticity loss during training significantly hampers sample efficiency (Nikishin et al.,
2022; Sokar et al., 2023; Lyle et al., 2023). This naturally raises the question: does the remarkable
efficacy of DA stem from its capacity to maintain plasticity? To address this query, we undertake
a factorial examination of DA and Reset. Given that Reset is well-recognized for its capability to
mitigate the detrimental effects of plasticity loss on training, it can not only act as a diagnostic tool
to assess the extent of plasticity loss in the presence or absence of DA, but also provide a benchmark
to determine the DA’s effectiveness in preserving plasticity.
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Figure 1: Training curves across four combinations: incorporating or excluding Reset and DA.
We adopt DrQ-v2 (Yarats et al., 2021a) as our baseline algorithm and follow the Reset settings
from Nikishin et al. (2022). Mean and std are estimated over 5 runs. Note that re-initializing 10
times in the Quadruped Run task resulted in poor performance, prompting us to adjust the reset times
to 5. For ablation studies on reset times and results in other tasks, please refer to Appendix B.1.

The results presented in Figure 1 highlight three distinct phenomena: • In the absence of DA, the
implementation of Reset consistently yields marked enhancements. This underscores the evident
plasticity loss when training is conducted devoid of DA. • With the integration of DA, the intro-
duction of Reset leads to only slight improvements, or occasionally, a decrease. This indicates
that applying DA alone can sufficiently preserve the agent’s plasticity, leaving little to no room for
significant improvement. • Comparatively, the performance of Reset without DA lags behind that
achieved employing DA alone, underscoring the potent effectiveness of DA in preserving plasticity.
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Figure 2: Performance of various inter-
ventions in Cheetah Run across 5 seeds.

Comparing DA with Other Interventions. We as-
sess the influence of various architectural and optimiza-
tion interventions on DMC using the DrQ-v2 frame-
work. Specifically, we implement the following tech-
niques: • Weight Decay, where we set the L2 coefficient
to 10−5. • L2 Init (Kumar et al., 2023): This technique
integrates L2 regularization aimed at the initial param-
eters into the loss function. Specifically, we apply it to
the critic loss with a coefficient set to 10−2. • Layer
Normalization(Ba et al., 2016) after each convolutional
and linear layer. • Spectral Normalization(Miyato et al.,
2018) after the initial linear layer for both the actor and
critic networks. • Shrink and Perturb(Ash & Adams, 2020): This involves multiplying the critic
network weights by a small scalar and adding a perturbation equivalent to the weights of a randomly
initialized network. • Adoption of CReLU (Shang et al., 2016) as an alternative to ReLU in the critic
network. We present the final performance of different interventions in Figure 2, which indicates
that DA is the most effective method. For further comparison of interventions, see Appendix B.3.

4 MODULES: THE PLASTICITY LOSS OF CRITIC NETWORK IS PREDOMINANT

In this section, we aim to investigate which module(s) of VRL agents suffer the most severe plas-
ticity loss, and thus, are detrimental to efficient training. Initially, by observing the differential
trends in plasticity levels across modules with and without DA, we preliminarily pinpoint the critic’s
plasticity loss as the pivotal factor influencing training. Subsequently, the decisive role of DA when
using a frozen pre-trained encoder attests that encoder’s plasticity loss isn’t the primary bottleneck
for sample inefficiency. Finally, contrastive experiments with plasticity injection on actor and critic
further corroborate that the critic’s plasticity loss is the main culprit.
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Fraction of Active Units (FAU). Although the complete mechanisms underlying plasticity loss
remain unclear, a reduction in the number of active units within the network has been identified as
a principal factor contributing to this deterioration (Lyle et al., 2023; Sokar et al., 2023; Lee et al.,
2024). Hence, the Fraction of Active Units (FAU) is widely used as a metric for measuring plasticity.
Specifically, the FAU for neurons located in module M, denoted as ΦM, is formally defined as:

ΦM =

∑
n∈M 1(an(x) > 0)

N
, (1)

where an(x) represent the activation of neuron n given the input x, and N is the total number of
neurons within module M. More discussion on plasticity measurement can be found in Appendix A.

Different FAU trends across modules reveal critic’s plasticity loss as a hurdle for VRL training.
Within FAU as metric, we proceed to assess the plasticity disparities in the encoder, actor, and critic
modules with and without DA. We adopt the experimental setup from Yarats et al. (2021a), where the
encoder is updated only based on the critic loss. As shown in Figure 3 (left), the integration of DA
leads to a substantial leap in training performance. Consistent with this uptrend in performance, DA
elevates the critic’s FAU to a level almost equivalent to an initialized network. In contrast, both the
encoder and actor’s FAU exhibit similar trends regardless of DA’s presence or absence. This finding
tentatively suggests that critic’s plasticity loss is the bottleneck constraining training efficiency.
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Figure 3: Different FAU trends across modules throughout training. The plasticity of encoder and
actor displays similar trends whether DA is employed or not. Conversely, integrating DA leads to a
marked improvement in the critic’s plasticity. Further comparative results are in Appendix B.6.

Is the sample inefficiency in VRL truly blamed on poor representation? Since VRL handles
high-dimensional image observations rather than well-structured states, prior studies commonly at-
tribute VRL’s sample inefficiency to its inherent challenge of learning a compact representation.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

200

400

600

800

E
pi

so
de

 R
et

ur
n

Walker Walk
w/o DA
w/ DA

0 1 2 3
Environment Steps 1e6

0

100

200

300

400

500

600

700

Walker Run

Figure 4: Learning curves of DrQ-v2 using a frozen
ImageNet pre-trained encoder, with and without DA.

We contest this assumption by conducting
a simple experiment. Instead of training
the encoder from scratch, we employ an
ImageNet pre-trained ResNet model as the
agent’s encoder and retain its parameters
frozen throughout the training process. The
specific implementation adheres Yuan et al.
(2022), but employs the DA operation as in
DrQ-v2. Building on this setup, we com-
pare the effects of employing DA against
not using it on sample efficiency, thereby
isolating and negating the potential influ-
ences from disparities in the encoder’s rep-
resentation capability on training. As de-
picted in Figure 4, the results illustrate that
employing DA consistently surpasses sce-
narios without DA by a notable margin. This significant gap sample inefficiency in VRL cannot be
predominantly attributed to poor representation. This pronounced disparity underscores two criti-
cal insights: first, the pivotal effectiveness of DA is not centered on enhancing representation; and
second, sample inefficiency in VRL cannot be primarily ascribed to the insufficient representation.

Plasticity Injection on Actor and Critic as a Diagnostic Tool. Having ruled out the encoder’s
influence, we next explore how the plasticity loss of actor and critic impact VRL’s training efficiency.
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Figure 5: Training curves of employing plasticity
injection (PI) on actor or critic. For all cases, DA
is applied after the given environment steps.

To achieve this, we introduce plasticity injec-
tion as a diagnostic tool (Nikishin et al., 2024).
Unlike Reset, which leads to a periodic momen-
tary decrease in performance and induces an
exploration effect (Nikishin et al., 2022), plas-
ticity injection restores the module’s plasticity
to its initial level without altering other char-
acteristics or compromising previously learned
knowledge. Therefore, plasticity injection al-
lows us to investigate in isolation the impact on
training after reintroducing sufficient plasticity
to a certain module. Should the training perfor-
mance exhibit a marked enhancement relative
to the baseline following plasticity injection
into a particular module, it would suggest that
this module had previously undergone catas-
trophic plasticity loss, thereby compromising
the training efficacy. We apply plasticity injec-
tion separately to the actor and critic when us-
ing and not using DA. The results illustrated in Figure 5 and Appendix B.4 reveal the subsequent
findings and insights: • When employing DA, the application of plasticity injection to both the actor
and critic does not modify the training performance. This suggests that DA alone is sufficient to
maintain plasticity within the Walker Run task. • Without using DA in the initial 1M steps, adminis-
tering plasticity injection to the critic resulted in a significant performance improvement. This fully
demonstrates that the critic’s plasticity loss is the primary culprit behind VRL’s sample inefficiency.

5 STAGES: EARLY-STAGE PLASTICITY LOSS BECOMES IRRECOVERABLE

In this section, we elucidate the differential attributes of plasticity loss throughout various training
stages. Upon confirming that the critic’s plasticity loss is central to hampering training efficiency, a
closer review of the results in Figure 3 underscores that DA’s predominant contribution is to effec-
tively recover the critic’s plasticity during initial phases. This naturally raises two questions: • After
recovering the critic’s plasticity to an adequate level in the early stage, will ceasing interventions to
maintain plasticity detrimentally affect training? • If interventions aren’t applied early to recover the
critic’s plasticity, is it still feasible to enhance training performance later through such measures? To
address these two questions, we conduct a comparative experiment by turning on or turning off DA
at certain training steps and obtain the following findings: • Turning off DA after the critic’s plas-
ticity has been recovered does not affect training efficiency. This suggests that it is not necessary to
employ specific interventions to maintain plasticity in the later stages of training. • Turning on DA
when plasticity has already been significantly lost and without timely intervention in the early stages
cannot revive the agent’s training performance. This observation underscores the vital importance
of maintaining plasticity in the early stages; otherwise, the loss becomes irrecoverable.
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Figure 6: Training curves for various DA application modes. The red dashed line shows when DA
is turned on or turned off. Additional comparative results can be found in Appendix B.5.

We attribute these differences across stages to the nature of online RL to learn from scratch in a boot-
strapped fashion. During the initial phases of training, bootstrapped target derived from low-quality
and limited-quantity experiences exhibits high non-stationarity and deviates significantly from the
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actual state-action values (Cetin et al., 2022). The severe non-stationarity of targets induces a rapid
decline in the critic’s plasticity (Lee et al., 2024; Li et al., 2022a), consistent with the findings in
Figure 3. Having lost the ability to learn from newly collected data, the critic will perpetually fail
to capture the dynamics of the environment, preventing the agent from acquiring an effective policy.
This leads to catastrophic plasticity loss in the early stages. Conversely, although the critic’s plas-
ticity experiences a gradual decline after recovery, this can be viewed as a process of progressively
approximating the optimal value function for the current task. For single-task VRL that doesn’t
require the agent to retain continuous learning capabilities, this is termed as a benign plasticity loss.
Differences across stages offer a new perspective to address VRL’s plasticity loss challenges.

6 METHODS: ADAPTIVE RR FOR ADDRESSING THE HIGH RR DILEMMA

Drawing upon the refined understanding of plasticity loss, this section introduces Adaptive RR to
tackle the high RR dilemma in VRL. Extensive evaluations demonstrate that Adaptive RR strikes a
superior trade-off between reuse frequency and plasticity loss, thereby improving sample efficiency.

High RR Dilemma. Increasing the replay ratio (RR), which denotes the number of updates per en-
vironment interaction, is an intuitive strategy to further harness the strengths of off-policy algorithms
to improve sample efficiency. However, recent studies (D’Oro et al., 2022; Li et al., 2022a) and the
results in Figure 7 consistently reveal that adopting a higher static RR impairs training efficiency.
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Figure 7: Training curves across varying RR values. Despite its intent to enhance sample efficiency
through more frequent updates, an increasing RR value actually undermines training.
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Figure 8: The FAU of critic across vary-
ing RR values. A larger RR value leads
to more severe plasticity loss.

The fundamental mechanism behind this counterintuitive
failure of high RR is widely recognized as the intensified
plasticity loss (Nikishin et al., 2022; Sokar et al., 2023).
As illustrated in Figure 8, increasing RR results in a
progressively exacerbated plasticity loss during the early
stages of training. Increasing RR from 0.5 to 1 notably di-
minishes early-stage plasticity, but the heightened reuse
frequency compensates, resulting in a marginal boost in
sample efficiency. However, as RR continues to rise,
the detrimental effects of plasticity loss become predom-
inant, leading to a consistent decline in sample efficiency.
When RR increases to 4, even with the intervention of
DA, there’s no discernible recovery of the critic’s plastic-
ity in the early stages, culminating in a catastrophic loss.
An evident high RR dilemma quandary arises: while higher reuse frequency holds potential for
improving sample efficiency, the exacerbated plasticity loss hinders this improvement.

Can we adapt RR instead of setting a static value? Previous studies addressing the high RR
dilemma typically implement interventions to mitigate plasticity loss while maintaining a consis-
tently high RR value throughout training (D’Oro et al., 2022; Sokar et al., 2023; Nikishin et al.,
2024). Drawing inspiration from the insights in Section 5, which highlight the varying plasticity
loss characteristics across different training stages, an orthogonal approach emerges: why not dy-
namically adjust the RR value based on the current stage? Initially, a low RR is adopted to prevent
catastrophic plasticity loss. In later training stages, RR can be raised to boost reuse frequency, as
the plasticity dynamics become benign. This balance allows us to sidestep early high RR draw-
backs and later harness the enhanced sample efficiency from greater reuse frequency. Furthermore,
the observations in Section 4 have confirmed that the critic’s plasticity, as measured by its FAU, is
the primary factor influencing sample efficiency. This implies that the FAU of critic module can
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be employed adaptively to identify the current training stage. Once the critic’s FAU has recovered
to a satisfactory level, it indicates the agent has moved beyond the early training phase prone to
catastrophic plasticity loss, allowing for an increase in the RR value. Based on these findings and
considerations, we propose our method, Adaptive RR.

Adaptive Replay Ratio
Adaptive RR adjusts the ratio according to the current plasticity level of critic, utilizing a low
RR in the early stage and transitioning it to a high value after the plasticity recovery stages.

Evaluation on DeepMind Control Suite. We then evaluate the effectiveness of Adaptive RR �

in improving the sample efficiency of VRL algorithms. Our experiments are conducted on six chal-
lenging continuous DMC tasks, which are widely perceived to significantly suffer from plasticity
loss (Lee et al., 2024). We select two static RR values as baselines: • Low RR=0.5, which exhibits
no severe plasticity loss but has room for improvement in its reuse frequency. • High RR=2, which
shows evident plasticity loss, thereby damaging sample efficiency. Our method, Adaptive RR, starts
with RR=0.5 during the initial phase of training, aligning with the default setting of DrQ-v2. Sub-
sequently, we monitor the FAU of the critic module every 50 episodes, i.e., 5 × 104 environment
steps. When the FAU difference between consecutive checkpoints drops below a minimal threshold
(set at 0.001 in our experiments), marking the end of the early stage, we adjust the RR to 2. Figure 9
illustrates the comparative performances. Adaptive RR consistently demonstrates superior sample
efficiency compared to a static RR throughout training.
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Figure 9: Training curves of various RR settings across 6 challenging DMC tasks. Adaptive RR
demonstrates superior sample efficiency compared to both static low RR and high RR value.
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Figure 10: Evolution of FAU across the three modules in the Quadruped Run task under different
RR configurations. The critic’s plasticity is most influenced by different RR settings. Under high
RR, the critic’s plasticity struggles to recover in early training. In contrast, Adaptive RR successfully
mitigates catastrophic plasticity loss in the early phases, yielding the optimal sample efficiency.

Through a case study on Quadruped Run, we delve into the underlying mechanism of Adaptive RR,
as illustrated in Figure 10. Due to the initial RR set at 0.5, the critic’s plasticity recovers promptly to

�Our code is available at: https://github.com/Guozheng-Ma/Adaptive-Replay-Ratio
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a considerable level in the early stages of training, preventing catastrophic plasticity loss as seen with
RR=2. After the recovery phases, Adaptive RR detects a slow change in the critic’s FAU, indicating
it’s nearing a peak, then switch the RR to a higher value. Within our experiments, the switch times
for the five seeds occurred at: 0.9M, 1.2M, 1.1M, 0.95M, and 0.55M. After switching to RR=2, the
increased update frequency results in higher sample efficiency and faster convergence rates. Even
though the critic’s FAU experiences a more rapid decline at this stage, this benign loss doesn’t
damage training. Hence, Adaptive RR can effectively exploits the sample efficiency advantages of a
high RR, while adeptly avoiding the severe consequences of increased plasticity loss.

Table 1: Comparison of Adaptive RR versus static RR with Reset and ReDo implementations. The
average episode returns are averaged over 5 seeds after training for 2M environment steps.

Average Episode Return RR=0.5 RR=2 Adaptive RR

(After 2M Env Steps) default Reset ReDo default Reset ReDo RR:0.5to2

Cheetah Run 828± 59 799± 26 788± 5 793± 9 885± 20 873± 19 880± 45

Walker Run 710± 39 648± 107 618± 50 709± 7 749± 10 734± 16 758± 12

Quadruped Run 579± 120 593± 129 371± 158 417± 110 511± 47 608± 53 784± 53

We further compare the performance of Adaptive RR with that of employing Reset (Nikishin et al.,
2022) and ReDo (Sokar et al., 2023) under static RR conditions. Although Reset and ReDo both
effectively mitigate plasticity loss in high RR scenarios, our method significantly outperforms these
two approaches, as demonstrated in Table 1 This not only showcases that Adaptive RR can secure
a superior balance between reuse frequency and plasticity loss but also illuminates the promise of
dynamically modulating RR in accordance with the critic’s overall plasticity level as an effective
strategy, alongside neuron-level network parameter resetting, to mitigate plasticity loss.

Table 2: Summary of Atari-100K results. Com-
prehensive scores are available in Appendix D.

Metrics
DrQ(ϵ) ReDo Adaptive RR

RR=0.5 RR=1 RR=2 RR=1 RR:0.5to2

Mean HNS (%) 42.3 41.3 35.1 42.3 55.8

Median HNS (%) 22.6 30.3 26.0 41.6 48.7

# Superhuman 3 1 1 2 4

# Best 0 2 1 3 11

Evaluation on Atari-100k. To demonstrate
the applicability of Adaptive RR in discrete-
action tasks we move our evaluation to the
Atari-100K benchmark (Kaiser et al., 2019), as-
sessing Adaptive RR against three distinct static
RR strategies across 17 games. In static RR
settings, as shown in Table 2, algorithm per-
formance significantly declines when RR in-
creases to 2, indicating that the negative impact
of plasticity loss gradually become dominant.
However, Adaptive RR, by appropriately increasing RR from 0.5 to 2 at the right moment, can
effectively avoid catastrophic plasticity loss, thus outperforming other configurations in most tasks.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we delve deeper into the plasticity of VRL, focusing on three previously underexplored
aspects, deriving pivotal and enlightening insights: • DA emerges as a potent strategy to mitigate
plasticity loss. • Critic’s plasticity loss stands as the primary hurdle to the sample-efficient VRL.
• Ensuring plasticity recovery during the early stages is pivotal for efficient training. Armed with
these insights, we propose Adaptive RR to address the high RR dilemma that has perplexed the VRL
community for a long time. By striking a judicious balance between sample reuse frequency and
plasticity loss management, Adaptive RR markedly improves the VRL’s sample efficiency.

Limitations. Firstly, our experiments focus on DMC and Atari environments, without evaluation in
more complex settings. As task complexity escalates, the significance and difficulty of maintaining
plasticity concurrently correspondingly rise. Secondly, we only demonstrate the effectiveness of
Adaptive RR under basic configurations. A more nuanced design could further unlock its potential.

Future Work. Although neural networks have enabled scaling RL to complex decision-making
scenarios, they also introduce numerous difficulties unique to DRL, which are absent in traditional
RL contexts. Plasticity loss stands as a prime example of these challenges, fundamentally stemming
from the contradiction between the trial-and-error nature of RL and the inability of neural networks
to continuously learn non-stationary targets. To advance the real-world deployment of DRL, it is
imperative to address and understand its distinct challenges. Given RL’s unique learning dynamics,
exploration of DRL-specific network architectures and optimization techniques is essential.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This work is supported by STI 2030—Major Projects (No. 2021ZD0201405). We thank Zilin
Wang and Haoyu Wang for their valuable suggestions and collaboration. We also extend our thanks
to Evgenii Nikishin for his support in the implementation of plasticity injection. Furthermore, we
sincerely appreciate the time and effort invested by the anonymous reviewers in evaluating our work,
and are grateful for their valuable and insightful feedback.

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
in continual deep reinforcement learning. In Conference on Lifelong Learning Agents, pp. 620–
636. PMLR, 2023.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in neural
information processing systems, 33:3884–3894, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A Research Framework for Deep Reinforcement Learning. 2018. URL http:
//arxiv.org/abs/1812.06110.

Edoardo Cetin, Philip J Ball, Stephen Roberts, and Oya Celiktutan. Stabilizing off-policy deep
reinforcement learning from pixels. In International Conference on Machine Learning, pp. 2784–
2810. PMLR, 2022.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W Ross. Randomized ensembled double q-
learning: Learning fast without a model. In International Conference on Learning Represen-
tations, 2020.

Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic
gradient descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In The Eleventh International Conference on Learning Representations, 2022.

Jiameng Fan and Wenchao Li. Dribo: Robust deep reinforcement learning via multi-view infor-
mation bottleneck. In International Conference on Machine Learning, pp. 6074–6102. PMLR,
2022.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International Con-
ference on Machine Learning, pp. 3061–3071. PMLR, 2020.

Caglar Gulcehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg Ostrovski, Mehrdad Farajtabar,
Matthew Hoffman, Razvan Pascanu, and Arnaud Doucet. An empirical study of implicit regular-
ization in deep offline rl. Transactions on Machine Learning Research, 2022.

Nicklas Hansen, Zhecheng Yuan, Yanjie Ze, Tongzhou Mu, Aravind Rajeswaran, Hao Su, Huazhe
Xu, and Xiaolong Wang. On pre-training for visuo-motor control: Revisiting a learning-from-
scratch baseline. In International Conference on Machine Learning, pp. 12511–12526. PMLR,
2023.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
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A EXTENDED RELATED WORK

In this section, we provide an extended related work to supplement the related work presented in the
main body.

Sample-Efficient VRL. Prohibitive sample complexity has been identified as the primary obsta-
cle hindering the real-world applications of VRL (Yarats et al., 2021b). Previous studies ascribe
this inefficiency to VRL’s requirements to concurrently optimize task-specific policies and learn
compact state representations from high-dimensional observations. As a result, significant efforts
have been directed towards improving sample efficiency through the training of a more potent en-
coder. The most representative approaches design auxiliary representation tasks to complement the
RL objective, including pixel or latent reconstruction (Yarats et al., 2021b; Yu et al., 2022), future
prediction (Lee et al., 2020; Schwarzer et al., 2020; Yu et al., 2021), and contrastive learning for
instance (Laskin et al., 2020a; Sun et al., 2022; Fan & Li, 2022) or temporal discrimination (Zhu
et al., 2022; Oord et al., 2018; Nguyen et al., 2021; Mazoure et al., 2020). Another approach is to
pre-train a visual encoder that enables efficient adaptation to downstream tasks (Shah & Kumar,
2021; Xiao et al., 2022; Parisi et al., 2022; Nair et al., 2023). However, recent empirical studies
suggest that these methods do not consistently improve training efficiency (Li et al., 2022b; Hansen
et al., 2023; Ma et al., 2024), indicating that insufficient representation may not be the primary bot-
tleneck hindering the sample efficiency of current algorithms. Our findings in Section 4 provide a
compelling explanation for the limited impact of enhanced representation: the plasticity loss within
the critic module is the primary constraint on VRL’s sample efficiency.

Plasticity Loss in Continual Learning vs. in Reinforcement Learning. Continual Learning
(CL) aims to continuously acquire new tasks, referred to as plasticity, without forgetting previously
learned tasks, termed stability. A primary challenge in CL is managing the stability-plasticity trade-
off. Although online reinforcement learning (RL) exhibits characteristics of plasticity due to its non-
stationary learning targets, there are fundamental differences between CL and RL. Firstly, online RL
typically begins its learning process from scratch, which can lead to limited training data in the early
stages. This scarcity of data can subsequently result in a loss of plasticity early on. Secondly, RL
usually doesn’t require an agent to learn multiple policies. Therefore, any decline in plasticity during
the later stages won’t significantly impact its overall performance.

Measurement Metrics of Plasticity. Several metrics are available to assess plasticity, including
weight norm, feature rank, visualization of loss landscape, and the fraction of active units (FAU).
The weight norm (commonly of both encoder and head) serves a dual purpose: it not only acts as
a criterion to determine when to maintain plasticity but also offers a direct method to regulate plas-
ticity through L2 regularization (Sokar et al., 2023; Nikishin et al., 2024). However, Nikishin et al.
(2024) show that the weight norm is sensitive to environments and cannot address the plasticity by
controlling itself. The feature rank can be also regarded as a proxy metric for plasticity loss (Kumar
et al., 2020; Lyle et al., 2021). Although the feature matrices used by these two works are slightly
different, they correlate the feature rank with performance collapse. Nevertheless, Gulcehre et al.
(2022) observe that the correlation appears in restricted settings. Furthermore, the loss landscape
has been drawing increasing attention for its ability to directly reflect the gradients in backpropaga-
tion. Still, computing the network’s Hessian concerning a loss function and the gradient covariance
can be computationally demanding (Lyle et al., 2023). Our proposed method aims to obtain a reli-
able criterion without too much additional computation cost, and leverage it to guide the plasticity
maintenance. We thus settled on the widely-recognized and potent metric, FAU, for assessing plas-
ticity (Sokar et al., 2023; Abbas et al., 2023). This metric provides an upper limit on the count of
inactive units. As shown in Figure 9, the experimental results validate that A-RR based on FAU
significantly outperforms static RR baselines. Although FAU’s efficacy is evident in various stud-
ies, including ours, its limitations in convolutional networks are highlighted by (Lyle et al., 2023).
Therefore, we advocate for future work to introduce a comprehensive and resilient plasticity metric.
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B EXTENDED EXPERIMENT RESULTS

B.1 RESET

To enhance the plasticity of the agent’s network, the Reset method periodically re-initializes the
parameters of its last few layers, while preserving the replay buffer. In Figure 11, we present ad-
ditional experiments on six DMC tasks, exploring four scenarios: with and without the inclusion
of both Reset and DA. Although reset is widely acknowledged for its efficacy in counteracting the
adverse impacts of plasticity loss, our findings suggest its effectiveness largely hinges on the hyper-
parameters determining the reset interval, as depicted in Figure 12.
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Figure 11: Training curves across four combinations: incorporating or excluding Reset and DA.
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Figure 12: Learning curves for various reset intervals demonstrate that the effect of the reset strongly
depends on the hyper-parameter that determines the reset interval.
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B.2 HEAVY PRIMING PHENOMENON

Heavy priming (Nikishin et al., 2022) refers to updating the agent 105 times using the replay buffer,
which collects 2000 transitions after the start of the training process. Heavy priming can induce the
agent to overfit to its early experiences. We conducted experiments to assess the effects of using
heavy priming and DA, both individually and in combination. The training curves can be found in
Figure 13. The findings indicate that, while heavy priming can markedly impair sample efficiency
without DA, its detrimental impact is largely mitigated when DA is employed. Additionally, we ex-
amine the effects of employing DA both during heavy priming and subsequent training, as illustrated
in Figure 14. The results indicate that DA not only mitigates plasticity loss during heavy priming
but also facilitates its recovery afterward.
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Figure 13: Heavy priming can severely damage the training efficiency when not employing DA.
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Figure 14: DA not only can prevent the plasticity loss but also can recover the plasticity of agent
after heavy priming phase.
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B.3 FURTHER COMPARISONS OF DA WITH OTHER INTERVENTIONS
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Figure 15: We use three metrics - Feature Rank, Weight Norm, and Fraction of Active Units (FAU)
- to assess the impact of various interventions on training dynamics.
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B.4 PLASTICITY INJECTION

Plasticity injection is an intervention to increase the plasticity of a neural network. The network
is schematically separated into an encoder ϕ(·) and a head hθ(·). After plasticity injection, the
parameters of head θ are frozen. Subsequently, two randomly initialized parameters, θ′1 and θ′2 are
created. Here, θ′1 are trainable and θ′2 are frozen. The output from the head is computed using the
formula hθ(z) + hθ′

1
(z)− hθ′

2
(z), where z = ϕ(x).

We conducted additional plasticity injection experiments on Cheetah Run and Quadruped Run
within DMC, as depicted in Figure 16. The results further bolster the conclusion made in Section 4:
critic’s plasticity loss is the primary culprit behind VRL’s sample inefficiency.
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Figure 16: Training curves showcasing the effects of Plasticity Injection on either the actor or critic,
evaluated on Cheetah Run and Quadruped Run.

B.5 TURNING ON OR TURNING OFF DA AT EARLY STAGES

In Figure 17, we present additional results across six DMC tasks for various DA application modes.
As emphasized in Section 5, it is necessary to maintain plasticity during early stages.
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Figure 17: Training curves across different DA application modes, illustrating the critical role of
plasticity in the early stage.
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B.6 FAU TRENDS ACROSS DIFFERENT TASKS

In Figure 18 and Figure 19, we showcase trends for various FAU modules across an additional nine
DMC tasks as a complement to the main text.
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Figure 18: FAU trends for various modules within the VRL agent across DMC tasks (Walker Stand,
Walker Walk, Walker Run and Reacher Hard) throughout the training process.
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Figure 19: FAU trends for various modules within the VRL agent across DMC tasks (Hopper Stand,
Hopper Hop, Finger Spin, Quadruped Walk and Quadruped Run) throughout the training process.
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Figure 20 provides the FAU for different random seeds, demonstrating that the trend is consistent
across all random seeds.
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Figure 20: FAU trends for various modules within the VRL agent, evaluated across six DMC tasks
and observed for each random seed throughout the training process.
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B.7 ADDITIONAL METRICS TO QUANTIFY THE PLASTICITY
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Figure 21: Measuring the plasticity of different modules via feature rank and weight norm.
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C EXPERIMENTAL DETAILS

In this section, we provide our detailed setting in experiments.

C.1 ALGORITHM

Algorithm 1 Adaptive RR

Require: Check interval I , threshold τ , total steps T
1: Initialize RL training with a low RR
2: while t < T do
3: if t%I = 0 and |Φt

C − Φt−I
C | < τ then

4: Switch to high RR
5: end if
6: Continue RL training with the current RR
7: Increment step t
8: end while

C.2 DMC SETUP

We conducted experiments on robot control tasks within DeepMind Control using image input as
the observation. All experiments are based on previously superior DrQ-v2 algorithms and maintain
all hyper-parameters from DrQ-v2 unchanged. The only modification made was to the replay ratio,
adjusted according to the specific setting. The hyper-parameters are presented in Table 3.

Table 3: A default set of hyper-parameters used in DMControl evaluation.

Algorithms Hyper-parameters

Replay buffer capacity 106

Action repeat 2

Seed frames 4000

Exploration steps 2000

n-step returns 3

Mini-batch size 256

Discount γ 0.99

Optimizer Adam
Learning rate 10−4

Critic Q-function soft-update rate τ 0.01

Features dim. 50

Repr. dim. 32× 35× 35

Hidden dim. 1024

Exploration stddev. clip 0.3

Exploration stddev. schedule linear(1.0, 0.1, 500000)
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D EVALUATION ON ATARI

Implement details. Our Atari experiments and implementation were based on the Dopamine frame-
work (Castro et al., 2018). For ReDo (Sokar et al., 2023) and DrQ(ϵ), We used the same setting as
Dopamine, shown in Table 4. we use 5 independent random seeds for each Atari game. The detailed
results are shown in Table 5.

Table 4: Hyper-parameters for Atari-100K.

Common Parameter-DrQ(ϵ) Value

Optimizer Adam
Optimizer: Learning rate 1× 10−4

Optimizer: ϵ 1.5× 10−4

Training ϵ 0.01
Evaluation ϵ 0.001
Discount factor 0.99
Replay buffer size 106

Minibatch size 32
Q network: channels 32, 64, 64
Q-network: filter size 8 × 8, 4 × 4, 3 × 3
Q-network: stride 4, 2, 1
Q-network: hidden units 512
Initial collect steps 1600
n-step 10
Training iterations 40
Training environment steps per iteration 10K
ReDo Parameter Value
Recycling period 1000
τ -Dormant 0.025
Minibatch size for estimating neurons score 64
Adaptive RR Parameter Value
check interval 2000
threshold 0.001
low Replay Ratio 0.5
high Replay Ratio 2
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Table 5: Evaluation of Sample Efficiency on Atari-100k. We report the scores and the mean and
median HNSs achieved by different methods on Atari-100k.

Game Human Random
DrQ(ϵ) DrQ(ϵ) DrQ(ϵ) ReDo Adaptive RR

(RR=0.5) (RR=1) (RR=2) (RR=1) (RR0.5to2)

Alien 7127.7 227.8 815 865 917 794 935

Amidar 1719.5 5.8 114 138 133 163 200

Assault 742.0 222.4 755 580 579 675 823

Asterix 8503.3 210.0 470 764 442 684 519

Bank Heist 753.1 14.2 451 232 91 61 553

Boxing 12.1 0.1 16 9 6 9 18

Breakout 30.5 1.7 17 20 13 15 16

Chopper Command 7387.8 811.0 1037 845 1129 1650 1544

Crazy Climber 35829.4 10780.5 18108 21539 17193 24492 22986

Demon Attack 1971.0 152.1 1993 1321 1125 2091 2098

Enduro 861 0 128 223 138 224 200

Freeway 29.6 0.0 21 20 20 19 23

Kung Fu Master 22736.3 258.5 5342 11467 8423 11642 12195

Pong 14.6 −20.7 −16 −10 3 −6 −9

Road Runner 7845.0 11.5 6478 11211 9430 8606 12424

Seaquest 42054.7 68.4 390 352 394 292 451

SpaceInvaders 1669 148 388 402 408 379 493

Mean HNS (%) 100 0 42.3 41.3 35.1 42.3 55.8
Median HNS (%) 100 0 22.6 30.3 26.0 41.6 48.7

# Superhuman N/A 0 3 1 1 2 4
# Best N/A 0 0 2 1 3 11
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