
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Scale Invariance of Graph Neural Network for Node Classification

Anonymous Authors1

Abstract

We address two fundamental challenges in Graph
Neural Networks (GNNs) for node classification:
(1) the lack of theoretical support for invariance
learning, a critical property in image processing,
and (2) the absence of a unified model capable
of excelling on both homophilic and heterophilic
graph datasets. To tackle these issues, we estab-
lish and prove scale invariance in graphs, extend-
ing this key property to graph learning, and vali-
date it through experiments on real-world datasets.
Leveraging directed multi-scaled graphs and an
adaptive self-loop strategy, we propose ScaleNet,
a unified network architecture that achieves state-
of-the-art performance across four homophilic
and two heterophilic benchmark datasets. Further-
more, we show that through graph transformation
based on scale invariance, uniform weights can
replace computationally expensive edge weights
in digraph inception networks while maintaining
or improving performance. For another popular
GNN approach to digraphs, we demonstrate the
equivalence between Hermitian Laplacian meth-
ods and GraphSAGE with incidence normaliza-
tion. In sum, ScaleNet bridges the gap between
homophilic and heterophilic graph learning, offer-
ing both theoretical insights into scale invariance
and practical advancements in unified graph learn-
ing. Our implementation is publicly available
at https://anonymous.4open.science/r/ScaleNet-
B663.

1. Introduction
Graph Neural Networks (GNNs) have emerged as powerful
tools for learning from graph-structured data, with signifi-
cant applications in node classification tasks such as protein
function prediction (Gligorijević et al., 2021), user catego-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

rization in social networks (Hamilton et al., 2017), Internet
content recommendation (Ying et al., 2018), and document
classification in citation networks (Kipf & Welling, 2016).
Despite their proven effectiveness in node classification,
GNNs face two major limitations that hinder their theoreti-
cal understanding and practical deployment.

First, from a theoretical perspective, GNNs lack robust the-
oretical foundations for invariant learning—a fundamen-
tal concept well-established in image classification tasks.
While Convolutional Neural Networks (CNNs) leverage in-
variance properties to enable effective data augmentation
through image transformations, GNNs lack analogous theo-
retical guarantees. This limitation is critical for node classi-
fication, where predictions should remain invariant across
different neighborhood scales—from immediate neighbors
to nodes multiple hops away. The absence of a rigorous
framework for graph invariance not only limits our theo-
retical understanding but also impedes the development of
robust GNN architectures.

Second, from an empirical standpoint, existing GNN ar-
chitectures demonstrate a notable dichotomy in their node
classification performance: they typically excel either on
homophilic graphs (Tong et al., 2020a) (where connected
nodes share similar labels) or heterophilic graphs (Rossi
et al., 2024) (where connected nodes have different labels).
This dichotomy raises important questions about the under-
lying mechanisms that determine model effectiveness across
different graph types.

To address these limitations, we make three key contribu-
tions, all of which are constructive:

1. We establish and prove scale invariance in graphs, ex-
tending this fundamental concept from image process-
ing to graph learning.

2. We develop a unified network architecture that trans-
lates this theoretical insight into practice.

3. We introduce an adaptive self-loop strategy that dy-
namically adjusts to graph homophily characteristics.

In addition, our technical analysis reveals two destructive
insights that simplify existing approaches without compro-
mising performance:

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Scale Invariance of Graph Neural Network

• By applying graph transformation based on scale invari-
ance, uniform weights can replace the computationally
expensive edge weights in digraph inception networks
(Tong et al., 2020a;b), maintaining or even improving
performance while reducing complexity.

• There is an equivalence between Hermitian Laplacian
methods (e.g., MagNet (Zhang et al., 2021)) and Graph-
SAGE (Hamilton et al., 2017) when incidence normal-
ization is applied. This is proved in Appendix C.2.

Our evaluation shows that the proposed method achieves
state-of-the-art results on four homophilic and two het-
erophilic graphs. Compared to existing approaches, our
method offers superior performance on homophilic datasets
compared to Dir-GNN (Rossi et al., 2024), better handling
of heterophilic data than MagNet (Zhang et al., 2021), and
improved efficiency over real symmetric Laplacian meth-
ods. Furthermore, our multi-scale graph approach provides
notable advantages for highly imbalanced datasets through
implicit data augmentation.

2. Unnecessary Complexity: A Case for
Simplification

Dk D′
k D′′

k D′′′
k

D2 D′
2 D′′

2 D′′′
2

D1 D′
1 D′′

1 D′′′
1

1 2 3 k

Mk M ′
k M ′′

k M ′′′
k

M2 M ′
2 M ′′

2 M ′′′
2

M1 M ′
1 M ′′

1 M ′′′
1

. . .

. . .

. . .
. . .

. . .

. . .
. . .

...
...

..
.

..
.

...
...

...

..
.

..
.

..
.

Dk D′
k D′′

k D′′′
k

D2 D′
2 D′′

2 D′′′
2

D1 D′
1 D′′

1 D′′′
1

1 2 3 k

Mk M ′
k M ′′

k M ′′′
k

M2 M ′
2 M ′′

2 M ′′′
2

M1 M ′
1 M ′′

1 M ′′′
1

. . .

. . .

. . .
. . .

. . .

. . .
. . .

...
...

..
.

..
.

...
...

...

..
.

..
.

..
.

 (a) Original Graph (b)Final Augmented Graph

Figure 1: Edge augmentation by stacking multi-scale graphs
in Digraph Inception Model.

State-of-the-art GNNs for homophilic graphs include Di-
graph Inception Networks such as DiGCN(ib)1 (Tong et al.,
2020a) and SymDiGCN (Tong et al., 2020b), which use
higher-order proximity for multi-scale features. However,
their reliance on random walks makes edge weights across
scales crucial. DiGCN(ib) requires computationally expen-
sive eigenvalue decomposition to determine these weights,
whereas SymDiGCN relies on costly node-wise outer prod-
uct computations. These computational requirements pose
significant scalability challenges, particularly for large-scale
graph applications.

1In this paper, DiGCN interchangably with DiG, DiGCNib
interchangably with DiGib, DiGi2

Their success stems from edge augmentation through vari-
ous proximities, as shown in Figure 1.

Table 1: Performance of Inception models on the Telegram dataset.
“BN” indicates the addition of batch normalization to the original
model. The RiG(ib) model assigns random weights in uniform
distribution to edges within the range [0.0001, 10000], and The
1iG(ib) model assigns weight 1 to all scaled edges.

Model No BN BN Model No BN BN

DiG 67.4±8.1 63.0±7.6 DiGib 68.4±6.2 77.4±5.1
1iG 86.0±3.4 95.8±3.5 1iGib 86.2±3.2 94.2±2.7
RiG 85.2±2.5 91.0±6.3 RiGib 86.4±6.2 86.4±6.6

Instead of computing edge weights for higher-scaled edges,
we replace the edge weights in DiGCN(ib) with uniform
weights of 1, resulting in our simplified models (1iG, 1iGi2).

We show that the computational cost associated with
DiGCN(ib)’s edge weights is unnecessary, as replacing them
with uniform weights of 1 still yields competitive results.
Further experiments with random weights (RiG(i2)) in range
[0.0001, 10000] show even random weighting outperforms
DiGCN(ib) (Table 1), both with and without batch normal-
ization. In Appendix C.1, we provide an explanation for
why the edge weights generated by DiGCN(ib) perform
worse than random weights.

Notably, that 1iGib chieves comparable performance to
DiG(ib) holds consistently across all 15 datasets we tested
(Table 2). More details about the datsets are shown in Ap-
pendix E.3. Additionally, we replaced the edge weights in
SymDiGCN (Tong et al., 2020b) with uniform weights of 1,
resulting in our simplified models 1ym, whose performance
is comparable to SymDiGCN across all datasets(Table 4).

This intriguing discovery led us to hypothesize the existence
of scale invariance in graphs, where neighborhoods at dif-
ferent hop distances can still be effectively utilized for node
classification tasks.

3. Scaled Graph
3.1. Scaled Ego-Graphs

Let G = (V,E) be a directed graph with n nodes and m
edges, represented by an adjacency matrix A ∈ {0, 1}n×n,
where Aij = 1 indicates the presence of a directed edge
from node i to node j, and Aij = 0 indicates the absence
of such an edge. We focus on node classification where
node features are organized in an n × d matrix X , where
d is the dimension of features and the node labels are yi ∈
{1, . . . , C}.
Definition 3.1 (In-Neighbour). An in-neighbour of a node
v ∈ V is a node u ∈ V such that there is a directed edge
from u to v, i.e., (u, v) ∈ E.
Definition 3.2 (Out-Neighbour). An out-neighbour of a
node v ∈ V is a node u ∈ V such that there is a directed

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Scale Invariance of Graph Neural Network

Table 2: Ablation study comparing DiG(ib) with two variants: 1iG(ib) where edge weights are set to 1, and RiG(ib) where edge weights
are randomly sampled from [0.0001, 10000]. Results on 15 graphs (8 directed, 7 undirected) show that 1iG(ib) achieves comparable
performance to DiG(ib), while RiG(ib) occasionally outperforms it (e.g., on Telegram), suggesting that the cost of edge weight computation
in DiG(ib) may be unnecessary. Each cell shows accuracy (top) and Macro F1-score (bottom). Entries marked OOM indicate Out of
Memory on NVIDIA A40 GPUs with 48GB VRAM. The last two columns provide dataset statistics, with the ’Node’ cell showing total
nodes (top) and training nodes (bottom).

Type Datasets DiG DiGib 1iG 1iGib RiG RiGib Node Edge

Directed
Graphs

Cornell 55.4±7.3 69.2±5.4 57.0±6.7 66.5±7.1 44.6±6.9 67.8±4.7 183 298
F1 38.3±7.1 49.2±7.1 39.4±7.1 52.6±11.0 25.5±9.6 52.4±5.5 87

Wisconsin 64.7±6.8 78.0±6.1 64.5±5.3 74.7±6.6 47.3±6.6 72.4±4.8 251 515
F1 47.0±9.5 53.6±8.2 42.0±7.7 57.6±5.2 26.0±6.4 61.2±6.6 120

Texas 62.2±5.1 73.0±8.6 67.8±5.8 70.5±6.2 58.6±6.1 67.8±9.2 183 325
F1 38.4±6.4 54.4±10.8 46.0±7.9 55.3±11.3 28.7±6.7 52.1±12.3 87

CiteSeer 60.4±2.0 66.6±1.5 66.6±2.2 62.8±2.0 52.7±2.4 65.5±2.0 3,312 4,715
F1 57.1±1.3 62.8±1.8 62.6±1.6 59.9±1.5 49.6±1.7 61.1±1.9 120

CoraML 77.0±1.9 76.6±2.1 81.0±1.8 81.7±1.3 79.7±2.5 79.5±2.6 2,995 8,416
F1 76.0±2.0 76.2±1.7 80.1±1.9 80.8±1.3 79.0±2.2 78.8±2.4 140

PubMed 74.3±0.6 76.9±0.6 76.3±0.9 76.7±0.2 59.0±1.5 59.1±1.4 19,717 44,327
F1 74.0±0.6 76.9±0.5 76.1±0.8 77.0±0.2 57.9±1.2 58.2±1.4 60

WikiCS 77.1±1.0 78.4±0.6 79.1±1.0 78.9±0.6 73.0±0.5 78.6±0.5 11,701 297,110
F1 74.1±1.0 75.8±0.9 76.3±0.8 76.0±0.9 73.5±0.8 74.2±0.7 580

Telegram 76.8±4.5 66.0±5.5 95.8±3.5 93.0±5.1 87.2±3.7 89.0±4.1 245 8,912
F1 70.5±6.2 64.3±5.5 94.7±4.2 92.8±4.9 85.4±3.9 88.6±4.4 145

Undirected
Graphs

CiteSeer-U 69.2±0.6 68.9±0.7 69.3±0.6 68.8±1.0 42.0±1.2 40.5±5.5 3,327 4,732
F1 66.1±0.4 65.3±0.6 66.2±0.5 65.5±0.8 38.9±1.1 38.6±1.9 120

Cora 79.1±0.7 80.8±0.9 80.3±1.0 80.0±0.7 51.5±1.3 50.3±2.6 2,708 5,429
F1 77.3±0.7 79.1±0.7 78.7±0.8 78.4±0.7 50.3±1.2 51.0±2.1 140

PubMed-U OOM OOM 78.3±0.2 77.5±0.4 36.8±5.7 77.3±0.6 19,717 108,365
F1 OOM OOM 78.3±0.1 77.4±0.3 20.9±3.5 77.3±0.6 60

CoA-CS 91.1±0.4 95.1±0.1 89.6±0.5 95.0±0.1 30.4±0.1 88.6±0.4 18,333 163,788
F1 87.7±0.8 93.8±0.1 84.1±2.5 93.7±0.1 6.8±0.0 86.6±0.7 8,793

CoA-Physics 95.8±0.2 96.8±0.0 95.8±0.1 96.8±0.0 90.9±0.1 88.4±0.3 34,493 495,924
F1 94.4±0.2 95.8±0.0 94.4±0.1 95.7±0.1 88.3±0.1 84.8±0.6 16,555

Photo 93.2±0.2 91.8±0.3 91.8±0.4 91.7±0.1 28.1±3.3 88.4±0.1 7,650 238,162
F1 91.2±0.3 88.6±0.5 88.3±1.1 88.4±0.2 9.2±1.9 83.5±0.3 3,669

Computers 87.5±0.3 OOM 89.5±0.3 OOM 83.5±0.6 OOM 13,752 491,722
F1 86.1±0.5 OOM 88.7±0.5 OOM 82.6±1.2 OOM 6,595

edge from v to u, i.e., (v, u) ∈ E.

An α-depth ego-graph (Alvarez-Gonzalez et al., 2023) in-
cludes all nodes within α hops from a central node. We
extend this concept to directed graphs and introduce scaled
hops, leading to scaled ego-graphs.
Definition 3.3. In a directed graph G = (V,E), we define
two types of α-depth ego-graphs centered at a node v ∈ V .

• α-depth in-edge ego-graph: Iα(v) = (V←, E←),
where V← consists of all nodes that can reach v within
α steps, and E← consists of all directed edges between
nodes in V← that are within α steps of v.

• α-depth out-edge ego-graph: Oα(v) = (V→, E→),
where V→ consists of all nodes that can be reached
from v within α steps, and E→ consists of all directed
edges from v to nodes in V→ within α steps.

As illustrated in Figure 2, a 1-depth ego-graph for an undi-
rected graph includes nodes labeled I (in-neighbor) and O

(out-neighbor). In the case of a directed graph, the 1-depth
in-edge ego-graph comprises nodes labeled I along with
the center node and all the edges connecting them, whereas
the 1-depth out-edge ego-graph comprises nodes labeled
O along with the center node and all the edges connecting
them.

The 1-hop neighbour with different adjacency matrix is
shown in Table 3.

Table 3: 1-hop neighbours for GNN with different adjacency
matrices

Adj. Matrix A AT AA ATAT AAT ATA

1-hop Neighb. I O II OO IO OI

Definition 3.4. A scaled-edge is defined as an ordered
sequence of multiple directed edges, where the scale refers
to the number of edges in this sequence. Specifically, a kth-
scale edge is a scaled-edge composed of k directed edges,
also referred to as a k-order edge.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Scale Invariance of Graph Neural Network

An α-depth scaled ego-graph includes all nodes that are
reachable within α hops of scaled-edge from a given center
node.

A 1st-scale edge, includes in-edge (I) and out-edge (O),
connecting to in-neighbor (I) and out-neighbor (O) nodes,
respectively, as shown in Figure 2. Considering a 2nd-scale
edge, there are four types: II, IO, OI, and OO, each connect-
ing to nodes labeled in Figure 2 accordingly.

Figure 2: An illustration of scaled ego-graphs. For directed
graphs, the 1-depth in-edge ego-graph comprises nodes la-
beled “I” along with the center node “C” and all in-edges
between them, whereas the 1-depth out-edge ego-graph
comprises nodes labeled O along with the center node and
all out-edges between them. The four types of 1-depth
2nd-scaled ego-graphs are composed of nodes labeled “IO”,
“OI”, “II”, and “OO”, with the center node and all corre-
sponding 2nd-scaled edges between them.

3.2. Scale Invariance of Graphs

The concept of scale invariance, well-known in image clas-
sification as the ability to recognize objects regardless of
their size, can be extended to graphs. In the context of node
classification, each node to be classified can be viewed as
the center of an ego-graph. Thus, for node-level prediction
tasks on graphs, each input instance is essentially an ego-
graph Gv centered at node v, with a corresponding target
label yv. Scale invariance in graphs would imply that the
classification of a node remains consistent across different
scaled ego-graphs.
Definition 3.5. Let Sk denote the set of all kth-scale edges
and Gk

α(v) denote the set of all α-depth kth-scale ego-
graphs centered at node v. Then we have the following
equations:

Sk = {e1e2 . . . ek | ei ∈ {→,←}, 1 ≤ i ≤ k}, (1)

Gk
α(v) = {(Vs, Es) | s ∈ Sk}, (2)

where e1e2 . . . ek represents the scaled-edge obtained by
following an ordered sequence of in-edge (←) or out-edge
(→) hops from v. Specifically:

• Vs consists of all nodes that can be reached from v
within α steps of scaled-edge s.

• Es consists of all scaled-edges s from v to these nodes
within those α steps.

Consider a GNN model M that learns from a graph G using
its adjacency matrix A by aggregating information solely
from its out-neighbors. To also learn from the in-neighbors,
the model should aggregate information from the transpose
of the adjacency matrix, i.e., AT (Rossi et al., 2024).

An adjacency matrix which encodes scaled-edges is the
ordered sequencial multiplication of A and AT . The graph
whose structure is represented with the scaled adjacency
matrix is a scaled graph.

Definition 3.6 (Scaled Adjacency Matrix and Scaled Graph).
Let Ak denote the set of all kth-scale adjacency matrix and
Gk denote the set of all kth-scale graphs.

Ak = {a1a2 . . . ak | ai ∈ {A,AT }, 1 ≤ i ≤ k}, (3)

Gk = {Gk = (V, Ẽs) | s ∈ Sk}, (4)

where Ẽs represents pairwise connections between nodes
that are k steps apart in the original graph.

To capture information from 2nd-scale neighbors, the model
should extend its learning to matrices that incorporate both
direct and transitive relationships. This involves using ma-
trices such as AA, AAT , ATAT , and ATA as the scaled
adjacency matrix.

Definition 3.7. For a node classification task on a graph G,
we say the task exhibits scale invariance if the classification
of a node v remains invariant across different scales of its
ego-graphs. Formally, for any k ≥ 1:

f(Gv) = f(Gk(v)), (5)

where f is the classification function producing discrete
values, Gv is the original ego-graph of node v, and Gk(v)
is any kth-scale ego-graph centered at v.

This property implies that the essential structural informa-
tion for node classification is preserved across different
scales of the ego-graph. In other words, the kth-scaled ego-
graphs should maintain the node classification invariant.

4. Proof of Scale Invariance
In this section, we present a proof of scale invariance for
Graph Neural Networks (GNNs), exploring the relationship
between standard and scaled adjacency matrices in node
classification tasks. First, we derive the output of a k-layer
GCN using the adjacency matrix A. We then extend this
to scaled adjacency matrices with bidirectional aggregation,

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Scale Invariance of Graph Neural Network

demonstrating that the resulting models are equivalent to
dropout versions of lower-scale, bidirectional GCNs that
aggregate using both A and AT . The cases of adding self-
loops and not adding them are discussed separately. We
focus on the Graph Convolutional Network (GCN) model
(Kipf & Welling, 2016) as it represents the basic form of
neighborhood aggregation.

4.1. Preliminaries

Let X denote node features, A denote the adjacency matrix
(where an element is 1 if an edge exists and 0 otherwise), W
denote a general weight matrix, D denote the degree matrix
of A, and I denote the identity matrix. For a scaled edge
ê (as defined in Definition 3.4), let Xê represent the 1-hop
neighbors of X through ê, for examaple, XI denote 1-hop
in-neighbors of X . Xk denotes representation of nodes after
k-layer GNN.

Theorem 4.1. The layer-wise propagation of a GCN is:

• Without self-loops:
∑

XIW

• With self-loops:
∑

XIW1 +XW0

Proof. As outlined in Table A1 (provided in the appendix
for completeness), Ã denotes incidence-normalized A, the
layer-wise propagation of a GCN (Kipf & Welling, 2016)is
represented as follows:

ÃXW (no self-loops), ˜(A+ I)XW (with self-loops)

Since incidence normalization corresponds to a component-
wise multiplication with the normalization matrix N , we
have ÃXW = (N ⊙ A)XW . By the Universal Approx-
imation Theorem (Hornik et al., 1989; Hornik), this is
equivalent to AXW . Here, AX represents the aggrega-
tion of neighbor features, and thus AX =

∑
XI , where I

represents the 1-hop in-edges. Similarly, ˜(A+ I)XW is∑
XIW1 +XW0.

Theorem 4.2. For all natural numbers n, the output of an
n-layer GCN without self-loops can be expressed as follows:

Xn ≈
∑

XI...I︸︷︷︸
n

W,

where XI...I︸︷︷︸
n

denotes neighbours reached by n-hop in-

edges, Xn denotes representation of nodes after n-layer
GNN.

Theorem 4.3. For an n-layer GCN with self-loops, the
output can be expressed as follows:

Xn ≈
∑

XI...I︸︷︷︸
n

W1 +
∑

XI...I︸︷︷︸
n−1

W2 + ...+XWn+1.

The proofs of theorems 4.2 and 4.3 are presented in Ap-
pendix D.

Next, we will prove a fundamental property of GNNs for
directed graphs: scale invariance. We will demonstrate
that when the input graph undergoes scaling transforma-
tions, the GCN’s output remains unchanged, considering
both scenarios—whether or not self-loops are added. This
proof highlights that the GNN’s architecture inherently pre-
serves its effectiveness and consistency across scaled graph
representations, ensuring robust performance in diverse sce-
narios.

4.2. Proof of Scale Invariance in GCN without Self-loops

For different adjacency matrices, the layer-wise propagation
rules and k-layer outputs are as follows:

4.2.1. SINGLE-DIRECTIONAL AGGREGATION

• A as the adjacency matrix:

1-layer:
∑

XIW ; k-layer:
∑

XI...I︸︷︷︸
k

W for k ≥ 1

• AT as the adjacency matrix:

1-layer:
∑

XOW ; k-layer:
∑

XO...O︸ ︷︷ ︸
k

W

• AA as the adjacency matrix:

1-layer:
∑

XIIW ; k-layer:
∑

XI...I︸︷︷︸
2k

W

• AAT as the adjacency matrix:

1-layer:
∑

XIOW ; k-layer:
∑

XIO...IO︸ ︷︷ ︸
k pairs IO

W

Similar patterns for ATAT and ATA.

From above, we can deduce:

1. k-layer GCN with AA is equivalent to 2k-layer GCN
with A

2. k-layer GCN with ATAT is equivalent to 2k-layer
GCN with AT

4.2.2. BIDIRECTIONAL AGGREGATION

If the model uses bidirectional aggregation (Rossi et al.,
2024), the k-layer outputs (k ≥ 1) are as follows:

• A and AT as the adjacency matrices:∑
XII...I︸ ︷︷ ︸

k

W0 +
∑

XOI...I︸ ︷︷ ︸
k

W1 + ...+
∑

XO...O︸ ︷︷ ︸
k

Wk

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Scale Invariance of Graph Neural Network

• AAT and ATA as the adjacency matrices:∑
XIO...IO︸ ︷︷ ︸

k pairs IO

W0 + ...+
∑

XOI...OI︸ ︷︷ ︸
k pairs OI

Wk

Similar patterns for AA and ATAT .

From the above, we can deduce:

1. A k-layer GCN with AAT and ATA is a dropout ver-
sion of a 2k-layer GCN with A and AT . In this context,
”dropout” refers to the selective aggregation of informa-
tion, where specific subsets of neighbors are preserved
rather than aggregating information from all neighbors
at each step.

2. A k-layer GCN with AA and ATAT is also a dropout
version of a 2k-layer GCN with A and AT .

Synthesizing Section 4.2.1 and Section 4.2.2, we conclude
that all single-directional aggregation models are dropout
versions of their bidirectional counterparts. For example, a
model using only A corresponds to a bidirectional model
with both A and AT , and a model using AA corresponds to
a bidirectional model with both AA and ATAT .

Finally, we can conclude that all models—whether single-
directional or bidirectional—are dropout versions of A and
AT .

Similar analysis for GCN with self-loops is presented in
Appendix C.3.

In conclusion, our theoretical analysis confirms that propa-
gating information through higher-scale adjacency matrices
is fundamentally equivalent to applying lower-scale graph
operations or their dropout variants. This equivalence not
only supports the theoretical validity of scale invariance
in graph neural networks but also ensures that the use of
multi-scale graphs retains the benefits of invariance across
different graph structures.

Furthermore, as undirected graphs can be treated as a spe-
cial case of directed graphs, where in-neighbors and out-
neighbors are identical, the proof of scale invariance extends
seamlessly to undirected graph structures. These findings
provide a solid foundation for developing more efficient
and scalable graph neural network models that leverage
multi-scale graph representations.

While we demonstrate the proof of scale invariance specif-
ically for GCN, similar mathematical arguments can be
constructed for GraphSAGE and other GNN variants. These
findings provide a solid foundation for developing more
efficient and scalable graph neural network models that
leverage multi-scale graph representations.

Empirical demonstration of scale invariance is presented in
Appendix C.5.

5. ScaleNet
5.1. A Unified Network: ScaleNet

AGG-Bα

AGG-Bβ

AGG-Bγ

ÃT

 ÃTÃ

ÃÃ

ÃÃT

ÃTÃT

self-
loop

Ã

C
O
M
B
1

Batch
Norm

Relu

DropOut

Batch
Norm X(L)

h h

Output
Layer

C
O
M
B
2

o
u
t
p
u
t

 Hidden
Layer

 Input
Layer

AGG-Bα

AGG-Bβ

AGG-Bγ

ÃÃT
d d

self-
loop

Ã

C
O
M
B
1

Batch
Norm

Relu

DropOut

Batch
Norm X(1)

 ÃTÃ

ÃT

ÃÃ ÃTÃT

Figure 3: Schematic depiction of multi-layer(L-layer) ScaleNet
with d input channels and h hidden channels. For layer-wise
aggregation, the original graph is derived into two 1st-scaled and
four 2nd-scaled graphs. Three AGG-B blocks determine input
selection for COMB1, which uses either a jumping knowledge
architecture (Xu et al., 2018) or addition. COMB2 represents
the fusion of all layers’ outputs. (The blue blocks are optional,
including self-loop operations, non-linear activation functions,
dropout, and layer normalization.)

As discussed in Appendix C.5, heterophilic graphs tend
to suffer from performance degradation when aggregating
information from scaled graphs in both directions. This lim-
itation causes existing Digraph Inception Networks (Tong
et al., 2020a;b) to perform poorly on heterophilic graphs.

To address this issue and accommodate the unique charac-
teristics of different datasets, we propose a flexible combi-
nation approach and introduce ScaleNet, as illustrated in
Figure 3. This approach flexibly synthesizes scaled graphs
and optionally integrates components like self-loops, batch
normalization, and non-linear activation functions, each of
which is tailored to the specific characteristics of the dataset
through a grid search of model parameters.

Bidirectional Aggregation To exploit scale invari-
ance, we define the bidirectional aggregation function
AGG-Bα(M,N,X) as follows:

(1+α)αAGG(M,X)+(1+α)(1−α)AGG(N,X) (6)

The AGG function can be any message-passing neural net-
work (MPNN) architecture, such as GCN (Kipf & Welling,
2016), GAT (Veličković et al., 2018), or SAGE (Hamilton
et al., 2017). M and N represent pairs of matrices encoding
opposite directional edges. The parameter α controls the
contribution of matrices M and N : α = 0 uses only M ,

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Scale Invariance of Graph Neural Network

α = 1 uses only N , α = 0.5 balances both, and α = −1
excludes both.

Given that adding or removing self-loops (Kipf & Welling,
2016; Tong et al., 2020a) can influence the performance
of the model, we allow for the inclusion of such options
by defining Ã, which can be: (i) the matrix A with self-
loops being removed, (ii) the matrix A with self-loops being
added, or (iii) the original matrix A. The influence of self-
loops is shown in Appendix C.4.

This formulation provides a flexible framework for aggre-
gating information from bidirectional matrices, enabling the
model to leverage various directional and self-loop configu-
rations to enhance its performance.

Additionally, setting α = 2 combines the matrices M and N
directly before aggregation, while setting α = 3 considers
their intersection:

AGG-B2(M,N,X) = AGG(M ∪N,X) (7)

AGG-B3(M,N,X) = AGG(M ∩N,X) (8)

Layer-wise Aggregation of ScaleNet We combine the
propagation output from various scaled graphs with the
following rule:

X(l) = COMB1(X(l)
1 , X

(l)
2 , X

(l)
3 , . . .), (9)

where X(l) represents the updated features after l layers.
The function COMB1 can be realized by the Jumping
Knowledge (JK) framework (Xu et al., 2018), or simply
by performing an element-wise addition of the inputs.

Multi-layer ScaleNet A multi-layer ScaleNet is then de-
fined as follows:

Z = COMB2(X(1), X(2), . . . , X(L)) (10)

In this formulation, L layers of the propagation rule are
stacked. The function COMB2 combines the outputs of all
layers, which can again be done using the Jumping Knowl-
edge technique; or alternatively, the output from the final
layer may be used directly as the model’s output.

6. Experiments
6.1. Datasets

We use six widely-adopted real-world datasets, compris-
ing four homophilic and two heterophilic graph datasets.
To ensure consistency and comparability, we maintain the
original train/validation/test splits provided by the source
datasets. All datasets have 10 splits, except WikiCS, which
originally includes 20 splits.

CiteSeer, Cora-ML, and WikiCS are citation networks,
while Telegram is a social network. These four datasets

are generally considered to be homophilic (Rossi et al.,
2024). Chameleon and Squirrel are webpage networks, and
considered heterophilic (Maurya et al., 2022). More details
about datasets and experiments are reported in Appendix E

6.2. Performance of ScaleNet on Different Graphs

ScaleNet is designed to adapt to the unique characteristics
of each dataset, delivering optimal performance on both ho-
mophilic and heterophilic graphs. This is achieved through
customizable options such as combining directed scaled
graphs, incorporating batch normalization, and adding or
removing self-loops.

During hyperparameter tuning via grid search, we observed
the following key findings:

• Homophilic Graphs: Performance improves with the
addition of self-loops and the use of scaled graphs
derived from opposite directed scaled edges, such as
AA and ATAT .

• Heterophilic Graphs: Performance benefits from re-
moving self-loops and utilizing scaled graphs with pre-
ferred directional scaled edges, while excluding those
based on the opposite directional scaled edges.

• Additional findings:

– For imbalanced datasets such as the Telegram,
incorporating batch normalization significantly
improves performance.

– The CiteSeer dataset performs better with the re-
moval of nonlinear activation functions.

Our unified model, optimized through grid search, reveals
the characteristics of different graph datasets and provides a
strong basis for model comparison.

Table 4 summarizes the 10-fold cross-validation results.
ScaleNet consistently achieves top performance across all
six datasets, significantly outperforming existing models on
both homophilic and heterophilic graphs.

Model 1ym assigns 1 to edge weights of model Sym: simi-
larly, model 1iG and 1iGi2 are assigning 1 to edge weights
of models DiG and DiGib, respectively. Model 1iGu2 and
1iGu3 assign weights of 1 to scaled edges, but use union
instead of intersection in DiGib, and the last number k de-
notes the model includes up to kth-scale edges, while DiGib
only scales up to 2nd-order. At the end of model name, “ib”
would be used interchangeably with “i2”. Parameters α,
β, and γ controlling ScaleNet components: α controls A
and AT , β controls AAT and ATA, and γ controls AA and
ATAT . Parameter loop is 1 when adding selfloop and 0
when not adding.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Scale Invariance of Graph Neural Network

Table 4: Node classification Accuracy (%). The best results are in bold and the second best are underlined. 10-fold cross validation is
used. OOM indicates out of memory on GPU3090 with 24GB of VRAM.

Type Method Telegram Cora-ML CiteSeer WikiCS Chameleon Squirrel

Base models

MLP 32.8±5.4 67.3±2.3 54.5±2.3 73.4±0.6 40.3±5.8 28.7±4.0
GCN 86.0±4.5 81.2±1.4 65.8±2.3 78.8±0.4 64.8±2.2 46.3±1.9

APPNP 67.3±3.0 81.8±1.3 65.9±1.6 77.6±0.6 38.7±2.4 27.0±1.5
ChebNet 83.0±3.8 80.5±1.6 66.5±1.8 76.9±0.9 58.3±2.4 38.5±1.4
SAGE 74.0±7.0 81.7±1.2 66.7±1.7 79.3±0.4 63.4±3.0 44.6±1.3

Hermitian
MagNet 87.6±2.9 79.7±2.3 66.5±2.0 74.7±0.6 58.2±2.9 39.0±1.9

SigMaNet 86.9±6.2 71.7±3.3 44.9±3.1 71.4±0.7 64.1±1.6 OOM
QuaNet 85.6±6.0 26.3±3.5 30.2±3.0 55.2±1.9 38.8±2.9 OOM

Symmetric
Sym 87.2±3.7 81.9±1.6 65.8±2.3 OOM 57.8±3.0 38.1±1.4
DiG 82.0±3.1 78.4±0.9 63.8±2.0 77.1±1.0 50.4±2.1 39.2±1.8

DiGib 64.1±7.0 77.5±1.9 60.3±1.5 78.3±0.7 52.2±3.7 37.7±1.5

Symmetric
(Ours)

1ym 84.0±3.9 80.8±1.6 64.9±2.5 75.4±0.4 54.9±2.7 35.5±1.1
1iG 95.8±3.5 82.0±1.3 65.5±2.4 77.4±0.6 70.2±1.6 50.7±5.8

1iGi2 93.0±5.1 81.7±1.3 67.9±2.2 79.2±0.5 58.4±2.5 42.7±2.5
1iGu2 92.6±4.9 82.1±1.2 67.6±1.8 75.6±0.9 60.4±2.4 40.4±1.8

BiDirection Dir-GNN 90.2±4.8 79.2±2.1 61.6±2.6 77.2±0.8 79.7±1.3 75.6±1.9

Ours ScaleNet 97.2±2.1 82.3±1.1 69.1±1.2 79.3±0.6 80.1±1.5 76.0±2.0
loop α, β, γ 1 0.5,-1,-1 1 2,-1,-1 1 0.5,2,-1 1 0.5,2,-1 0 1,1,1 0 1,1,1

6.3. Robustness to Imbalanced Graphs

Table 5: Accuracy (%) on imbalanced datasets (imbalance ratio =
100:1). When accuracy is below 45%, only one split is used.

Type Method Cora-ML CiteSeer WikiCS

Standard
MagNet 47.9±5.5 29.3 62.0±1.5

Dir-GNN 41.1 25.0 62.9±1.4

Augment

DiG 60.9±1.8 36.9 72.2±1.4
DiGib 55.7±2.9 40.4 69.8±1.2
1iG 64.9±4.7 42.3 71.0±1.5

1iGi2 61.9±5.7 41.5 71.0±1.6
ScaleNet 60.3±6.7 43.1 69.4±1.2

ScaleNet improves robustness against imbalanced graphs by
leveraging multi-scale graphs, similar to data augmentation
techniques.

Table 5 indicates that ScaleNet consistently outperforms
Dir-GNN and MagNet on imbalanced datasets. The imbal-
ance ratio measures the size disparity between the largest
and smallest classes. For homophilic graphs, ScaleNet’s
advantage stems from its use of higher-scale graphs and
self-loops, which enhances its ability to capture essential
features that Dir-GNN and MagNet might miss. Conversely,
single-scale networks like Dir-GNN (Rossi et al., 2024) and
MagNet (Zhang et al., 2021) are prone to incorporate irrele-
vant nodes due to excessive layer stacking when aggregating
information from longer-range nodes.

7. Conclusions
We have addressed two critical challenges in Graph Neu-
ral Networks: the lack of theoretical support for invariance
learning and the absence of a unified model for homophilic
and heterophilic graphs. Our work establishes the theoret-
ical foundation of scale invariance in graph learning and
introduces ScaleNet, a unified network architecture that
effectively leverages multi-scaled graphs and adaptive self-
loops to dynamically handle diverse graph structures.

Through rigorous theoretical analysis, we demonstrate
equivalence between Hermitian Laplacian methods and
GraphSAGE with incidence normalization and propose effi-
cient alternatives to computationally expensive edge weights
in digraph inception networks. Experimental results on six
benchmark datasets confirm that ScaleNet achieves state-of-
the-art performance across both homophilic and heterophilic
graphs while also demonstrating superior robustness to data
imbalance.

Our contributions advance the theoretical understanding and
practical application of GNNs, offering a unified, efficient,
and adaptable framework for graph learning.

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Steeg, G. V., and Gal-
styan, A. MixHop: Higher-Order Graph Convolutional
Architectures via Sparsified Neighborhood Mixing. In

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Scale Invariance of Graph Neural Network

Proceedings of the 36th International Conference on Ma-
chine Learning, pp. 21–29. PMLR, May 2019. ISSN:
2640-3498.

Alvarez-Gonzalez, N., Kaltenbrunner, A., and Gómez, V.
Beyond Weisfeiler–Lehman with Local Ego-Network En-
codings. Machine Learning and Knowledge Extraction,
5(4):1234–1265, December 2023. ISSN 2504-4990. doi:
10.3390/make5040063.

Berberidis, D., Nikolakopoulos, A. N., and Giannakis, G. B.
Adaptive Diffusions for Scalable Learning Over Graphs.
IEEE Transactions on Signal Processing, 67(5):1307–
1321, March 2019. ISSN 1941-0476. doi: 10.1109/TSP.
2018.2889984.

Chen, Y., Bian, Y., Zhou, K., Xie, B., Han, B., and Cheng, J.
Does Invariant Graph Learning via Environment Augmen-
tation Learn Invariance? Advances in Neural Information
Processing Systems, 36:71486–71519, December 2023.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive uni-
versal generalized pagerank graph neural network. arXiv
preprint arXiv:2006.07988, 2020.

Cohen, T. S. and Welling, M. Group equivariant convolu-
tional networks. In Proceedings of the 33rd International
Conference on Machine Learning (ICML), volume 48, pp.
2990–2999. PMLR, 2016.

Defferrard, M., Bresson, X., and Vandergheynst, P. Convo-
lutional Neural Networks on Graphs with Fast Localized
Spectral Filtering. In Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc.,
2016.

Fiorini, S., Coniglio, S., Ciavotta, M., and Messina, E. Sig-
manet: One laplacian to rule them all. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 37, pp. 7568–7576, 2023.

Fiorini, S., Coniglio, S., Ciavotta, M., and Messina, E.
Graph learning in 4d: A quaternion-valued laplacian to
enhance spectral gcns. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pp. 12006–
12015, 2024.

Gao, J. and Wu, J. Multiple sparse graphs condensation.
Knowledge-Based Systems, 278:110904, October 2023.
ISSN 0950-7051. doi: 10.1016/j.knosys.2023.110904.

Gao, X., Dai, W., Li, C., Xiong, H., and Frossard, P. Graph
pooling with node proximity for hierarchical representa-
tion learning. arXiv preprint arXiv:2006.11118, 2020.

Garg, V., Jegelka, S., and Jaakkola, T. Generalization and
Representational Limits of Graph Neural Networks. In

Proceedings of the 37th International Conference on Ma-
chine Learning, pp. 3419–3430. PMLR, November 2020.
ISSN: 2640-3498.

Gligorijević, V., Renfrew, P. D., Kosciolek, T., Leman, J. K.,
Berenberg, D., Vatanen, T., Chandler, C., Taylor, B. C.,
Fisk, I. M., Vlamakis, H., Xavier, R. J., Knight, R., Cho,
K., and Bonneau, R. Structure-based protein function
prediction using graph convolutional networks. Nature
Communications, 12(1):3168, May 2021. ISSN 2041-
1723. doi: 10.1038/s41467-021-23303-9. Publisher:
Nature Publishing Group.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Hashemi, M., Gong, S., Ni, J., Fan, W., Prakash, B. A.,
and Jin, W. A comprehensive survey on graph reduc-
tion: Sparsification, coarsening, and condensation. arXiv
preprint arXiv:2402.03358, 2024.

He, Y., Perlmutter, M., Reinert, G., and Cucuringu, M.
MSGNN: A Spectral Graph Neural Network Based on a
Novel Magnetic Signed Laplacian. In Proceedings of the
First Learning on Graphs Conference, pp. 40:1–40:39.
PMLR, December 2022.

Hornik, K. Approximation Capabilities of Muitilayer Feed-
forward Networks.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral networks, 2(5):359–366, 1989. ISSN 0893-6080.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kollias, G., Kalantzis, V., Ide, T., Lozano, A., and Abe, N.
Directed Graph Auto-Encoders. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(7):7211–7219,
June 2022. ISSN 2374-3468. doi: 10.1609/aaai.v36i7.
20682.

Lenc, K. and Vedaldi, A. Understanding image representa-
tions by measuring their equivariance and equivalence. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 991–999, 2015.

Liang, J., Gurukar, S., and Parthasarathy, S. MILE: A
Multi-Level Framework for Scalable Graph Embedding.
Proceedings of the International AAAI Conference on
Web and Social Media, 15:361–372, May 2021. ISSN
2334-0770. doi: 10.1609/icwsm.v15i1.18067.

Ma, Y., Hao, J., Yang, Y., Li, H., Jin, J., and Chen, G.
Spectral-based graph convolutional network for directed
graphs. arXiv preprint arXiv:1907.08990, 2019.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Scale Invariance of Graph Neural Network

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. arXiv preprint
arXiv:1812.09902, 2018.

Maurya, S. K., Liu, X., and Murata, T. Simplifying approach
to node classification in Graph Neural Networks. Journal
of Computational Science, 62:101695, July 2022. ISSN
1877-7503. doi: 10.1016/j.jocs.2022.101695.

Mernyei, P. and Cangea, C. Wiki-cs: A wikipedia-based
benchmark for graph neural networks. arXiv preprint
arXiv:2007.02901, 2020.

Monti, F., Otness, K., and Bronstein, M. M. MOTIFNET:
A motif-based graph convolutional network for directed
graphs. In 2018 IEEE Data Science Workshop (DSW), pp.
225–228, Lausanne, Switzerland, June 2018. IEEE. ISBN
978-1-5386-4410-2. doi: 10.1109/DSW.2018.8439897.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks.
arXiv preprint arXiv:2002.05287, 2020.

Rossi, E., Charpentier, B., Di Giovanni, F., Frasca, F.,
Günnemann, S., and Bronstein, M. M. Edge directional-
ity improves learning on heterophilic graphs. In Learning
on Graphs Conference, pp. 25–1. PMLR, 2024.

Rozemberczki, B., Allen, C., and Sarkar, R. Multi-scale at-
tributed node embedding. Journal of Complex Networks,
9(2):cnab014, 2021.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation,
June 2019. URL http://arxiv.org/abs/1811.
05868. arXiv:1811.05868 [cs, stat].

Sokolic, J., Giryes, R., Sapiro, G., and Rodrigues, M. Gen-
eralization Error of Invariant Classifiers. In Proceedings
of the 20th International Conference on Artificial Intelli-
gence and Statistics, pp. 1094–1103. PMLR, April 2017.
ISSN: 2640-3498.

Sui, Y., Wu, Q., Wu, J., Cui, Q., Li, L., Zhou, J., Wang,
X., and He, X. Unleashing the Power of Graph Data
Augmentation on Covariate Distribution Shift. Advances
in Neural Information Processing Systems, 36:18109–
18131, December 2023.

Sun, H., Li, X., Wu, Z., Su, D., Li, R.-H., and Wang, G.
Breaking the entanglement of homophily and heterophily
in semi-supervised node classification. In 2024 IEEE 40th
International Conference on Data Engineering (ICDE),
pp. 2379–2392. IEEE, 2024.

Suresh, S., Li, P., Hao, C., and Neville, J. Adversarial Graph
Augmentation to Improve Graph Contrastive Learning.
In Advances in Neural Information Processing Systems,

volume 34, pp. 15920–15933. Curran Associates, Inc.,
2021.

Tong, Z., Liang, Y., Sun, C., Li, X., Rosenblum, D., and
Lim, A. Digraph inception convolutional networks. Ad-
vances in neural information processing systems, 33:
17907–17918, 2020a.

Tong, Z., Liang, Y., Sun, C., Rosenblum, D. S., and Lim,
A. Directed graph convolutional network. arXiv preprint
arXiv:2004.13970, 2020b.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Verma, S. and Zhang, Z.-L. Stability and generalization
of graph convolutional neural networks. In Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1539–1548,
2019.

Wu, Q., Zhang, H., Yan, J., and Wipf, D. Handling distribu-
tion shifts on graphs: An invariance perspective. arXiv
preprint arXiv:2202.02466, 2022.

Xia, D., Wang, X., Liu, N., and Shi, C. Learning Invariant
Representations of Graph Neural Networks via Cluster
Generalization, March 2024. arXiv:2403.03599 [cs].

Xie, X., Sun, Y., Liu, Y., Zhang, M., and Tan, K. C. Archi-
tecture augmentation for performance predictor via graph
isomorphism. IEEE Transactions on Cybernetics, 54(3):
1828–1840, 2023.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In International confer-
ence on machine learning, pp. 5453–5462. PMLR, 2018.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph Convolutional Neural Net-
works for Web-Scale Recommender Systems. In Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’18, pp.
974–983, New York, NY, USA, July 2018. Association
for Computing Machinery. ISBN 978-1-4503-5552-0.
doi: 10.1145/3219819.3219890.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y.
Graph contrastive learning with augmentations. Advances
in neural information processing systems, 33:5812–5823,
2020.

Zhang, R., Chen, Z., Xiao, T., Wang, Y., and Kuang, K. Dis-
covering invariant neighborhood patterns for heterophilic
graphs. arXiv preprint arXiv:2403.10572, 2024.

10

http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Scale Invariance of Graph Neural Network

Zhang, X., He, Y., Brugnone, N., Perlmutter, M., and Hirn,
M. Magnet: A neural network for directed graphs. Ad-
vances in neural information processing systems, 34:
27003–27015, 2021.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. Advances in
neural information processing systems, 33:7793–7804,
2020.

Zhuo, W. and Tan, G. Commute graph neural networks.
arXiv preprint arXiv:2407.01635, 2024.

11

