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Abstract

We give an efficient reduction through which any machine learning algorithm can
be converted into an interactive protocol that can interact with another party (such
as a human) to reach agreement on predictions and improve accuracy. The re-
quirements on each party are calibration conditions which are computationally
and statistically tractable relaxations of Bayesian rationality — that are sensible
even in prior free settings — and hence are a substantial generalization of Au-
mann’s classic “agreement theorem” Aumann [1976]. In the interactive protocol,
the machine learning model first produces a prediction. Then, the human responds
to the model’s prediction by either conveying agreement, or else providing feed-
back of some sort. The model then updates its state and provides a new prediction,
and the human in turn may update their beliefs. The process continues until the
model and the human reach agreement.
The first setting we study generalizes past work on Aumann’s Agreement Theo-
rem, in which the parties aim to agree on a one-dimensional expectation. At each
round, each party simply communicates an estimate of their current prediction for
the expectation. In this setting we recover the quantitative convergence theorem
of Aaronson Aaronson [2005] (but under our much weaker assumptions). We then
move on to the case in which the parties maintain beliefs about a distribution over
d outcomes and consider two feedback mechanisms. The first simply corresponds
to a vector-valued estimate of the agents’ current prediction. The second takes a
decision theoretic perspective: if the human needs to take some downstream ac-
tion from a finite set, and has an arbitrary utility function of their action and the
outcome, then we show that the parties can communicate and reach agreement
about the correct downstream action to take by simply communicating at each
round the action that they believe to be utility maximizing. The number of rounds
until agreement remains independent of d in this case. We can also generalize
our protocols to more than 2 parties, with computational complexity that degrades
only linearly with the number of parties. Our protocols are based on simple, ef-
ficiently maintainable conditions and result in predictions that are more accurate
than any single party’s alone.

1 Introduction

Consider a machine learning model designed to help doctors make clinical decisions. This predictive
model is trained on a much larger dataset of patients than the doctor’s experience can draw on.
However, it is also necessarily trained on different, and perhaps less rich data. For example, the
doctor’s observations often include qualitative information, such as their patients’ reaction to touch,
which are hard to encode as input to the model. As a result, even if the model is more accurate
on average than the doctor, there will still be situations in which the doctor ought not to follow the
model’s recommendation and proceed to act in accordance with their own predictions. In such a
situation, rather than forcing the doctor to either use the model or choose to ignore it, we would
prefer an interface through which the doctor and model can interact to update their beliefs and
reach agreement on a prediction that is guaranteed to be more accurate than either of their initial
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predictions. When designing such an interface, we would like to be able to prove convergence
and utility guarantees under minimal, computationally and statistically tractable assumptions on the
interaction between the model and the doctor, for at least two reasons:

1. We need to actually implement the model’s interaction with the protocol. So, we want to be
able to start with an arbitrary black-box model (e.g. a trained neural network) and convert it
efficiently (in terms of both computation and data requirements) into an interactive system

2. We want to make minimal assumptions on how the human will interact with the model.
These assumptions should be significantly weaker than “perfect rationality” — meaning
that they should be satisfied by informed Bayesian reasoners — but our results should
not hinge on making a computationally implausible assumption. Rather we should make
assumptions that can be satisfied in a computationally and statistically tractable way. The
weaker our assumptions are, the more likely they are to be satisfied.

In this paper, we show how to efficiently convert an arbitrary predictive model into an interactive
protocol that can be used to interact with another party in a way that quickly leads to agreement
while improving accuracy under tractable assumptions. We give results across a variety of feedback
models and extend our results to multiple parties. Our results rely on the theory of calibration, which
has a long intellectual history [Dawid, 1982, 1985, Foster and Vohra, 1998, 1999, Hébert-Johnson
et al., 2018, Błasiok et al., 2023], and naturally live in a sequential adversarial setting that involves
repeated interaction across many predictions without distributional assumptions. Moreover, if the
instances are drawn from a prior distribution and the two parties are informed Bayesians, then we
are able to give an “online-to-one-shot” reduction that translates our theorems to high probability
guarantees for interactions on a single instance drawn from this prior. We show that all of our
calibration requirements are satisfied by Bayesians updating on a correct prior, implying that our ap-
proach generalizes past works in the well-studied one-shot “Aumann Agreement Theorem” setting
[Aumann, 1976, Geanakoplos and Polemarchakis, 1982, Aaronson, 2005, Kong and Schoenebeck,
2023, Frongillo et al., 2023]. In particular, we generalize the kind of instance-independent conver-
gence bounds proven by Aaronson [2005] in the 1-dimensional real valued setting to d dimensions,
both when the feedback is vector valued, and when it is only in the form of a “best response action”.
In the latter case we get convergence at a rate that is not only independent of the complexity of the
underlying prior, but also independent of the dimension d.

1.1 Our Model and Results

Over a series of days t, examples arrive. Each example has a true label yt ∈ Rd which is initially
unobserved and that at least two parties want to predict or otherwise act on (we focus on the two party
case for this informal description). We call one of the parties the human, and the other the model.
Before making their initial predictions, the model sees features xt

m relevant to the example, and
the human sees a potentially different set of features xt

h (potentially over a different feature space).
Based on these features, the model and the human engage in a conversation over a series of rounds
k = 1, . . . , L. The human and model alternate speaking, with the model speaking in odd rounds
and the human speaking in even rounds. In each odd round k, the model produces a prediction pt,km
(as a function of all prior history of both conversation rounds that day as well as previous days),
which is observed by the human, who in turn produces a prediction pt,k+1

h in round k + 1, which
may also be a function of all previously observed history. The conversation continues until at some
round k, the pair of predictions (pt,k−1

m , pt,kh ) (if k is even) or (pt,k−1
h , pt,km ) (if k is odd) satisfy

an agreement condition, at which point both the human and the model observe the label, and time
proceeds to the next day. We give conditions—all of which are computationally and statistically
tractable relaxations of full Bayesian rationality—under which the conversation is guaranteed to
quickly lead to agreement on predictions that are more accurate than the initial predictions.

The Canonical Setting. In the simplest setting that we study, the labels yt ∈ [0, 1] are one dimen-
sional, and the predictions pt,km , pt,kh ∈ [0, 1] are also one-dimensional numeric values, and intended
to convey a numeric estimate of yt or its expectation. We measure the accuracy of predictions using
squared error. For example, the squared error of the human’s initial (round 2) predictions over days
is
∑T

t=1(p
t,2
h −yt)2. In this case, we say that the human and the machine are in ϵ-agreement at some

round k if |pt,km − pt,k−1
h | ≤ ϵ (odd k) or |pt,kh − pt,k−1

m | ≤ ϵ (even k). We define a calibration con-
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dition that we call “conversation calibration”. Informally speaking, conversation calibration for the
model requires that for each round k, if we consider the subsequence of days on which conversation
extended to round k, denoted by T≥k, the predictions made at round k {pt,km }t∈T≥k are calibrated
to the outcome subsequence on those days {yt}t∈T≥k not just marginally, but conditionally on the
value of the prediction made by the human in the previous round (k − 1).

Definition 1.1 (Informal, see Definition 3.22). We say that the model satisfies conversation calibra-
tion with respect to the human if for all odd rounds k and v, v′ ∈ [0, 1]:∑

t∈T≥k

1[pt,km = v] · 1[pt,k−1
h = v′](pt,km − yt) = 0

Conversation calibration for the human is a symmetric condition for even rounds k.

Importantly, conversation calibration does not require that the predictions be unbiased conditional
on the whole conversation so far (which a correctly specified Bayesian would satisfy), but only
conditional on the current prediction of the model, and the most recent prediction of its human
interlocutor. This makes the condition computationally and statistically tractable to enforce using
standard algorithms for online calibration (e.g. Foster and Vohra [1998], Gupta et al. [2022]). In
fact, in our use-case it turns out to be sufficient to measure calibration error using “distance to cali-
bration” Błasiok et al. [2023], a recently defined relaxation of traditional calibration measures. This
is useful because there are extremely simple algorithms that can make predictions with “distance
to calibration” diminishing at much better rates than are possible for standard calibration metrics
Qiao and Zheng [2024], Arunachaleswaran et al. [2025]. When we construct conversation algo-
rithms from static models, we make use of the simple efficient algorithm of Arunachaleswaran et al.
[2025], which can be used to bound distance to conversation calibration, as conversation calibration
requires conditioning only on disjoint events.

Theorem 1.2 (Informal, see Theorem 4.8). There is a computationally efficient reduction that takes
as input an arbitrary model M mapping features to predictions, and outputs an algorithm that can
engage in a conversation protocol. The algorithm uses the predictions of model M at the first
round, and is guaranteed to satisfy (approximate) conversation calibration against any agent that it
converses with.

We show that if both parties are conversation calibrated, then on a large fraction of days, the human
and the model agree very quickly.

Theorem 1.3 (Informal, see Theorem 4.1). If the human and model are conversation-calibrated,
then for any ϵ, δ ∈ (0, 1] and large enough T , on a 1 − δ fraction of days, they reach ϵ-agreement
after at most K = 1

ϵ2δ rounds of conversation. Furthermore, for this 1 − δ fraction of days, if
they reach agreement in round i, their final predictions have a lower squared error than the base
predictions of either the human or the model, by a term that scales as i

δϵ2 ) (so longer conversations
directly lead to correspondingly more accurate predictions).

Paired with our algorithmic reduction, this allows us to efficiently implement conversation protocols
that lead to fast agreement and are guaranteed to be accuracy improving, starting with any model
M (about which we make no assumptions), and any interlocutor that also satisfies conversation
calibration.

Our result recovers the parameters proven by Aaronson [2005] for the special case of agreement by
fully rational Bayesian forecasters in a setting with a known prior. Moreover, our result generalizes
beyond the setting of Aaronson [2005] in a number of ways. For example, it straightforwardly
generalizes to the setting in which the outcome yt ∈ [0, 1]d is d-dimensional, by requiring that the
forecasts satisfy conversation calibration marginally in each coordinate. This comes at a cost of d in
our convergence bounds:

Theorem 1.4 (Informal, see Theorem 5.2). When Y = [0, 1]d and the human and model satisfy
conversation-calibration marginally in each coordinate (Definition 3.23), then for any ϵ, δ ∈ (0, 1]
and large enough T , on a 1 − δ fraction of days, they reach ϵ-agreement after at most K = d

ϵ2δ
rounds of conversation. Furthermore, for this 1−δ fraction of days, if they reach agreement in round
i, their final predictions have a lower squared error than the base predictions of either the human
or the model, by a term that scales as i

δϵ2 .
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We similarly show an efficient reduction that can convert an arbitrary model M into an algorithm
capable of engaging in a conversation protocol, that is guaranteed to satisfy conversation calibration
marginally in each coordinate when interacting with any interlocutor (see Theorem 5.6).

Agreeing on Actions Although our analysis of the “canonical setting” extends to d dimensional
agreement, it requires that both parties provide d-dimensional numeric predictions at each round.
The model in our reduction is able to do this, but it would be better not to require the human
interlocutor to provide numeric feedback, especially in high dimensions when yt ∈ [0, 1]d. To
avoid this, we adopt a downstream decision-making perspective. We imagine that the human has
an action set A (e.g. treatments and diagnostic tests that a doctor could order), as well as a utility
function U : A × [0, 1]d → [0, 1] that maps an action a ∈ A and a label y ∈ [0, 1]d to a utility
U(a, y) that the human would like to maximize. We assume that the utility function is linear in
its second argument. This captures (among other things) the scenario in which there are d discrete
outcomes for which the human has arbitrary utilities, the predictions are probability distributions
over these d outcomes, and the human is an expectation maximizer.

We define a calibration condition that we call “conversation decision calibration”, which addition-
ally conditions on the action most recently suggested by one’s interlocutor. Like our definition of
conversation calibration, conversation decision calibration only involves a small number (|A|2) of
conditioning events, and so is computationally and statistically tractable to enforce — in this case
by using the online algorithm for making d dimensional forecasts unbiased subject to an arbitrary
polynomial collection of conditioning events given by Noarov et al. [2023]. We provide analogous
results for the action-agreement setting, in which we avoid a dependence on the dimension d. We
discuss this setting in Section 6.

One-Shot Guarantees for Bayesians. Bayesian posterior beliefs, when computed from a known
(and correct) prior are known to be well calibrated [Dawid, 1982]. We show that this extends to our
notions of conversation calibration: when instances are drawn i.i.d. from a fixed and known prior,
then a Bayesian, reporting at every round their posterior expectation for y, will satisfy our notions
of decision calibration, no matter how their interlocutor is making predictions. The most immediate
implication of this is that the calibration assumptions that our convergence results rely on are all
strict relaxations of Bayesian rationality. However it also allows us to lift all of our convergence
guarantees to the “one-shot” setting when two Bayesians with a shared prior are conversing with
one another. Rather than speaking of a sequence of conversations over days and making guarantees
on the maximum length of conversations on all but a 1 − δ fraction of days, we can make exactly
the same guarantees on the length of a single conversation between two Bayesians, with probability
1−δ over the draw of the instance from their commonly shared prior distribution. For example, when
applied to our 1-dimensional convergence result in the canonical setting, we recover the Theorem
of Aaronson [2005]: Two Bayesians will reach ϵ-agreement after k = O(1/ϵ2δ) many rounds with
probability 1− δ over the draw of the instance from the prior. Our other results generalize Aaronson
[2005] and lead to new theorems about the rate of convergence in the Bayesian agreement setting –
agreement on d-dimensional expectations and agreement using action feedback.

Theorem 1.5 (Informal, see Corollary 7.8). Fix any prior D over triples (xh, xm, y). For an in-
stance drawn from D, with probability 1− δ over the draw of the instance:

1. In the d-dimensional “full-feedback” setting two Bayesian parties agree after exchanging
at most K ≤ 3d

ϵ2δ messages.

2. In the action-feedback setting, two Bayesian parties agree after exchanging at most K ≤
3

2εδ + 1 messages — i.e. they obtain a dimension independent convergence rate.

Extension to n Parties. We can extend all of our results from 2 parties to n parties, with only
a polynomial overhead in n in terms of computational and statistical complexity of the n parties,
and no dependence on n in terms of how many times each party must speak before agreement (in
total the number of “rounds” of conversation increases by a factor of n simply because it now takes
n rounds in between each agent speaking two times consecutively). We discuss this extension in
Section E.
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2 Appendix

2.1 Related Work

Agreement. Aumann’s classic “agreement theorem” Aumann [1976] states that two Bayesians
with a common and correct prior, who have common knowledge of each other’s posterior expecta-
tion of any predicate must have the same posterior expectation of that predicate. This sparked a very
large literature on agreement amongst Bayesians — we touch upon only the most related work here.
“Common Knowledge” is the limit of an infinite exchange of information, but Geanakoplos and
Polemarchakis Geanakoplos and Polemarchakis [1982] showed that whenever the underlying state
space is finite, then agreement occurs after a finite number rounds (depending on the cardinality of
the state space) in which the information exchanged in each round is the posterior expectation of
each party. Aaronson Aaronson [2005] showed that for 1-dimensional expectations, ϵ-approximate
agreement can be obtained (with probability 1−δ over the draw from the prior distribution) after the
parties exchange only O(1/ϵ2δ) messages. Notably this bound is independent of the representation
size or complexity of the underlying prior distribution. Two papers Kong and Schoenebeck [2023],
Frongillo et al. [2023] study conditions under which Aumannian agreement implies information
aggregation — i.e. when “agreement” is reached at the same posterior belief that would have re-
sulted had the two parties shared all of their information, rather than interacting within an agreement
protocol. There is also a large literature that studies multi-party agreement amongst Bayesians con-
nected via a communication network — see e.g. Geanakoplos and Polemarchakis [1982], Gale and
Kariv [2003], Aaronson [2005], Mossel et al. [2014], Deshpande et al. [2022]. Part of this literature
(e.g. Gale and Kariv [2003], Mossel et al. [2014]) studies settings in which the beliefs of the parties
are not directly observed, but rather what action they take is, under the presumption that they take
a utility maximizing action. In general this literature is interested in exact asymptotic agreement.
These papers also all assume that there is a commonly known prior and that all parties are able to
compute correct posterior expectations for the predicate of interest, despite the fact that this might
be computationally intractable. Aaronson Aaronson [2005] gives a computational reduction from
the problem of participating in an agreement protocol to the problem of computing (and sampling
from) correct posterior distributions, conditional on any vector of features that might be observed by
either party. This might itself be a computationally hard task, and the reduction requires a number
of calls to this posterior-computation oracle that is super-exponential in 1/ϵ, but independent of the
cardinality of the state space. Our primary point of departure from this literature is that we ask for
algorithms that are truly computationally tractable (i.e. worst-case polynomial time in all parame-
ters) and make no distributional assumptions, although when there is a commonly known prior and
agents are Bayesians, we recover theorems in the classical Aumannian setting. This leads to new
quantitative agreement theorems in the setting and style of Aaronson [2005] (i.e. bounds that depend
only on approximation parameters and are independent of the complexity of the instance) — in d di-
mensional settings. In particular, that agents providing only action feedback in d-dimensional belief
spaces will arrive at ϵ-agreement after only O(1/ϵδ) many rounds of conversation with probability
1− δ (independent of the dimension d).

Calibration. Our techniques are rooted in the ability to maintain calibrated forecasts in online
adversarial settings, which was first shown by Foster and Vohra Foster and Vohra [1998]. Calibra-
tion itself dates back to Dawid Dawid [1982, 1985], who also showed that Bayesians with correctly
specified priors are calibrated Dawid [1982]. Conditional calibration guarantees also have a long
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history Dawid [1985], Sandroni et al. [2003], Foster and Kakade [2006] with a recent seminal for-
malization as multicalibration Hébert-Johnson et al. [2018] which can be obtained with good rates
in both the batch and online adversarial settings Gupta et al. [2022]. The traditional calibration
measure of “expected calibration error” has a number of shortcomings; the most relevant for us is
that it cannot be obtained with O(

√
T ) rates in online adversarial settings Qiao and Valiant [2021],

Dagan et al. [2024]. This has led to a recent exploration of alternative calibration measures, notably
“distance to calibration” Błasiok et al. [2023]. Distance to calibration can be obtained at O(

√
T )

rates in online adversarial settings with extremely simple, deterministic algorithms Qiao and Zheng
[2024], Arunachaleswaran et al. [2025], and turns out to be sufficient for our application. In partic-
ular our reduction in the canonical case uses the algorithm of Arunachaleswaran et al. [2025]. In
our “action feedback” setting we use a variant of “decision calibration” Zhao et al. [2021], which
can similarly be guaranteed in online adversarial settings with good rates, using the algorithm of
Noarov et al. [2023]. This is related to a line of recent work exploring notions of calibration tailored
to downstream decision-making Kleinberg et al. [2023], Noarov et al. [2023], Roth and Shi [2024],
Hu and Wu [2024].

Several papers Camara et al. [2020], Collina et al. [2024] have replaced traditional assumptions
of Bayesian rationality (and common prior assumptions) with calibration assumptions in principal
agent problems arising e.g. in contract theory and Bayesian Persuasion. In particular, Collina et al.
[2024] shows how to do this with tractable decision calibration conditions. Beyond this, the most
thematically related use of calibration is its use as an ensembling method. Garg et al. [2019] shows
how to produce a model that is “cross calibrated” to two models, and is more accurate than each
while improving various fairness measures of decisions downstream of the model. Roth et al. [2023]
shows how to use cross-calibration to resolve “predictive multiplicity”, and derive a single more
accurate model from any pair of models that are equally accurate and yet frequently disagree. This
kind of ensembling was recently extended to agreement for downstream actions Du et al. [2024a]
and for ensembling models for high dimensional downstream optimization problems Globus-Harris
et al. [2024]. Alur, Raghavan, and Shah employ a similar model ensembling approach motivated by
human-AI collaboration Alur et al. [2024]. Informally, they learn a model in a batch setting that is
cross-calibrated to the fixed judgments of a human. What distinguishes our work from the line of
work using calibration for ensembling (aside from the fact that we work in the online adversarial
setting) is that prior work in this area treats the models to be ensembled as static. That is, the models
to be ensembled are defined by fixed mappings from features to predictions, and do not update their
beliefs as a function of interaction with other models. As a result, these methods cannot be applied
to Bayesian-like entities which requires the kind of interactive conversation protocol we adopt in
this work.

Multi-agent Debates with LLMs. To improve the accuracy of the responses of large language
model (LLM) generations, recent work Du et al. [2024b], Liang et al. [2023], Chan et al. [2024] has
proposed the multi-agent debate approach in which two (or more) LLMs “debate” their individual
responses and reasoning processes in multiple rounds until they converge to a final answer, and then
a “judge” (often another LLM or human) validates the final answer. Here, debate loosely refers to
the two LLMs getting to see each other’s responses after each round and update their subsequent
responses. This shares notable similarities to our agreement protocol where the LLMs map to the
agents, the messages map to the generations of each LLM in each round, and the judge maps to the
outcome label at each day. Moreover, they share the general motivation to improve the accuracy
of the agents using interaction and the assumption that agents behave in good faith. In contrast to
our work which deals with numerical predictions and makes formal calibration assumptions on the
agents, multi-agent debates operate in natural language under less formal assumptions. We believe
our framework of agreement protocols could potentially be adapted to analyze multi-agent LLM de-
bate dynamics and explain why LLMs reach consensus and improve overall accuracy. Additionally,
our techniques to enforce the calibration conditions could be useful to improve the efficiency and
performance of LLM debates. We note that prior work Deshpande et al. [2022] has also discussed
viewing communicating LLMs through the lens of agreement. However, their work assumes that
LLMs are purely Bayesian agents with a shared prior, and they focus only on statistical efficiency
of reaching agreement on a network, not the rate of convergence to agreement.
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3 Preliminaries

In most of the paper we study a setting with two agents, whom we call the human and the model
(in Appendix E we generalize our results the setting to n ≥ 2 agents). Both the human and model
are able to make predictions about a label not just in isolation (given features), but as a function of
an interaction that they have had with another agent. The agents interact to make predictions over
a sequence of days t = 1, . . . , T . We let Xh and Xm denote feature spaces for the human and the
model respectively. We let Y represent the outcome (label) space, which we always take to be real
or vector valued, so that we can sensibly speak of expectations over it. For notational simplicity, we
will assume that Y is convex, so that expectations over Y are themselves elements of Y , although
this is not necessary.

On each day t, the human and model aim to reach agreement, with respect to some agreement
condition, on their predictions of that day’s outcome yt based on the features they each see: xt

h
and xt

m, respectively. They do so by conversing over a series of rounds k = 1 . . . , L. The human
and model will alternate speaking, and we suppose that the model acts in odd numbered rounds;
the human acts in even numbered rounds. In an odd round k, the model sends a message pt,km , and
then in the next round k + 1, the human responds with a message pt,k+1

h . We write Ωh for the
message space of the human and Ωm for the message space of the model. At each round k when
they are speaking, an agent has an underlying prediction of the (expectation of the) label, denoted
ŷt,km and ŷt,kh respectively. This underlying prediction can be a function of everything the agent has
observed so far — the features relevant to the instance, the messages sent by the other party, and
past outcomes on previous days. The message each agent sends at each round will be a function
of this underlying prediction. For example, the messages sent might be the underlying predictions
themselves (as in the full feedback setting we study in Sections 4 and 5) — but the messages might
also be some “coarsening” of the prediction, as in the action feedback setting we study in Section 6.
The day terminates once an agreement condition is met, at which point that day’s label yt is revealed
to both parties.

3.1 Agreement Protocols

We study a variety of settings, each of which is instantiated by the label space, the message space
of each of the parties, and an agreement condition. We begin by defining a generic agreement
condition, which we can instantiate for each particular setting. Informally, the agreement condition
takes in the messages and underlying predictions of each agent, and decides if they are sufficiently
close to terminate the conversation for that day.
Definition 3.1 (Agreement Condition). An agreement condition is a function that determines when
the human and model’s predictions are “ε-close”, for any ε > 0 as a function of their most re-
cently sent messages and predictions: AGREEε : (Ωh,Y) × (Ωm,Y) → {0, 1}. An agreement
condition should be the conjunction of two conditions (one for the model and one for the hu-
man), each of which can be evaluated with only knowledge of their own predictions and their
counter-party’s message. In other words we should be able to write AGREEε(ph, ŷh, pm, ŷm) =

AGREEh
ε (pm, ph, ŷh) · AGREEm

ε (pm, ph, ŷm) for some pair of functions AGREEh
ε , AGREEm

ε .
Remark 3.2. In practice, whether each agent is in agreement with the other is determined by the
agent—this is why we want agreement conditions to be the conjunction of a pair of conditions each
of which can be evaluated by each agent in isolation. The formalism of an “agreement condition”
is only to let us easily describe and instantiate our various settings.

As an example, we can consider the simplest agreement condition we use. This is the agreement
condition for the full feedback, one-dimensional prediction (“canonical”) setting: when Ωh = Ωm =
Y = [0, 1].
Definition 3.3 (Agreement Condition in the Canonical Setting). The agreement condition in the
canonical setting is the function AGREE-CANONICALε : Ωh × Y × Ωm × Y → {0, 1} defined as:

AGREEε(p, yh, q, ym) =

{
1, if |p− q| < ε

0, otherwise.

We formalize the interaction between the two agents in Protocol 3.1 — a generic “agreement
protocol”—which can be instantiated with the particulars of each setting we study.
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[ht]
Input (Ωh,Ωm,Y, AGREEϵ)
for each day t = 1, . . . do

Receive xt = (xt
h, x

t
m). The model sees xt

m and the human sees xt
h.

for each round k = 1, 2, . . . , L do
if k is odd then

The Model predicts ŷt,km ∈ Y , and sends the Human pt,km ∈ Ωm

if AGREEε(p
t,k−1
h , ŷt,k−1

h , pt,km , ŷt,km ) then
Return pt,km and break out of loop

if k is even then
The Human predicts ŷt,kh , and sends the model pt,kh ∈ Ωh

if AGREEε(p
t,k
h , ŷt,kh , pt,k−1

m , ŷt,k−1
m ) then

Return pt,k−1
m and break out of loop

The Human and Model observe yt ∈ Y

When interacting within an agreement protocol, we say that on day t the two agents agree after k
rounds of conversation if the agreement condition is met at round k of day t.

3.1.1 Instantiating Different Feedback Models

We can now formally specify the various settings we study. These will vary in the label space,
the message space for each participant, the mapping between predictions and messages, and the
agreement condition.

Full Feedback The first setting we study is the full feedback, one-dimensional prediction, or
“canonical”, setting. Here, the human and model are both communicating their precise point pre-
dictions for the (expectation of the) unknown label to each other. Agreement will refer to when the
human and model’s predictions are sufficiently close numerically.
Definition 3.4 (Canonical Setting). The canonical setting refers to Protocol 3.1 instantiated with
Ωm = Ωh = Y = [0, 1], messages pt,km = ŷt,km and pt,kh = ŷt,kh , and the agreement condition
AGREEε = AGREE-CANONICALε (Definition 3.3).

This naturally extends to the d-dimensional setting, in which we measure agreement using the ℓ∞
norm:
Definition 3.5 (Agreement Condition in the d-dimensional Setting). The agreement condition in the
d−dimensional setting is the function AGREE-DDIMε : Ωh × Y × Ωm × Y → {0, 1} defined as:

AGREE-DDIMε(p, yh, q, ym) =

{
1, if ∥p− q∥∞ < ε

0, otherwise.
Definition 3.6 (d-dimensional Full Feedback Setting). The d-dimensional full feedback setting
refers to Protocol 3.1 instantiated with Ωh = Ωm = Y = [0, 1]d, messages pt,km = ŷt,km and
pt,kh = ŷt,kh , and the agreement condition AGREEε = AGREE-DDIMε (Definition 3.5).

Action Feedback In this setting, we study a human and a model who aim to agree on an action to
take when their predictions are used to inform downstream decision-making. We model the human
as having a known action set A and utility function U : A × Y → [0, 1]. The human and model
are both maintaining predictions of the underlying state – which is here a d-dimensional vector —
Y = [0, 1]d — and are using their predictions to choose an action that is utility maximizing given the
forecast. In this setting, the human and model do not exchange their estimates of the state directly,
but instead simply suggest actions to one another (utility maximizing actions under their forecasts):
Ωh = Ωm = A. Here, our notion of ϵ-agreement will be that both parties agree that the action
suggested by the other party obtains utility that is within ϵ of the best-response action, as measured
under their own forecasts.
Definition 3.7 (Agreement Condition in the Action Feedback Setting). The agreement condition in
the action feedback setting is the function AGREE-ACTIONε : Ωh ×Y ×Ωm ×Y → {0, 1} defined
as:

AGREE-ACTIONε(p, yh, q, ym) =

{
1, if U(p, ym) ≥ U(q, ym)− ϵ and U(q, yh)) ≥ U(p, yh)− ϵ

0, otherwise.
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Definition 3.8 (Action Feedback Setting). The action feedback setting refers to Protocol 3.1 in-
stantiated with Ωh = Ωm = A, Y = [0, 1]d, messages pt,km = argmaxa∈A U(a, ŷt,km ) and
pt,kh = argmaxa∈A U(a, ŷt,kh ), and the agreement condition AGREEε = AGREE-ACTIONε (Defini-
tion 3.7).

Here we state the necessary assumptions for the utility functions our theorems will apply to, follow-
ing the formalism of Noarov et al. [2023]:
Assumption 1 (Utility U(·, ·)). The utility function U : A × Y → [0, 1] maps an action a and a
vector valued outcome y to a real number U(a, y). We assume that for every action a ∈ A:

• U(a, ·) is linear in its second argument: for all α1, α2 ∈ R, y1, y2 ∈ Rd,

U(a, α1y1 + α2y2) = α1U(a, y1) + α2U(a, y2)

• U(a, ·) is L-lipschitz in its second argument in the L1-norm: for all y1, y2 ∈ Rd,

|U(a, y1)− U(a, y2)| ≤ L∥y1 − y2∥1.

Remark 3.9. One natural special case is when y represents a probability distribution over d discrete
outcomes c1, . . . , cd, such that there is an arbitrary mapping M(a, c) from action/outcome pairs to
utilities [0, 1]. In this case, U(a, y) represents the expected utility of the action a over the outcome
distribution, which is linear in y by the linearity of expectation. The utility function is L-Lipschitz
in the L1-norm, where L = maxa,c1,c2(M(a, c1) − M(a, c2)). So this class of utility functions
naturally captures any risk neutral decision maker with d payoff relevant states, but is more general.

3.2 Algorithms for Interaction

An agreement protocol as we have defined it is used by two agents who are able to update their
predictions not only as a function of the features they have observed, but as a function of an interac-
tion with another agent. We will want to convert static models (which map features to predictions)
into such interactive algorithms. In order to define such algorithms, it will be useful to establish a
notation that refers to different pieces of information that both parties will have available to them at
different times in Protocol 3.1, which they can use in their predictions.

We refer to the history of interaction within any given day t as a “conversation.” This is, informally,
the sequence of messages exchanged by the human and the model specifically about the currently
unknown label yt. Recall that the model and human speak in alternating (odd and even numbered,
respectively) rounds.
Definition 3.10 (Conversation C). A conversation between the human and model on day t over
rounds 1 to ℓ is denoted by Ct,1:ℓ ∈ {Ωm ∪ Ωh}ℓ, is a sequence of ℓ messages:

Ct,1:ℓ :=

{
(pt,1m , pt,2h , pt,3m , pt,4h , . . . , pt,ℓm ) if ℓ is odd,
(pt,1m , pt,2h , pt,3m , pt,4h , . . . , pt,ℓh ) otherwise.

We refer to the full conversation at day t as Ct. We define Cℓ to be the space of all possible conver-
sations of length ℓ and C =

⋃
ℓ>0 Cℓ represent all possible conversations.

Definition 3.11 (Conversation Length). We define Ct to be the conversation at day t and ℓt to be
the length of Ct : ℓt = |Ct|.

It will often be useful to consider subsequences of our objects—messages, predictions, and labels—
within a certain round. We provide notation for this below.
Definition 3.12 (Round Subsequence). For a fixed round k, we define T≥k to be the subsequence of
days on which conversation reaches round k, that is, T≥k := {t ∈ {1, . . . , T} | ℓt ≥ k}.
Definition 3.13 (Message Subsequence pS,km ). For some set S ⊆ {1, . . . , T}, we define pS,km as
{pt,km : t ∈ S ∩ T≥k}, the subsequence of model predictions at round k corresponding to the
subsequence of days t which reach round k and which are in the set S. We will similarly use the
notation pS,kh , ŷS,km , and ŷS,kh , to refer, respectively, to the human messages, model predictions, and
human predictions over subsequences constrained in this way.
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We refer to the history of interaction across multiple days as a “message transcript.” It is an object
that records the interactions between the agents and is visible to both, and which they can use to make
their predictions (unlike the “prediction transcript” which we will define immediately following).

Definition 3.14 (Message Transcript µ1:T ). A message transcript µ1:T ∈ {C × Y}T is a sequence
of conversation, outcome pairs over T days:

µ1:T =
[
(C1, y1), . . . , (CT , yT )

]
.

We defineMT to be the space of all possible message transcripts over T days andM =
⋃

T>0MT

to be the space of all possible message transcripts.

We define µt,: to be the restriction of the message transcript to the elements relevant to day t — this
is simply the record of the conversation at day t paired with the outcome at day t:

µt,: =


(
(pt,1m , pt,2h , . . . , pt,ℓ

t

m ), yt
)

if ℓt is odd,(
(pt,1m , pt,2h , . . . , pt,ℓ

t

h ), yt
)

otherwise.

Similarly, we define µ:,k to be the restriction of the message transcript to the elements relevant to
only round k of conversation across the subsequence of days that reach round k (T≥k):

µ:,k =


[
(pt,km , yt)

∣∣ t ∈ T≥k
]

if k is odd,[
(pt,kh , yt)

∣∣∣ t ∈ T≥k
]

otherwise.

It will also be useful to be able to refer to the sequence of predictions made by the human and
model across particular days or rounds. Note that depending on the setting we are working in, this
“prediction transcript” will not generally be visible to both players (each player always observes
their own predictions, but only the messages sent by the other):

Definition 3.15 (Prediction Transcript π1:T ). A prediction transcript π1:T ∈
{⋃

ℓ>0(Y)ℓ × Y
}T

is
a sequence of tuples of predictions over rounds made by the model and human (alternating across
rounds), and the outcome, over T days:

π1:T =
[(

ŷ1,1m , ŷ1,2h , ŷ1,3m , . . . ŷ1,ℓ1m , y1
)
, , . . . ,

(
ŷT,1
m , ŷT,2

h , ŷT,3
m , . . . ŷT,ℓT

m , yT
)]

Similar to Definition 3.14, we define πt,: to be the restriction to elements relevant to day t and π:,k

to be the restriction to only round k of conversation across days as follows:

πt,: =


(
(ŷt,1m , ŷt,2h , ŷt,3m , . . . , ŷt,ℓtm ), yt)

)
if ℓt is odd,(

(ŷt,1m , ŷt,2h , ŷt,3m , . . . , ŷt,ℓth ), yt)
)

otherwise.
π:,k =


[
(ŷt,km , yt)

∣∣ t ∈ T≥k
]

if k is odd,[
(ŷt,kh , yt)

∣∣∣ t ∈ T≥k
]

otherwise.

Finally, we will also use the restriction π1:T
h and π1:T

m the prediction transcript restricted to the
human and model predictions, respectively, through day T .

With these definitions in hand, we can now give a formal specification of the types of algorithms we
will be using in our results.

Definition 3.16 (Model Algorithm M ). The Model’s algorithm M :M× Π × C × Xm → ∆Ωm

is a mapping from a t-length message transcript, a prediction transcript of the model’s predictions
through round t π1:t

m , an ℓ-length conversation, and a feature vector xt+1
m to a distribution over

messages pt+1,ℓ+1
m for day t+ 1 in round ℓ+ 1.

Definition 3.17 (Human Algorithm H). The Human’s algorithm H :M×Π× C ×Xh → ∆Ωh is
a mapping from a t-length message transcript, a prediction transcript of the humans’s predictions
through round t π1:t

h , an ℓ-length conversation, and a feature vector xt+1
h to a distribution over

messages pt+1,ℓ+1
h for day t+ 1 in round ℓ+ 1.
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3.3 Calibration

The main focus of our work is studying computationally tractable conditions under which the two
parties achieve fast agreement in the models described in Section 3.1.1. The conditions that we
study (and enforce) will be calibration conditions of various sorts. In this section we give the basic
calibration definitions that we will be working with.

The standard measure of calibration of some sequence of predictions p1:T to outcomes y1:T in a
sequential prediction setting is expected calibration error, defined as follows.

Definition 3.18 (Expected Calibration Error). Given a sequence of predictions p1:T and outcomes
y1:T , their expected calibration error is,

ECE(p1:T , y1:T ) =
∑

p∈[0,1]

∣∣∣∣∣
T∑

t=1

1[pt = p](pt − yt)

∣∣∣∣∣
Here the outer sum is over the values p that appear in the sequence p1:T .

We will sometimes measure calibration error of a sequence instead using distance to calibration,
first defined by Błasiok et al. [2023] (we here use the definition given by Qiao and Zheng [2024]
in the sequential setting). Distance to calibration measures the ℓ1 distance between a sequence of
predictions and the closest sequence of perfectly calibrated predictions.

Definition 3.19 (Distance to Calibration). Given a sequence of predictions p1:T and outcomes y1:T ,
the distance to calibration is,

CalDist(p1:T , y1:T ) = min
q1:T∈C(y1:T )

∥∥p1:T − q1:T
∥∥
1

where C(y1:T ) = {q1:T : ECE(q1:T , y1:T ) = 0} is the set of predictions that are perfectly calibrated
against outcomes y1:T .

Calibration has a close relationship to squared error, which we will use as a potential function in
some of our analyses. Below we define the squared error of a sequence of predictions relative to a
sequence of outcomes:

Definition 3.20 (Squared Error). Given a sequence of predictions p1:T and outcomes y1:T , the
squared error between them is,

SQE(p1:T , y1:T ) :=
∑
t∈[T ]

(pt − yt)2.

We will overload this notation for the special case of constant sequences p1 = . . . = pT = p:

SQE(p, y1:T ) :=
∑
t∈[T ]

(p− yt)2.

3.3.1 Conversation Calibration

We now define a new notion of calibration that we will make use of in the “canonical” setting, that
we call conversation calibration. Informally, an agent is conversation calibrated if for every round
of conversation k, the sequence of predictions (over days t) that they make at round k of conversation
is calibrated not just marginally, but conditionally on the value of the prediction that the other agent
made at round k− 1. In fact, without making assumptions on the other agent, it will not be possible
to give calibration guarantees that hold conditional on their predictions, because these may come
from an arbitrarily large range. So instead we will condition on bucketings of their predictions.

Definition 3.21 (Bucketing of the Prediction Space). For bucket coarseness parameter n, let
Bn(i) =

[
i−1
n , i

n

)
and Bn(n) =

[
n−1
n , 1

]
form a set Bn of n buckets of width 1/n that parti-

tion the unit interval.

Next we define conversation calibration, which allows for calibration error as measured using dis-
tance to calibration.
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Definition 3.22 (Conversation-Calibrated Predictions). Fix an error function f : {1, . . . , T} → R
and bucketing function g : {1, . . . , T} → (0, 1]. Given a prediction transcript π1:T resulting from
an interaction in the canonical setting (Definition 3.4), a human is (f, g)-conversation-calibrated if
for all even rounds k and buckets i ∈ {1, . . . , 1/g(T )}:

CalDist(p
Tm(k,i),k
h , yTm(k,i)) ≤ f(|Tm(k, i)|),

where Tm(k, i) =
{
t ∈ T≥k | pt,k−1

m ∈ Bi(1/g(T ))
}

is the subsequence of days where the predic-
tions of the model at the previous round fall in bucket i and the conversation reaches round k.

Symmetrically, a model is (f, g)-conversation-calibrated if for all odd rounds k and buckets i ∈
{1, . . . , 1/g(T )}:

CalDist(pTh(k,i),k
m , yTh(k,i)) ≤ f(|Th(k, i)|),

where Th(k, i) = {t ∈ T≥k | pt,k−1
h ∈ Bi(1/g(T ))}, that is, the subsequence of days where the

predictions of the human in the previous round fall in bucket i and the conversation reaches round
k.

When convenient we will assume that f(·) is concave. This captures the case where f(T ) = Tα for
any α ∈ [0, 1], which is the form that all calibration bounds we are aware of take.
Assumption 2. f(·) is a concave function.

We also define a d-dimensional notion of conversation calibration. A naive (and intractable) gener-
alization of conversation calibration would require that an agent’s d-dimensional forecasts be (fully)
calibrated conditional on the value of the d-dimensional forecasts made at the previous round by the
other agent. But this would require making predictions that are unbiased subject to an exponential
(in d) number of conditioning events. Instead our generalization requires that the forecasts made by
each party satisfy a marginal conversation calibration condition in each coordinate of their predic-
tion. That is, each coordinate i of an agent’s prediction should be calibrated marginally, conditional
on the value of the other agent’s previous prediction in coordinate i. This increases the number of
conditioning events compared to the 1 dimensional case only by a factor of d, and hence will be
tractably obtainable.
Definition 3.23 (Conversation-Calibrated Vector Predictions). Fix an error function f :
{1, . . . , T} → R and bucketing function g : {1, . . . , T} → (0, 1]. Given a prediction transcript
π1:T resulting from an interaction in the full-feedback, d-dimensional setting (Definition 3.6), a
human is (f, g)-conversation-calibrated if for all even rounds k, indices j ∈ [d], and buckets
i ∈ {1, . . . , 1/g(T )}:

CalDist(p
Tm(k,i,j),k
h [j], yTm(k,i,j)[j]) ≤ f(|Tm(k, i, j)|),

where Tm(k, i, j) =
{
t ∈ T≥k | pt,k−1

m [j] ∈ Bi(1/g(T ))
}

is the subsequence of days where the j’th
coordinate of the predictions of the model at the previous round fall in bucket i and the conversation
reaches round k.

Symmetrically, a model is (f, g)-conversation-calibrated if for all odd rounds k, indices j ∈ [d], and
buckets i ∈ {1, . . . , 1/g(T )}:

CalDist(pTh(k,i,j),k
m [j], yTh(k,i,j)[j]) ≤ f(|Th(k, i, j)|),

where Th(k, i, j) = {t ∈ T≥k | pt,k−1
h [j] ∈ Bi(1/g(T ))}.

3.3.2 Decision Conversation Calibration

Next we turn to the action feedback setting (Definition 3.8). The outcome space Y is now vector val-
ued, and instead of communicating vector valued predictions as messages, the agents communicate
downstream actions. We define decision-conversation-calibration, which asks for “decision calibra-
tion” Zhao et al. [2021], Noarov et al. [2023] conditional on the previous message sent by the other
agent. In other words, the predictions that each agent makes should be unbiased conditional on both
1) the best response action implied by the predictions themselves, and 2) the best response action
communicated at the previous round. Here we use an expected-calibration-error style definition,
since this is what we can achieve algorithmically using the algorithm of Noarov et al. [2023].
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Definition 3.24 (Decision-Conversation-Calibrated (DC-Calibrated) Predictions). Given a predic-
tion transcript π1:T resulting from an interaction in the action feedback setting (Definition 3.8), a
human is f(·)-decision-conversation-calibrated (or f(·)-DC-calibrated) if for all even rounds k,
coordinates i ∈ [d], and pairs of actions a, a′ ∈ A:∣∣∣∣∣

T∑
t=1

1[t ∈ Th(k, a, a
′)](ŷt,kh [i]− yt[i])

∣∣∣∣∣ ≤ f(|Th(k, a, a
′)|),

where Th(k, a, a
′) = {t ∈ T≥k | pt,k−1

m = a and pt,kh = a′} is the subsequence of days in which the
model’s recommendation on round k − 1 is a and the human’s recommendation on round k is a′.

Symmetrically, a model is f(·)-DC-calibrated if for all odd rounds k, coordinates i ∈ [d], and pairs
of actions a, a′ ∈ A:∣∣∣∣∣

T∑
t=1

1[t ∈ Tm(k, a, a′)](ŷt,km [i]− yt[i])

∣∣∣∣∣ ≤ f(|Tm(k, a, a′)|),

where Tm(k, a, a′) = {t ∈ T≥k | pt,k−1
h = a and pt,km = a′} is the subsequence of days in which

the human’s recommendation on round k−1 is a and the model’s recommendation on round k is a′.

4 Agreement in the Canonical Setting

In this section we study the simple “canonical” setting (Definition 3.4) in which Y = Ωm = Ωh =
[0, 1], which most closely maps onto the relevant prior work stemming from Aumann’s agreement
theorem Aumann [1976], Geanakoplos and Polemarchakis [1982], Aaronson [2005], Frongillo et al.
[2023]. We show that when interacting in the Agreement protocol (Protocol 3.1), if both agents
satisfy appropriately instantiated conversation calibration conditions (Definition 3.22), then once the
total number of days T is sufficiently large, on a 1−δ fraction of days, they ϵ-agree after at most K ≤
2/(ϵ2δ) rounds of conversation without reducing accuracy. We give an efficient reduction through
which any static model can be converted into an algorithm satisfying these conversation calibration
conditions after at most T ≤ O

(
1

ϵ6δ3

)
days. We remark that this bound is possible because we

are able to carry out our analysis using distance to calibration bounds, which admit algorithms that
obtain O(

√
T ) rates in online adversarial settings Qiao and Zheng [2024], Arunachaleswaran et al.

[2025] — we would obtain worse rates if we used the same reduction using algorithms bounding
expected calibration error Qiao and Valiant [2021].

As predictions are the same as messages in the canonical setting (pk,tm = ŷk,tm and pk,th = ŷk,th ), in
this section we will refer to both these terms as pk,tm (and pk,th ) for simplicity. The following theorem
formalizes the statement that conversation calibration (at sufficiently diminishing rates) guarantees
fast agreement on most rounds, and that the resulting conversations improve accuracy.

Theorem 4.1. If the Human is (fh, gh)-conversation-calibrated and the Model is (fm, gm)-
conversation-calibrated, then for any ϵ, δ ∈ [0, 1], on a 1−δ fraction of days, they reach ϵ-agreement
after at most K rounds of conversation for

K ≤ 1

ϵ2δ − β(T )

where β(T ) = 3
(
gm(T ) + gh(T ) +

fm(gm(T )·T )
gm(T )·T + fh(gh(T )·T )

gh(T )·T

)
, a term that will tend to 0 for

appropriately instantiated functions g and f .

Furthermore, for any round k such that |T≥k| ≥ δT , we have that

SQErr(pT
≥k,k

h , yT
≥k,k

h )

T
≤

SQErr(pT
≥k,2

h , yT
≥k,k

h )

T
− k(ϵ2δ − β(T )).

In other words, each round of conversation is error improving compared to the initial predictions of
the human (or the model), with the error improving at a rate that is linear in the number of rounds
of conversation.
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A corollary of this theorem is that after T is taken to be sufficiently large, agreement occurs rapidly
on almost every day, and each further round of conversation leads to an ϵ2δ decrease in squared
error.

Corollary 4.2. When β(T ) ≤ δϵ2

2 , on a 1−δ fraction of days, the number of rounds until agreement
is at most K ≤ 2

δϵ2 .

Finally, in Theorem 4.8 we give a reduction that allows us to convert an arbitrary model into an algo-
rithm that satisfies (

√
T , T

−1
3 )-conversation calibration, for which it suffices to take T ≥ O( 1

ϵ6δ3 )
to satisfy the conditions of Corollary 4.2.

We now turn to proving Theorem 4.1. First we give some intuition for the theorem. Our analysis
will focus on the sequence of predictions made at each round k of conversation, over all days for
which the conversation reaches that round. Intuitively, there are two cases:

1. In the first case, on most days, the prediction at round k is within ϵ of the prediction made
at round k − 1. In this case, most conversations that make it to round k end in agreement
at round k.

2. In the second case, most predictions at round k differ by more than ϵ from the predictions
at round k − 1. But the sequence of predictions made at round k satisfies conversation
calibration. This means that when we condition on the subsequence at which (for example),
the prediction at round k−1 was v′ and the prediction at round k was v for some |v−v′| ≥ ϵ,
on this subsequence, the label mean was actually v. As a result, the sequence of predictions
at round k must be substantially more accurate than the predictions at round k − 1.

But neither case can occur very often: every time case (1) occurs, the fraction of conversations that
makes it beyond round k is reduced by a constant factor, which can occur at most log(1/δ) many
times before only a δ fraction of conversations remain. And each time case (2) occurs, the average
squared error of the predictions at round k (which makes up at least a δ fraction of days) decreases
by at least ≈ ϵ2 — but as the labels and predictions are both bounded in [0, 1], this cannot occur
more than 1/(ϵ2δ) many times.

In fact, we smoothly handle both kinds of events without explicitly breaking the analysis down into
two cases, and as a result do not have to pay for the log(1/δ) term. The following lemma is the
work-horse of our analysis. It states that at any round, if the human is (perfectly) conversation
calibrated given some bucketing of the model’s predictions, then the squared error of the human’s
predictions is lower than the squared error of the model’s most recent predictions by an amount
scaling with ϵ2 times the number of days that did not lead to agreement at that round — minus
an error term that depends on the coarseness of the bucketing function gh defining the human’s
conversation calibration guarantee. A symmetric guarantee holds for the model.

Lemma 4.3. If the human is (0, gh(T ))-conversation-calibrated, then for any even k,

SQE(p1:T,k
h , yT

≥k

) ≤ SQE(pT
≥k,k−1

m , yT
≥k

)− (ϵ− gh(T ))
2|T≥k+1|+ gh(T )T (1)

And if the model is (0, gh(T ))-conversation-calibrated, for any odd k,

SQE(p1:T,k
m , yT

≥k

) ≤ SQE(pT
≥k,k−1

h , yT
≥k

)− (ϵ− gm(T ))2|T≥k+1|+ gm(T )T (2)

Proof. Let T i,ph

k = {t : pt,kh = ph and pt,k−1
m ∈ Bi(

1
g(T ) )} be the subsequence of days such that

the human predicts ph in round k and the model predicts in bucket Bi(
1

g(T ) ) in round k − 1. Let

mi,ph

k =

∑
t∈T

i,ph
k

yt

|T i,ph
k |

be the true mean on this subsequence. The difference in squared errors can be

written as
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∑
t∈T

i,ph
k

(pt,k−1
m − yt)2 −

∑
t∈T

i,ph
k

(pt,kh − yt)2

=

 ∑
t∈T

i,ph
k

(pt,k−1
m − yt)2 −

∑
t∈T

i,ph
k

(mi,ph

k − yt)2

−
 ∑
t∈T

i,ph
k

(pt,kh − yt)2 −
∑

t∈T
i,ph
k

(mi,ph

k − yt)2


(Adding and subtracting

∑
t∈T

i,ph
k

(mi,ph

k − yt)2)

≥

 ∑
t∈T

i,ph
k

(i · gh(T )− yt)2 − |T i,ph

k | · gh(T )−
∑

t∈T
i,ph
k

(mi,ph

k − yt)2

−
 ∑
t∈T

i,ph
k

(pt,kh − yt)2 −
∑

t∈T
i,ph
k

(mi,ph

k − yt)2

 (By Lemma A.2)

=

 ∑
t∈T

i,ph
k

(i · gh(T )−mi,ph

k )2 − |T i,ph

k | · gh(T )

−
 ∑
t∈T

i,ph
k

(pt,kh − yt)2 −
∑

t∈T
i,ph
k

(mi,ph

k − yt)2


(By Lemma A.1)

=

 ∑
t∈T

i,ph
k

(i · gh(T )−mi,ph

k )2 − |T i,ph

k | · gh(T )

−
 ∑
t∈T

i,ph
k

(ph − yt)2 −
∑

t∈T
i,ph
k

(mi,ph

k − yt)2


(As by definition of T i,ph

k , pt,kh = ph)

≥

 ∑
t∈T

i,ph
k

(i · gh(T )−mi,ph

k )2 − |T i,ph

k | · gh(T )

−
 ∑
t∈T

i,ph
k

(ph −mi,ph

k )2


(By Lemma A.1)

≥ −|T i,ph

k | · gh(T ) +
∑

t∈T
i,ph
k

(i · gh(T )− ph)
2

(As the human is (0, gh(T ))-conversation calibrated, ph = mi,ph

k )
Summing this up for all i, ph:

∑
∀i,ph

−|T i,ph

k | · gh(T ) +
∑

t∈T
i,ph
k

(i · gh(T )− ph)
2


≥ −gh(T )T +

∑
∀i,ph

∑
t∈T

i,ph
k

(i · gh(T )− ph)
2

(As gh(T ) is independent of i and ph, and
∑

∀i,ph

∣∣∣T i,ph

k

∣∣∣ ≤ T )

≥ −gh(T )T +
∑
∀i,ph

∑
t∈T

i,ph
k

1[|i · gh(T )− pt,kh | ≥ ϵ− gh(T )](i · gh(T )− ph)
2

≥ −gh(T )T + (ϵ− gh(T ))
2
∑
∀i,ph

∑
t∈T

i,ph
k

1[|i · gh(T )− pt,kh | ≥ ϵ− gh(T )]

Note that, for all days in the subsequence T i,ph

k , in round k − 1 the model predicted in bucket
Bi(

1
gh(T ) ) = i · gh(T ), and therefore in each of these days, by the definition of our bucketing,

pt,k−1
m ≥ (i−1)·gh(T ) and pt,k−1

m ≤ i·gh(T ). So consider any round t ∈ T i,ph

k . If |pt,kh −pt,k−1
m | ≥

ϵ, then we have:
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|pt,kh − pt,k−1
m | ≤ |pt,kh − i · gh(T )|+ |i · gh(T )− pt,k−1

m |
= |pt,kh − i · gh(T )|+ i · gh(T )− pt,k−1

m

≤ |pt,kh − i · gh(T )|+ i · gh(T )− (i− 1) · gh(T )
= |pt,kh − i · gh(T )|+ gh(T ),

=⇒ |pt,kh − i · gh(T )| ≥ |pt,kh − pt,k−1
m | − gh(T ) ≥ ϵ− gh(T ).

Thus, if |pt,kh − pt,k−1
m | ≥ ϵ, then |i · gh(T ) − pt,kh | ≥ ϵ − gh(T ), ∀t ∈ T i,ph

k . Therefore the set of
days for which the former condition holds is a subset of the latter condition, and we can write

− gh(T )T + (ϵ− gh(T ))
2
∑
∀i,ph

1[|i · gh(T )− ph| ≥ ϵ− gh(T )] ·
∣∣∣T i,ph

k

∣∣∣
≥ −gh(T )T + (ϵ− gh(T ))

2
∑
∀i,ph

∑
t∈T

i,ph
k

1[|pt,kh − pt,k−1
m | ≥ ϵ]

= −gh(T )T + (ϵ− gh(T ))
2|T≥k+1|

(As on every day where there is a next round, the human and the model disagreed by at least ϵ)

As the human and the model are perfectly symmetrical, we also obtain the symmetrical result for
the model.

Next, we extend Lemma 4.3 to the case in which the conversation calibration error is not 0, but rather
controlled by some function fh(·). The idea is straightforward. We know from Lemma 4.3 that
squared error would decrease significantly if the human’s predictions were perfectly conversation
calibrated. In fact, all we know is that the human’s predictions are close (in ℓ1 distance) to perfectly
conversation calibrated predictions. But this is good enough, because squared error is Lipschitz, and
so small changes in predictions result in small changes in squared error. As a result, approximate
conversation calibration is also enough to let us bound the decrease in error across adjacent rounds:

Theorem 4.4. If the Human is (fh(·), gh(·))-conversation-calibrated, then after engaging in the
iterated calibration protocol for T days:

SQE(p1:T,k
h , yT

≥k

) ≤ SQE(pT
≥k,k−1

m , yT
≥k

)− (ϵ−gh(T ))
2|T≥k+1|+gh(T )T +3

fh(gh(T ) · T )
gh(T )

(3)
And if the Model is (fm(·), gm(·))-conversation-calibrated, then after engaging in the iterated cali-
bration protocol for T days:

SQE(p1:T,k
m , yT

≥k

) ≤ SQE(pT
≥k,k−1

h , yT
≥k

)−(ϵ−gm(T ))2|T≥k+1|+gm(T )T+3
fm(gm(T ) · T )

gm(T )
(4)

Proof. Let Tm(k, i) = {t : pt,k−1
m ∈ Bi

(
1

gh(T )

)
} be the subsequence of days in which the models

predicts in bucket Bi(
1

gh(T ) ) at round k − 1.

Note that the human has distance to calibration of fh(|Tm(k, i)|) on every such subsequence defined
this way. Therefore, for predictions p1:T,k

h from the human at round k:
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CalDist(p1:T,k
h , yT

≥k

) = min
q1:T∈C(y1:T )

∥p1:T,k
h − q1:T,k∥1

≤

1
gh(T )∑
i=1

min
q1:|Tm(k,i)|∈CTm(k,i)(y1:T,k)

∥p1:T − q1:Tv ∥1

≤

1
gh(T )∑
i=1

fh(|Tm(k, i)|) (By the calibration distance of the Human)

≤ fh(gh(T ) · |T≥k|)
gh(T )

≤ fh(gh(T ) · T )
gh(T )

(By the assumption that fh is concave)

Let qT
≥k

be the set of perfectly calibrated predictions that are fh(|Tm(k, i)|)-close to p1:T,k
h . Then,

by Lemma A.3,

SQErr(pT
≥k,k

h , yT
≥k

) ≤ SQErr(qT
≥k

, yT
≥k

) + 3
fh(gh(T ) · T )

gh(T )

≤ SQErr(pTk,k−1
m , yT

≥k

)− (ϵ− gh(T ))
2|T≥k+1|+ gh(T )T + 3

fh(gh(T ) · T )
gh(T )

(By Lemma 4.3)

As the Human and the Model are symmetric, we also obtain the symmetric result for the Model.

Proof of Theorem 4.1. By composing the two results in Theorem 4.4, until k such that |T≥k| ≤ δ·T ,
we see that

SQErr(pT
≥k,k−2

h , yT
≥k

)− SQErr(p1:T,k
h , yT

≥k

)

≥ (ϵ− gh(T ))
2|T≥k+1|+ (ϵ− gm(T ))2|T≥k| − gm(T )T − 3

fm(gm(T ) · T )
gm(T )

− gh(T )T − 3
fh(gh(T ) · T )

gh(T )

≥
(
(ϵ− gm(T ))2 + (ϵ− gh(T ))

2
)
|T≥k+1| − (gm(T ) + gh(T ))T − 3

(
fm(gm(T ) · T )

gm(T )
+

fh(gh(T ) · T )
gh(T )

)

Thus, consider any round r such that |T≥r| ≥ δT . By applying this expression recursively, we can
bound the squared error of the model at round r by
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SQErr(p1:T,r
h , y1:T,k)

≤ SQErr(pT
≥r,2

h , y1:T,k)− ((ϵ− gm(T ))2 + (ϵ− gh(T ))
2)

(
r∑

k=1

|T≥k|

)
+ (gm(T ) + gh(T ))

(
r∑

k=1

|T≥k|

)

+ 3

(
fm(gm(T ) · T )

gm(T )
+

fh(gh(T ) · T )
gh(T )

)( r∑
k=1

1

)

≤ SQErr(pT
≥r,2

h , y1:T,k)− ((ϵ− gm(T ))2 + (ϵ− gh(T ))
2)

(
r∑

k=1

|T≥k|

)
+ (gm(T ) + gh(T ))(r)T

+ 3

(
fm(gm(T ) · T )

gm(T )
+

fh(gh(T ) · T )
gh(T )

)
(r) (As |T≥k| ≤ T )

≤ SQErr(pT
≥r,2

h , y1:T,k)− ((ϵ− gm(T ))2 + (ϵ− gh(T ))
2)(r)δT + 2(gm(T ) + gh(T ))(r)T

+ 3

(
fm(gm(T ) · T )

gm(T )
+

fh(gh(T ) · T )
gh(T )

)
(r)

(As for all T≥k such that k ≤ r, |T≥k| ≥ δT )

≤ SQErr(pT
≥r,2

h , y1:T,k)− rϵ2δT + 3r(gm(T ) + gh(T ))T + 3r

(
fm(gm(T ) · T )

gm(T )
+

fh(gh(T ) · T )
gh(T )

)
= SQErr(pT

≥r,2
h , y1:T,k)− r

(
ϵ2δT + Tβ(T )

)
This completes the second part of the Theorem.

By definition, the squared error is non-negative. Therefore, we have that

SQErr(p1:T,r
h , y1:T,k) ≤ SQErr(pT

≥r,2
h , y1:T,k)− r

(
ϵ2δT + Tβ(T )

)
=⇒ 0 ≤ SQErr(pT

≥r,2
h , y1:T,k)− r

(
ϵ2δT + Tβ(T )

)
=⇒ 0 ≤ T − r

(
ϵ2δT + Tβ(T )

)
(As the maximum squared error is T )

=⇒ r ≤ 1

ϵ2δ + β(T )

This completes the first part of the Theorem.

We now interrogate what conversation-calibration rates are sufficient to get fast convergence to the
agreement bounds we quoted in Corollary 4.2.
Theorem 4.5. Fix any 0 < α < 1. There exists a constant γ such that if the Human is (fh(·), gh(·))-
conversation calibrated and the model is (fm(·), gm(·))-conversation calibrated such that:

fh(τ), fm(τ) ∈ O(τα) and gm(τ), gh(τ) ∈ O(τγ)

then for every T ≥ Ω
(
( 1
δϵ2 )

2−α
1−α

)
, if the agreement protocol is run for at least T days, then on a

1− δ fraction of days, the two parties reach ϵ-agreement after at most O
(

1
δϵ2

)
rounds.

Proof. By Corollary 4.2, if β(T ) ≤ δϵ2

2 , the number of rounds until agreement is at most O( 1
δϵ2 ).

Thus we will find a sufficiently large value of T to ensure this.

We have that
β(T ) = 3(2T γ + 2Tα(γ+1)−γ−1)

This is minimized by solving for

γ = α(γ + 1)− γ − 1 =⇒ 2γ − αγ = α− 1 =⇒ γ =
α− 1

2− α
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Thus we get β = 12T
α−1
2−α . Now, in order to ensure that β(T ) ≤ δϵ2

2 , we need

12T
α−1
2−α ≤ δϵ2

2
=⇒ T

1−α
2−α ≥ 24

δϵ2
=⇒ T ≥

(
24

δϵ2

) 2−α
1−α

= O

(
1

δϵ2

) 2−α
1−α

.

Finally, we turn to the algorithmic problem. There are existing simple, efficient algorithms that
can make sequential predictions in adversarial environments that guarantee diminishing distance to
calibration at favorable rates Arunachaleswaran et al. [2025]. What we give here is an efficient
reduction that takes as input an arbitrary initial model, and by reduction to a sequential prediction
algorithm that achieves distance to calibration at some rate, outputs an algorithm for the model
that can interact in Protocol 3.1 and against any sequence of predictions for the human, guarantee
conversation calibration at the same rate. The reduction is straightforward: We use the initial model
to make the round 1 predictions, and then intialize a collection of distance-to-calibration algorithms,
for each round k and for each possible bucketing of the other agent’s predictions. Then, at each
round k, we predict according to the instance of the distance-to-calibration algorithm corresponding
to that round and the bucketing of the other agent’s most recent prediction.

Protocol 1 Almost-One-Step-Ahead (AOSA) Arunachaleswaran et al. [2025]
Input Sequence of outcomes y1:T ∈ {0, 1}T
Output Sequence of predictions p1:T ∈ {0, 1

m , ..., 1}T for m = 1/
√
T

for t = 1 . . . , T do
Given look-ahead predictions p̃1:t−1, define the look-ahead bias conditional on a prediction p
as:

αp̃1:t−1(p) :=

t−1∑
s=1

I[p̃s = p](p̃s − ys)

Choose two adjacent points pi = i
m , pi+1 = i+1

m satisfying:

αp̃1:t−1(pi) ≤ 0 and αp̃1:t−1(pi+1) ≥ 0

Arbitrarily predict pt = pi or pt = pi+1 Upon observing the (adversarially chosen) outcome
yt, set look-ahead prediction

p̃t = argmin
p∈{pi,pi+1}

|p− yt|

First we quote the distance to calibration guarantee of Almost-One-Step-Ahead (Algorithm 1)

Theorem 4.6 (Arunachaleswaran et al. [2025]). Algorithm 1 (Almost-One-Step-Ahead) guarantees
that against any sequence of outcomes, CalDist(p1:T , y1:T ) ≤ 2

√
T + 1.

As stated, Algorithm 1 is defined as a function of the length T of the sequence on which it will
be evaluated. In our reduction, we will want guarantees that hold over many different sequences
whose lengths we do not know ahead of time. However, it is not hard to convert Algorithm 1 into an
algorithm that has similar bounds and does not require knowing T ahead of time, using a doubling
trick. We give such an algorithm in Algorithm 4 in Appendix A.

Theorem 4.7. Algorithm 4 (Almost-One-Step-Ahead with unknown T ) guarantees that against any
sequence of outcomes, CalDist(p1:T , y1:T ) ≤ O(

√
T ).

The proof is in Appendix A.

Finally, we can give our reduction (Algorithm 2) that takes as input an initial model M0 : Xm → Y ,
a sequential prediction algorithm D with a concave bound fm(·) on its distance to calibration, and
a bucketing function gm(·). We show that for any discretization function gm, Algorithm 2 guar-
antees (fm(·), gm(·)) conversation calibration against any sequence of outcomes and predictions
of the human. We will refer to the prediction made by Algorithm 2 in round 1 (for any day t) as
CONVERSE1.
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Protocol 2 CONVERSE(M0, D, gm(T )): A reduction from an online decision-making algorithm to
an algorithm with low conversation-calibration error

Input Baseline model algorithm M0, D2C algorithm D, Discretization gm(T )
We denote Dk,i as an instantiation of D which is given as input only the subsequence of days
where pt,kh ∈ [(i− 1) · gm(T ), i · gm(T )], and denote Dk,i,t be the prediction of Dk,i at round t.
for t = 1, . . . , T do

Receive xt
m

Send prediction pt,1m = M0(x
t
m) to human

for k = 3, 5, . . . do
Initialize empty set S
Observe human prediction pt,k−1

h

if |pt,k−1
h − pt,k−2

m | < ϵ then
Predict pt,k−1

h and break out of loop
Let i be such that pt,k−1

h ∈ [(i− 1) · gm(T ), i · gm(T )]
if Dk−1,i uninitialized then

Initialize Dk−1,i

Send prediction pt,km = Dk−1,i,t to human
S ← S ∪ (k − 1, i)

if |pt,k−1
h − pt,km | < ϵ then

Predict pt,k−1
h and break out of loop

Observe yt

for (k, i) ∈ S do
Update Dk,i with (Dk,i,t, y

t)

Theorem 4.8. If D has worst-case CalDist of fm(·), then for any bucketing function gm(·),
CONVERSE(M0, D, gm(·)) is (fm(·), gm(·))-conversation-calibrated in the worst case over label
outcomes and conversations. Moreover the first round prediction of CONVERSE are the same as the
prediction of the base model M0 for all t: CONVERSE1(x

t
m) = M0(x

t
m), for all t.

Proof. We first must show that CONVERSE(M0, D, gm(·)) is fm(·), gm(·)-conversation-calibrated.
Observe that Algorithm 2 instantiates a new copy of the algorithm D for each round k, bucket i
pair corresponding to each of the sets Tm(k, i). This immediately implies that the sequence of
predictions made by each instance Dk,i satisfies

CalDist(p
Tm(k,i),k
h , yTm(k,i)) ≤ f(|Tm(k, i)|),

by assumption that D has worst-case distance to calibration of fm(·). Since this holds for
the sequence of predictions for all round k, bucket i pairs, by its corresponding instance of
Dk,i, we have that CONVERSE(M0, D, gm(·)) is (fm(·), gm(·))-conversation-calibrated. That
CONVERSE1(x

1:T
m ) = M0(x

1:T
m ), for all t follows by construction.

Corollary 4.9. CONVERSE(M0, AOSA, T
−1
3 ) is (

√
T , T

−1
3 )−conversation-calibrated, and

CONVERSE1(x
t
m) = M0(x

t
m), for all t.

Finally, we end with a corollary putting all of our results together. We can take any initial model M0

and efficiently convert it into a protocol that can engage in conversations with a human. If the human
satisfies conversation calibration (a significantly weaker assumption than Bayesian rationality), then
not only will the conversations halt quickly, but they will result in outcomes that are only more
accurate than either the human or the model’s initial judgments. This holds despite the fact that we
have no assumptions on the form of the initial model M0, so it can be the result of an arbitrarily
sophisticated machine learning process. We state the corollary as if both parties are implemented
using CONVERSE to be concrete about computational tractability and so that we can be specific
about rates, but this is not necessary — the only important thing is that both parties are conversation
calibrated.
Corollary 4.10. If the human runs CONVERSE(Mh

0 , AOSA, gh(·)) and the model runs
CONVERSE(Mm

0 , AOSA, gm(·)) for gm(T ) = gh(T ) = T− 1
3 , then:
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• For any ϵ, δ ∈ [0, 1], on a 1 − δ fraction of days, they reach ϵ-agreement after at most K
rounds of conversation where: K ≤ 1

ϵ2δ−6T− 1
3

• For the subsequence of days that make it to round k s.t. |T≥k| ≥ δT with associated
human prediction subsequences pT

≥k,k
h and outcome subsequences yT

≥k

, we have that for

M0 ∈ {Mm
0 ,Mh

0 }:
SQErr(pT≥k,k

h ,yT≥k
)

T ≤ SQErr(M0,y
T≥k

)
T − i(ϵ2δ − 12

T
1
3
).

5 Agreement in d Dimensions

We now extend our results from 1 dimensional label spaces to d dimensional label spaces: Y =
[0, 1]d (the setting given in Definition 3.6). As in the previous section, here predictions are the same
as messages (pk,tm = ŷk,tm and pk,th = ŷk,th ), and therefore in this section we will refer to both these
terms as pk,tm (and pk,th ) for simplicity.

At a high level, our argument will be similar. We will measure the error of our predictions using the
sum of the squared error in each of the coordinates of our predictions, which will also serve as our
potential function. We will continue to argue that at each round, either many conversations end, or
else the squared error of the predictions must substantially improve, limiting the number of rounds
of conversation that can occur. Of course, the maximum squared error is now d, rather than 1, and
so the number of rounds until agreement will be larger by a factor of d. There is another step in
the argument within which one must be careful not to lose another factor of d. For tractability, we
have only asked for conversation calibration conditions to hold marginally on each coordinate of our
predictions. So, we need to argue that error decreases coordinate-wise. But imagine a sequence of
predictions at round k on which we have not reached ϵ-agreement. It might be that each prediction
agrees with the previous round’s predictions on all but a single coordinate — and hence it might be
that for any particular coordinate, there is in fact ϵ-disagreement with the prior round’s prediction
in that coordinate on only a 1/d fraction of the rounds. We are able to avoid losing another factor
of d in our analysis by keeping more careful track of the error in each coordinate — since if the
disagreements are uniformly spread across all of the coordinates, although it is true that we do not
improve the error by as much in each coordinate, we are able to improve the error in all coordinates
simultaneously.

In our analysis, we will often need to focus on a single coordinate j of the multi-dimensional pre-
diction or label: we will write pt,kh [j] or y[j] to denote the value at this coordinate. We measure
accuracy using the following multi-dimensional extension of our squared error definition:
Definition 5.1 (Multi-Dimension Squared Error). The squared error of a sequence of
d−dimensional predictions p with respect to the d−dimensional outcomes y is:

SQE(p1:T , y1:T ) =
∑
j∈[d]

SQE(p1:T [j], y1:T [j]).

Theorem 5.2. If the Human is (fh, gh)-conversation-calibrated and the Model is (fm, gm)-
conversation-calibrated in d dimensions, then for any ϵ, δ ∈ [0, 1], on a 1 − δ fraction of days,
they reach ϵ-agreement after at most K rounds of conversation for

K ≤ d

ϵ2δ − β(T )

where β(T ) = 3d
(
gm(T ) + gh(T ) +

fm(gm(T )·T )
gm(T )·T + fh(gh(T )·T )

gh(T )·T

)
, a term that will tend to 0 for

appropriately instantiated functions g and f .

Furthermore, for any round k such that |T≥k| ≥ δT , we have that

SQErr(pT
≥k,k

h , yT
≥k,k

h )

T
≤

SQErr(pT
≥k,2

h , yT
≥k,k

h )

T
− k(ϵ2δ − β(T )).

In other words, each round of conversation is error improving compared to the initial predictions of
the human (or the model), with the error improving at a rate that is linear in the number of rounds
of conversation.
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A corollary of this theorem is that after T is taken to be sufficiently large, agreement occurs rapidly
on almost every day, and for (1− δ) of the days, each further round of conversation leads to an ϵ2δ
decrease in squared error.

Corollary 5.3. When β(T ) ≤ δϵ2

2 , on a 1−δ fraction of days, the number of rounds until agreement
is at most K ≤ 2d

δϵ2 .

Finally, in Corollary 5.7 we give a reduction that allows us to convert an arbitrary model into an
algorithm that satisfies (

√
T , T

−1
3 )-conversation calibration in the d-dimensional setting.

We can now state our main work-horse lemma, which again holds for perfectly conversation cali-
brated predictions. It states that at any round k, the squared error of the vector-valued predictions
must decrease compared to the squared error at the previous round, in proportion to ϵ2 and the frac-
tion of days that do not lead to agreement at round k. We then extend the argument to predictions
that have conversation-calibration error that is controlled by some function fh(·). Since the argu-
ments follow a similar analysis to those in Section 4, applied once to each dimension d, we defer all
proofs to Appendix B.
Lemma 5.4. If the human is (0, gh(T ))-conversation-calibrated for d-dimensional vector predic-
tions, then for any even k,

SQE(p1:T,k
h , yT

≥k

) ≤ SQE(pT
≥k,k−1

m , yT
≥k

)− (ϵ− gh(T ))
2|T≥k+1|+ dgh(T )T

And if the model is (0, gh(T ))-conversation-calibrated, for any odd k,

SQE(p1:T,k
m , yT

≥k

) ≤ SQE(pT
≥k,k−1

h , yT
≥k

)− (ϵ− gm(T ))2|T≥k+1|+ dgm(T )T (5)

Theorem 5.5. If the Human is (fh(·), gh(·))-conversation-calibrated in d dimensions, then after
engaging in the iterated calibration protocol for T days:

SQE(p1:T,k
h , yT

≥k

) ≤ SQE(pT
≥k,k−1

h , yT
≥k

)− (ϵ− gh(T ))
2|T≥k+1|+ d · gh(T )T + 3d · fh(gh(T ) · T )

gh(T )

And if the Model is (fm(·), gm(·))-conversation-calibrated in d dimensions, then after engaging in
the iterated calibration protocol for T days:

SQE(p1:T,k
m , yT

≥k

) ≤ SQE(pT
≥k,k−1

m , yT
≥k

)− (ϵ− gm(T ))2|T≥k+1|+ d · gm(T )T + 3d · fm(gm(T ) · T )
gm(T )

.

Now, similarly to Section 4, we introduce our reduction (Algorithm 5) that takes as input an initial
model M0 : Xm → Y , a sequential prediction algorithm D with a concave bound fm(·) on its
distance to calibration, and a bucketing function gm(·). We show that Algorithm 5 efficiently guar-
antees (fm(·), gm(·))-conversation calibration against any sequence of outcomes and predictions of
the human.
Theorem 5.6. If D has worst-case CalDist of fm(·), then for any bucketing function gm(·),
CONVERSE-DDIM(M0, D, gm(·)) is (fm(·), gm(·))-conversation-calibrated, and for any sequence
of labels y1:T , the first round prediction of CONVERSE-DDIM is the same as the prediction of the
base model M0 for all t: CONVERSE-DDIM1(x

t
m) = M0(x

t
m), for all t.

Corollary 5.7. Algorithm 5 CONVERSE-DDIM(M0, AOSA, T
−1
3 ) is (

√
T , T

−1
3 )-conversation-

calibrated.

We conclude with a final corollary putting the above together. Any arbitrary baseline model can
be efficiently converted into a protocol that interacts with a human, and if this human satisfies our
conversation-calibration condition, conversations will reach agreement quickly.
Corollary 5.8. If the human runs CONVERSE-DDIM(Mh

0 , AOSA, gh(·)) and the model runs
CONVERSE-DDIM(Mm

0 , AOSA, gm(·)) for gm(T ) = gh(T ) = T− 1
3 , then:

• For any ϵ, δ ∈ [0, 1], on a 1 − δ fraction of days, they reach ϵ-agreement after at most K
rounds of conversation where: K ≤ d

ϵ2δ−T− 1
3

.
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• For the subsequence of days that make it to round k s.t. |T≥k| ≥ δT with associated
human prediction subsequences pT

≥k,k
h and states of nature subsequences yT

≥k

, we have

that SQErr(pT≥k,k,yT≥k
)

T ≤ SQErr(M0,y
T≥k

)
T − i(ϵ2δ − 12

T
1
3
).

6 Agreement when Communicating Decisions

We now turn our attention to the action feedback setting (Setting 3.8). Recall that in this setting, the
label space Y ⊆ [0, 1]d is high dimensional, and the parties communicate with one another not by
providing point predictions ŷ ∈ Y , but rather by communicating the action a in an action space A
that is utility maximizing according to their predictions. In this section, the messages pt,km and pt,kh
denote the actions which the Human and Model communicate at each round. Note that by definition
of Setting 3.8, pt,km is the optimal action given the Model’s prediction of the label vector ŷt,km (and
the equivalent statement holds for the Human).

Rather than arguing that the squared error of the predictions decreases at each round of conversation,
we will argue that the utility of the sequence of communicated actions will increase at each iteration.
Towards this end we will define shorthand notation that expresses the summed utility of a sequence
of actions over time, with respect to a sequence of outcomes.
Definition 6.1. Fix any utility function U as defined in Definition 1. We extend our notation to
allow U to take as input a sequence of communicated actions p1:T and a corresponding sequence of
outcomes y1:T by letting this denote the summed utility as computed over this sequence:

U(p1:T , y1:T ) =

T∑
t=1

U(pt, yt)

We will prove the following theorem in this section:
Theorem 6.2. If the Human is fh(·)-decision-conversation-calibrated and the Model is fm(·)-
decision-conversation-calibrated, then on a 1 − δ fraction of days, they reach ϵ-agreement in at
most

K ≤ 1

2ϵδ − γ(T )
+ 1

rounds, where γ(T ) =
2Ld|A|2·fh( T

|A|2
)+2Ld|A|2·fm( T

|A|2
)

T is a term that will tend to 0 as T grows
large. Furthermore, for any round k such that |T≥k| ≥ δT ,

U(p1:T,k
h , y1:T ) ≥ U(pT

≥k,k−1
m , y1:T ) + kT (2ϵδ − γ(T ))

Corollary 6.3. When γ(T ) ≤ εδ, on a 1− δ fraction of days, the number of rounds until agreement
is at most

K ≤ 1

εδ
+ 1.

And for any round k such that |T≥k| ≥ δT ,

U(p1:T,k
h , y1:T ) ≥ U(pT

≥k,k−1
m , y1:T ) + kϵδT

The proof follows a similar structure to the proof of our agreement theorem in the canonical setting
(Theorem 4.1). At a high level, we analyze each round k of communication separately, across days.
Intuitively there are again two cases. In the first case, most of the conversations that make it to round
k end in agreement. Again, this is a good case, as we wish to show that most conversations end in
agreement quickly. In the remaining case, most of the predictions made at round k ϵ-disagree. Here
our argument differs: Since the parties are not communicating their (d-dimensional) predictions
directly, we cannot argue that the squared error of the predictions at round k decreases. However,
our notion of conversation-decision-calibration does allow us to argue that the average utility of
the predictions made at round k increases substantially compared to the prior round. Thus the
downstream utility of the human takes the role of squared error in our potential argument (and is
what allows us to argue that the conversations are utility increasing). In fact, because our utility
functions are linear, compared to the canonical setting, this allows us to get an improved rate of
convergence — depending now on 1/ϵ rather than 1/ϵ2. The below lemma formalizes the progress
that we make at round k of a conversation, across days:
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Lemma 6.4. If the Human is fh(·)-decision-conversation-calibrated, then after engaging in Pro-
tocol 3.1 instantiated in the action feedback setting (Definition 3.7) for T days, for all odd rounds
k:

U(p1:T,k
h , y1:T,k)− U(p1:T,k−1

m , y1:T,k) ≥ ϵ|T≥k+1| − 2Ld|A|2 · fh
(

T

|A|2

)

Furthermore, if the Model is fm(·)-decision-conversation-calibrated, then after engaging in Proto-
col 3.1 instantiated in the action feedback setting (Definition 3.7) for T days, for all even rounds
k:

U(p1:T,k
m , yT

≥k

)− U(p1:T,k−1
h , yT

≥k

) ≥ ϵ|T≥k+1| − 2Ld|A|2 · fm
(

T

|A|2

)

Proof. Let T ah,am

k = {t : pt,kh = ah and pt,k−1
m = am} be the subsequence of days such that the

human sends the message ah in round k and the model sends the message am in round k − 1.

By definition, for all t ∈ T ah,am

k , argmaxa∈A U(a, pt,kh ) = ah and argmaxa∈A U(a, pt,k−1
m ) =

am. Then, we can write the difference in utilities as
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U(p1:T,k
h , yT

≥k

)− U(p1:T,k−1
m , yT

≥k

)

=
∑

ah,am∈A

∑
t∈T

ah,am
k

U(ah, y
t)−

∑
ah,am∈A

∑
t∈T

ah,am
k

U(am, yt)

=
∑

ah,am∈A
U(ah,

∑
t∈T

ah,am
k

yt)−
∑

ah,am∈A
U(am,

∑
t∈T

ah,am
k

yt) (By the linearity of U(a, ·))

≥
∑

ah,am∈A
U

ah,
∑

t∈T
ah,am
k

pt,kh

− ∑
ah,am∈A

U

am,
∑

t∈T
ah,am
k

pt,kh

−
2L · ∥

∑
t∈T

ah,am
k

pt,kh −
∑

t∈T
ah,am
k

yt∥1 (By the L-lipschitzness of U(a, ·))

≥
∑

ah,am∈A
U

ah,
∑

t∈T
ah,am
k

pt,kh

− ∑
ah,am∈A

U

am,
∑

t∈T
ah,am
k

pt,kh

− 2L ·
∑
j∈[d]

(
∑

t∈T
ah,am
k

pt,kh [j]−
∑

t∈T
ah,am
k

yt[j])

≥
∑

ah,am∈A
U

ah,
∑

t∈T
ah,am
k

pt,kh

− ∑
ah,am∈A

U

am,
∑

t∈T
ah,am
k

pt,kh

− 2Ld · fh(Th,k
am,ah

)

(By the DC-calibration guarantee of the Human)

=
∑

ah,am∈A

∑
t∈T

ah,am
k

U(ah, p
t,k
h )−

∑
ah,am∈A

∑
t∈T

ah,am
k

U(am, pt,kh )−
∑

ah,am∈A
2Ld · fh(|T ah,am

k |)

(By the linearity of U(a, ·))

=
∑

ah,am∈A

 ∑
t∈T

ah,am
k

(U(ah, p
t,k
h )− U(am, pt,kh )

− ∑
ah,am∈A

2Ld · fh(|T ah,am

k |)

(By the linearity of U(a, ·))

≥
∑

ah,am∈A

∑
t∈T

ah,am
k

1[U(ah, p
t,k
h )− U(am, pt,kh ) ≥ ϵ] · ϵ

+
∑

ah,am∈A

∑
t∈T

ah,am
k

1[U(ah, p
t,k
h )− U(am, pt,kh ) < ϵ]

(
U(ah, p

t,k
h )− U(am, pt,kh )

)
−

∑
ah,am∈A

2Ld · fh(|T ah,am

k |)

≥
∑

ah,am∈A

∑
t∈T

ah,am
k

1[U(ah, p
t,k
h )− U(am, pt,kh ) ≥ ϵ] · ϵ−

∑
ah,am∈A

2Ld · fh(|T ah,am

k |)

(As ah is the best response under pt,kh , ∀t ∈ [Th,k
am,ah

])

= ϵ · |T≥k+1| − 2Ld
∑

ah,am∈A
fh(|T ah,am

k |)

(As T≥k+1 is exactly the days on which the human at round k does not agree with the model)

≥ ϵ · T≥k+1 − 2Ld|A|2 · fh
(
|T≥k|
|A|2

)
(By the concavity of fh)

≥ ϵ · |T≥k+1| − 2Ld|A|2 · fh
(

T

|A|2

)
As the model and the human are symmetric, we also attain the symmetric result for the model.

We can now prove the theorem, by iteratively applying Lemma 6.4 to each round of conversation:
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Proof of Theorem 6.2. By composing both parts of Theorem 6.4, we have that, for any k,

U
(
p1:T,k
h , yT

≥k
)
− U

(
p1:T,k−2
h , yT

≥k
)
≥ ϵ|T≥k+1|+ ϵ|T≥k| − 2Ld|A|2 · fh

(
T

|A|2

)
− 2Ld|A|2 · fm

(
T

|A|2

)
=⇒ U

(
p1:T,k
h , yT

≥k
)
− U

(
p1:T,2
h , yT

≥k
)
≥

k−1∑
q=1

(
ϵ|T≥q+1|+ ϵ|T≥q| − 2Ld|A|2 · fh

(
T

|A|2

)
− 2Ld|A|2 · fm

(
T

|A|2

))
(Recursively applying the result)

Let us consider any round r in which |T≥r| ≥ δT . We have that:

U
(
p1:T,r
h , y1:T,r

)
− U

(
p1:T,2
h , y1:T,k

)
≥

r−1∑
q=1

(
ϵ|T≥q+1|+ ϵ|T≥q| − 2Ld|A|2 · fh

(
T

|A|2

)
− 2Ld|A|2 · fm

(
T

|A|2

))

≥ −2 (k − 1)Ld|A|2 · fh
(

T

|A|2

)
− 2 (k − 1)Ld|A|2 · fm

(
T

|A|2

)
+ ϵ

k−1∑
q=1

(
|T≥q+1|+ T

)

≥ −2 (k − 1)Ld|A|2 · fh
(

T

|A|2

)
− 2 (k − 1)Ld|A|2 · fm

(
T

|A|2

)
+ ϵ

k−1∑
q=1

(2δT )

(As |T≥q| is ≥ δT )

≥ (k − 1)

(
2ϵδT − 2Ld|A|2 · fh

(
T

|A|2

)
− 2Ld|A|2 · fm

(
T

|A|2

))
≥ (k − 1) (2ϵδT − Tγ (T ))

This proves the second result in the Theorem.

However, we also have that U
(
p1:T,k
h , y1:T,k

)
≤ T . Therefore, we have that

U
(
p1:T,r
h , y1:T,r

)
− U

(
p1:T,2
h , y1:T,k

)
≥ (k − 1) (2ϵδT − Tγ (T ))

=⇒ T − U
(
p1:T,2
h , y1:T,k

)
≥ (k − 1) (2ϵδT − Tγ (T ))

=⇒ T ≥ (k − 1) (2ϵδT − Tγ(T )) (As U(·) ≥ 0)

=⇒ k ≤ 1

2ϵδ − γ(T )
+ 1

This proves the first result in the Theorem.

We now turn to the algorithmic reduction that allows us to convert a model into an algorithm capa-
ble of maintaining conversation-decision calibrated predictions. To do so, we need to define some
formalism to be able to express the guarantees of the algorithm of Noarov et al. [2023], which in-
formally, is able to maintain d dimensional predictions that are unbiased conditional on an arbitrary
collection of specified events. We define a special case of these events below, which is strictly less
general than the type of events supported by Noarov et al. [2023], but sufficient for our usage.
Definition 6.5 (Event indicator E(ct, ŷt)). For any t, the event indicator function E : C × Y →
{0, 1} takes as input the context ct and prediction ŷt in round t, and outputs a binary indicator of
whether or not event E is active.

We write a collection of events as E . We can now state the guarantees of the algorithm given in
Noarov et al. [2023]:
Theorem 6.6 (Noarov et al. [2023]). Given a convex compact d-dimensional real valued prediction
space and a collection E of events of size |E|, for any 0 < α < 1, the algorithm UNBIASEDPREDIC-
TION outputs, for any sequence of adaptively chosen labels, a sequence of d-dimensional predictions
ŷ1, . . . , ŷT satisfying with probability 1− α, for every event E ∈ E and every coordinate j ∈ [d]:∣∣∣∣∣

T∑
t=1

E(ct, ŷt)](ŷt[j]− yt[j])

∣∣∣∣∣ ≤ O

(
log(d |E|T ) +

√
T log

(
|E|d
α

))
(6)

The per-round running time of UNBIASEDPREDICTION is polynomial in d and |E|.
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UNBIASEDPREDICTION is instantiated with the set of events E and α and, on every day, takes as
input a context pair needed to evaluate each event.

In our reduction we will run a different instantiation of the UnbiasedPrediction algorithm for each
round k, and for the kth instantiation, the contexts at each day t will be the conversation Ct,1:k−1

that has taken place on that day so far.

We want our predictions at each round to be unbiased conditional on events which are defined by the
human’s recommended action in the previous round, and the model’s recommended action in this
round. We define the following event set accordingly:
Definition 6.7 (Action-Conversation Events). For each pair of actions ah, am ∈ A and each round
k define the event:

Eah,am,k(ŷ
t,k, Ct,1:k−1) = 1[argmax

a∈A
U(a, ŷt,k) = am] · 1[pt,k−1

h = ah]

Let Ek := {Eah,am,k∀ah, am ∈ A}.

We are now ready to define our reduction in Algorithm 3.

Protocol 3 CONVERSE-ACTION(M0, α)
Input Baseline model algorithm M0, Discretization gm(T )
for t = 1, . . . , T do

Receive xt
m

Send prediction pt,1m = M0(x
t
m) to the human

for k = 2, 4, 6, . . . do
L← k
if Dk+1 uninitialized then

Initialize Dk+1 = UNBIASEDPREDICTION(Ek+1, α)

Observe human action recommendation pt,kh

if pt,kh = pt,k−1
m or |U(pt,kh , ŷt,k−1

m )− U(pt,k−1
m , ŷt,k−1

m )| ≤ ϵ then
Predict pt,kh and break out of loop

Set prediction ŷt,k+1
m = Dk+1(C

t,1:k−1)
Send recommendation pt,k+1

m = argmaxa∈A U(a, ŷt,k+1
m ) to human

Observe yt

for k ∈ 2, 4, . . . , L do
Update Dk+1 with yt

Theorem 6.8. CONVERSE-ACTION(M0, α) is O

(
log(2d|A|2T +

√
T ln

(
|A|2d

α

))
-DC-

calibrated with probability 1 − α, and for any sequence of labels y1:T , its first-round prediction is
the same as the prediction of the base model M0 for all t: CONVERSE-ACTION(M0, α)1(x

t
m) =

M0(x
t
m), for all t.

Proof. By construction, in each odd round k, CONVERSE-ACTION(M0, α) runs
UNBIASEDPREDICTION(Ek, α) with subsequences defined by Ek in order to obtain predic-
tions. By Theorem 6.6, in each round, the bias on subsequences defined by the model’s
action recommendation and the human’s action recommendation on the previous round is

O

(
log(2d |E|T ) +

√
T ln

(
|E|d
α

))
. Thus the algorithm is O

(
log(2d |E|T ) +

√
T ln

(
|E|d
α

))
-

DC-calibrated.

The second result follows directly from the definition of CONVERSE-ACTION(M0, α).

Theorem 6.9. Fix an L-Lipschitz utility function U . If the human runs CONVERSE-
ACTION(Mh

0 , α) and the model runs CONVERSE-ACTION(Mm
0 , α), then, if T ≥

O(L2d3|A|5(1+log( 1
α )))

ϵ2δ2 , with probability ≥ 1 − 2α, on a 1 − δ fraction of days, the number
of rounds until agreement is at most

K ≤ 1

ϵδ
+ 1
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Furthermore, for any round k such that |T≥k| ≥ δT ,

U(p1:T,k
h , y1:T ) ≥ U(pT

≥k,k−1
m , y1:T ) + kϵδT

We defer the proof to Appendix C.

7 Bayesian Agreement Theorems

In this section we show how to recover one-shot Agreement Theorems for Bayesians with a common
prior, in the style of past work Aumann [1976], Geanakoplos and Polemarchakis [1982], Aaronson
[2005], Kong and Schoenebeck [2023], Frongillo et al. [2023]. In most of this paper, we have
studied a repeated interaction across many days, within an environment about which we have made
no assumptions. Our theorems hinged on tractable calibration conditions that we imposed on the
participants. In contrast, past work on agreement theorems has assumed two interlocutors who share
common and complete knowledge of a prior distribution from which instances are drawn, and are
perfect Bayesians — at each round of conversation, they condition on everything they have observed
(the features of the instance they have seen, as well as the transcript of the conversation), and report
their posterior expectation of the label. The strength of the approach that we have taken in most of
this paper is that we do not need to assume any distributional knowledge (or even the existence of a
distribution), and our assumptions on the agents are tractable (in contrast to an assumption that the
agents can compute posterior distributions, which is in general intractable in large state spaces). On
the other hand, our guarantees are necessarily about sequences of many interactions, whereas past
work on Aumannian agreement theorems give guarantees for conversations about single instances,
that hold with high probability over the draw of the instance from the prior distribution.

In this section, we show that our theorems are strictly more general than this one-shot setting, in that
all of our theorems can be “lifted” to the one-shot setting if we are willing to make the assumption
(as past work does) that instances are drawn from a commonly known prior and that the agents report
correct posterior expectations. To demonstrate this, we prove two things:

1. First, we show that in the sequential setting, if the instance at each round is drawn indepen-
dently from a known prior distribution, then an Agent who reports the posterior expectation
of the label at each round of conversation (conditional on everything they have observed so
far, including the transcript of the conversation) will satisfy our various notions of conver-
sation calibration, no matter how their interlocutor is behaving. This result is in the spirit of
Dawid [1982], and our analysis proceeds according to the following thought experiment:
when arguing that the Bayesian is conversation-calibrated at some round k of the conversa-
tion, we imagine that at each day t, the label yt is re-drawn from the Bayesian’s posterior
distribution on yt at round k. This does not change the joint distribution on transcripts,
and so any statement that is true of transcripts under this thought experiment is true under
the original transcript distribution. But within this thought experiment, the Bayesian is al-
ways announcing the true mean of the label distribution just before the label is sampled —
(conversation) calibration bounds therefore follow from standard Martingale concentration
arguments.

2. Next, we observe that if two Bayesians are interacting with one another in the sequential
setting, and the instance is drawn i.i.d. at each day, then the conversation that they have at
each day t is statistically independent of all previous days. We know (from part 1) that if we
allow them to interact across sufficiently many days, the transcript of their conversations
will be arbitrarily well conversation calibrated, and hence in the canonical setting, they will
agree on a 1 − δ fraction of days after k = 1/ϵ2δ many rounds. Similar guarantees with
different bounds hold in each of our other settings. However, because the conversations
at each round are identically and independently distributed, the transcript distribution is
permutation invariant — and hence the two Bayesians will agree on the first day after at
most k = 1/ϵ2δ many rounds, with probability 1 − δ over the selection of a day from the
transcript, which is equivalent to a 1−δ probability guarantee over the draw of the instance
from the underlying prior.

Hence we conclude that our theorems extend to the 1-shot Bayesian setting and generalize and
extend past work on Bayesian agreement. In particular we give quantitative convergence bounds in
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the style of Aaronson [2005] that are independent of the complexity of the instance, but are able to
recover theorems not just in the cannonical setting, but in the d-dimensional and action feedback
settings as well.

7.1 Bayesians are Conversation Calibrated

In this section we begin by showing that if the instance at each day is drawn from a prior distribution
D, and one of the Agents is a Bayesian who correctly computes predictions as posterior expectations
given the prior D and all observed evidence, then when interacting with any other agent, they are
guaranteed to maintain conversations that satisfy any of our calibration conditions. We start by
defining how a Bayesian learner interacts in a conversation.
Definition 7.1 (Bayesian Learner). Fix a priorD ∈ ∆(Xh×Xm×Y) specifying a joint distribution
over features observable to both the human and the model and labels. We say that a human (respec-
tively, model) is a Bayesian Learner with prior D if given a known algorithm for the model, for all
t, k > 0, given observable features xt, message transcript µ1:t−1, prediction transcript π1:t−1

h of
human predictions (respectively, π1:t−1

m of model predictions) through day t − 1, and conversation
Ct

1:k−1, they make a prediction as

ŷt,kh = ED[Y |xt, µ1:t−1, π1:t−1
h , Ct

1:k−1] (respectively, ŷt,km = ED[Y |xt, µ1:t−1, π1:t−1
m , Ct

1:k−1]).

[ht]
Input (D,Ωh,Ωm,Y, AGREEϵ)
for each day t = 1, . . . do

Receive xt = (xt
h, x

t
m, yt) ∼ D. The model sees xt

m and the human sees xt
h.

for each round k = 1, 2, . . . , L do
if k is odd then

The Model predicts ŷt,km ∈ Y , and sends the Human pt,km ∈ Ωm

if AGREEε(p
t,k−1
h , ŷt,k−1

h , pt,km , ŷt,km ) then
Return pt,km and break out of loop

if k is even then
The Human predicts ŷt,kh , and sends the model pt,kh ∈ Ωh

if AGREEε(p
t,k
h , ŷt,kh , pt,k−1

m , ŷt,k−1
m ) then

Return pt,k−1
m and break out of loop

The Human and Model observe yt ∈ Y

Protocol 7.1 is the same as our general agreement protocol (Protocol 3.1), except that the instance
at each day t is drawn i.i.d. from a prior distribution D, rather than being chosen by an adversary.
We will prove the following theorem, which states that if the human is a Bayesian learner, then they
will satisfy strong conversation calibration constraints of various forms.
Theorem 7.2. Consider an interaction over T rounds under Protocol 7.1. If the human (respectively,
model) is a Bayesian Learner (Definition 7.1), then for any model (respectively, human) algorithm,
for any n > 0, with probability 1− δ, they are

•
(
O(T

3
4 (log dn

δ )
1
4 ), 1

n

)
-conversation calibrated, and

•
(
2
√
2T log d|A|2

δ

)
-DC-conversation-calibrated.

First we formalize a simple observation in the following lemma. It states that if we resample the label
every day after the jth round of conversation from the posterior distribution on the label conditional
on the transcript of interaction so far, that this does not change the distribution of transcripts. An
upshot of this lemma is that all of our subsequent analysis can proceed under this resampling thought
experiment.
Lemma 7.3. Let D be a probability distribution over space Xm × Xh × Y and fix a day t ∈ [T ].
Fix a transcript through day t− 1: π1:t−1.

• Consider an interaction at day t under Protocol 7.1. Let πt be the transcript of day t from
this interaction.
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• Fix an arbitrary round j. Consider an interaction when (xm, xh, y
t) is sampled from

D at the beginning of day t and then the human and model correspond according to
Protocol 7.1 until round j. Then, in round j, the outcome is resampled from the pos-
terior distribution conditional on the information observed by the human so far: y′ ∼
DY |xt

h, µ
1:t−1, π1:t−1

h , Ct
1:j−1, p

t,j
m . Let π̄t

j be the transcript of day t from this interaction,
with yt replaced with y′.

For all rounds k,

P
D
[πt,1:k] = P

D
[π̄t,1:k

j ].

The proof can be found in Appendix D

Lemma 7.3 tells us that we can proceed in our analysis by imagining that at any round j on which
the Bayesian learner sends a message, they send a message that is consistent with the true label
expectation at that round, as we can imagine that the label is resampled according to its posterior ex-
pectation. This means that the Bayesian’s forecasts are unbiased, and so by Azuma’s inequality, the
average of the Bayesian’s forecasts should equal the average of the realized label up to small error
terms on any sequence that is sufficiently long. Thus the rest of the analysis consists of identifying
sufficiently long sequences on which bounding the bias of the Bayesian’s predictions in this way is
sufficient to bound each notion of calibration error. This is enough to straightforwardly give us a
bound on the Bayesian’s decision conversation calibration error, since DC-conversation-calibration
error is simply the maximum bias in any coordinate of the learner’s predictions conditional on the
best response action defined by the Bayesian’s prediction and the action communicated by the other
agent; thus there are only |A|2 many sequences on which we need to bound the bias, and the re-
sult will follow from Azuma’s inequality and a union bound. However, conversation calibration is
defined in terms of distance to calibration, which is more subtle. Distance to calibration is upper
bounded by expected calibration error (ECE), however the empirical ECE of a Bayesian will in
general not be bounded, as they might make a different prediction at every round, and hence there
will be no sequences of fixed predictions of length > 1, and hence we have no ability to invoke
concentration. Instead, we will bound the Bayesian’s bucketed expected calibration error, defined
next, and use this to upper bound distance to calibration.

Definition 7.4 (Bucketed Expected Calibration Error). Given a sequence of predictions p1:T and
outcomes y1:T , the expected calibration error with respect to bucketing coarseness n (Definition
3.21) is

ECE(p1:T , y1:T ;n) =

n∑
i=1

∣∣∣∣∣
T∑

t=1

1[pt ∈ Bn(i)](p
t − yt)

∣∣∣∣∣ .
Lemma 7.5. Fix a sequence of of predictions p1:t and outcomes y1:T . Then, CalDist(p1:T , y1:T ) ≤
ECE(p1:T , y1:T ;n) + T

n .

The proof is in Appendix D.

Bounding bucketed calibration error for a Bayesian can be done via Azuma’s inequality: it now
reduces to bounding the empirical bias of the predictions conditional on the bucket of the prediction,
which for a bucketing parameter n consists of n subsequences, each of which we can apply Azuma’s
inequality to. The final bounds come from optimizing n, trading off the need to sum over the
magnitude of the bias on each sequence defined by a bucketing (which is costlier for larger n) and
the need to bound distance to calibration using Lemma 7.5 (which is costlier for smaller n). The
details are in Appendix D.

7.2 An Online to One-Shot Reduction

In this section, we show that if an instance is drawn from a commonly known prior, and both agents
are Bayesian, then all of our theorems that bound the conversation length K for a 1 − δ fraction of
conversations over an arbitrarily long sequence of length T in fact hold for a single conversation,
with probability 1− δ over the draw of the instance from the prior distribution. The idea is straight-
forward: We can imagine an arbitrarily long sequence of conversations over many days. Because
we showed that Bayesians satisfy our notions of conversation calibration with parameters growing
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sublinearly with T , our theorems apply with the error terms going to 0 as T grows large, and we
can conclude that their conversations are short for a 1− δ fraction of days. But we can also observe
that because the instances are drawn i.i.d. from a fixed prior, and in such a setting Bayesians need
not condition on any information from prior days, the conversation on each day is distributed identi-
cally. Hence it must be that each conversation (and in particular the first) is bounded with probability
1−δ over the prior. We therefore conclude that our theorems hold for a single conversation between
Bayesians.

[ht]
Input (Ωh,Ωm,Y, AGREEϵ, D ∈ ∆(Xh × Xm × Y), instance for which you want agreement:
(x∗

h, x
∗
m, y∗) ∼ D

Parameter agreement tolerance: ε, failure probability: δ, number of samples: T
Let (x1

h, x
1
m, y1) = (x∗

h, x
∗
m, y∗)

For t ∈ {2, . . . , T} draw (xt
h, x

t
m, yt) ∼ D

for each day t = 1, . . . , T do
Model observes xt

m and Human observes xt
h.

for each round k = 1, 2, . . . , L do
if k is odd then

The Model predicts ŷt,km ∈ Y , and sends the Human pt,km ∈ Ωm

if AGREEε(p
t,k−1
h , ŷt,k−1

h , pt,km , ŷt,km ) then
Return pt,km and break out of loop

if k is even then
The Human predicts ŷt,kh , and sends the model pt,kh ∈ Ωh

if AGREEε(p
t,k
h , ŷt,kh , pt,k−1

m , ŷt,k−1
m ) then

Return pt,k−1
m and break out of loop

The Human and Model observe yt ∈ Y

We define a hypothetical conversation protocol (Protocol 7.2) that takes as input a prior distribution
D and a single instance (x∗

h, x
∗
m, y∗) drawn from the prior distribution that we want fast agreement

on. The hypothetical protocol runs our agreement protocol for T rounds, using the supplied instance
(x∗

h, x
∗
m, y∗) on day 1, and using freshly sampled instances from the prior at all subsequent days.

Note that we will never run Protocol 7.2 — in particular, in reality, we do not want to have to know
the label y∗ before the Bayesians converse — but it will be a useful thought experiment.

A fixed Human algorithm, denoted H , a fixed Model algorithm, denoted M , a prior D, and hypo-
thetical Protocol 7.2 together define a distribution over transcripts. Of particular interest to us will be
the distribution over conversation lengths at each round. Let ℓt(H,M,D) represent the conversation
length at round t of the transcript induced by H , M , and D in Protocol 7.2. We first observe that the
conversation lengths are identically distributed at each day of Protocol 7.2, since the instances each
day are i.i.d.:

Lemma 7.6. If H and M are Bayesian learners, then P(ℓt1(H,M,D) ≥ k) = P(ℓt2(H,M,D) ≥
k), ∀t1, t2 ∈ [1, . . . , T ], k ∈ N.

Proof. Because the instance at each day t is drawn i.i.d., the predictions of a Bayesian Learner in
round k are a function only of the prior D, the feature vector they observe (xt

h or xt
m) and the

conversation up to that round Ct
1:k−1. Therefore, given two Bayesian learners, ℓt(H,M,D) is a

function only of (xt
m, xt

h, y
t). But (xt

m, xt
h, y

t) are i.i.d. for all t. Therefore, P(ℓt1(H,M,D) ≥
k) = P(ℓt2(H,M,D) ≥ k), ∀t1, t2 ∈ [1, . . . , T ], k ∈ N.

Next, we show that in the limit as the number of rounds T in the hypothetical Protocol 7.2 tends to
infinity, we can give a high probability bound on the length K of the first conversation in Protocol
7.2 — i..e the conversation pertaining to the relevant instance (x∗

h, x
∗
m, y∗). This follows because 1)

Bayesians become increasingly conversation calibrated as T grows large, and so we can apply our
theorems establishing that a 1 − δ fraction of conversations in Protocol 7.2 are short, and because
2) all conversation lengths are identically distributed, so if most conversations are short, it must also
be that the first conversation is short with high probability.

Theorem 7.7. Fix any ϵ, δ ∈ [0, 1] and any instance (x∗
h, x

∗
m, y∗) ∼ D. If the Human and the

Model are both Bayesian learners, then under Protocol 7.2, in the limit as T → ∞ they will reach
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ϵ−agreement with probability 1−δ on day 1 (i.e. the day corresponding to the instance (x∗
h, x

∗
m, y∗))

within

• K ≤ 3d
ϵ2δ rounds in the full feedback setting.

• K ≤ 3
2εδ + 1 rounds in the action feedback setting.

Proof of Theorem 7.7. The Full Feedback Setting: By Theorem 7.2, if we run the pro-
tocol for T rounds, then with probability 1 − 2δ/3 both the Human and the Model are(
2
(
2T log( 3dT

3/7

δ )
) 1

4

, T− 3
7

)
-conversation-calibrated. Assume for now that these calibration

bounds hold.

Note that Protocol 7.2 is simply a special case of Protocol 3.1, in which (xt
h, x

t
m, yt) are drawn

from a fixed distribution. Therefore, the guarantees from Theorem 5.2 hold, and we have that,
any ϵ, δ ∈ [0, 1], on a 1 − δ/3 fraction of days, they reach ε-agreement after at most K rounds

of conversation for K ≤ 3d
ϵ2δ−β(T ) and where β(T ) = 3d

(
2T− 3

7 +
4(2T ·T− 3

7 log( 3dT
3
7

δ ))
1
4

T ·T− 3
7

)
. But

limT→∞ β(T ) = 0, and so we have that for every η > 0, K < 3d
ϵ2δ−η Therefore we must have

K ≤ 3d
ϵ2δ .

Now, note that by Lemma 7.6, the distribution over conversation lengths at each day is identical.
Therefore, we have that

P
t∼Unif(1:T )

[
ℓt ≥

3d

ϵ2δ

]
≤ δ

3
=⇒ P

[
ℓ1 ≥

3d

ϵ2δ

]
≤ δ

3

Summing up all three failure probabilities, we have that

P
[
ℓ1 ≥

3d

ϵ2δ

]
≤ δ

The Action Feedback Setting By Theorem 7.2, if we run the protocol for T rounds, the human

and model are both (2
√
2T log 3d|A|2

δ )-decision-conversation calibrated with probability 1 − 2δ
3 .

Assume for now these two calibration bounds hold. We instantiate Theorem 6.2: the human and
model will reach ε−agreement on a 1− δ/3 fraction of days, after at most

K ≤ 1

2ϵ δ3 − γ(T )
+ 1

rounds of conversation, where γ(T ) =
4Ld|A|2·

√
2T log

3d|A|2
δ )+4Ld|A|2·

√
2T log

3d|A|2
δ )

T . Here
limT→∞ γ(T ) = 0. So once again we have that for every η > 0, K < 1

2ϵ δ
3−η

+ 1. Hence it

must be that: K ≤ 3
2ϵδ + 1.

Now, note that by Lemma 7.6, the distribution over conversation lengths at each day is identical.
Therefore, we have that

P
t∼Unif(1:T )

[
ℓt ≥

3

2ϵδ
+ 1

]
≤ δ

3
=⇒ P

[
ℓ1 ≥

3

2ϵδ
+ 1

]
≤ δ

3

Summing up over all three failure probabilities yields

P
[
ℓ1 ≥

3

2ϵδ
+ 1

]
≤ δ
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Finally we note that since we have proven that agreement happens quickly with high probability
over the draw of the instance from the prior on the first round of Protocol 7.2 in the limit as T grows
large, but the interaction at round 1 is independent of T , there is no need to run the protocol for more
than a single round — we have proven agreement theorems in the “one-shot” setting of prior work
Aumann [1976], Geanakoplos and Polemarchakis [1982], Aaronson [2005], Frongillo et al. [2023].
Corollary 7.8. Fix any ϵ, δ ∈ [0, 1] and any instance (x∗

h, x
∗
m, y∗) ∼ D. If the Human and the Model

are both Bayesian learners, then under Protocol 7.2 with T = 1, they will reach ϵ−agreement on
the instance (x∗

h, x
∗
m, y∗), with probability 1− δ after at most

• K ≤ 3d
ϵ2δ rounds in the full feedback setting.

• K ≤ 3
2εδ + 1 rounds in the action feedback setting.

8 Discussion and Conclusion

Bayesian rationality is an attractive, canonical model of optimal learning that has been adopted in
many economic models, including not just agreement (as we study in this paper), but also Bayesian
Persuasion Kamenica and Gentzkow [2011], reputation systems Mailath and Samuelson [2006],
and social herding Banerjee [1992]. While attractive, Bayesian reasoning is not computationally
or statistically tractable, and so models that assume perfect Bayesian agents are either limited to
speaking of extremely simple prior distributions or require making implausible assumptions on the
knowledge and computational power of the agents. Motivated in part by these concerns, there is
also a large literature that studies learning under simple behavioral assumptions (dating back to
Simon [1955], Tversky and Kahneman [1992]) — but these models are generally incompatible with
Bayesian reasoning, and hence are inherently less canonical — they require making choices about
how to model agent behavior that have no firm theoretical grounding.

Our work suggests a third approach: We make computationally and statistically tractable calibra-
tion assumptions that are strict relaxations of Bayesian rationality, and hence are satisfied by perfect
learners, but do not require implausible assumptions. In the case of agreement theorems, we have
shown that these tractable calibration conditions were all that was needed from Bayesian rationality,
in that we are able to prove (and generalize) agreement theorems that recover the same quantitative
bounds that were known under full Bayesian rationality under our weaker assumptions. Is this a
more general phenomenon? Perhaps in many other settings in which Bayesian rationality was pre-
viously thought to be a necessary modeling assumption, the same results can be obtained under
significantly weaker calibration-based assumptions that can be guaranteed by efficient online cali-
bration algorithms of various flavors.
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A Additional Material from Section 4

Lemma A.1. If m = 1
T

∑T
t=1 y

t, then for any constant x,

SQE(x, y1:T )− SQE(m, y1:T ) =

T∑
t=1

(x−m)2 (7)

Proof.

SQE(x, y1:T )− SQE(m, y1:T ) =

T∑
t=1

(x− yt)
2 −

T∑
t=1

(m− yt)
2

=

T∑
t=1

(m− yt + x−m)2 −
T∑

t=1

(m− yt)
2

=

T∑
t=1

(m− yt)
2 +

T∑
t=1

(x−m)2 +

T∑
t=1

2(m− yt)(x−m)−
T∑

t=1

(m− yt)
2

=

T∑
t=1

(x−m)2 +

T∑
t=1

2(m− yt)(x−m)

=

T∑
t=1

(x−m)2 + 2(x−m)

T∑
t=1

(m− yt)

=

T∑
t=1

(x−m)2

Lemma A.2. Let T i,ph

k = {t : pt,kh = ph and pt,k−1
m ∈ Bi(

1
g(T ) )} be the subsequence of days such

that the human predicts ph in round k and the model predicts in bucket Bi(
1

g(T ) ) in round k−1. Let

mi,ph

k =

∑
t∈T

i,ph
k

yt

|T i,ph
k |

be the true mean on this subsequence. If the human is (·, gh(T ))-conversation

calibrated, then

∑
t∈T

i,ph
k

(pt,k−1
m − yt)2 −

∑
t∈T

i,ph
k

(i · gh(T )− yt)2 ≥ −gh(T ) · |T i,ph

k | (8)

Proof. Note that for any t such that ℓt ≥ k, (i − 1) · gh(T ) ≤ pt,k−1
m ≤ i · gh(T ), by the human’s

bucketing condition. Therefore, we also have that (pt,k−1
m )2 ≥ ((i− 1)gh(T ))

2.
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∑
t∈T

i,ph
k

(pt,k−1
m − yt)2 −

∑
t∈T

i,ph
k

(i · gh(T )− yt)2

=
∑

t∈T
i,ph
k

(
(pt,k−1

m )2 − 2pt,k−1
m yt + (yt)2

)
−

∑
t∈T

i,ph
k

(
(i · gh(T ))2 − 2(i · gh(T ))yt + (yt)2

)
(Expanding)

=
∑

t∈T
i,ph
k

(pt,k−1
m )2 − (i · gh(T ))2 − 2pt,k−1

m yt + 2(i · gh(T ))yt (Cancelling out the (yt)2)

≥
∑

t∈T
i,ph
k

((i− 1)gh(T ))
2 − (i · gh(T ))2 − 2pt,k−1

m yt + 2(i · gh(T ))yt

(As (pt,k−1
m )2 ≥ ((i− 1)gh(T ))

2)

≥
∑

t∈T
i,ph
k

((i− 1)gh(T ))
2 − (i · gh(T ))2 − 2(i · gh(T )))yt + 2(i · gh(T ))yt

(As pt,k−1
m ≤ i · gh(T ))

=
∑

t∈T
i,ph
k

((i− 1)gh(T ))
2 − (i · gh(T ))2

=
∑

t∈T
i,ph
k

(
(i− 1)2 − i2

)
gh(T )

2

=
∑

t∈T
i,ph
k

(1− 2i)gh(T )
2

≥
∑

t∈T
i,ph
k

(1− 2

gh(T )
)gh(T )

2 (As i ≤ 1
gh(T ) )

=
∑

t∈T
i,ph
k

(gh(T )
2 − gh(T ))

≥ −|T i,ph

k | · (gh(T ))

Lemma A.3. Consider any sequence of predictions and labels p1:T , y1:T such that p is perfectly
calibrated on y, and some other sequence of predictions q1:T such that ||p1:T − q1:T || ≤ γ. Then,

T∑
t=1

(qt − yt)2 −
T∑

t=1

(pt − yt)2 ≤ 3γ
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Proof.

T∑
t=1

(pt − yt)2 −
T∑

t=1

(
qt − yt

)2
=

T∑
t=1

(pt)2 + (yt)2 − 2ptyt −

(
T∑

t=1

(qt)2 + (yt)2 − 2qtyt

)

=

T∑
t=1

((pt)2 − (qt)2) +

T∑
t=1

(2qtyt − 2ptyt)

≤
T∑

t=1

((pt)2 − (qt)2) + 2γ

(as ∥p1:T − q1:T ∥ ≤ γ and yt ∈ [0, 1])

≤
T∑

t=1

((pt)− (qt)) + 2γ (as pt, qt ∈ [0, 1])

= 3γ.

Protocol 4 AOST: Almost-One-Step-Ahead with unknown T

Input Sequence of outcomes y1:T ∈ {0, 1}T , where T is unknown a priori
Output Sequence of predictions p1:T ∈ {0, 1

m , ..., 1}T for some discretization parameter m > 0
t← 1
T̄ ← 1
while t ≤ T do
t0 ← t
T̄ ← 2 · T̄
while t ≤ T̄ and t ≤ T do

Given look-ahead predictions p̃t0:t−1, define the look-ahead bias conditional on a prediction
p as:

αp̃1:t−1(p) :=

t−1∑
s=t0

I[p̃s = p](p̃s − ys)

Choose two adjacent points pi = i
m , pi+1 = i+1

m satisfying:

αp̃t0:t−1(pi) ≤ 0 and αp̃t0:t−1(pi+1) ≥ 0

Arbitrarily predict pt = pi or pt = pi+1

Upon observing the (adversarially chosen) outcome yt, set look-ahead prediction

p̃t = argmin
p∈{pi,pi+1}

|p− yt|

t← t+ 1

Proof of Theorem 4.7. Consider running Algorithm 4 with some sequence of outcomes y1:T . Note
that, by construction, when the algorithm terminates, T̄

2 ≤ T ≤ T̄ . We can upper bound the distance
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to calibration as

CalDist(p1:T y1:T ) ≤
log2(T̄ )−1∑

i=1

CalDist(p2
i−1:2i , y2

i−1:2i) + CalDist(p
T̄
2 :T , y

T̄
2 :T )

≤
log2(T̄ )−1∑

i=1

(2
√
2i−1 + 1) + (2

√
T + 1)

(Algorithm runs a separate version of AOST for each T̄ , and by Theorem 4.6)

=

log2(T̄ )−1∑
i=1

(2
i+1
2 + 1) + (2

√
T + 1)

= log2(T̄ )− 1 +

log2(T̄ )−1∑
i=1

(2
i+1
2 ) + (2

√
T + 1)

= log2(T̄ ) + 2
√
T +

log2(T̄ )−1∑
i=1

((
√
2)i+1)

= log2(T̄ ) + 2
√
T + (

√
2)2 ·

√
2
log2(T̄ )−1 − 1√

2− 1
≤ log2(T̄ ) + 2

√
T + 2 ·

√
T̄ − 1√
2− 1

(As this is a geometric series)

≤ log2(2T ) + 2
√
T + 2 ·

√
2T − 1√
2− 1

= O(
√
T )

B Additional Material from Section 5

Proof of Lemma 5.4. Let T i,ph

k [j] = {t : pt,kh [j] = ph and pt,k−1
m [j] ∈ Bi(

1
g(T ) )} be the subse-

quence of days such that the pt,kh [j] = ph, and pt,k−1
m [j] ∈ Bi(

1
g(T ) ). Let mi,ph

k [j] =

∑
t∈T

i,ph
k

[j]
yt

|T i,ph
k [j]|

be the true mean on this subsequence. The difference in squared error of predictions in dimension j
can be written as
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∑
t∈T

i,ph
k [j]

(pt,k−1
m [j]− yt[j])2 −

∑
t∈T

i,ph
k

(pt,kh [j]− yt[j])2

=

 ∑
t∈T

i,ph
k

(pt,k−1
m [j]− yt[j])2 −

∑
t∈T

i,ph
k [j]

(mi,ph

k [j]− yt[j])2


−

 ∑
t∈T

i,ph
k [j]

(pt,kh [j]− yt[j])2 −
∑

t∈T
i,ph
k [j]

(mi,ph

k [j]− yt[j])2


(Adding and subtracting

∑
t∈T

i,ph
k [j]

(mi,ph

k [j]− yt[j])2)

≥

 ∑
t∈T

i,ph
k [j]

(i · gh(T )− yt[j])2 − |T i,ph

k [j]| · gh(T )−
∑

t∈T
i,ph
k [j]

(mi,ph

k [j]− yt[j])2


−

 ∑
t∈Tk[j]

i,ph

(pt,kh [j]− yt[j])2 −
∑

t∈Tk[j]
i,ph

(mk[j]
i,ph − yt[j])2

 (By Lemma A.2)

=

 ∑
t∈Tk[j]

i,ph

(i · gh(T )−mk[j]
i,ph)2 − |T i,ph

k [j]| · gh(T )

−
 ∑
t∈T

i,ph
k [j]

(pt,kh [j]− yt[j])2 −
∑

t∈T
i,ph
k [j]

(mi,ph

k [j]− yt[j])2


(By Lemma A.1)

=

 ∑
t∈Tk[j]

i,ph

(i · gh(T )−mk[j]
i,ph)2 − |T i,ph

k [j]| · gh(T )

−
 ∑
t∈T

i,ph
k [j]

(ph − yt[j])2 −
∑

t∈T
i,ph
k [j]

(mi,ph

k [j]− yt[j])2


(As by definition of T i,ph

k [j], pt,kh [j] = ph)

≥

 ∑
t∈T

i,ph
k [j]

(i · gh(T )−mi,ph

k [j])2 − |T i,ph

k [j]| · gh(T )

−
 ∑
t∈T

i,ph
k [j]

(ph −mi,ph

k [j])2


(By Lemma A.1)

≥ −|T i,ph

k [j]| · gh(T ) +
∑

t∈T
i,ph
k [j]

(i · gh(T )− ph)
2

(As the human is (0, gh(T ))-conversation calibrated, ph = mi,ph

k [j])

Summing this up for all i, ph:

∑
∀i,ph

−|T i,ph

k [j]| · gh(T ) +
∑

t∈T
i,ph
k [j]

(i · gh(T )− ph)
2


≥ −gh(T )T +

∑
∀i,ph

∑
t∈T

i,ph
k [j]

(i · gh(T )− ph)
2

(As gh(T ) is independent of i and ph, and
∑

∀i,ph

∣∣∣T i,ph

k [j]
∣∣∣ ≤ T )

≥ −gh(T )T +
∑
∀i,ph

∑
t∈T

i,ph
k [j]

I[|i · gh(T )− pt,kh [j]| ≥ ϵ− gh(T )](i · gh(T )− ph)
2

≥ −gh(T )T + (ϵ− gh(T ))
2
∑
∀i,ph

∑
t∈T

i,ph
k

I[|i · gh(T )− pt,kh [j]| ≥ ϵ− gh(T )]
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Note that, for all days in the subsequence T i,ph

k [j], in round k − 1 the model predicted in bucket
Bi(

1
gh(T ) ) = i · gh(T ) in dimension j, and therefore in each of these days, by the definition of our

bucketing, pt,k−1
m [j] ≥ (i−1) ·gh(T ) and pt,k−1

m [j] ≤ i ·gh(T ). So consider any round t ∈ T i,ph

k [j].
If |pt,kh [j]− pt,k−1

m [j]| ≥ ϵ, then we have:

|pt,kh [j]− pt,k−1
m [j]| ≤ |pt,kh [j]− i · gh(T )|+ |i · gh(T )− pt,k−1

m [j]|
= |pt,kh [j]− i · gh(T )|+ i · gh(T )− pt,k−1

m [j]

≤ |pt,kh [j]− i · gh(T )|+ i · gh(T )− (i− 1) · gh(T )
= |pt,kh [j]− i · gh(T )|+ gh(T ),

=⇒ |pt,kh [j]− i · gh(T )| ≥ |pt,kh [j]− pt,k−1
m [j]| − gh(T ) ≥ ϵ− gh(T ).

Thus, if |pt,kh [j] − pt,k−1
m [j]| ≥ ϵ, then |i · gh(T ) − pt,kh [j]| ≥ ϵ − gh(T ), ∀t ∈ T i,ph

k [j]. Therefore
the set of days for which the former condition holds is a subset of the latter condition, and we can
write

− gh(T )T + (ϵ− gh(T ))
2
∑
∀i,ph

I[|i · gh(T )− ph| ≥ ϵ− gh(T )] ·
∣∣∣T i,ph

k [j]
∣∣∣

≥ −gh(T )T + (ϵ− gh(T ))
2
∑
∀i,ph

∑
t∈T

i,ph
k [j]

I[|pt,kh [j]− pt,k−1
m [j]| ≥ ϵ]

Thus we have that

∑
∀i,ph

 ∑
t∈T

i,ph
k [j]

(pt,k−1
m [j]− yt[j])2 −

∑
t∈T

i,ph
k

(pt,kh [j]− yt[j])2


≥ −gh(T )T + (ϵ− gh(T ))

2
∑
∀i,ph

∑
t∈T

i,ph
k [j]

I[|pt,kh [j]− pt,k−1
m [j]| ≥ ϵ]

Summing this up for all dimensions j:
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∑
∀j∈[d]

∑
∀i,ph

 ∑
t∈T

i,ph
k [j]

(pt,k−1
m [j]− yt[j])2 −

∑
t∈T

i,ph
k

(pt,kh [j]− yt[j])2




≥ −dgh(T )T + (ϵ− gh(T ))
2
∑

∀j∈[d]

∑
∀i,ph

∑
t∈T

i,ph
k [j]

I[|pt,kh [j]− pt,k−1
m [j]| ≥ ϵ]


= −dgh(T )T + (ϵ− gh(T ))

2
∑
∀i,ph

∑
∀j∈[d]

∑
t∈T

i,ph
k [j]

I[|pt,kh [j]− pt,k−1
m [j]| ≥ ϵ]

≥ −dgh(T )T + (ϵ− gh(T ))
2
∑
∀i,ph

∑
t∈T

i,ph
k

I[∃j ∈ [d].s.t.|pt,kh [j]− pt,k−1
m [j]| ≥ ϵ]

= −dgh(T )T + (ϵ− gh(T ))
2
∑
t∈Tk

I[∃j ∈ [d].s.t.|pt,kh [j]− pt,k−1
m [j]| ≥ ϵ]

≥ −dgh(T )T + (ϵ− gh(T ))
2|T≥k+1|

(As for every day that proceeds further than round k, there is ϵ disagreement in at least one coordinate)

As the human and the model are perfectly symmetrical, we also obtain the symmetrical result for
the model.

Proof of Theorem 5.2. By composing the two results in Theorem 5.5, until k such that |T≥k| ≤ δ·T ,
we see that

SQE(pT
≥k,k−2

h , yT
≥k

)− SQE(p1:T,k
h , yT

≥k

)

≥ (ϵ− gh(T ))
2|T≥k+1|+ (ϵ− gm(T ))2|T≥k| − d · (gh(T ) + gm(T ))T − 3d · (fh(gh(T ) · T )

gh(T )
+ (

fm(gm(T ) · T )
gm(T )

)

Thus, consider any round r such that |T≥r| ≥ δT . By applying this expression recursively, we can
bound the squared error of the model at round r by
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SQErr(p1:T,r
h , y1:T,k)

≤ SQErr(pT
≥r,1

h , y1:T,k)− ((ϵ− gm(T ))2 + (ϵ− gh(T ))
2)

(
r∑

k=1

|T≥k|

)
+ d(gm(T ) + gh(T ))

(
r∑

k=1

|T≥k|

)

+ 3d

(
fm(gm(T ) · T )

gm(T )
+

fh(gh(T ) · T )
gh(T )

)( r∑
k=1

1

)

≤ SQErr(pT
≥r,1

h , y1:T,k)− ((ϵ− gm(T ))2 + (ϵ− gh(T ))
2)

(
r∑

k=1

|T≥k|

)
+ d(gm(T ) + gh(T ))(r)T

+ 3d

(
fm(gm(T ) · T )

gm(T )
+

fh(gh(T ) · T )
gh(T )

)
(r) (As |T≥k| ≤ T )

≤ SQErr(pT
≥r,1

h , y1:T,k)− ((ϵ− gm(T ))2 + (ϵ− gh(T ))
2)(r)δT + 2d(gm(T ) + gh(T ))(r)T

+ 3d

(
fm(gm(T ) · T )

gm(T )
+

fh(gh(T ) · T )
gh(T )

)
(r)

(As for all T≥k such that k ≤ r, |T≥k| ≥ δT )

≤ SQErr(pT
≥r,1

h , y1:T,k)− (ϵ2)(r)δT + 3d(gm(T ) + gh(T ))(r)T

+ 3d

(
fm(gm(T ) · T )

gm(T )
+

fh(gh(T ) · T )
gh(T )

)
(r)

≤ SQErr(pT
≥r,1

h , y1:T,k)− (r)

(
(ϵ2)δT − 3d(gm(T ) + gh(T ))T − 3d

(
fm(gm(T ) · T )

gm(T )
+

fh(gh(T ) · T )
gh(T )

))
= SQErr(pT

≥r,1
h , y1:T,k)− (r)

(
(ϵ2)δT − Tβ(T )

)
This completes the second part of the Theorem.

By definition, the squared error is non-negative. Therefore, we have that

0 ≤ SQErr(pT
≥r,1

h , y1:T,k)− r
(
(ϵ2)δT − Tβ(T )

)
=⇒ r ≤

SQErr(pT
≥r,1

h , y1:T,k)

ϵ2δT − Tβ(T )

=⇒ r ≤ d · T
ϵ2δT − Tβ(T )

=⇒ r ≤ d

ϵ2δ − β(T )

This completes the first part of the Theorem.

Proof of Theorem 5.5. Let Tm(k, i, j) =
{
t ∈ T≥k | pt,k−1

m [j] ∈ Bi(1/g(T ))
}

be the subsequence
of days where the j’th coordinate of the predictions of the model at round k − 1 falls in bucket i
and the conversation reaches round k. Note that by the definition of conversation calibration in d
dimensions (Definition 3.23), we have that

CalDist(p
Tm(k,i,j),k
h [j], yTm(k,i,j)[j]) ≤ f(|Tm(k, i, j)|)

Therefore, for predictions p1:T,k
h [j] from the human at round k in dimension j:
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CalDist(p1:T,k
h [j], y1:T,k[j]) = min

q1:T∈C(y1:T,k[j])
∥p1:T,k

h [j]− q1:T,k
j ∥1

(For 1-dimensional predictions qj)

≤

1
gh(T )∑
i=1

min
q
Tm(k,i,j)
j ∈CTm(k,i,j)(y1:T,k[j])

∥pTm(k,i,j),k
h [j]− q

Tm(k,i,j)
j ∥1

≤

1
gh(T )∑
i=1

fh(|Tm(k, i, j))|)

(By the calibration distance of the Human)

≤ fh(gh(T ) · |T≥k|)
gh(T )

(By the assumption that fh is concave)

≤ fh(gh(T ) · T )
gh(T )

Let q1:T,k,j be a set of perfectly calibrated predictions that are fh(|T k,i,j
m |)-close to p1:T,k

h [j]. Fur-
thermore, let q1:T,k be the set of d-dimensional predictions such that q1:T,k[j] = q1:T,k,j . Then, we
have,

SQErr(p1:T,k
h , y1:T ) =

∑
j∈[d]

SQErr(p1:T,k
h [j], y1:T [j])

≤
∑
j∈[d]

(
SQErr(q1:T,k,j , y1:T,k[j]) + 3

fh(gh(T ) · T )
gh(T )

)
(by Lemma A.3)

= SQErr(q1:T,k, y1:T,k) + 3d · fh(gh(T ) · T )
gh(T )

≤ SQErr(pT
≥k,k−1

m , y1:T,k)− (ϵ− gh(T ))
2|T≥k+1|+ dgh(T )T + 3d

fh(gh(T ) · T )
gh(T )

(By Lemma 5.4)

As the Human and the Model are symmetric, we also obtain the symmetric result for the Model.

Proof of Theorem 5.6. Algorithm 5 instantiates a copy of algorithm D for each round k, bucket i,
and coordinate j pair corresponding to each of the sets Tm(k, i, j). Therefore, we have that for each
round k, bucket i, coordinate j,

CalDist(p
Tm(k,i,j),k
h [j], yTm(k,i,j)[j]) ≤ f(|Tm(k, i, j)|)

by assumption that D has worst-case distance to calibration fm(·).
The fact that CONVERSE-DDIM1(x

t
m)[j] = M0(x

t
m)[j], for all t follows by construction.

C Additional Material from Section 6

Proof of Theorem 6.9. By Corollary 6.3, When γ(T ) ≤ εδ, on a 1− δ fraction of days, the number
of rounds until agreement is at most
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Protocol 5 CONVERSE-DDIM(M0, D, gm(T )): A reduction from an online decision-making algo-
rithm to an algorithm with low conversation-calibration error in d dimensions

Input Baseline model algorithm M0, D2C algorithm D, Discretization gm(T )

We denote Dj
k,i as an instantiation of D which is given as input only the subsequence of days

where pt,kh [j] ∈ [(i− 1) · gm(T ), i · gm(T )], and denote Dj
k,i,t be the prediction of Dj

k,i at round
t.
for t = 1, . . . , T do

Receive xt
m

Send prediction pt,1m [j] = M0(x
t
m)[j] to human for each j ∈ [d]

for k = 3, 5, . . . do
for j = 1, 2, . . . , d do

Initialize empty set S
Observe human prediction pt,k−1

h [j]

if |pt,k−1
h [j]− pt,k−2

m [j]| < ϵ then
Predict pt,k−1

h [j] and break out of loop
Let i be such that pt,k−1

h [j] ∈ [(i− 1) · gm(T ), i · gm(T )]

if Dj
k−1,i uninitialized then

Initialize Dj
k−1,i

Send prediction pt,km [j] = Dj
k−1,i,t to human

S ← S ∪ (k − 1, i, j)

if |pt,k−1
h [j]− pt,km [j]| < ϵ then

Predict pt,k−1
h [j] and break out of loop

Observe yt

for (k, i, j) ∈ S do
Update Dj

k,i with (Dj
k,i,t, y

t)

K ≤ 1
εδ + 1, where γ(T ) =

2Ld|A|2·fh( T
|A|2

)+2Ld|A|2·fm( T
|A|2

)

T . Instantiating this bound with the
high-probability result for Theorem 6.8, we have that, with probability 1− α:

γ(T ) =

4Ld|A|2 ·O
(
log(2d |E|T ) +

√
T ln( |E|dα )

)
T

=

4Ld|A|2 ·O
(
log(d |A|2 T ) +

√
T ln( |A|2d

α )

)
T

(By the definition of E in our setting)

=

O

(
Ld|A|2 · log(d |A|2 T ) + Ld|A|2 ·

√
T ln( |A|2d

α )

)
T

=
O
(
Ld|A|2 · log(d |A|2 T )

)
T

+

O

(
Ld|A|2 ·

√
log( |A|2d

α )

)
√
T

≤
O

(
Ld|A|2 · log(d |A|2) + Ld|A|2 ·

√
log( |A|2d

α )

)
√
T
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Thus, to set γ(T ) ≤ ϵδ w.p. ≥ 1− α, it is sufficient to set

O
(
Ld|A|2 · log(d |A|2)

)
√
T

+

O

(
Ld|A|2 ·

√
log( |A|2d

α )

)
√
T

≤ ϵδ

=⇒
O

(
Ld|A|2 · log(d |A|2) + Ld|A|2 ·

√
log( |A|2d

α )

)
ϵδ

≤
√
T

=⇒ T ≥
O
(
L2d2|A|4 · log2(d |A|2) + L2d2|A|4 · log( |A|2d

α )
)

ϵ2δ2

=⇒ T ≥
O
(
L2d3|A|5(1 + log( 1

α ))
)

ϵ2δ2

D Additional Material from Section 7

D.1 Bayesians are Conversation Calibrated

Proof of Lemma 7.3. We want to show that for any round j when the resampling might occur,
PD[π

t,1:k] = PD[π̄
t,1:k
j ] for all k. For k < j, the claim follows immediately since there is no

difference in the two sampling protocols. In round j, the claim that PD[π
t,1:j ] = PD[π̄

t,1:j
j ] follows

from a generic statement about resampling from posterior distributions that we formalize in Lemma
D.4: the joint distribution on any pair of random variables (A,B) is unchanged if we first sample
a pair (A,B′) and then sample B from its posterior distribution conditional on A. In this case, A
is the distribution on the transcript πt,1:j excluding the label yt and B is the label yt. For rounds
k > j the claim holds since the distribution for the remaining interaction at round t is fixed once we
fix πt,1:k−1

Proof of Lemma 7.5. For any bucket i ∈ [n], define the average outcome when the prediction falls
in a bucket Bn(i):

ȳi =

T∑
t=1

1[pt ∈ Bn(i)]∑T
t′=1 1[p

t′ ∈ Bn(i)]
yt
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Similarly, let p̄i define the average prediction in bucket i. Consider the sequence q1:T where qt =
ȳi(p

t), where pt ∈ Bn(i). Observe that q1:T is perfectly calibrated.

CalDist(p1:T , y1:T ) ≤ ∥p1:T − q1:T ∥1

=

T∑
t=1

|pt − qt|

=

T∑
t=1

∑
i∈[n]

1[pt ∈ Bn(i)]|pt − ȳti |

≤
T∑

t=1

∑
i∈[n]

1[pt ∈ Bn(i)]
(
|pt − p̄i|+ |p̄i − ȳi|

)
(by the triangle inequality)

=
∑
i∈[n]

T∑
t=1

1[pt ∈ Bn(i)]
(
|pt − p̄i|

)
+
∑
i∈[n]

∣∣∣∣∣
T∑

t=1

1[pt ∈ Bn(i)] (p̄i − ȳi)

∣∣∣∣∣
(by the fact that p̄i and ȳi are constant for each i ∈ [n])

≤ T

n
+
∑
i∈[n]

∣∣∣∣∣
T∑

t=1

1[pt ∈ Bn(i)] (p̄i − ȳi)

∣∣∣∣∣
(by the fact that |p− p̄i| ≤ 1

n for all p ∈ Bn(i))

=
T

n
+ ECE(p1:T , y1:T ;n).

Proof of Theorem 7.2. Consider a modified interaction under Protocol 7.1 when, in each day in
round j (if the conversation reaches round j), the outcome is resampled according to the information
seen by the human so far: y′ ∼ DY |xt

h, µ
1:t−1, π̄1:t−1

h , Ct
1:j−1, p

t,j
m . Let π̂j be the transcript from

this interaction. First, we will show that PD[π] = PD[π̂
j ], where π is the transcript under the

unmodified Protocol 7.1.

Let π̂1:t,j denote the transcript of this interaction up to day t. Note that this is distinct from π̄t,j ,
which denotes the transcript of an interaction only on day t where the resampling only occurs in
round j. We will proceed via induction over days.

• Base Case: PD[π
1:1] = PD[π̂

1:1,j ].

Proof : On day t = 1, we have PD[π
1] = PD[π̄

1,j ], by Lemma 7.3. Note that π̄1,j = π̄1:1,j =
π̂1:1,j , and therefore PD[π

1:1] = P[π̂1:1,j ].

• Inductive Step: If PD[π
1:t] = PD[π̂

1:t,j ], then PD[π
1:t+1] = PD[π̂

1:t+1,j ].

Proof : Observe that the state of the model algorithm in any round t + 1 is a function only of
the algorithm M and the transcript until that round: π1:t or π̄1:t. By the Inductive Hypothesis,
PD[π

1:t] = PD[π̂
1:t,j ] – and consequently, since the model algorithm M is the fixed between

both interactions, therefore, PD[π
t+1,j ] = PD[π̄

t+1,j ]. By Lemma 7.3, this is equal to PD[π
t+1].

As PD[π̂
1:t,j ] = PD[π

1:t] and PD[π̄
t+1,j ] = PD[π

t+1], we have that PD[π
1:t+1] = PD[π̂

1:t+1,j ].

Now, all that remains to show is that the human has low calibration error in transcript π̂(j). We will
want to do so for each of our notions of conversation-calibration error.

Conversation-Calibration Error Fix some arbitrary round k. We will proceed by bounding the
expected bucketed calibration error of the human conditioned on the model’s previous message, and
then applying Lemma 7.5 to show that this also bounds the human’s conversation-calibration error.

Fix some bucketing coarseness m for the expected calibration error of the human and some bucket
vh ∈ Bm. Fix some bucketing coarseness n and some bucket vm ∈ Bn.
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We can then define a conditioning event E : Π→ [0, 1], defined as E(π1:t) = I[pt,kh ∈ vh, pt,k−1
m ∈

vm]. Recall that the human is a Bayesian Learner. Therefore, their prediction is deterministic at the
beginning of round k, since it is simply the posterior mean of the distribution conditioned on the
model’s predictions through round k − 1.

Thus, we can instantiate Lemma D.3 with this event E(·): with probability 1− δ,∣∣∣∣∣
T∑

t=1

E(π1:t−1) ·
(
yt(π1:t−1)[j]− Ey∼D[y[j]|π1:t−1]

)∣∣∣∣∣ ≤ 2

√
2T ln

1

δ
.

Taking the union bound over all j ∈ [d], vm ∈ Bn, we see that the magnitude of the bias of the
human’s predictions in coordinate j conditional on making a prediction in bucket vh in round k is,
with probability 1− δ, bounded by

2

√
2T ln

dn

δ
.

We can then sum across all buckets of the human’s prediction [m] to see that the expected calibration
error of the human is bounded by

ECE(ŷ1:T,k
h y1:T ;m) ≤

∑
j∈[m]

2

√
2T ln

dn

δ
= 2m

√
2T ln

dn

δ
.

Applying Lemma 7.5, we can bound the human’s conversation-calibration error for fixed k, and all
i ∈ [n] and j ∈ [d] as:

CalDist(ŷ
Tm(k,i,j)
h [j], yTm(k,i,j)[j]) ≤ T

m
+ 2m

√
2T ln

dn

δ
.

Finally, setting the number of buckets Bm optimally as:

T

m
= 2m

√
2T ln

dn

δ
↓

T

2
√
2T ln dn

δ

= m2

√
T

2(2T ln dn
δ )1/4

= m

T
1
4

2(2 ln dn
δ )

1
4

= m

We have a final bound of, for all j ∈ [d], i ∈ Bn:

CalDist(ŷ
Tm(k,i,j)
h [j], yTm(k,i,j)[j]) ≤ O(T

3
4 (ln

dn

δ
)

1
4 ).

We have shown this for an arbitrary round k. The claim that the human has low conversation-
calibration error in the transcript π̂(k) holds for any round k when the resampling might occur, and
so we have that with probability 1− δ, the human is

(
O(T

3
4 (ln dn

δ )
1
4 ), 1

n

)
-conversation-calibrated.

DC-Calibration Error Fix some arbitrary round k. We proceed by bounding the magnitude of
the bias of the predictions in each coordinate conditioned on the model’s recommended action in the
previous round and the best response to the human’s prediction. Fix a, a′ ∈ A. We can then define
a conditioning event E : Π → [0, 1], where E(π1:t) = I[pt,k−1

m = a, pt,kh = a′]. Recall that the
human is a Bayesian Learner. Therefore, their prediction is deterministic at the beginning of round
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j, since it is simply the posterior mean of the distribution conditioned on the model’s predictions
through round k − 1. Thus, we can instantiate Lemma D.3 with this event E(·) and see that with
probability 1− δ,

|
T∑

t=1

E(π1:t−1) ·
(
yt(π1:t−1)[j]− Ey∼D[y[j]|π1:t−1]

)
| ≤ 2

√
2T ln

1

δ
.

Taking the union bound over all j ∈ [d], a, a′ ∈ A, we see that the DC-calibration in round k is,
with probability 1− δ, bounded by

2

√
2T ln

d|A|2
δ

.

We have shown this for an arbitrary round k. The claim that the human has low DC-calibration error
in the transcript π̂(k) holds for any round k when the resampling might occur, and so we have that,

with probability 1− δ, the human is (2
√

2T ln d|A|2
δ )-DC-conversation-calibrated.

Theorem D.1 (Azuma’s Inequality). Let {X0, X1, . . .} be a martingale sequence such that |Xi+1−
Xi| < c for all i, then,

P[Xn −X0 ≥ ϵ] ≤ exp

(
− ϵ2

2c2n

)
.

An immediate corollary of Theorem D.1 follows from appropriately setting parameters.

Corollary D.2. Letting X0 = 0, ε = c
√
2n ln 1

δ , then we have for any δ ∈ (0, 1), with probability
1− δ,

Xn ≤ c

√
2n ln

1

δ
.

Lemma D.3. Let E : Π → [0, 1] represent any conditioning event. Consider the random process
{Zt} adapted to the sequence of random variables πt for t ≥ 1 and let

Zt := Zt−1 + E(π1:t−1) ·
(
yt(π1:t−1)− Ey∼D[y|π1:t−1]

)
Then,

T∑
t=1

E(π1:t−1) ·
(
yt(π1:t−1)− Ey∼D[y|π1:t−1]

)
≤ 2

√
2T ln

1

δ
,

with probability 1− δ over the randomness of D and π1:t−1.

Proof. First, observe that the above sequence is a martingale as ED[E(π1:t−1) · (yt(π1:t−1) −
Ey∼D[y|π1:t−1]] = E(π1:t−1) · ED[(y

t(π1:t−1)− Ey∼D[y|π1:t−1]] = 0, since E(π1:t−1) is a con-
stant at the start day t as it does not depend on the outcome yt. Thus, ED[Z

t+1] = Zt. Next, observe
that since the outcomes y ∈ [−1, 1], we have the bounded difference condition: |Zt − Zt−1| < 2
for all t. We can then instantiate Azuma’s Inequality with n = T and c = 2 to get the claim.

Lemma D.4 (Resampling). Let D be a probability distribution over space A× B. For all (a, b),
P

(a,b)∼D,b′∼D|a
[(a, b′)] = P

(a,b)∼D
[(a, b)].

Proof.
P

(a,b)∼D,b′∼D|a
[(a, b′)] = P

a∼A
[a] · P

b′∼D|a
[b′]

= P
a∼A

[a] · P
b∼D|a

[b]

= P
(a,b)∼D

[(a, b)]
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E Extension to Multiple Agents

In this section, we will extend our results to settings in which there are multiple agents interacting
and aiming to reach agreement, rather than just two. For simplicity, we will restrict our attention here
to the canonical setting (studied in Section 4), but our treatment here is meant to be exemplary: all of
the settings we study can be efficiently extended to the n agent case in a similar manner. We will refer
to the total number of agents as n. Since all agents in the canonical setting are symmetric (i.e. their
calibration conditions and message spaces are the same), we will refer to them simply as agents in
this section, rather than distinguishing between a specific number of humans and models. Informally,
the results follows the same techniques as previously. We imagine a setting in which all n agents are
marginally conversation calibrated with respect to the n− 1 other agents. In fact, our results require
only a weaker condition —- there should be some distinguished agent (agent 1) that satisfies n− 1
marginal conversation calibration conditions with respect to his n − 1 interlocutors, but the other
agents only need to be conversation calibrated with respect to agent 1. Our algorithmic reduction will
efficiently convert a model into one that can maintain all n − 1 conversation calibration conditions
simultaniously, so the algorithm can always serve the role of the distinguished agent, which allows
us to make strictly weaker assumptions on the other parties. We note that once all agents ϵ/2 agree
with agent 1, they must also (by the triangle inequality) ϵ-agree with each other pairwise. Our
analysis proceeds by showing that in any round in which an agent substantially disagrees with agent
1, the squared error of their predictions must improve relative to agent 1’s predictions; similarly
agent 1’s predictions must improve relative to any other agent with which he disagrees substantially
frequently.

We will first adapt our notation to handle n agents. We refer to the message space of an agent as Ωa.
Definition E.1 (Agreement for n Agents). Given an agreement condition for two parties AGREE, we
define an agreement condition for n parties as the function: N-AGREEε,AGREE : (Ωa×Y)n → {0, 1}
defined as:

N-AGREEε,AGREE(p1, y1, . . . , pn, yn) =

{
1,

∑
r∈{2,...,n} AGREEε/2(p1, p1, pr, yr) = n− 1

0, otherwise.

[ht]
Input (Ωa,Y, AGREE)
for each day t = 1, . . . do

Receive xt = (xt
1, . . . x

t
n). Agent r sees xt

r.
for each round k = 1, 2, . . . , L do

Set i = k mod n
Agent i predicts ŷt,ki and sends all other agents pt,ki ∈ Ωa

if N-AGREEε,AGREE(p
t,k
i , ŷt,ki , pt,k−1

i−1 mod n, ŷ
t,k−1
i−1 mod n, . . . , p

t,k−(n−1)
i−(n−1) mod n, ŷ

t,k−(n−1)
i−(n−1) mod n) =

1 then
Return pt,ki and break out of loop

Agents observe yt ∈ Y

We will need to slightly modify our conversation-calibration definitions to handle the general case
of n agents. The idea is the same - an agent r is conversation-calibrated with respect to agent s if
their predictions are calibrated conditional on the most recent message sent by agent s. The only
difference is superficial - in the indexing of the subsequences of days of interest, which is made
slightly more complicated by the introduction of multiple agents. In Protocol E, an agent r speaks
in rounds k such that k ≡ r mod n. For an arbitrary agent s, the most recent time they will have
spoken prior to some round k (when an agent r is speaking) is: k − ((r − s) mod n).
Definition E.2 (Conversation-Calibrated Predictions with Many Agents). Fix an error function f :
{1, . . . , T} → R and bucketing function g : {1, . . . , T} → (0, 1]. Given a prediction transcript
π1:T resulting from an interaction in the canonical setting (Definition 3.4) with n agents, an agent r
is (f, g)-conversation-calibrated with respect to agent s if for all rounds k ≡ r mod n and buckets
i ∈ {1, . . . , 1/g(T )}:

CalDist(pTs(k,i)
r k, yTs(k,i)) ≤ f(|Ts(k, i)|),

where Ts(k, i) =
{
t ∈ T≥k | pt,k−((r−s) mod n)

s ∈ Bi(1/g(T ))
}

is the subsequence of days where
the conversation reaches round k and the most recent prediction of agent s falls in bucket i.
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Theorem E.3. If agent 1 is (f(·), g(·))−conversation-calibrated with respect to agents 2, . . . , n and
agents 2, . . . , n are all (f(·), g(·))−conversation-calibrated with respect to agent 1, then: for any
ε, δ ∈ [0, 1], on a 1 − δ fraction of days, all agents reach ε−agreement after at most K rounds of
conversation for

K ≤ n
ϵ2δ
4 − η(T )

,

where η(T ) = n
(
3g(T ) + 6 f(g(T ))

Tg(T )

)
.

Lemma E.4. If agent 1 is marginally (f(·), g(·))−conversation-calibrated with respect to agents
2, . . . , n and agents 2, . . . , n are all (f(·), g(·))−conversation-calibrated with respect to agent 1,
then for any round k such that k = 1 mod n:

SQE(p1:T,k−n
1 , yT

≥k

) ≤ SQE(p1:T,k
1 , yT

≥k

)− ((
ε

2
)− g(T ))2

|T≥k+1|
n

+ 2g(T )T + 6
f(g(T ))

g(T )

Proof of Lemma E.4. By the definition of Protocol E, if the conversation continued from round k−n
to k (for some k ≡ 0 mod n), then every day, at least one other agent disagreed with agent 1’s
message in round k−n by at least ϵ

2 . Then it must be the case that one of agents 2, . . . , n disagreed

with agent 1 in these rounds for at least |T≥k+1|
n days. Then, the claim follows as a corollary to

Lemma 4.4.

Proof of Theorem E.3. Consider any round r such that |T≥r| ≥ δT . We can create a telescoping
sum by instantiating Lemma E.4 from round k = 1 to r:

SQE(pT
≥r,1

1 , yT
≥r

)− SQE(pT
≥r,r

1 , yT
≥r

) ≥
r∑

k=1

(
(
ε

2
− g(T ))2| |T

≥r+1|
n

| − 2g(T )T − 6
f(g(T ))

g(T )

)
= r

(
1

n
(
ε

2
− g(T ))2δT − 2g(T )T − 6

f(g(T ))

g(T )

)
Therefore:

SQE(pT
≥r,1

1 , yT
≥r

)− r

(
1

n
(
ε

2
− g(T ))2δT − 2g(T )T − 6

f(g(T ))

g(T )

)
≥ 0

(as SQE(pT
≥r,r

1 , yT
≥r

) ≥ 0)
↓

T − r

(
1

n
(
ε

2
− g(T ))2δT − 2g(T )T − 6

f(g(T ))

g(T )

)
≥ 0

(as SQE(pT
≥r,1

1 , yT
≥r

) ≤ T )
↓

T
1
n (

ε
2 − g(T ))2δT − 2g(T )T − 6 f(g(T ))

g(T )

≥ r

Hence:

r ≤ 1
δ
n ((

ε
2 )

2 − 2 ε
2g(T ) + g(T )2)− 2g(T )− 6 f(g(T ))

Tg(T )

≤ 1
δ
n (

ε
2 )

2 − 3 · g(T )− 6 f(g(T ))
Tg(T )

=
n

δε2

4 − n · (3 · g(T ) + 6 f(g(T ))
Tg(T ) )

.
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We conclude with the algorithmic reduction. We will again use Theorem 6.6 and the framework
introduced in Section 5. We will now have a different instantiation of the UnbiasedPrediction algo-
rithm at each round k, and for the kth instantiation, the contexts each day t will be the conversation
Ct,1:k−1 on that day so far.

We are interested in being unbiased in each round conditional on events which are defined marginally
by each of the other agent’s most recent bucketed prediction, and our own bucketed prediction. Thus,
we define our event set accordingly. To do this, we will define a new bucketing set, B̂, which has a
different number of buckets 1

g1(T ) . This will be the bucketing that we measure agent 1’s bucketed
ECE on, which we will then convert into a distance to calibration bound.
Definition E.5 (Multi-Conversation Events ). For an agent s, a round k, and a pair of bucket indices
i1, i2, let:

Es,i1,i2,k(x
t, ŷt,k, Ct,1:k−1) = 1

[
pt,k−((r−s) mod n)
s ∈ Bi1

(
1

g(T )

)]
1

[
pt,k1 ∈ B̂i2

(
1

g1(T )

)]
Let Ek := {Es,i1,i2,k∀i1, i2, s}. Note that |Ek| = 1

g(T ) ·
1

g1(T ) · (n− 1) ≤ n
g1(T )·g(T ) .

We are now ready to define our reduction.

Protocol 6 CONVERSE-MANY(M0, α)
Input Baseline model algorithm M0, Discretization gm(T )
for t = 1, . . . , T do

Receive xt
m

Send prediction pt,1m = M0(x
t
m) to all other parties.

for k = 1, 1 + n, 1 + 2n, . . . do
L← k
if Dk+1 uninitialized then

Initialize Dk = UNBIASEDPREDICTION(Ek, α)
Observe n− 1 predictions pt,k−((1−2) mod n)

2 , . . . , p
t,k−((1−n) mod n)
n

if ∀q, |pt,k−((1−q) mod n)
q − pt,k1 | ≤ ϵ

2 then
Predict pt,k1 and break out of loop

Send prediction p = Dk(C
t,1:k−1, xt

1)
Observe yt

for k = 1, 1 + n, 1 + 2n, . . . L do
Update Dk with yt

Theorem E.6. CONVERSE-MANY(M0, α) is (O(ln( ndT
g(T )g1(T ) ) +

√
T ln( nd

αg(T )g1(T ) ) +

T
g1(T ) ), g1(T ))-conversation-calibrated with respect to every other agent with probability
1−α, and for any sequence of labels y1:T , its first-round prediction is the same as the prediction of
the base model M0 for all t: CONVERSE-MANY(M0, α)1(x

t
m) = M0(x

t
m), for all t.

Proof. By construction, in each round 1, n+ 1, . . . , 2n+ 1, CONVERSE-MANY(M0, α) runs
UNBIASEDPREDICTION(Ek, α) with subsequences defined by Ek in order to obtain predictions.
By Theorem 6.6, in each round and for each other agent s, the bias on subsequences defined by
the other agent’s bucketing and agent 1’s bucketing is O(ln( ndT

g(T )g1(T ) ) +
√
T ln( nd

αg(T )g1(T ) )).
Note that by Lemma 7.5, agent 1’s distance to calibration on this subsequence is therefore at most
O(ln( ndT

g(T )g1(T ) ) +
√

T ln( nd
αg(T )g1(T ) ) + Tg1(T ))

Thus the algorithm is (O(ln( ndT
g(T )g1(T ) ) +

√
T ln( nd

αg(T )g1(T ) ) + Tg1(T )), g1(T ))-conversation-
calibrated with respect to every other agent.

The second result follows directly from the definition of CONVERSE-MANY(M0, α).

To be concrete about rates, we will assume for the purposes of the remaining Theorems that Agent
1 is employing Algorithm 6, and the remaining Agents are employing Algorithm 2. Thus, note
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by Corollary 4.2 that Agents 2, . . . , n are
√
T , T

−1
3 -conversation-calibrated, and therefore g(T ) =

T− 1
3 .

Theorem E.7. If T ≥ O
(

n6

ϵ12δ6 · ln
6(d)

)
and g1(T ) = g2(T ), then with probability ≥ 1 − α, the

number of rounds until agreement is at most

K ≤ 2n

ϵ2δ

Proof. By Theorem E.3, when η(T ) ≤ ε2δ, on a 1− δ fraction of days, the number of rounds until
agreement is at most

K ≤ n
ε2δ
4 −η(T )

, where η(T ) = n
(
3g(T ) + 6 f(g(T ))

Tg(T )

)
. Instantiating this bound with the high-

probability result for Theorem E.6, we have that, with probability 1− α:

η(T ) = n ·O

g(T ) +
ln( ndT

g(T )g1(T ) ) +
√

T ln( nd
αg(T )g1(T ) ) + Tg1(T )

Tg(T )


= n ·O

T
−1
3 +

ln(ndTT−1 ) +
√
T ln( nd

αT−1 ) + T
1
3

T
2
3


(By the fact that g1(T ) = g2(T ) and g(T )− T

−1
3 )

= n ·O

(
T

−1
3 +

ln(ndT 2) +
√

T ln(ndT )

T
2
3

)

= n ·O

(
T

−1
3 +

ln(nd) +
√
T ln(nd)

T
2
3

)

= n ·O
(
ln(nd)

T
2
3

+
√
ln(nd)T

−1
6

)

≤ n ·O
(
ln(nd)T

−1
6

)

Therefore, to set K ≤ 2n
ϵ2δ , we can set

ϵ2δ

2
≥ n ·O

(
ln(nd)T

−1
6

)

=⇒ T
1
6 ≥ O

(
2n

ϵ2δ
· ln(nd)

)
=⇒ T ≥ O

(
n6

ϵ12δ6
· ln6(nd)

)
=⇒ T ≥ O

(
n6

ϵ12δ6
· ln6(d)

)
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