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ABSTRACT

Sharpness-aware minimization (SAM) has been instrumental in improving deep
neural network training by minimizing both the training loss and the sharpness of
the loss landscape, leading the model into flatter minima that are associated with
better generalization properties. In another aspect, Model-Agnostic Meta-Learning
(MAML) is a framework designed to improve the adaptability of models. MAML
optimizes a set of meta-models that are specifically tailored for quick adaptation
to multiple tasks with minimal fine-tuning steps and can generalize well with
limited data. In this work, we explore the connection between SAM and MAML in
enhancing model generalization. We introduce Agnostic-SAM, a novel approach
that combines the principles of both SAM and MAML. Agnostic-SAM adapts
the core idea of SAM by optimizing the model toward wider local minima using
training data, while concurrently maintaining low loss values on validation data.
By doing so, it seeks flatter minima that are not only robust to small perturbations
but also less vulnerable to data distributional shift problems. Our experimental
results demonstrate that Agnostic-SAM significantly improves generalization over
baselines across a range of datasets and under challenging conditions such as noisy
labels or data limitation.

1 INTRODUCTION

Deep neural networks have become the preferred method for analyzing data, surpassing traditional
machine learning models in complex tasks such as classification. These networks process input
through numerous parameters and operations to predict classes. The learning process involves finding
parameters within a model space that minimize errors or maximize performance for a given task.
Typically, training data, denoted as S, is finite and drawn from an unknown true data distribution D.
Larger or more aligned training sets lead to more efficient models.

Despite their ability to learn complex patterns, deep learning models can also capture noise or
random fluctuations in training data, leading to overfitting. This results in excellent performance on
training data but poor predictions on new, unseen data, especially with domain shifts. Generalization,
measured by comparing prediction errors on S and D, becomes crucial. Balancing a model’s ability
to fit training data with its risk of overfitting is a key challenge in machine learning.

Several studies have been done on this problem, both theoretically and practically. Statistical learning
theory has proposed different complexity measures that are capable of controlling generalization
errors (Vapnik, 1998; Bartlett & Mendelson, 2003; Mukherjee et al., 2002; Bousquet & Elisseeff,
2002; Poggio et al., 2004). In general, they develop a bound for general error on D. Theory suggests
that minimizing the intractable general error on D is equivalent to minimizing the empirical loss on
S with some constraints to the complexity of models and training size (Alquier et al., 2016b). An
alternative strategy for mitigating generalization errors involves the utilization of an optimizer to
learn optimal parameters for models with a specific local geometry. This approach enables models to
locate wider local minima, known as flat minima, which makes them more robust against data shift
between training and testing sets (Jiang et al., 2020; Petzka et al., 2021; Dziugaite & Roy, 2017).

The connection between a model’s generalization and the width of minima has been investigated
theoretically and empirically in many studies, notably (Hochreiter & Schmidhuber, 1994; Neyshabur
et al., 2017; Dinh et al., 2017; Fort & Ganguli, 2019). A specific method within this paradigm
is Sharpness-aware Minimisation (SAM) (Foret et al., 2021), which has emerged as an effective
technique for enhancing the generalization ability of deep learning models. SAM seeks a perturbed
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model within the vicinity of a current model that maximizes the loss over a training set. Eventually,
SAM leads the model to the region where both the current model and its perturbation model have low
loss values, which ensure flatness. The success of SAM and its variants (Kwon et al., 2021; Kim et al.,
2022; Truong et al., 2023) has inspired further investigation into its formulation and behavior, as
evidenced by recent works such as (Kaddour et al., 2022; Möllenhoff & Khan, 2022; Andriushchenko
& Flammarion, 2022).

SAM significantly enhances robustness against shifts between training and testing datasets, thereby
reducing overfitting and improving overall performance across different datasets and domains. This
robust optimization approach aligns particularly well with the principles of Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017). MAML aims to find a set of meta-model parameters that not
only generalize well on current tasks but can also be quickly adapted to a wide range of new tasks.
Furthermore, the agnostic perspective of MAML is particularly enticing for enhancing generalization
ability because it endeavors to learn the optimal meta-model from meta-training sets capable of
achieving minimal losses on independent meta-testing sets, thus harmonizing with the goal of
generalization.

In this paper, inspired by MAML and leveraging SAM, we initially approach the problem of learning
the best model over a training set from an agnostic viewpoint. Subsequently, we harness this
perspective with sharpness-aware minimization to formulate an agnostic optimization problem.
However, a naive solution akin to MAML does not suit our objectives. We propose a novel solution
for this agnostic optimization problem, resulting in an approach called AgnosticSAM. In summary,
our contributions to this work are as follows:

• We proposed a framework inspired by SAM and MAML works, called Agnostic-SAM to
improve model flatness and robustness against noise. Agnostic-SAM updates a model to a
region that minimizes the sharpness on the training set while also implicitly performing well
on the validation set by using a combination of gradients on both training and validation
sets.

• We demonstrate the effectiveness of Agnostic-SAM in improving generalization perfor-
mance. Our initial examination focuses on image classification tasks, including training
from scratch and transfer learning across a range of datasets, from small to large scale.
We also extend this experiment under noisy label conditions with varying levels of noise.
Additionally, we apply Agnostic-SAM in MAML settings to validate the effectiveness
of our method in generalizing beyond the meta-training tasks and its adaptability across
different domains. The consistent improvement in performance across experiments indicates
that Agnostic-SAM not only enhances robustness against label noise and improves the
model’s generalization across diverse tasks, but also contributes to more stable and reliable
predictions in different settings.

2 RELATED WORKS

Sharpness-Aware Minimization. The correlation between the wider minima and the generalization
capacity has been extensively explored both theoretically and empirically in various studies (Jiang
et al., 2020; Petzka et al., 2021; Dziugaite & Roy, 2017). Many works suggested that finding flat
minimizers might help to reduce generlization error and increase robustness to data distributional
shift problems in various settings (Jiang et al., 2020; Petzka et al., 2021; Dziugaite & Roy, 2017).
There are multiple works have explored the impact of different training parameters, including batch
size, learning rate, gradient covariance, and dropout, on the flatness of discovered minima such as
(Keskar et al., 2017; Jastrzebski et al., 2017; Wei et al., 2020).

Sharpness-aware minimization (SAM) (Foret et al., 2021) is a recent optimization technique designed
to improve the generalization error of neural networks by considering the sharpness of the loss land-
scape during training. SAM minimizes the worst-case loss around the current model and effectively
updates models towards flatter minima to achieve low training loss and maximize generalization per-
formance on new and unseen data. SAM has been successfully applied to various tasks and domains,
such as vision models (Chen et al., 2021), language models (Bahri et al., 2022), federated learning (Qu
et al., 2022), Bayesian Neural Networks (Nguyen et al., 2023), domain generalization (Cha et al.,
2021), multi-task learning (Phan et al., 2022) and meta-learning bi-level optimization (Abbas et al.,
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2022). In Abbas et al. (2022), authors discussed SAM’s effectiveness in enhancing meta-learning
bi-level optimization, while SAM’s superior convergence rates in federated learning compared to
existing approaches in Qu et al. (2022) along with proposing a generalization bound for the global
model. Additionally, multiple varieties of SAM have been proposed (Kwon et al., 2021), (Li et al.,
2024), (Du et al., 2022) to tackle the different problems of the original method.

Model-Agnostic Machine Learning. Model-agnostic machine learning techniques have significant
advances and offer flexible solutions applicable across various models and tasks. In which, MAML
(Finn et al., 2017) stands out as the most compelling model-agnostic technique that formulates
meta-learning as an optimization problem, enabling models to improve the model ability to quickly
adapt to new tasks with minimal task-specific modifications or limited additional data. Subsequent
research has largely focused on addressing the computational challenges of MAML (Chen et al.,
2023; Wang et al., 2023) or proposing novel approaches that exploit the concept of model agnostic
from MAML across a wide range of tasks, including non-stationary environments (Al-Shedivat et al.,
2018), alternative optimization strategies (Rajeswaran et al., 2019), and uncertainty estimation for
robust adaptation (Finn et al., 2018). Recently, Abbas et al. (2022) analyzed the loss-landscape
of MAML models and proposed the integration of SAM in training to improve the generalization
performance of a meta-model.

3 PROPOSED FRAMEWORK

3.1 NOTIONS

We start by introducing the notions used throughout our paper. We denote D as the data/label
distribution to generate pairs of data/label (x, y). Given a model with the model parameter θ, we
denote the per sample loss induced by (x, y) as ℓ(x, y; θ). Let S be the training set drawn from
the distribution D. We denote the empirical and general losses as LS (θ) = ES [ℓ (x, y; θ)] and
LD (θ) = ED [ℓ (x, y; θ)] respectively. We define LD (θ | S) as an upper bound defined over S of
the general loss LD (θ). Note that inspired by SAM (Foret et al., 2021), we use the sharpness over S
to define LD (θ | S). Finally, we use |A| to denote the cardinality of a set A.

3.2 PROBLEM FORMULATION

Given a training set St whose examples are sampled from D (i.e., St ∼ DNt with Nt = |St|), we
use LD (θ | St) to train models. Among the models that minimize this loss, we select the one that
minimizes the general loss as follows:

min
θ∗
LD (θ∗) s.t. θ∗ ∈ AD

(
St

)
= argminθLD

(
θ | St

)
. (1)

The reason for the formulation in (1) is that although LD (θ | St) is an upper bound of the general
loss LD (θ), there always exists a gap between them. Therefore, the additional outer minimization
helps to refine the solutions. We now denote Sv (i.e., Sv ∼ DNv with Nv = |Sv|) as a valid set
sampled from D. With respect to this valid set, we have the following theorem.

Theorem 1. Denote LD (θ | S) := maxθ′:∥θ′−θ∥2≤ρ LS (θ′). Under some mild condition similar to
SAM (Foret et al., 2021), with a probability greater than 1 − δ (i.e., δ ∈ [0, 1]) over the choice of
Sv ∼ DNv , we then have for any optimal models θ∗ ∈ AD(S

t):

LD (θ∗) ≤ LD (θ∗ | Sv)+
4L√
Nv

[
k log

(
1 +
∥θ∗∥2

ρ

(
1 +

√
logNv/k

))
+ 2

√
log

Nv + k

δ
+O(1)

]
,

(2)
where L is the upper-bound of the loss function (i.e., ℓ (x, y; θ) ≤ L,∀x, y, θ), k is the model size,
and ρ > 0 is the perturbation radius.

Our theorem 1 (proof can be found in Appendix A.1) can be viewed as an extension of Theorem 1 in
Foret et al. (2021), where we apply the Bayes-PAC theorem from Alquier et al. (2016a) to prove an
upper bound for the general loss of any bounded loss, instead of the 0-1 loss in Foret et al. (2021).
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We can generalize this proof for St to explain why we use LD (θ | St) := maxθ′:∥θ′−θ∥2≤ρ LSt (θ′)
as an objective to minimize, as in (1). Based on Theorem 1, we can rewrite the objectives in (1) as:

min
θ∗
LD (θ∗ | Sv) s.t. θ∗∈ AD

(
St

)
= argminθ LD

(
θ | St

)
, (3)

where LD (θ | S) := maxθ′:∥θ′−θ∥2≤ρ LS (θ′).

3.3 OUR SOLUTION

Our motivation here is to primarily optimize the loss over the training set St, while using Sv to further
enhance the generalization ability. Our agnostic formulation has the same form as MAML (Finn
et al., 2017), developed for meta-learning. Inspired by MAML, a naive approach would be to consider
θ∗ = θ∗(θ) and then minimize LD (θ∗ (θ) | Sv) with respect to θ. However, this naive approach does
not align with our objective, as it mainly focuses on optimizing the loss LD (θ∗ (θ) | Sv) over the
validation set Sv .

We interpret the bi-level optimization problem in (3) as follows: at each iteration, our primary
objective is to optimize LD (θ | St), primarily based on its gradients, in such a way that future models
are able to implicitly perform well on Sv. To achieve this, similar to SAM (Foret et al., 2021),
we approximate LD (θ | St) = max∥θ′−θ∥≤ρ LSt (θ′) ≈ LSt (θ + η1∇LSt (θ)) for a sufficient
small learning rate η1 > 0 (i.e., η1∥∇LSt (θ) ∥ ≤ ρ) and LD (θ | Sv) = max∥θ′−θ∥≤ρ LSv (θ′) ≈
LSv (θ + η2∇LSv (θ)) for a sufficient small learning rate η2 > 0 (i.e., η2∥∇LSv (θ) ∥ ≤ ρ).

At each iteration, while primarily using the gradients of LD (θ | St) for optimization, we also utilize
the gradient of LD (θ | Sv) in an auxiliary manner to ensure congruent behavior between these two
gradients. Specifically, at the l-th iteration, we update as follows:

θ̃vl = θl + η2∇θLBv (θl) , (4)

θ̃tl = θl + η1∇θLBt (θl)− η2∇θLBv

(
θ̃vl

)
, (5)

θl+1 = θl − η∇θLBt

(
θ̃tl

)
, (6)

where η1 > 0, η2 > 0, and η > 0 are the learning rates, while LBt (θl) and LBv (θl) represent the
empirical losses over the mini-batches Bt ∼ St and Bv ∼ Sv respectively.

According to the update in (6) (i.e., θl+1 = θl − η∇θLBt

(
θ̃tl

)
), θl+1 is updated to minimize

LBt

(
θ̃tl

)
. We now do first-order Taylor expansion for LBt

(
θ̃tl

)
as

LBt

(
θ̃tl

)
= LBt

(θl) + η1∥∇θLBt (θl) ∥22 − η2∇θLBt (θl) · ∇θLBv

(
θ̃vl

)
, (7)

where · specifies the dot product.

From (7), we reach the conclusion that the update in (6) (i.e., θl+1 = θl−η∇θLBt

(
θ̃tl

)
) aims to min-

imize simultaneously (i) LBt
(θl), (ii) ∥∇θLBt (θl) ∥22, and maximize (iii)∇θLBt (θl) ·∇θLBv

(
θ̃vl

)
.

While the effects in (i) and (ii) are similar to SAM (Foret et al., 2021), maximizing ∇θLBt (θl) ·
∇θLBv

(
θ̃vl

)
) encourages two gradients of the losses over Bt and Bv to become more congruent.

Theorem 2. For sufficiently small learning rates η1 ≤
|∇θLBt (θl)·∇θLBv (θ̃v

l )|
12

∣∣∣∇θLBv (θ̃v
l )

T
HBt (θl)∇θLBt (θl)

∣∣∣ and η2 ≤

min

{
|∇θLBt (θl)·∇θLBv (θ̃v

l )|
6
∣∣∣∇θLBv (θ̃v

l )
T
HBt (θl)∇θLBv (θ̃v

l )
∣∣∣ , |∇θLBt (θl)·∇θLBv (θ̃v

l )|
6
∣∣∣∇θLBv (θ̃v

l )
T
HBv (θ̃v

l )∇θLBt (θl)
∣∣∣
}

, we have

∇θLBt

(
θ̃tl

)
· ∇θLBv

(
θ̃vl

)
≥


1
2∇θLBt (θl) · ∇θLBv

(
θ̃vl

)
if∇θLBt (θl) · ∇θLBv

(
θ̃vl

)
≥ 0

3
2∇θLBt (θl) · ∇θLBv

(
θ̃vl

)
otherwise

(8)
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Theorem 2 (proof can be found in Appendix A.1) indicates that two gradients ∇θLBt

(
θ̃tl

)
and

∇θLBv

(
θ̃vl

)
are encouraged to be more congruent since our update aims to maximize its lower

bound c × ∇θLBt (θl) · ∇θLBv

(
θ̃vl

)
(i.e., c = 0.5 or c = 1.5). Notice that the negative gra-

dient −η∇θLBt

(
θ̃tl

)
is used to update θl to θl+1, hence this update can have an implicit im-

pact on minimizing LD (θ | Sv) since the negative gradient −∇θLBv

(
θ̃vl

)
targets to minimize

LD (θ | Sv) = max∥θ′−θ∥≤ρ LSv (θ′) ≈ LSv (θ + η2∇LSv (θ)).

Practical Algorithm. Inspired by SAM Foret et al. (2021), we set η1 = ρ1
∇θLBt (θl)

∥∇θLBt (θl)∥2
and

η2 = ρ2
∇θLBv (θl)

∥∇θLBv (θl)∥2
, where ρ1 > 0 and ρ2 > 0 are perturbation radius. Furthermore, instead of

splitting the training set S into two fixed subsets, St and Sv, which reduces the number of training
samples, we set St = Sv = S, allowing the entire training set to be used for updating the model. This
approach is especially beneficial for training on small datasets. Optionally, we apply momentum with
a factor β to approximate the gradient of the full validation set using gradients from mini-batches.
The effectiveness of this term will be discussed in section 5.

The pseudo-code of Agnostic-SAM is summarized in Algorithm 1.

Algorithm 1 Pseudo-code of Agnostic-SAM

Input: ρ1, ρ2, η, β, the number of iterations Liter, and the training set S. Initialize gradient on the
validation set gv ← 0
Output: the optimal model θL.
for l = 1 to Liter do

Sample mini-batch Bt ∼ St, Bv ∼ Sv .

Compute θ̃vl = θl + ρ2
∇θLBv (θl)

∥∇θLBv (θl)∥2

gv ← βgv + (1− β)∇θLBv

(
θ̃vl

)
Compute θ̃tl ← θl + ρ1

∇θLBt (θl)
∥∇θLBt (θl)∥2

− ρ2
gv

∥gv∥2
.

Compute θl+1 ← θl − η∇θLBt

(
θ̃tl

)
.

end for

4 EXPERIMENTS

In this section, we present the results of various experiments to evaluate the effectiveness of our
Agnostic-SAM, including training from scratch, transfer learning on different dataset sizes, learning
with noisy labels, and MAML setting. For all experiments of Agnostic-SAM, we consistently use a
fixed value of momentum factor β = 0.9 and mini-batch size of validation set 4|Bv| = |Bt|. The
effectiveness of these hyper-parameters on performance and training complexity will be discussed in
Section 5.

4.1 IMAGE CLASSIFICATION FROM SCRATCH

We first conduct experiments on ImageNet, Food101, and CIFAR datasets with standard image
classification settings trained from scratch. The performance is compared with baseline models
trained with the SGD, SAM, ASAM, and the integration of ASAM and Agnostic-SAM.

ImageNet dataset We use ResNet18 and ResNet34 models for experiments on the ImageNet
dataset, with an input size of 224× 224. For all experiments of Agnostic-SAM and its variations, we
consistently set ρ1 = 2ρ2 = 2ρ, where ρ represents the perturbation radius for the respective SAM
method. Specifically, in this experiment, we set ρ = 0.1, ρ1 = 0.2, and ρ2 = 0.1. The models are
trained for 200 epochs with basic data augmentations (random cropping, horizontal flipping, and
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normalization). We use an initial learning rate of 0.1, a batch size of 2048 for the training set, and
512 for the validation set, following a cosine learning schedule across all experiments in this paper.
We extend this experiment to the mid-sized Food101 dataset using the same settings, except for a
batch size of 128 for the training set and 32 for the validation set. Performance results are detailed in
Table 1.

Table 1: Classification accuracy on the ImageNet and Food101 datasets. All models are trained from
scratch with 200 epochs.

Dataset Method Resnet18 Resnet34

Top-1 Top-5 Top-1 Top-5

ImageNet SAM 62.46 84.19 63.73 84.95
Agnostic-SAM 63.64 85.22 65.89 86.84

Food101 SAM 73.15 89.85 73.87 90.84
Agnostic-SAM 73.45 90.35 74.47 91.27

CIFAR dataset We used three architectures: WideResnet28x10, Pyramid101, and Densenet121
with an input size of 32× 32 for CIFAR datasets. To replicate the baseline experiments, we followed
the hyperparameters provided in the original papers. Specifically, for CIFAR-100, we set ρ = 0.1,
ρ1 = 0.2, and ρ2 = 0.1, and for CIFAR-10, we used ρ = 0.05, ρ1 = 0.1, and ρ2 = 0.05. The same
procedure and settings were applied to ASAM and Agnostic-ASAM, with the perturbation radius
ρ for ASAM being 10 times larger than that of the SAM method. Other training configurations are
consistent with those used in the ImageNet experiments, except for data augmentations (horizontal
flipping, four-pixel padding, and random cropping). Results are reported in Tables 2, while the SGD
results are referenced from Foret et al. (2021).

Our proposed method consistently outperforms the baselines across various settings. On both
ImageNet and Food101, it significantly surpasses the baselines, with a notable improvement in both
Top-1 and Top-5 accuracy. For CIFAR-10, performance is close to the saturation point, making
further improvements challenging. Nevertheless, Agnostic-SAM achieves slight enhancements across
all cases. On CIFAR-100, where models are more prone to overfitting compared to CIFAR-10,
Agnostic-SAM still delivers competitive results.

Table 2: Classification accuracy on the CIFAR datasets. All models are trained from scratch three
times with different random seeds and we report the mean and standard deviation of accuracies.

Dataset Method WideResnet28x10 Pyramid101 Densenet121

CIFAR-100 SGD 81.20 ± 0.200 80.30 ± 0.300 -
SAM 83.00 ± 0.035 81.99 ± 0.636 68.72 ± 0.409
Agnostic-SAM 83.49 ± 0.049 82.38 ± 0.282 69.10 ± 0.311
ASAM 83.16 ± 0.296 82.02 ± 0.134 69.62 ± 0.120
Agnostic-ASAM 83.68 ± 0.042 82.29 ± 0.183 69.79 ± 0.339

CIFAR-10 SGD 96.50 ± 0.100 96.00 ± 0.100 -
SAM 96.87 ± 0.027 96.17 ± 0.174 91.28 ± 0.241
Agnostic-SAM 96.88 ± 0.007 96.47 ± 0.219 91.31 ± 0.707
ASAM 96.91 ± 0.063 96.45 ± 0.042 92.04 ± 0.240
Agnostic-ASAM 97.15 ± 0.063 96.73 ± 0.261 92.02 ± 0.000

4.2 TRANSFER LEARNING

In this subsection, we further evaluate Agnostic-SAM in the transfer learning setting using the
ImageNet pre-trained models to fine-tune both small-size, mid-size, and large-size datasets. All
initialized weights are available on the Pytorch library.
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Table 3: Transfer learning on ImageNet with Resnet models.

Model Top-1 Acc Top-5 Acc

SAM Agnostic-SAM SAM Agnostic-SAM

Resnet18 70.52 70.88 89.60 89.94
Resnet34 73.06 73.84 91.29 91.81
Resnet50 75.17 75.91 92.58 92.83

First, we conduct experiments on ImageNet by using three models from the Resnet family. These
base models are both pre-trained on ImageNet by SGD and then fine-tuned for 50 epochs by SAM
or Agnostic-SAM with a learning rate of 0.01. We ρ = 0.05 for SAM, and ρ1 = 2ρ2 = 0.1 for
Agnostic-SAM and basic augmentation techniques, which are the same as training from the scratch
setting. Results reported in Table 3 show that our methods outperform baselines with a significant
gap in both top-1 and top-5 accuracies.

Next, we examine this setting on small and mid-sized datasets on three models of the EfficientNet
family. We fine-tune with a learning rate of 0.05 in 50 epochs and use ρ = 0.1 for all experiments
of SAM (as accuracies tend to decrease when reducing ρ), ρ1 = 2ρ2 = 0.1 for all experiments of
Agnostic-SAM. In Table 4, Agnostic-SAM achieves a noticeable improvement compared to most of
the baselines on all small-size, mid-size, and large-size datasets, demonstrating its robustness and
stability across various experiment settings.

4.3 TRAIN WITH NOISY LABEL

In addition to mitigating data shifts between training and testing datasets, we evaluate the robustness
of Agnostic-SAM against noisy labels on standard training procedure. Specifically, we adopt a
classical noisy-label setting for CIFAR-10 and CIFAR-100, in which a portion of the training set’s
labels are symmetrically flipped with noise fractions {0.2, 0.4, 0.6, 0.8}, while the testing set’s labels
remain unchanged.

Table 4: Transfer learning accuracy of small and medium datasets. All models are fine-tuned from
pre-trained weights on ImageNet.

Dataset Top-1 Acc Top-5 Acc

SGD SAM Agnostic-SAM SGD SAM Agnostic-SAM

EfficientNet-B2

Stanford Cars 89.14 ± 0.11 89.68 ± 0.17 90.34 ± 0.07 97.60 ± 0.20 98.04 ± 0.07 98.24 ± 0.09
FGVC-Aircraft 85.83 ± 0.23 86.25 ± 0.36 87.27 ± 0.27 95.72 ± 0.02 95.87 ± 0.06 96.05 ± 0.03
Oxford IIIT Pets 92.17 ± 0.19 92.34 ± 0.11 92.58 ± 0.17 99.23 ± 0.02 99.35 ± 0.02 99.35 ± 0.07
Flower102 95.06 ± 0.01 95.22 ± 0.14 95.56 ± 0.10 99.08 ± 0.18 99.11 ± 0.19 99.27 ± 0.02
Food101 83.50 ± 0.01 85.12 ± 0.07 85.51 ± 0.02 96.10 ± 0.32 96.83 ± 0.08 97.14 ± 0.00
Country211 11.94 ± 0.14 12.48 ± 0.03 13.28 ± 0.00 23.70 ± 0.13 25.49 ± 0.07 26.95 ± 0.16

EfficientNet-B3

Stanford Cars 89.01 ± 0.19 89.40 ± 0.09 90.09 ± 0.14 97.73 ± 0.21 98.03 ± 0.07 98.13 ± 0.01
FGVC-Aircraft 84.88 ± 0.08 85.19 ± 0.11 85.99 ± 0.25 95.53 ± 0.12 95.67 ± 0.00 96.08 ± 0.10
Oxford IIIT Pets 92.68 ± 0.25 92.58 ± 0.02 92.75 ± 0.19 99.00 ± 0.01 99.19 ± 0.05 99.20 ± 0.11
Flower102 94.59 ± 0.10 94.73 ± 0.14 95.16 ± 0.26 98.95 ± 0.08 99.12 ± 0.16 99.18 ± 0.07
Food101 83.75 ± 0.12 85.79 ± 0.13 86.17 ± 0.13 96.22 ± 0.02 97.12 ± 0.00 97.38 ± 0.00
Country211 12.96 ± 0.01 13.38 ± 0.09 13.63 ± 0.05 26.11 ± 0.56 25.78 ± 0.08 26.71 ± 0.26

EfficientNet-B4

Stanford Cars 84.72 ± 0.04 85.08 ± 0.16 85.79 ± 0.32 96.41 ± 0.07 96.45 ± 0.01 96.77 ± 0.00
FGVC-Aircraft 79.95 ± 0.61 79.96 ± 0.04 80.80 ± 0.51 94.87 ± 0.08 94.65 ± 0.08 94.95 ± 0.01
Oxford IIIT Pets 91.89 ± 0.13 92.02 ± 0.23 92.02 ± 0.00 99.28 ± 0.10 99.43 ± 0.07 99.44 ± 0.02
Flower102 92.73 ± 0.04 93.02 ± 0.14 93.03 ± 0.16 98.49 ± 0.07 98.68 ± 0.02 98.59 ± 0.05
Food101 84.55 ± 0.14 86.13 ± 0.06 86.15 ± 0.44 96.31 ± 0.03 97.07 ± 0.01 97.22 ± 0.02
Country211 14.63 ± 0.09 14.80 ± 0.13 15.10 ± 0.16 27.60 ± 0.00 29.09 ± 1.77 28.38 ± 0.14
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Table 5: Results under label noise on CIFAR dataset with ResNet32. Each experiment is conducted
three times using different random seeds, and we report the average and standard deviation of the
results.

Method Noise rate (%)

0.2 0.4 0.6 0.8

Dataset CIFAR-100

SGD 66.22 ± 0.355 59.26 ± 0.045 46.77 ± 0.020 26.49 ± 0.640
SAM 66.16 ± 0.721 59.95 ± 0.622 50.81 ± 0.353 24.26 ± 1.209
FSAM 65.73 ± 0.219 58.96 ± 0.381 49.36 ± 1.103 25.92 ± 1.173
Agnostic-SAM 66.64 ± 0.657 61.13 ± 0.636 52.26 ± 0.502 27.66 ± 1.265
ASAM 66.88 ± 0.593 61.53 ± 0.487 52.77 ± 0.561 30.33 ± 1.788
Agnostic-ASAM 67.38 ± 0.106 62.72 ± 0.304 54.58 ± 0.572 32.77 ± 0.388

Dataset CIFAR-10

SGD 89.98 ± 0.070 84.83 ± 0.085 75.06 ± 0.385 54.47 ± 1.265
SAM 91.26 ± 0.007 88.19 ± 1.060 83.43 ± 0.622 61.69 ± 0.289
FSAM 91.35 ± 0.318 87.58 ± 0.353 82.78 ± 2.057 58.09 ± 2.276
Agnostic-SAM 92.38 ± 0.007 90.20 ± 0.318 85.33 ± 0.268 70.02 ± 0.403
ASAM 91.98 ± 0.007 89.24 ± 0.572 84.39 ± 0.445 64.82 ± 6.880
Agnostic-ASAM 92.06 ± 0.367 90.01 ± 0.282 86.09 ± 0.657 73.25 ± 0.353

All experiments are conducted using the ResNet32 architecture, with models trained from scratch for
200 epochs. The batch size is set to 512 for the training set and 128 for the validation set. Following
Li et al. (2024) and Foret et al. (2021), we set ρ = 0.1 and ρ1 = 2ρ2 = 0.2 for SAM, FSAM, and
Agnostic-SAM, ρ1 = 2ρ2 = 2ρ = 2.0 for ASAM and Agnostic-ASAM when training with all noise
levels, except for the 80%, where we reduce the perturbation radius by half to ensure more stable
convergence. In line with Li et al. (2024), we apply additional cutout techniques along with the basic
augmentations outlined in Section 4.1. Each experiment is repeated three times with different random
seeds, and we report the average and standard deviation of the results in Table 5. Note that training
with SGD is prone to overfitting as the number of epochs increases. Therefore, we present the best
results for SGD training at both 200 and 400 epochs.

4.4 EXPERIMENTS ON META-LEARNING

The concept of Agnostic-SAM is inspired by the agnostic approach in the MAML setting, where the
meta-model is optimized on the meta-training set but aims to minimize loss on the validation set. The
key difference is that Agnostic-SAM uses the gradient from the validation set as an indicator to close
the generalization gap between the training and testing sets. Despite this difference, both approaches
share the same underlying principle, making it reasonable to expect that applying Agnostic-SAM in
the MAML setting will result in improved generalization performance.

Table 6: Meta-learning results on Mini-Imagenet dataset. All baseline results are taken from Abbas
et al. (2022)

Method Accuracy

5 ways 1 shot 5 ways 5 shots

MAML 47.13 62.20
SHARP-MAML 49.72 63.18

Agnostic-SAM 50.08 64.29

We compare our approach to standard MAML and Sharp-MAML (Abbas et al., 2022), which also
addresses the loss-landscape flatness in bilevel models. The experiments follow the setup from
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Table 7: Meta-learning results on Omniglot dataset. All baseline results are taken from Abbas et al.
(2022)

Method Accuracy

20 ways 1 shot 20 ways 5 shots

MAML 91.77 96.16
SHARP-MAML 92.89 96.59

Agnostic-SAM 92.66 97.28

Abbas et al. (2022), specifically using the Sharp-MAMLlow variation, which focuses on minimizing
the sharpness of meta-models trained on the meta-training set. Note that during the testing phase
of MAML, only the meta-training set is used for a few update steps of the meta-model; and our
Agnostic-SAM approach incorporates both the training and validation sets in the meta-model training
process. Ideally, both the meta-training and meta-validation sets should be utilized to minimize the
lower-level loss during training. However, this could introduce inconsistencies between the training
and testing phases, potentially degrading performance during testing. To avoid this issue, we duplicate
the meta-training set and use it as a validation set to minimize the lower-level loss of the meta-model,
applying this procedure consistently during both the training and testing phases.

As with other experiments, we set ρ1 = 2ρ2 = 2ρ, with ρ as the perturbation radius for Sharp-
MAMLlow, and report the results in Tables 6 and 7. Our method consistently outperforms most
baselines with significant improvements, demonstrating the effectiveness of Agnostic-SAM and its
flexibility across various settings.

5 ABLATION STUDY

5.1 COSINE SIMILARITY OF GRADIENTS

(a) Before updating model (b) After updating model (c) Improvement after updating

Figure 1: Cosine similarity of two gradients∇θLBt (θl) and∇θLBv

(
θ̃vl

)
(a) before updating model

cosineb, (b) after updating model cosinea and (c) the improvement of this score change

In Theorem 2, we prove that minimizing the loss function LBt could encourage two gradients
∇θLBt

(
θ̃tl

)
and ∇θLBv

(
θ̃vl

)
to be more congruent since our update aims to maximize its lower

bound, which is ∇θLBt (θl) · ∇θLBv

(
θ̃vl

)
. In this subsection, we measure the cosine similarity

between two gradients∇θLBt (θl) and∇θLBv

(
θ̃vl

)
before (denoted as cosineb) and after (denoted

as cosinea) updating the model and measure the change of these two score (denoted as change).

cosineb =
∇θLBt (θl) · ∇θLBv

(
θ̃vl

)
∥∇θLBt (θl) ∥2∥∇θLBv

(
θ̃vl

)
∥2
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cosinea =
∇θLBt (θl+1) · ∇θLBv

(
θ̃vl+1

)
∥∇θLBt (θl+1) ∥2∥∇θLBv

(
θ̃vl+1

)
∥2

change =
cosinea − cosineb

cosinea

As shown in Figure 1c, both SAM and Agnostic-SAM improve the similarity after updating the
model, this improvement also increases across training epochs. However, the similarity score of our
Agnostic-SAM is always higher than SAM across the training process both before and after updating
the model. This is evident that our Agnostic-SAM encourages gradient in training and validation set
to be more similar during the training process.

5.2 EFFECTIVENESS OF HYPER-PARAMETERS

Momentum factor β. As mentioned in section 3.3, we use momentum with a factor β to estimate
the gradients of the validation set. This approach helps stabilize the training process and ensures
the model minimizes the loss across the entire validation set, rather than just a mini-batch. In this
subsection, we examine the effect of the momentum factor on the model’s performance. When setting
β = 0, the perturbed model in each iteration maximizes the loss on a mini-batch of the training set
while minimizing the loss on a mini-batch of the validation set. When β > 0, the perturbed model
aims to minimize the loss over the entire validation set, while maximizing the loss on a mini-batch of
the training set.

The experiments are set up with the same hyper-parameters as those of experiments on CIFAR100
under noisy labels settings in Section 4.3 with basic data augmentation but without the cutout
technique. We set ρ = 0.1 for SAM and ρ1 = 2ρ2 = 0.2 for Agnostic-SAM. Results in Table 8
show that the value of β does not significantly affect model performance overall. As such, we simply
set β = 0.9 in all experiments. With β = 0, our method still outperforms baselines consistently,
strengthening our idea of using validation gradient to indicate the model into wider local minima
while reducing the generalization gap of training and testing datasets.

Table 8: Effectiveness of momentum factor β on performance

Method SAM Agnostic-SAM

0.0 0.3 0.5 0.7 0.9

Accuracy 70.31 ± 0.2 71.14 ± 0.3 71.12 ± 0.1 70.865 ± 0.2 70.76 ± 0.3 70.91 ± 0.3

Validation batch size |Bv| and complexity; sensitivity of perturbation radius ρ1 and ρ2. Detail
of these experiment is presented in Appendix A.2

6 CONCLUSION AND LIMITATION

In this paper, we explore the relationship between Sharpness-Aware Minimization (SAM) and the
underlying principles of the Model-Agnostic Meta-Learning (MAML) algorithm, specifically in
terms of their effects on model generalization. Building on this connection, we integrate sharpness-
aware minimization with the agnostic perspective from MAML to develop a novel optimization
framework, introducing the Agnostic-SAM approach. This method optimizes the model toward
wider local minima using training data while ensuring low loss values on validation data. As a
result, Agnostic-SAM demonstrates enhanced robustness against data shift issues. Through extensive
experiments, we empirically show that Agnostic-SAM consistently outperforms baseline methods,
delivering significant improvements in model performance across various datasets and challenging
tasks. One limitation to note is that using an additional validation set when finding the perturbed
model could potentially increase training time (depending on the size of the validation set). We
consider this a trade-off between performance and training complexity. However, this issue could
potentially be mitigated by reusing gradients from the training set in previous steps and we leave this
as a direction for future work to reduce training complexity and still maintain performance.
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REPRODUCIBILITY STATEMENT

We provide details of hyper-parameters for each experiment in Section 4 and Appendix A.2. Addition-
ally, we open-source our code and provide instructions, scripts, and log files to reproduce experiments
at https://anonymous.4open.science/r/AgnosticSAM-F17F/README.md
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A APPENDIX / SUPPLEMENTAL MATERIAL

In this appendix, we present the proofs in our paper and additional experiments. We open-source
our code and provide instruction, scripts, and log files to reproduce experiments at https://
anonymous.4open.science/r/AgnosticSAM-F17F/README.md

A.1 ALL PROOFS

Proof of Theorem 1

Proof. We use the PAC-Bayes theory in this proof. In PAC-Bayes theory, θ could follow a distribution,
says P , thus we define the expected loss over θ distributed by P as follows:

LD(θ, P ) = Eθ∼P

[
LD(θ)

]
LS(θ, P ) = Eθ∼P

[
LS(θ)

]
.

For any distribution P = N (0, σ2
P Ik) and Q = N (θ, σ2Ik) over θ ∈ Rk, where P is the prior

distribution and Q is the posterior distribution, use the PAC-Bayes theorem in Alquier et al. (2016a),
for all β > 0, with a probability at least 1− δ, we have

LD(θ,Q) ≤ LS(θ,Q) +
1

β

[
KL(Q∥P ) + log

1

δ
+Ψ(β,N)

]
, (9)

where Ψ is defined as

Ψ(β,N) = logEPEDN

[
exp

{
β
[
LD(fθ)− LS(fθ)

]}]
.

When the loss function is bounded by L, then

Ψ(β,N) ≤ β2L2

8N
.

The task is to minimize the second term of RHS of (9), we thus choose β =
√
8N

KL(Q∥P )+log 1
δ

L .
Then the second term of RHS of (9) is equal to√

KL(Q∥P ) + log 1
δ

2N
× L.

The KL divergence between Q and P , when they are Gaussian, is given by formula

KL(Q∥P ) =
1

2

[
kσ2 + ∥θ∥2

σ2
P

− k + k log
σ2
P

σ2

]
.

For given posterior distribution Q with fixed σ2, to minimize the KL term, the σ2
P should be equal to

σ2 + ∥θ∥2/k. In this case, the KL term is no less than

k log
(
1 +
∥θ0∥2

kσ2

)
.

Thus, the second term of RHS is√
KL(Q∥P ) + log 1

δ

2N
× L ≥

√
k log

(
1 + ∥θ∥2

kσ2

)
4N

× L ≥ L

when ∥θ∥2 > σ2
{
exp(4N/k) − 1

}
. Hence, for any ∥θ∥2 > σ2

{
exp(4N/k) − 1

}
, we have the

RHS is greater than the LHS, and the inequality is trivial. In this work, we only consider the case:

∥θ∥2 < σ2
(
exp{4N/k} − 1

)
. (10)

Distribution P is Gaussian centered around 0 with variance σ2
P = σ2 + ∥θ∥2/k, which is unknown

at the time we set up the inequality, since θ is unknown. Meanwhile, we have to specify P in advance,
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since P is the prior distribution. To deal with this problem, we could choose a family of P such that
its means cover the space of θ satisfying inequality (10). We set

c = σ2
(
1 + exp{4N/k}

)
Pj = N

(
0, c exp

1− j

k
Ik
)

P :=
{
Pj : j = 1, 2, . . .

}
Then the following inequality holds for a particular distribution Pj with probability 1 − δj with
δj =

6δ
π2j2

Eθ′∼N (θ,σ2)LD
(
fθ′

)
≤ Eθ′∼N (θ,σ2)LS

(
fθ′

)
+

1

β

[
KL(Q∥Pj) + log

1

δj
+Ψ(β,N)

]
.

Use the well-known equation:
∑∞

j=1
1
j2 = π2

6 , then with probability 1 − δ, the above inequality
holds with every j. We pick

j∗ :=

⌊
1− k log

σ2 + ∥θ∥2/k
c

⌋
=

⌊
1− k log

σ2 + ∥θ∥2/k
σ2(1 + exp{4N/k})

⌋
.

Therefore,

1− j∗ =

⌈
k log

σ2 + ∥θ∥2/k
c

⌉
⇒ log

σ2 + ∥θ∥2/k
c

≤ 1− j∗

k
≤ log

σ2 + ∥θ0∥2/k
c

+
1

k

⇒ σ2 + ∥θ∥2/k ≤ c exp

{
1− j∗

k

}
≤ exp(1/k)

[
σ2 + ∥θ∥2/k

]
⇒ σ2 + ∥θ∥2/k ≤ σ2

Pj∗
≤ exp(1/k)

[
σ2 + ∥θ∥2/k

]
.

Thus the KL term could be bounded as follow

KL(Q∥Pj∗) =
1

2

[
kσ2 + ∥θ∥2

σ2
Pj∗

− k + k log
σ2
Pj∗

σ2

]

≤ 1

2

[
k(σ2 + ∥θ∥2/k)
σ2 + ∥θ∥2/k

− k + k log
exp(1/k)

(
σ2 + ∥θ∥2/k

)
σ2

]

=
1

2

[
k log

exp(1/k)
(
σ2 + ∥θ∥2/k

)
σ2

]
=

1

2

[
1 + k log

(
1 +
∥θ0∥2

kσ2

)]
For the term log 1

δj∗
, with recall that c = σ2

(
1 + exp(4N/k)

)
and

j∗ =
⌊
1− k log σ2+∥θ∥2/k

σ2(1+exp{4N/k})

⌋
, we have

log
1

δj∗
= log

(j∗)2π2

6δ
= log

1

δ
+ log

(π2

6

)
+ 2 log(j∗)

≤ log
1

δ
+ log

π2

6
+ 2 log

(
1 + k log

σ2
(
1 + exp(4N/k)

)
σ2 + ∥θ∥2/k

)
≤ log

1

δ
+ log

π2

6
+ 2 log

(
1 + k log

(
1 + exp(4N/k)

))
≤ log

1

δ
+ log

π2

6
+ 2 log

(
1 + k

(
1 +

4N

k

))
≤ log

1

δ
+ log

π2

6
+ log(1 + k + 4N).
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Hence, the inequality

LD

(
θ′,N (θ, σ2Ik)

)
≤ LS

(
θ′,N (θ, σ2Ik)

)
+

√
KL(Q∥Pj∗) + log 1

δj∗

2N
× L

≤ LS

(
θ′,N (θ, σ2Ik)

)
+

L

2
√
N

√
1 + k log

(
1 +
∥θ∥2
kσ2

)
+ 2 log

π2

6δ
+ 4 log(N + k)

≤ LS

(
θ′,N (θ, σ2Ik)

)
+

L

2
√
N

√
k log

(
1 +
∥θ∥2
kσ2

)
+O(1) + 2 log

1

δ
+ 4 log(N + k).

Since ∥θ′ − θ∥2 is k chi-square distribution, for any positive t, we have

P
(
∥θ′ − θ∥2 − kσ2 ≥ 2σ2

√
kt+ 2tσ2

))
≤ exp(−t).

By choosing t = 1
2 log(N), with probability 1−N−1/2, we have

∥θ′ − θ∥2 ≤ σ2 log(N) + kσ2 + σ2
√
2k log(N) ≤ kσ2

(
1 +

√
log(N)

k

)2

.

By setting σ = ρ×
(√

k +
√
log(N)

)−1
, we have ∥θ′ − θ∥2 ≤ ρ2. Hence, we get

LS

(
θ′,N (θ, σ2Ik)

)
= Eθ∼N (θ,σ2Ik)ES

[
fθ′

]
=

∫
∥θ′−θ∥≤ρ

ES
[
fθ′

]
dN (θ, σ2I)

+

∫
∥θ′−θ∥>ρ

ES
[
fθ′

]
dN (θ, σ2I)

≤
(
1− 1√

N

)
max

∥θ′−θ∥≤ρ
LS(θ

′) +
1√
N

L

≤ max
∥θ′−θ∥2≤ρ

LS(θ
′) +

2L√
N

.

It follows that

LD(θ) ≤ max
∥θ′−θ∥≤ρ

LS(θ
′) +

4L√
N

[√
k log

(
1 +
∥θ∥2
ρ2

(
1 +

√
log(N)/k

)2)
+ 2

√
log

(N + k

δ

)
+O(1)

]

= LD(θ | S) +
4L√
N

[√
k log

(
1 +
∥θ∥2
ρ2

(
1 +

√
log(N)/k

)2)
+ 2

√
log

(N + k

δ

)
+O(1)

]
.

By choosing θ = θ∗ and S = Sv hence N = Nv , we reach the conclusion.

Proof of Theorem 2

Proof. We have

LBt

(
θ̃tl

)
= LBt

(θl) + η1∥∇θLBt (θl) ∥22 − η2∇θLBt (θl) · ∇θLBv

(
θ̃vl

)
.
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This follows that

∇θLBt

(
θ̃tl

)
= ∇θLBt

(θl) + 2η1HBt (θl)∇θLBt (θl)

− η2

[
HBt (θl)∇θLBv

(
θ̃vl

)
+HBv

(
θ̃vl

)
∇θLBt (θl)

]
,

where HBt (θl) = ∇2
θLBt (θl) and HBv

(
θ̃vl

)
= ∇2

θLBv

(
θ̃vl

)
are the Hessian matrices.

∇θLBv

(
θ̃vl

)
· ∇θLBt

(
θ̃tl

)
= ∇θLBt

(θl) · ∇θLBv

(
θ̃vl

)
+ 2η1∇θLBv

(
θ̃vl

)T

HBt (θl)∇θLBt (θl)

− η2∇θLBv

(
θ̃vl

)T

HBt (θl)∇θLBv

(
θ̃vl

)
− η2∇θLBv

(
θ̃vl

)T

HBv

(
θ̃vl

)
∇θLBt (θl) .

We now choose η1 ≤
|∇θLBt (θl)·∇θLBv (θ̃v

l )|
12

∣∣∣∇θLBv (θ̃v
l )

T
HBt (θl)∇θLBt (θl)

∣∣∣ , we then have

η1

∣∣∣∣∇θLBv

(
θ̃vl

)T

HBt (θl)∇θLBt (θl)

∣∣∣∣ ≤ 1

12

∣∣∣∇θLBt (θl) · ∇θLBv

(
θ̃vl

)∣∣∣ .
This further implies

η1∇θLBv

(
θ̃vl

)T

HBt (θl)∇θLBt (θl) ≥ −
1

12

∣∣∣∇θLBt
(θl) · ∇θLBv

(
θ̃vl

)∣∣∣ .
Next we choose η2 ≤ min

{
|∇θLBt (θl)·∇θLBv (θ̃v

l )|
6
∣∣∣∇θLBv (θ̃v

l )
T
HBt (θl)∇θLBv (θ̃v

l )
∣∣∣ , |∇θLBt (θl)·∇θLBv (θ̃v

l )|
6
∣∣∣∇θLBv (θ̃v

l )
T
HBv (θ̃v

l )∇θLBt (θl)
∣∣∣
}

,

we then have

η2

∣∣∣∣∇θLBv

(
θ̃vl

)T

HBt (θl)∇θLBv

(
θ̃vl

)∣∣∣∣ ≤
∣∣∣∇θLBt

(θl) · ∇θLBv

(
θ̃vl

)∣∣∣
6

.

−η2∇θLBv

(
θ̃vl

)T

HBt (θl)∇θLBv

(
θ̃vl

)
≥ −

∣∣∣∇θLBt (θl) · ∇θLBv

(
θ̃vl

)∣∣∣
6

.

η2

∣∣∣∣∇θLBv

(
θ̃vl

)T

HBv

(
θ̃vl

)
∇θLBt (θl)

∣∣∣∣ ≤
∣∣∣∇θLBt

(θl) · ∇θLBv

(
θ̃vl

)∣∣∣
6

.

−η2∇θLBv

(
θ̃vl

)T

HBv

(
θ̃vl

)
∇θLBt (θl) ≥ −

∣∣∣∇θLBt
(θl) · ∇θLBv

(
θ̃vl

)∣∣∣
6

.

Finally, we yield

∇θLBv

(
θ̃vl

)
· ∇θLBt

(
θ̃tl

)
≥ ∇θLBt (θl) · ∇θLBv

(
θ̃vl

)
− 1

2

∣∣∣∇θLBt (θl) · ∇θLBv

(
θ̃vl

)∣∣∣ .

A.2 ADDITIONAL EXPERIMENTS

Validation batch size |Bv| and complexity Our method is to use a gradient on the validation set
as a helper indicator to lead the model to wider local minima while maintaining low loss on the
validation set, and the model should be updated mainly using training samples. Increasing validation
mini-batch size could potentially increase performance and training time. In Table 9, we present the
results of Agnostic-SAM with various validation batch sizes |Bv| of CIFAR-100 with Resnet32 while
maintaining a fixed training batch size |Bt| = 512, the other hyper-parameters are the same as above
experiments with momentum factor β. We consider performance and training complexity to be the
trade-off of Agnostic-SAM and find that setting |Bt| = 4|Bv| works well for all experiments.
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Table 9: Experiments on different sizes of validation mini-batch with a fixed size of training mini-
batch is 512 samples

Method Validation Accuracy Training time
batch-size (s/epochs)

SAM 0 70.31 ± 0.233 11s

Agnostic-SAM

16 70.58 ± 0.219 11s
32 71.07 ± 0.212 12s
64 70.67 ± 0.049 13s

128 71.21 ± 0.056 14s
256 71.04 ± 0.219 15s

Sensitivity of perturbation radius ρ1 and ρ2 Throughout this paper, we used a consistent setting
of ρ1 = 2ρ2 = 2ρ, where ρ represents the perturbation radius in the SAM method for all experiments.
While these hyperparameters could be optimized for each experiment individually, we find that this
configuration delivers good performance across most experiments. By setting ρ1 > ρ2, we ensure that
the perturbed model prioritizes maximizing the loss on the training set rather than minimizing it on
the validation set. This approach encourages the model to focus primarily on minimizing sharpness
during the actual update step in Formula 6.

To verify the impact of these hyperparameters on model performance, we conduct experiments with
varying perturbation radius and present the results in Figure 2. Notably, the configuration where
ρ1 > ρ2 consistently yields higher accuracy compared to the setting where ρ1 < ρ2. When increasing
ρ2, the model places more emphasis on minimizing the validation set loss, rather than sharpness on
the training set during the actual update step in Formula 6. This shift in focus can lead to overfitting,
ultimately reducing performance.

Figure 2: Experiments of various perturbation radius ρ1 and ρ2

Analysis of loss landscape and eigenvalues of the Hessian matrix We demonstrate the effective-
ness of Agnostic-SAM in guiding models toward flatter regions of the loss landscape, as compared to
both SAM and SGD, in Figures 3 and 4. The loss landscapes are visualized with the same setting, the
blue areas represent lower loss values, while the red areas indicate higher loss values. Although SAM
is shown to lead the model to a flatter region than SGD, Agnostic-SAM achieves an even smoother
and significantly flatter loss landscape, especially in experiments with EfficientNet-B2 in Figure 3.

To further validate that Agnostic-SAM successfully locates minima with low curvature, we compute
the Hessian of the loss landscape and report the five largest eigenvalues, sorted from λ1 to λ5, in Table
10. These eigenvalues provide insight into the curvature of the model at the optimized parameters.
Larger eigenvalues indicate steeper curvature, meaning the model is more sensitive to small changes in
its parameters. Conversely, smaller eigenvalues suggest flatter minima, which are typically associated
with improved robustness, better generalization, and reduced sensitivity to overfitting. Negative
eigenvalues indicate non-convex curvature in certain directions.

As shown in Table 10, Agnostic-SAM consistently achieves positive and lower eigenvalues compared
to the baseline methods, suggesting that it effectively leads the model toward flatter regions of the loss
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Figure 3: Loss landscape of EffecientNet-B2 trained on Flower102 dataset with (left) SGD, (middle)
SAM, and (right) Agnostic-SAM.

Figure 4: Loss landscape of ResNet32 trained (left) SGD, (middle) SAM, and (right) Agnostic-SAM
on Cifar100 dataset.

Methods Top-5 eigenvalues of Hessian matrix

λ1 λ2 λ3 λ4 λ5

EfficientNet-B2 on Flower102
SGD 2.05× 105 0.45× 105 0.26× 105 −0.47× 105 −0.49× 105

SAM 1.61× 103 1.34× 103 1.23× 103 1.04× 103 −0.97× 103

Agnostic-SAM 0.61× 103 0.41× 103 0.37× 103 0.32× 103 0.31× 103

Resnet32 on Cifar100
SGD 3.07× 106 2.40× 106 2.10× 106 1.64× 106 1.46× 106

SAM 1.50× 106 1.14× 106 0.96× 106 0.87× 106 0.81× 106

Agnostic-SAM 1.04× 106 0.79× 106 0.66× 106 0.58× 106 0.57× 106

Table 10: Eigenvalues of Hessian matrix

landscape. These results further support the efficacy of Agnostic-SAM in optimizing for smoother
and more stable solutions across a variety of architectures and tasks.
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