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ABSTRACT

Incorporating equivariance as an inductive bias into deep learning architectures
to take advantage of the data symmetry has been successful in multiple appli-
cations, such as chemistry and dynamical systems. In particular, roto-translations
are crucial for effectively modeling geometric graphs and molecules, where under-
standing the 3D structures enhances generalization. However, equivariant models
often pose challenges due to their high computational complexity. In this paper,
we introduce REMUL, a training procedure for approximating equivariance with
multitask learning. We show that unconstrained models (which do not build equiv-
ariance into the architecture) can learn approximate symmetries by minimizing an
additional simple equivariance loss. By formulating equivariance as a new learn-
ing objective, we can control the level of approximate equivariance in the model.
Our method achieves competitive performance compared to equivariant baselines
while being 10× faster at inference and 2.5× at training.

1 INTRODUCTION

Equivariant machine learning models have achieved notable success across various domains, such
as computer vision (Weiler et al., 2018; Yu et al., 2022), dynamical systems (Han et al., 2022;
Xu et al., 2024), chemistry (Satorras et al., 2021; Brandstetter et al., 2022), and structural biology
(Jumper et al., 2021). For example, incorporating equivariance w.r.t. translations and rotations
ensures the correct handling of complex structures like graphs and molecules (Schütt et al., 2021;
Bronstein et al., 2021; Thölke & Fabritiis, 2022; Liao et al., 2024). Equivariant machine learning
models benefit from this inductive bias by explicitly leveraging symmetries of the data during the
architecture design. Typically, such architectures have highly constrained layers with restrictions
on the form and action of weight matrices and nonlinear activations (Batzner et al., 2022; Batatia
et al., 2022). This may come at the expense of higher computational cost, making it sometimes
challenging to scale equivariant architectures, particularly those relying on spherical harmonics and
irreducible representations (Thomas et al., 2018; Fuchs et al., 2020; Liao & Smidt, 2023; Luo et al.,
2024). On the other hand, equivariance constraints might limit the expressive power of the network,
restricting its ability to act as a universal architecture (Dym & Maron, 2021; Joshi et al., 2023).

Equivariant layers are not the only way to incorporate symmetries into deep neural networks. Sev-
eral approaches have been proposed to either offload the equivariance restrictions to faster networks
(Kaba et al., 2022; Mondal et al., 2023; Baker et al., 2024; Ma et al., 2024; Panigrahi & Mondal,
2024) or simplify the constraints by introducing averaging operations (Puny et al., 2022; Duval
et al., 2023; Lin et al., 2024; Huang et al., 2024). Nonetheless, while these approaches leverage un-
constrained architectures, they often require additional networks or averaging techniques to achieve
equivariance and may not rely solely on adjustments to the training protocol. To this aim, a widely
adopted strategy to replace ‘hard’ equivariance (i.e., built into the architecture itself) with a ‘soft’
one, is data augmentation (Quiroga et al., 2019; Bai et al., 2021; Gerken et al., 2022; Iglesias et al.,
2023; Xu et al., 2023; Yang et al., 2024), whereby the training protocol of an arbitrary (uncon-
strained) network is augmented by assigning the same label to group orbits (e.g., rotated and trans-
lated versions of the input). In fact, recent works have shown that unconstrained architectures may
offer a valid alternative provided that enough data are available (Wang et al., 2024; Abramson et al.,
2024).

Besides the challenges in computational cost and design, there are also tasks that do not exhibit
full equivariance, such as dynamical phase transitions (Baek et al., 2017; Weidinger et al., 2017),
polar fluids (Gibb et al., 2024), molecular nanocrystals (Yannouleas & Landman, 2000), and cellular
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(a) Geometric Algebra Transformer (b) Transformer

Figure 1: Loss surface around local minima of trained models on N-body dynamical system.

symmetry breaking (Goehring et al., 2011; Mietke et al., 2019). For such tasks, fully-equivariant
networks might be excessively constrained, which further motivates the design of a more flexible
approach.

In this work, we present REMUL: Relaxed Equivariance via Multitask Learning. REMUL is a
training procedure that aims to learn approximate equivariance during training for unconstrained net-
works using a multitask approach with adaptive weights. We conduct a comprehensive evaluation of
unconstrained models trained with REMUL, comparing their performance and computational effi-
ciency against equivariant models. We consider Transformers and Graph Neural Networks (GNNs),
as well as their E(3) equivariant versions, as our main baselines, focusing on roto-translation group.

Our contributions are as follows:

• We formulate equivariance as a weighted multitask learning objective for unconstrained
models, aiming to simultaneously learn the objective function and approximate the required
equivariance associated with the data and the task.

• We demonstrate that by adjusting the weighting of the equivariance loss, we can modulate
the extent to which a model exhibits equivariance, depending on the requirements of the
task. Specifically, tasks that demand full equivariance require a higher weight on the equiv-
ariance component, whereas tasks that require less strict equivariance can be managed with
lower weights.

• Empirically, we show that Transformers and Graph Neural Networks trained with our mul-
titask learning approach compete or outperform their equivariant counterparts.

• By leveraging the efficiency of Transformers, we achieve up to 10× speed-up at inference
and 2.5× speed-up in training compared to equivariant baselines. This finding could pro-
vide motivations for the use of unconstrained models, which do not require equivariance in
their design, potentially offering a more practical approach.

• We point out that the standard Transformer exhibits a more convex loss surface near the lo-
cal minima compared to the Geometric Algebra Transformer (Brehmer et al., 2023), which
can indicate further evidence of the optimization difficulties of equivariant networks.

2 BACKGROUND

2.1 SYMMETRY GROUPS AND EQUIVARIANT MODELS

Symmetry groups, a fundamental concept in abstract algebra and geometry, are a mathematical
description of the properties of an object remaining unchanged (invariant) under a set of transforma-
tions. Formally, a symmetry group G of a set X is a group of bijective functions from X to itself,
where the group operation is function composition.

Equivariant machine learning models are designed to preserve the symmetries associated with the
data and the task. In geometric deep learning (GDL), the data is typically assumed to live on some
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geometric domain (e.g., a graph or a grid) that has an appropriate symmetry group (e.g., permutation
or translation) associated with it. Equivariant models implement functions f : X → Y from input
domain X to output domain Y that ensure the actions of a symmetry group G on data from X
correspond systematically to its actions on Y , through the respective group representations ϕ and ρ.
Formally, we say that:
Definition 2.1. A function f is equivariant w.r.t. the group G if for any transformation g ∈ G and
any input x ∈ X ,

f(ϕ(g)(x)) = ρ(g)(f(x)) (1)

The group representations ϕ and ρ allow us to apply abstract objects (elements of the group G)
on concrete input and output data, in the form of appropriately defined linear transformations. For
example, if G = Sn (a permutation group of n elements, arising in learning on graphs with n
nodes), its action on n-dimensional vectors (e.g., graph node features or labels) can be represented
as an n× n permutation matrix.

A special case of equivariance is obtained for a trivial output representation ρ = id:
Definition 2.2. A function f is invariant w.r.t. the group G if for all g ∈ G and x ∈ X ,

f(ϕ(g)(x)) = f(x) (2)

2.2 EQUIVARIANCE AS A CONSTRAINED OPTIMIZATION PROBLEM

Consider a class of parametric functions fθ, typically implemented as neural networks, whose pa-
rameters θ are estimated via a general training objective based on data pairs (x, y) ∼ q:

minimize
θ

E(x,y)∼q [L(fθ(x), y)] (3)

Here, L represents the loss function that quantifies the discrepancy between the model’s predictions
fθ(x) and the true labels y. The class of models is considered equivariant with respect to a group G
if it satisfies the constraint in Equation 1 for any input x ∈ X and for any action g ∈ G.

Equivariance is typically achieved by design, by imposing constraints on the form of fθ. Since fθ
is usually composed of multiple layers, ensuring equivariance implies restrictions on the operations
performed in each layer, a canonical example being message-passing graph neural networks whose
local aggregations need to be permutation-equivariant to respect the overall invariance to the action
of the symmetric group Sn. As such, finding an equivariant solution to the minimization problem in
Equation 3 corresponds to solving the following constrained optimization:

minimize
θ

E(x,y)∼q [L(fθ(x), y)]

subject to fθ(ϕ(g)(x)) = ρ(g)fθ(x), ∀g ∈ G, ∀x ∈ X
(4)

In general, such optimization is challenging, leading to complex design choices to enforce equivari-
ance that could ultimately restrict the class of minimizers and make the training harder. Additionally,
for relevant tasks, the optimal solution only needs to be approximate equivariant (Wang et al., 2022;
Petrache & Trivedi, 2023; Kufel et al., 2024; Ashman et al., 2024) meaning that the extent to which
a model needs to exhibit equivariance can vary significantly based on the specific characteristics of
the data and the requirements of the downstream application. In light of these reasons, we neces-
sitate a flexible approach to incorporating equivariance into the learning process. To address this,
we propose REMUL, a training procedure that replaces the hard optimization problem with a soft
constraint, by using a multitask learning approach with adaptive weights.

3 LEARNING SYMMETRIES THROUGH LOSS LANDSCAPE

3.1 EQUIVARIANCE AS A NEW LEARNING OBJECTIVE

Our main idea is to formulate equivariance as a multitask learning problem for an unconstrained
model. We achieve that by relaxing the optimization problem in Equation 4. Namely, once we
introduce a functional FX ,G that measures the equivariance of a candidate function fθ, we replace
the constrained variational problem in Equation 4 with

minimize
θ

E(x,y)∼q [αL(fθ(x), y) + βFX ,G(fθ(x), y)] , (5)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where α, β > 0. This decomposition allows for tailored learning dynamics where the supervised
loss specifically addresses the information from the dataset without constraining the solution fθ,
while the equivariance penalty F smoothly enforces symmetry preservation.

We note that in conventional supervised settings, one has access to a dataset X = {x1, x2, . . . , xn}
with corresponding labels Y = {y1, y2, . . . , yn}. We can then introduce

Lobj(fθ,X ,Y) =

n∑
i=1

L(fθ(xi), yi), (6)

and formulate the optimization as:

Ltotal(fθ,X ,Y, G) = αLobj(fθ,X ,Y) + βLequi(fθ,X ,Y, G), (7)

where Lequi(fθ,X ,Y, G) represents our augmented equivariance loss, specifically designed to en-
force the model’s adherence to the symmetry action of the group G, given a dataset X and labels Y .
For a finite number of training samples n, we propose an equivariant loss Lequi of the form:

Lequi(fθ,X ,Y, G) =

n∑
i=1

ℓ(fθ(ϕ(gi)(xi)), ρ(gi)(yi)) (8)

Here ℓ is a metric function, typically an L1 or L2 norm, that quantifies the discrepancy between
f(ϕ(gi)(xi)) and ρ(gi)(yi), with gi ∈ G randomly-selected group elements for each sample. In
fact, in our implementation, we change the group elements being sampled in each training step.

The parameters α and β defined in Equation 7 are weighting factors that balance the traditional ob-
jective loss with the equivariance loss, enabling practitioners to tailor the training process according
to specific requirements of symmetry and generalization. More specifically, a large value of β indi-
cates a more equivariant function while the smaller value of β indicates a less equivariant function.
These parameters allow us to control the trade-off between model generalization and equivariance,
based on the specific requirements of the task.

3.2 ADAPTING PENALTY PARAMETERS DURING TRAINING

For simultaneously learning the objective and equivariance losses, we consider two distinct ap-
proaches to regulate the penalty parameters α and β: constant penalty and gradual penalty. The
constant penalty assigns a fixed weight to each task’s loss throughout the training process. In con-
trast, the gradual penalty dynamically adjusts the weights of each task’s loss during training. For
gradual penalty, we use the GradNorm algorithm introduced by Chen et al. (2018), which is par-
ticularly suited for tasks that involve simultaneous optimization of multiple loss components, as
it dynamically adjusts the weight of each loss during training. It updates the weights of the loss
components based on the magnitudes of their gradients, w.r.t the last layer in the network, which is
essential for the contribution of each loss. It also has a learning rate parameter η, that fine-tunes the
speed at which the weights are updated, providing precise control over their convergence rates (see
Algorithm 1 for details).

Algorithm 1 GradNorm Algorithm (one step)

1: Input: α, β, η, γ, Lobj, Lequi, and W (the weights of the last layer in the network)
2: Gobj = ∥∇WαLobj∥2, L̃obj = Lobj/Lobj(0)

3: Gequi = ∥∇WβLequi∥2, ˜Lequi = Lequi/Lequi(0)

4: Ḡ =
Gobj+Gequi

2 , r =
L̃obj+ ˜Lequi

2

5: rα =
L̃obj

r , rβ =
L̃equi

r

6: Lg = |Gobj − Ḡ × [rα]
γ |+ |Gequi − Ḡ × [rβ ]

γ |
7: α = α− η∇αLg
8: β = β − η∇βLg
9: Return: α, β

4
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3.3 EQUIVARIANCE WITH DATA AUGMENTATION

Data augmentation is a widely recognized technique that enhances the performance of machine
learning models by including different transformations in the training process. It involved creating a
transformed input and measuring the original loss between the model prediction and the transformed
target. In contrast, our method utilizes an additional controlled equivariance loss to incorporate sym-
metrical considerations simultaneously with the objective loss during training. In fact, traditional
data augmentation techniques can be interpreted as special cases of Equation 7 where α = 0 and
β = 1.

4 QUANTIFYING LEARNED EQUIVARIANCE

Using group transformations to measure and assess the symmetries of ML models has been studied
in several domains (Lyle et al., 2020; Kvinge et al., 2022; Moskalev et al., 2023; Gruver et al., 2023;
Speicher et al., 2024). Inspired by the idea of frame-averaging (Puny et al., 2022; Duval et al.,
2023; Lin et al., 2024), in this section, we introduce a metric to quantify the degree of equivariance
exhibited by a function f .

Starting from Equation 1, the group integration of both sides w.r.t. the normalized Haar measure µ
yields: ∫

G

f(ϕ(g)(x)) dµ(g) =

∫
G

ρ(g)(f(x)) dµ(g) (9)

When G is a large or continuous group, as is the case in our work, the integrals over G may not be
computable in closed form. Therefore, we approximate the integrals using a Monte Carlo approach
with samples {gi}Mi=1 from G:∫

G

f(ϕ(g)(x)) dµ(g) ≈ 1

M

M∑
i=1

f(ϕ(gi)(x)) (10)

∫
G

ρ(g)(f(x)) dµ(g) ≈ 1

M

M∑
i=1

ρ(gi)(f(x)) (11)

Where M is a large number of samples from G. Given the group averages, we define the equivari-
ance error E(f,G) as the average norm of the difference between these two averages over the data
distribution D:

E(f,G) =
1

|D|
∑
x∈D

∥∥∥∥∥ 1

M

M∑
i=1

ρ(gi)(f(x))−
1

M

M∑
i=1

f(ϕ(gi)(x))

∥∥∥∥∥
2

(12)

Here ∥ · ∥2 denotes an L2 norm (for non-scalar function). This error indicates the average deviation
of a function f from perfect equivariance across the data distribution D (lower value means more
equivariant function).

We also propose another measure that takes the average over the group of differences between
f(ϕ(g)(x)) and ρ(g)(f(x)),

E′(f,G) =
1

|D|
∑
x∈D

1

M

M∑
i=1

∥f(ϕ(gi)(x))− ρ(gi)(f(x))∥2 (13)

Equation 12 & Equation 13 indicate a practical metric for evaluating how closely the function f ap-
proximates perfect equivariance throughout a data distribution D (which should be zero for a perfect
equivariance function). In practice, we use M = 100 samples from the group and noticed this was
sufficient to obtain stable results. We also observed that both measures have very similar behavior
in our experiments, where E and E′ are near zero for equivariant models. We also demonstrate that
increasing the value of β in Equation 7 results in a less equivariant error for E and E′.
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5 RELATED WORK

Equivariant ML Models. In the vision domain, group convolutions have proven to be a powerful
tool for handling rotation equivariance for images and enhanced model generalization (Cohen &
Welling, 2016; Cohen et al., 2019; Weiler & Cesa, 2019; Qiao et al., 2023). Similarly, the devel-
opment of equivariant architectures with respect to roto-translations for geometric data has been an
active area of research (Chen et al., 2021a; Satorras et al., 2021; Han et al., 2022; Xu et al., 2024).
Techniques that use spherical harmonics and irreducible representations have shown a large success
in modeling graph-structured data, such as SE(3)-Transformers (Fuchs et al., 2020), Tensor Field
Networks (Thomas et al., 2018), and DimeNet (Gasteiger et al., 2020). More recently, Brehmer
et al. (2023) introduced an E(3) equivariant Transformer that employs geometric algebra for pro-
cessing 3D point clouds.
Data Augmentation and Unconstrained Models. Alternatively, integrating transformations
through data augmentation is a widely used strategy across multiple vision tasks, enhancing per-
formance in image classification (Perez & Wang, 2017; Inoue, 2018; Rahat et al., 2024), object
detection (Zoph et al., 2020; Wang et al., 2019; Kisantal et al., 2019), and segmentation (Negassi
et al., 2022; Chen et al., 2021b; Yu et al., 2023). For geometric data, Hu et al. (2021) has adapted a
Graph Neural Network architecture with data augmentation to process 3D molecular structures. In
parallel, Dosovitskiy et al. (2021) introduced that Vision Transformers (ViTs) with a large amount
of training data can achieve comparable performance with Convolutional Neural Networks (CNNs),
obviating the need for explicit translation equivariance within the architecture. Recently, this has
shown to be effective for handling geometric data (Wang et al., 2024; Abramson et al., 2024).
Learning Symmetries and Approximate Equivariance. Several studies have shown that the
layers of CNN architectures can be approximated for a soft constraint (Wang et al., 2022; van der
Ouderaa et al., 2022; Romero & Lohit, 2022; Veefkind & Cesa, 2024; Wu et al., 2024; McNeela,
2023). Conversely, van der Ouderaa et al. (2023) extends the Bayesian model selection approach to
learning symmetries in image datasets. Yeh et al. (2022) introduced a parameter-sharing scheme to
achieve permutations and shifts equivariances in Gaussian distributions. Recent works have relaxed
the hard constrained models to a soft constraint by adding unconstrained layers in the architecture
design (Finzi et al., 2021a; Pertigkiozoglou et al., 2024), canonicalization network (Lawrence et al.,
2024). , or explicit relaxation Kaba & Ravanbakhsh (2023). Additionally, Lin et al. (2019) modified
the loss of CNN for segmentation task. Shakerinava et al. (2022) introduced a method to learn equiv-
ariant representation using the group invariants, while Bhardwaj et al. (2023) defined a regularizer
that injects the equivariance in the latent space of the network by explicitly modeling transforma-
tions with additional learnable maps. In contrast, several works have started from pre-trained models
(Basu et al., 2023; Kim et al., 2023b). Furthermore, the EGNN framework (Satorras et al., 2021)
has been modified using an invariant function (Zheng et al., 2024) or adversarial training procedure
(Yang et al., 2023). However, in our work, we start completely from unconstrained models without
assuming any equivariance over the space of functions in the architecture design. Moreover, we
didn’t assume a specific class of models or introduce additional parameters, which increases the
applicability of our method to various domains and makes it computationally efficient.

6 EXPERIMENTS AND DISCUSSION

In this section, we aim to compare constrained equivariant models with unconstrained models trained
with REMUL, our multitask approach. We are targeting three main questions: Can unconstrained
models learn the approximate equivariance, how does that affect the performance & generalization,
and what are their computational costs. We evaluate our method on different tasks for geometric
data: N-body dynamical system (Section 6.1), motion capture (Section 6.2), and molecular dynam-
ics (Section 6.3). For unconstrained models, we apply REMUL to Transformers and Graph Neural
Networks. We then compare against their equivariant baselines: SE(3)-Transformer (Fuchs et al.,
2020), Geometric Algebra Transformer (Brehmer et al., 2023), and Equivariant Graph Neural Net-
works (Satorras et al., 2021) as well as unconstrained models with data augmentation. We consider
learning the rotation group SO(3) for REMUL and data augmentation and we subtract the center
of mass for translation. We use the equivariance metric defined in Equation 12 to analyze our re-
sults. We also conduct a comparative analysis for the computational requirements of unconstrained
models and equivariant models in Section 6.4. Lastly, we discuss the loss surfaces in Section 6.5.
Implementation details and additional experiments can be found in Appendix B & Appendix C.
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6.1 N-BODY DYNAMICAL SYSTEM

Figure 2: N-body dynamical system. Each row represents a different evaluation scenario: The top
row shows in-distribution performance, the middle row displays out-of-distribution performance,
and the bottom row illustrates equivariance error. The columns correspond to different architectures/
model conditions (from left to right): The first column shows the Transformer trained with REMUL
(gradual penalty), the second column with a constant penalty, and the third column presents the base-
lines (equivariant models, standard Transformer, and data augmentation). The equivariance metric
included in this Figure is defined in Equation 12, we report the same plots for the metric defined
in Equation 13 in Appendix C.1 (Figure 6), which has a similar behavior. Transformer architecture
with high β reduces the equivariance error and improves the performance. SE(3)-Transformer and
GATr have a small equivariance error below the range of the plots (2.8e−10 and 1.13e−15 respec-
tively).

To conduct ablation studies of our method, we utilized the dynamical system problem described by
Brehmer et al. (2023). The task involves predicting the positions of particles after 100 Euler time
steps of Newton’s motion equation, given initial positions, masses, and velocities. This problem is
inherently equivariant under rotation and translation groups, implying that any rotation/translation of
the initial states should rotate/translate the final states of the particles by the same amount. We con-
duct comparisons between Transformer trained with REMUL against two equivariant architectures:
SE(3)-Transformer and Geometric Algebra Transformer (GATr). We use the same Transformer ver-
sion and hyperparameters specified by Brehmer et al. (2023). Additional implementation details,
including in-distribution and out-of-distribution settings, are provided in Appendix B.1. Our results
are presented in Figure 2.

From Figure 2, we noticed that increasing the penalty parameter β of the equivariance loss signifi-
cantly reduces the equivariance error in both constant and gradual settings (which results in a more
equivariant model). Equivariant architectures demonstrate an equivariance error near zero, which
is expected by their design. The performance behaves similarly; a higher penalty enhances model
generalization for both in-distribution and out-of-distribution. Transformer with high β outperforms
both data augmentation and SE(3)-Transformer across in-distribution and out-of-distribution and
competes with GATr. We also observe that despite SE(3)-Transformer having a substantially lower
equivariance error, its performance is slightly worse than Transformer trained with data augmenta-
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tion. This highlights that equivariance, although improving generalization in this task, is only one
aspect of understanding model performance. Lastly, the standard Transformer (without REMUL
and data augmentation) exhibits the highest equivariance error and the lowest overall performance.

6.2 MOTION CAPTURE

Figure 3: Motion Capture dataset: Transformer trained with REMUL. Two figures on the left: Per-
formance (MSE) and equivariance error for walking task (Subject #35), respectively. Two figures
on the right: Performance (MSE) and equivariance error for running task (Subject #9), respectively.
We use the equivariance metric described in Equation 12 and include the same plots for the second
metric (Equation 13) in Appendix C.3 (Figure 8). We show a trade-off between model performance
and equivariance error, where high penalty β gives less equivariance error (more equivariant model)
but the best performance comes at an intermediate level of equivariance for both tasks.

Table 1: Performance on Motion Capture dataset: MSE (×10−2). REMUL procedure and data
augmentation were applied to standard Transformer & MLP. First, Second (highlighted). REMUL
comes the best in both tasks.

SE(3)-Transformer GATr Transformer Data Augmentation Ours
Walking (Subject #35) 10.85±1.3 10.06±1.3 5.21±0.08 5.3±0.18 4.95±0.1

Running (Subject #9) 42.13±3.4 32.38±3.9 20.78±1.5 29.83±1.4 18.5±0.7

EMLP RPP PER MLP Data Augmentation Ours
Walking (Subject #35) 7.01±0.46 6.99±0.21 7.48±0.39 6.80±0.18 6.37±0.04 6.04±0.09

Running (Subject #9) 57.38±8.39 34.18±2.00 33.03±0.37 39.56±2.25 40.23±0.94 32.57±1.47

We further illustrate a comparison on a real-world task, the Motion Capture dataset from CMU
(2003). This dataset features 3D trajectory data that records a range of human motions, and the task
involves predicting the final trajectory based on initial positions and velocities. We have reported
results for two types of motion: Walking (Subject #35) and Running (Subject #9). We adhered to
the standard experimental setup found in the literature (Han et al., 2022; Huang et al., 2022; Xu
et al., 2024), employing a train/validation/test split of 200/600/600 for Walking and 200/240/240 for
Running. Additional details can be found in Appendix B.2.

We apply our training procedure REMUL to the Transformer architecture and compare it with
SE(3)-Transformer, Geometric Algebra Transformer (GATr), standard Transformer, and Trans-
former trained with data augmentation. We also compare with Equivariant MLP (Finzi et al., 2021b),
Residual Pathway Priors (Finzi et al., 2021a), and Projection-Based Equivariance Regularizer (Kim
et al., 2023a). As these architectures are designed specifically on MLP and linear layers, we apply
our method to a standard MLP with a similar number of parameters.. Our results are presented in
Table 1. For REMUL, we also provide plots on how the performance and equivariance error change
w.r.t. the penalty parameter β in Figure 3.

Table 1 indicates that when processing 3D positions related to human motions, both SE(3)-
Transformer and GATr perform worse than the standard Transformer. This outcome is noteworthy
because human motion inherently lacks symmetry along the vertical or gravity axis. Consequently,
the assumption of equivariance across all axes may not be beneficial or even detrimental. In contrast,
a standard Transformer trained with REMUL has the best performance in both tasks. Following Fig-
ure 3, there is a noticeable trade-off in model performance with different values of penalty parameter
β. Best performance is observed at an intermediate level of equivariance, where the model balances
between being too rigid (fully equivariant) and too flexible (non-equivariant). This finding under-
scores the importance of carefully considering the specific characteristics of the data and the task
when designing equivariant architectures.
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Figure 4: MD17 dataset: GNN trained with REMUL. The first row represents model performance
(MSE), and the second row shows equivariance error. Columns from left to right show Aspirin,
Ethanol, Malonaldehyde, and Uracil, respectively. The equivariance metric shown in this Figure is
defined in Equation 12; we include the same plots for the second metric (Equation 13) in Appendix
C.4 (Figure 10). The equivariance error decreases on all molecules with a higher value of β. In
contrast, the required equivariance for best model performance varies for each molecule.

Table 2: Performance on MD17 dataset: MSE (×10−2). REMUL procedure and data augmentation
were applied to GNN. First, Second (highlighted). REMUL comes the best on six molecules and
the second on two molecules.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

EGNN 14.41±0.15 62.40±0.53 4.64±0.01 13.64±0.01 0.47±0.02 1.02±0.02 11.78±0.07 0.64±0.01

GNN 9.26±0.40 26.13±0.11 4.26±0.03 18.45±0.54 0.54±0.001 1.02±0.02 9.93±0.82 0.70±0.001

Data Augmentation 13.7±0.04 110.93±5.3 5.74±0.02 13.65±0.02 0.69±0.001 1.33±0.04 19.14±0.001 0.73±0.002

REMUL 9.28±0.40 25.95±0.18 4.02±0.16 13.59±0.03 0.54±0.001 0.99±0.001 9.38±0.20 0.67±0.001

6.3 MOLECULAR DYNAMICS

We also present a comparative analysis between constrained equivariant models and unconstrained
models focusing on molecular dynamics, specifically predicting 3D molecule structures. We utilize
the MD17 dataset (Chmiela et al., 2017), which comprises trajectories of eight small molecules.
We use the same dataset split in Huang et al. (2022); Xu et al. (2024), allocating 500 samples
for train, 2000 for validation, and 2000 for test. For this task, we selected the Equivariant Graph
Neural Network (EGNN) architecture and its non-equivariant GNN counterpart, as presented in
Satorras et al. (2021). We then apply REMUL procedure as well as data augmentation to the GNN
architecture. Both architectures have the same hyperparameters. More information is indicated in
Appendix B.3.

Our results are provided in Table 2. We illustrate how the performance and equivariance error of a
GNN trained with REMUL vary across different molecules as a function of β, as shown in Figure 4
& Figure 9. From the results presented in Table 2, GNN trained with REMUL outperforms EGNN
in six out of eight molecules. Interestingly, a standard GNN, without data augmentation or REMUL,
surpasses the performance of EGNN for two molecules: Aspirin and Toluene. In Figure 4 & Figure
9, we observe that the optimal performance of each molecule is attained at different values of the
penalty parameter β. For instance, Malonaldehyde exhibits a direct correlation between model
performance and equivariance, where a higher β yields better performance. Conversely, for most
other molecules, there appears to be a pronounced trade-off where the best performance is achieved
at a lower value of β. This is particularly evident with molecules like Aspirin, where a standard GNN
architecture outperforms EGNN. We also plot the 3D structures of the eight molecules in Figure 11.
Molecules such as Malonaldehyde, characterized by their symmetric components, might be ideally
suited for equivariant design. However, this advantage does not apply to all molecules. Aspirin on
the other side, might have an asymmetric structure and exhibit a range of interactions and dynamic
states that equivariant models might simplify. Consequently, for such molecules, less equivariant
models could potentially offer more accurate predictions.
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6.4 COMPUTATIONAL COMPLEXITY

In this section, we report the computational time for the Geometric Algebra Transformer (GATr) and
Transformer architectures. We selected models with an equivalent number of blocks and parameters
for a fair comparison. Detailed configurations are provided in Appendix B.4. We measured the
computational efficiency of each model by recording the time taken for both forward and backward
passes during training, as well as inference time. In all comparisons, GATr architecture consistently
required the highest time, being approximately ten times slower than Transformer architecture. Fur-
thermore, GATr reached its memory capacity earlier, hitting an out-of-memory issue at a batch size
of 211. During inference, the computational speed for the Transformer trained with equivariance loss
or data augmentation matches the standard Transformer, as all the differences applied in training.
This results in an inference speed that is 10 times faster than GATr.

Figure 5: Computational time for Geometric Algebra Transformer (GATr) and Transformer archi-
tectures. Plots from left to right: Combined forward pass, backward pass, and inference time,
respectively. GATr has the highest time in all scenarios.

6.5 LOSS SURFACE

In this section, we analyze the relative ease of training equivariant models compared to non-
equivariant models by examining the loss surface around the achieved local minima for each model.
We explore how each architecture influences the loss landscape when trained on the same task.
However, due to the high dimensionality of parameter spaces in neural networks, visualizing their
loss functions in three dimensions might be a significant challenge. We use the filter normalization
method introduced by Li et al. (2018), which calculates the loss function along two randomly se-
lected Gaussian directions in the parameters space, starting from the optimal parameters θ∗ achieved
at the end of training.
We visualize the loss surface of the Geometric Algebra Transformer (GATr) and Transformer in
Figure 1, trained on the N-body dynamical system. We observe that the Transformer architecture
exhibits a more favorable loss shape around its local minima, characterized by a convex structure.
This might suggest that the optimization path for the Transformer is smoother and potentially eas-
ier to navigate during training, leading to more stable convergence. In contrast, the loss surface of
GATr appears more erratic and rugged. This complexity in the loss landscape can indicate multiple
local minima and a higher sensitivity to initial conditions or parameter settings. Such characteristics
might complicate the training process, requiring more careful tuning of hyperparameters. We leave
this for future work to analyze how the optimization path for each model behaves during training.

7 CONCLUSION

We introduced a novel, simple method for learning approximate equivariance in a non-constrained
setting through optimization. We formulated equivariance as a new weighted loss that is simultane-
ously optimized with the objective loss during the training process. We demonstrated that we can
control the level of approximate equivariance based on the specific requirements of the task. Our
method competes with or outperforms constrained equivariant baselines, achieving up to 10 times
faster inference speed and 2.5 times faster training speed.

Limitations and Future Directions. While we showed that unconstrained models exhibit a more
convex loss landscape near the local minima compared to equivariant models, this observation is
subject to certain limitations. Specifically, we did not account for the trajectories that these models
traverse to reach their respective minima. Understanding the optimization paths and how different
initialization settings influence these paths remains unexplored. In future work, we aim to analyze
the optimization process of each model and how it behaves during training.
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Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu,
Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with al-
phafold. Nature, 596(7873):583–589, 2021. doi: 10.1038/s41586-021-03819-2. URL https:
//doi.org/10.1038/s41586-021-03819-2.
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A ADDITIONAL TASK: JET FLOW BENCHMARK

We test our method on another real-world benchmark, the Jet Flow dataset used by Wang et al.
(2022). The Jet Flow is a two-dimensional benchmark that captures turbulent velocity fields mea-
sured from NASA’s multi-stream jet experiments. The dataset presents two primary tasks: Futruer:
Given previous time steps of the flow field, the objective is to predict its future evolution. Domain:
evaluate the model on different simulations from training. The dataset consists of 64 × 23 regions
recorded from 24 stations.

We apply our method to Convolutional neural network (CNN) and compare it with E2CNN (Weiler
& Cesa, 2019), and Relaxed Steerable Convolution (RSteer) (Wang et al., 2022). We follow the
same training setup by Wang et al. (2022), which is summarized in Table 4 .

Table 3: Performance on Jet Flow dataset: RMSE. REMUL procedure is applied to standard CNN.
First, Second (highlighted).

Future Domain
E2CNN 0.21±0.02 0.27±0.03

RSteer 0.17±0.01 0.16±0.01

Ours 0.16±0.003 0.18±0.003

Table 4: Hyperparameters settings for Jet Flow dataset.

Hyperparameters

#layers 5
#hidden dim 16
#kernel size 3
#epochs 100
#optimizer Adam
#batch size 16
#lr 1× 10−3

B IMPLEMENTATION DETAILS

B.1 N-BODY DYNAMICAL SYSTEM

Following the methodology outlined in Brehmer et al. (2023), the dataset for the N-body system
simulation encompasses four objects per sample. The center object is assigned a mass ranging
from 1 to 10, whereas the other objects are uniformly positioned at a radius from 0.1 to 1.0 with
masses between 0.01 and 0.1. We structured the datasets into two setups: in-distribution and out-
of-distribution (OOD). Each sample in the in-distribution dataset is subjected to a random rotation
within the range [−10◦, 10◦]. REMUL and data augmentation are trained with random rotations
in the same range. Conversely, the OOD dataset is designed to evaluate the model’s generalization
capabilities by incorporating extreme rotational perturbations, specifically with angles set within the
ranges [−180◦,−90◦] and [90◦, 180◦]. We trained on 100 samples, and each of the validation, test,
and OOD datasets contains 5000 samples. For models hyperparameters and training, we follow the
same settings in Brehmer et al. (2023), summarized in Table 5. For REMUL, initial α = 1.

B.2 MOTION CAPTURE

Motion Capture dataset by CMU (2003) features 3D trajectory data that records a range of human
motions, and the task involves predicting the final trajectory based on initial positions and velocities.
We have reported results for two types of motion: Walking (Subject #35) and Running (Subject #9).
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Table 5: Hyperparameters settings for N-body dynamical system.

Hyperparameters Geometric Algebra Transformer SE(3)-Transformer Transformer

#attention blocks 10 - 10
#channels 128 8 384
#attention heads 8 1 8
#multivector 16 - -
#layers - 4 -
#degrees - 4 -
#training steps 50000 50000 50000
#optimizer Adam Adam Adam
#batch size 64 64 64
#lr 3× 10−4 3× 10−4 3× 10−4

Following the standard experimental setup in the literature on this task (Han et al., 2022; Huang
et al., 2022; Xu et al., 2024), we apply a train/validation/test split of 200/600/600 for Walking and
200/240/240 for Running. The interval between trajectories, ∆T = 30 for both tasks. For model
hyperparameters, we fine-tuned around the same in Table 5 and found it the best for each model
except for the Geometric Algebra Transformer we increased the attention blocks to 12. We train
each model for 2000 epochs with batch size = 12. For the MLP comparison, all the models and
baselines have the same number of layers and parameters. (details in Table 6).

Table 6: Hyperparameters settings for Motion Capture dataset.

Hyperparameters Geometric Algebra Transformer SE(3)-Transformer Transformer

#attention blocks 12 - 10
#channels 128 8 384
#attention heads 8 1 8
#multivector 16 - -
#layers - 4 -
#degrees - 4 -
#epochs 2000 2000 2000
#optimizer Adam Adam Adam
#batch size 12 12 12
#lr 3× 10−4 3× 10−4 3× 10−4

Hyperparameters Equivariant MLP RPP PER standard MLP

#hidden dim 532 348 532 680
#layers 3 3 3 3

B.3 MOLECULAR DYNAMICS

MD17 dataset (Chmiela et al., 2017) is a molecular dynamics benchmark that contains the trajec-
tories of eight small molecules (Aspirin, Benzene, Ethanol, Malonaldehyde Naphthalene, Salicylic,
Toluene, Uraci). We use the same dataset split in Huang et al. (2022); Xu et al. (2024), allocating
500 samples for train, 2000 for validation, and 2000 for test. The interval between trajectories,
∆T = 5000. We selected the Equivariant Graph Neural Networks (EGNN) architecture and its non-
equivariant version GNN, as introduced by Satorras et al. (2021). The input for GNN architecture
is the initial positions along with atom types. Both architectures have the same hyperparameters,
details in Table 7. For REMUL, α = 1.

B.4 COMPUTATIONAL COMPLEXITY

In the computational experiment of Geometric Algebra Transformer (GATr) and Transformer, we
selected models with an equivalent number of blocks and parameters. GATr incorporates a unique
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Table 7: Hyperparameters settings for MD17 dataset.

Hyperparameters

#layers 4
#hidden dim 64
#epochs 500
#optimizer Adam
#batch size 200
#lr 5× 10−4

design that includes a multivector parameter; we adjusted the Transformer architecture to match
the parameter count of GATr. Both models have around 2.6M parameters, detailed configurations
are provided in Table 8. SE(3)-Transformer gives out of memory for this setting. We selected
a uniformly random Gaussian input with 20 nodes and 7 features dimension. We measured the
computational efficiency of each model by recording the time taken for both forward and backward
passes during training, as well as the inference time as a function of batch size. For each value, we
took the average over 10 runs with Nvidia A10 GPU.

Table 8: Hyperparameters settings for Computational Complexity.

Hyperparameters Geometric Algebra Transformer Transformer

#attention blocks 12 12
#channels 128 168
#attention heads 8 8
#multivector 16 -

C ADDITIONAL EXPERIMENTS

In this section, we include additional results on the three tasks (N-Body Dynamical System, Motion
Capture, and Molecular Dynamics), using the equivariance measure defined in (Equation 13) which
is consistent with our results in the paper. We also include molecules from the MD17 dataset, along
with visualizations of their structures in both 2D and 3D.

C.1 N-BODY DYNAMICAL SYSTEM

Figure 6: N-body dynamical system. The second equivariance measure (defined in Equation 13).
Plots from left to right: The first shows the Transformer trained with REMUL (gradual penalty), the
second with a constant penalty, and the third presents the baselines (equivariant models, standard
Transformer, and data augmentation). SE(3)-Transformer and GATr have a small equivariance error
below the range of the plots (3.1e−9 and 1.22e−14 respectively).
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C.2 NUMBER OF GROUP SAMPLES

In this section, we conduct ablation studies on the number of samples required from the symme-
try group during training. We compare our training procedure, REMUL, with data augmentation
method. We follow the same training details and hyperparameters indicated in Appendix B.1. As
shown in Figure 7, REMUL achieves better performance using fewer samples from the symmetry
group compared to data augmentation.

(a) (b)

Figure 7: Motion Capture dataset: Transformer trained with REMUL. The second equivariance
measure (defined in Equation 13). Left: Walking task (Subject #35) and right: Running task (Subject
#9).

C.3 MOTION CAPTURE

(a) (b)

Figure 8: Motion Capture dataset: Transformer trained with REMUL. The second equivariance
measure (defined in Equation 13). Left: Walking task (Subject #35) and right: Running task (Subject
#9).
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C.4 MOLECULAR DYNAMICS

Figure 9: MD17 dataset: GNN trained with REMUL. The first column is model performance (MSE),
and the second column is equivariance error (Equation 12). Rows from top to bottom represent
Benzene, Naphthalene, Salicylic, and Toluene, respectively.
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Figure 10: MD17 dataset: GNN trained with REMUL. The second equivariance measure (defined
in Equation 13).
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(a) Aspirin (2D) (b) Aspirin (3D) (c) Ethanol (2D) (d) Ethanol (3D)

(e) Benzene (2D) (f) Benzene (3D) (g) Malonaldehyde (2D) (h) Malonaldehyde (3D)

(i) Naphthalene (2D) (j) Naphthalene (3D) (k) Salicylic (2D) (l) Salicylic (3D)

(m) Toluene (2D) (n) Toluene (3D) (o) Uracil (2D) (p) Uracil (3D)

Figure 11: MD17 molecules structures.
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