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ABSTRACT
Diffusion models have revolutionized image synthesis, setting new
benchmarks in quality and creativity. However, their widespread
adoption is hindered by the intensive computation required during
the iterative denoising process. Post-training quantization (PTQ)
presents a solution to accelerate sampling, aibeit at the expense of
sample quality, extremely in low-bit settings. Addressing this, our
study introduces a unified Quantization Noise Correction Scheme
(QNCD), aimed atminishing quantization noise throughout the sam-
pling process. We identify two primary quantization challenges:
intra and inter quantization noise. Intra quantization noise, mainly
exacerbated by embeddings in the resblock module, extends acti-
vation quantization ranges, increasing disturbances in each sin-
gle denosing step. Besides, inter quantization noise stems from
cumulative quantization deviations across the entire denoising pro-
cess, altering data distributions step-by-step. QNCD combats these
through embedding-derived feature smoothing for eliminating in-
tra quantization noise and an effective runtime noise estimatiation
module for dynamicly filtering inter quantization noise. Extensive
experiments demonstrate that our method outperforms previous
quantization methods for diffusion models, achieving lossless re-
sults in W4A8 and W8A8 quantization settings on ImageNet (LDM-
4).

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Diffusion Models, Post Training Quantization, Model Compression

1 INTRODUCTION
Recently, diffusion models have achieved remarkable progress in
various synthesizing tasks, such as image generating [11], super-
resolution [21], image editing and in-panting [27], image transla-
tion [23] etc. Compared to traditional SOTA generative adversar-
ial networks (GANs [7]), diffusion models do not suffer from the
problem of model collapse and posterior collapse, exhibit higher
stability.

However, this comes at the cost of the high computational re-
sources and a large number of parameters required to run these
models, which are only available on cloud-based devices. For exam-
ple, Stable Diffusion [20] requires 16 GB of running memory and
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Figure 1: Comparison of metrics for denoising processes
w.r.t.timestep (𝑡 ). LPIPS Distance between the quantized Sta-
ble Diffusion model (W8A8) outputs and its floating-point
counterpart on MS-COCO, along with their respective CLIP
scores and FID (Fréchet Inception Distance) scores.

GPU and more than 10 GB of VRAM, which is not feasible for most
consumer-grade PCs, let alone resource-limited edge devices.

Our work employs post-training quantization (PTQ) to speed
up the sampling process in all time steps, while avoiding the high
cost of retraining diffusion models. PTQ, having been well-studied
in traditional deep learning tasks like classification and segmenta-
tion [2, 3, 8], stands out as a preferred compression method due to
the minimal requirements on training data and the convenience of
direct deployment on hardware devices. Despite themany attractive
benefits of PTQ, its implementation in diffusion models remains
challenging. The main reason for this is that the framework of
diffusion models is quite different from previous PTQ implementa-
tions (e.g., CNN and ViT [5, 17] for image recognition). Specifically,
diffusion models commonly use UNet structures, which incorpo-
rate embedding. In addition, diffusion models iteratively invoke the
same UNet model during sampling. In recent work, PTQ4DM [24]
and Q-Diffusion [14] first apply PTQ to diffusion models and at-
tribute the challenge to the fact that the activation distribution is
constantly changing with time steps. PTQD [9] integrates partial
quantization noise into diffusion perturbed noise and proposes a
mixed-precision scheme.

In contrast, we analyze in detail the sources of quantization
noise and its negative impact on sampling direction, image quality.
Specifically, we propose QNCD, a novel post-training quantization
noise correction scheme dedicated for diffusion models. First, we
identify embeddings in resblock modules as the primary source of
intra quantization noise, as embeddings amplifies the outliers of
original features, making quantization challenging. We compute
smoothing factors from embeddings, making features easy for quan-
tization, thus reducing intra quantization noise. Besides, for inter
quantization noise accumulated among sampling steps, we propose
a run-time noise estimation module based on the diffusion and
denoising theory of diffusion model. By filtering out the estimated
quantization noise, our QNCD can dynamically correct deviations
in output distribution throughout the sampling steps.

As shown in Fig. 1, with a smaller LPIPS Distance [6] and a
higher CLIP Score [19], the sampling direction of our QNCD more
closely aligns with that of full-precision (FP) model. In addition, our

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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method’s FID [10] metric consistently outperforms Q-Diffusion,
with a final FID reduction of 2.23, reaching 27.33. Overall, our
contributions are shown as follows:

• WeproposeQNCD, a novel post-training quantization scheme
for diffusion models to filter out quantization noise.

• We find that a new challenge in quantizing diffusion models
is the ongoing emergence and accumulation of quantiza-
tion noise, which alters sampling direction and final image
quality.

• We introduce a feature smooth approach to reduce intra
quantization noise when combining features with embed-
dings. Simultaneously, we utilize a run-time noise estimation
module to correct inter quantization noise

• Our extensive experiments show that our method achieves
new state-of-the-art performance for post-training quanti-
zation of diffusion models, especially in low-bit cases. Ad-
ditionally, our methodology aligns more closely with the
full-precision models in both objective metrics and subjec-
tive evaluations.

2 RELATEDWORK
Model quantization is a method that transitions from floating-point
computations to low-precision fixed-point operations. This shift
can effectively diminish the model’s computational burden, reduce
parameter size and memory usage, and expedite computational
processes.It can be divided into two main categories: quantization-
aware training (QAT) [12] and post-quantization training (PTQ).
QAT integrates simulated quantization throughout the training
phase. During backpropagation, gradients are calculated to refine
the pre-quantized weights, enabling the model to acclimate to quan-
tization errors as training progresses. QAT often yields superior
outcomes with significantly fewer bits, but comes with the cost
of substantial training overhead and a need for the raw dataset.
In constract, PTQ bypasses the need for extensive data retraining,
leveraging just a fraction of unlabeled data for calibration, making
it a more cost-effective and deployment-friendly alternative. Given
that retraining for diffusion has an unaffordable cost (e.g the train-
ing of Stable Diffusion [20] requires a cluster of over 4000 NVIDIA
A100 GPUs), current works have pivoted towards PTQ to obtain
low-bit diffusion models.

Until now, only a handful of current studies have focused on post-
training quantization of diffusionmodels. Among them, PTQ4DM [24]
devised a time-step aware sampling strategy for calibration dataset,
but its experiments are limited to small datasets and low reso-
lutions. Q-Diffusion [14] employs a state-of-the-art PTQ method
(BRECQ [15]) to obtain the performance, which imposes an addi-
tional training burden. PTQD [9] integrates partial quantization
noise into diffusion perturbed noise and proposes a mixed-precision
scheme. TDQ [25] dynamically adjusts the quantization interval
based on time step information.

Our method analyze in detail the sources of quantization noise
and propose corresponding correction modules. In addition, we
employ the most primitive PTQ methods, inherently attributing
the performance improvement to our approach.

3 METHOD
In Section 3.1, we provide an introduction to the sampling process of
the diffusion model and present a unified formula for quantization
noise. Following this, in Section 3.2, we analyze the sources of
quantization noise and its impact on the sampling direction. In
Section 3.3, we present the entire workflow of QNCD.

3.1 Preliminaries
Diffusionmodels are a family of probabilistic generativemodels that
progressively destruct real data by injecting noise, then learn to re-
verse this process for generation, represented notably by denosing
diffusion probabilistic models (DDPMs [11]). DDPM is composed
of two chains: a forward chain that perturbs data to noise, and a
reverse chain that converts noise back to data. The former is usually
designed by hand and its goal is to convert any data distribution
into a simple prior distribution (e.g., a standard Gaussian distribu-
tion). Given a data distribution 𝑥0, the forward process generates a
sequence of random variables with transition kernel 𝑞(𝑥𝑡 |𝑥𝑡−1), as
follows:

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1),

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√
𝛼𝑡𝑥𝑡−1, 𝛽𝑡 𝐼 )

(1)

where 𝛼𝑡 and 𝛽𝑡 are hyper parameters and 𝛽𝑡 = 1 − 𝛼𝑡 .
In the denoising process, with a Gaussian noise 𝑥𝑇 , the dif-

fusion model can generate samples by iterative sampling 𝑥𝑡−1
from 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) until obtaining 𝑥0, where the Gaussian distri-
bution 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) is a simulation of the unavailable real distri-
bution 𝑞(𝑥𝑡−1 |𝑥𝑡 ). The mean value 𝜇𝜃 (𝑥𝑡−1 |𝑥𝑡 ) of 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) is
calculated from the noise prediction network 𝜖𝜃 (usually the UNet
model):

𝜇𝜃 (𝑥𝑡 , 𝑡) =
1

√
𝛼𝑡

(
𝑥𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡)
)

(2)

where 𝛼𝑡 =
∏𝑡

𝑖=1 𝛼𝑖 . Therefore, the sampling process of 𝑥𝑡−1 is
shown as follows:

𝑥𝑡−1 =
1

√
𝛼𝑡

(
𝑥𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡)
)
+ 𝜎𝑡𝑧, 𝑧 ∈ 𝑁 (0, 𝐼 ) (3)

The diffusion model continuously evokes the noise prediction net-
work to acquire the noise 𝜖𝜃 (𝑥𝑡 , 𝑡) and filter it out. The huge number
of iterative time steps (sometimes 𝑇=4000) and the complexity of
the noise prediction network 𝜖𝜃 make the sampling of diffusion
models expensive.

Post-training quantization for diffusion models is performed
on the noise prediction network 𝜖𝜃 , which inevitably introduces
quantization noise.

𝑥𝑡−1=
1

√
𝛼𝑡

(
𝑥𝑡 −

𝛽𝑡√
1− 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡)
)
+ 𝜎𝑡𝑧, 𝑧 ∈ 𝑁 (0, 𝐼 )

=
1

√
𝛼𝑡

(
𝑥𝑡 −

𝛽𝑡√
1− 𝛼𝑡

(
𝜖𝜃 (𝑥𝑡 , 𝑡) + 𝑞𝜃 (𝑥𝑡 , 𝑡)

) )
+ 𝜎𝑡𝑧.

(4)

The noise prediction network UNet 𝜖𝜃 is constructed from mul-
tiple Resblocks, where parameterized operations (such as convolu-
tions, fully connected layers, etc.) will generate intra quantization
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Figure 2: (a) shows the similarity of individual layer features across the entire UNet model during a single sampling step,
illuminating that quantization noise primarily arises from the incorporation of embeddings. (b) illustrates the distribution of
activations before and after the incorperation of embedding (within the last Resblock). When combined with embeddings,
outliers in features are amplified, which can be efficiently mitigated using our smoothing factor.

noise within the single-step sampling. From the perspective of com-
plete sampling process, these intra quantization noises accumulate
to form inter quantization noise 𝑞𝜃 (𝑥𝑡 , 𝑡) which further accumu-
lates in the current output 𝑥𝑡−1 , thus affecting subsequent sampling
processes.

3.2 Quantization noise analysis
3.2.1 Intra Quantization Noise introduced by embedding. We con-
sider the quantization noise within the denoising network UNet in
a single sampling step as intra quantization noise, which is strongly
affected by embedding. As shown in Fig. 2(a), intra quantization
noise of the diffusion model exhibits periodic changes during a sin-
gle step. It escalates when embedding is incorporated into features
but then decreases during the fusion of UNet’s low-level and high-
level features. This cyclical behavior underscores that the primary
culprit of quantization noise is the embedding integration phase.
Take the embedding fusion stage of DDIM as an example:

𝑠𝑐𝑎𝑙𝑒𝑡 , 𝑠ℎ𝑖 𝑓 𝑡𝑡 = 𝑙𝑎𝑦𝑒𝑟𝑒𝑚𝑏 (𝑒𝑚𝑏𝑡 ) .𝑠𝑝𝑙𝑖𝑡 (),
ℎ𝑡 = 𝑛𝑜𝑟𝑚(ℎ𝑡 ) ∗ (1 + 𝑠𝑐𝑎𝑙𝑒𝑡 ) + 𝑠ℎ𝑖 𝑓 𝑡𝑡

(5)

Where ℎ𝑡 stands for activation and 𝑒𝑚𝑏𝑡 is the corresponding em-
bedding. The embedding 𝑒𝑚𝑏𝑡 imparts an utterly different distri-
bution to activation ℎ𝑡 . In Fig. 2(b), the distribution of feature ℎ𝑡
generally stabilizes within a quantization-friendly range after pro-
cessing through a normalization layer. However, the emergence
of outliers within the activated correlation channel may pose a
challenge.

These outliers are several magnitudes larger than the majority
of the data, leading to a skew in the maximum magnitude mea-
surement during quantization. This dominance by outliers could
possibly result in reduced precision for the majority of non-outlier
values. Further complications arise with the incorporation of embed-
ding, as shown in the middle part of Fig. 2(b). Embedding separates
a 1×𝑐 dimensional scale vector 𝑠𝑐𝑎𝑙𝑒𝑡 which scales the feature ℎ𝑡 on
a channel-by-channel basis. This channel-specific scaling alters the
distribution of the activation ℎ𝑡 in a manner that certain channels,
especially those with problematic outliers, experience amplification.

Since activations are typically per-tensor quantized, the combined
effect of embedding magnification and existing outliers makes the
quantization of activations less efficient.

In summary, after normalization, feature ℎ𝑡 is easily quantifiable,
but with the introduction of embedding 𝑒𝑚𝑏𝑡 , it becomes chal-
lenging to quantify , indicating an increase in intra quantization
noise.

3.2.2 Inter Quantization Noise. Diffusion models attain their final
outputs through iterative denoising network calls. During this pro-
cedure, the inter quantization noise, expressed as 𝑞𝜃 (𝑥𝑡 , 𝑡) in Eq. 4,
assimilates into 𝑥𝑡−1 and advances to the subsequent denoising
step, exerting an influence over the entire sampling process.

As shown in Fig. 3, we plot the variation curves of the out-
put Mean and Std during sampling steps. The accumulated inter
quantization noise changes the distribution of synthesized data.
With continuous sampling, the data distribution of the quantization
model further deviates from that of the full-precision model.

3.3 Effect of Quantization Noise
Quantization noise reduces the sampling efficiency of the diffusion
model, changes the sampling direction, and ultimately reduces the
quality of the synthesized image.

First, the introduction of quantization noise gives rise to new
noise sources that necessitate denoising, substantially impairing
the sampling efficiency of diffusion models. As depicted in Fig. 1,
we compare LPIPS distance and FID metrics at each step between
the full-precision model and the quantized model. The quantized
diffusion model has a FID metric of 194.11 after 30 steps, which is
still much larger than the result of the full-precision (FP) model
after only 10 steps (FID = 140.76).

Besides, quantization noise also alters the iteration direction of
diffusion models. In Fig. 1, we visualize the changing trend of CLIP
Score for different methods to provide a more intuitive representa-
tion of the iteration direction. At the beginning of the iteration, all
methods start with relatively low CLIP Scores, while full-precision
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Figure 3: (a) demonstrates the mean and std of outputs across all time steps, while (b) visualizes the output distribution at a
specific step , revealing a substantial discrepancy between the output of the quantized diffusion model (Orange) and that of the
full-precision model (gray). The gray dashed line in (a) represents when our noise estimation module is running.

model’s score continues to rise, indicating correct iteration direc-
tion. By step 25, quantized diffusion model shows a 3.16% difference
in CLIP Score compared to full-precision model (26.09% vs. 29.25%).

In conclusion, quantization noise presents challenges in main-
taining performance following model quantization. This not only
calls for minimizing intra quantization noise as much as possible
at all steps but also necessitates estimating and filtering out the
remaining accumulated inter quantization noise.

3.4 Qunantization Noise Correction for
Diffusion Models

We propose two techniques: intra quantization correction tech-
niques and inter quantization correction techniques to address the
challenges identified in the previous section.

3.4.1 Intra Quantization Correction. As shown in Fig.2, during
the single-step sampling process, embedding amplifies outliers of
activation, leading to an imbalance among channels. Ultimately,
this induces a periodic increase in intra quantization noise. For
reducing intra quantization noise, we propose the utilization of a
channel-specific smoothing factor 𝑆 . By dividing activation with
their respective 𝑆 values, channels are balanced out and more adapt-
able to quantization. We then incorporate the filtered factor into
weights, thus maintaining mathematical equivalence of the convo-
lution, as follows:

𝑌 = 𝑄 (ℎ𝑡 ) ∗𝑄 (𝑊 ) = 𝑄 (ℎ𝑡
𝑆
) ∗𝑄 (𝑆𝑊 ) . (6)

Ultimately, we can transfer the quantization challenges presented
by embedding from activations to weights, which are more robust
to quantization.

Since embedding operates on a channel-by-channel basis, our
goal is to derive a factor 𝑆 for each channel from the embedding,
makingℎ𝑡 = ℎ𝑡/𝑆 easier to quantize. As evident from Eq. 5, the term
1+𝑠𝑐𝑎𝑙𝑒𝑡 , derived from the separation from embedding, accentuates

𝑡 = 20 𝑡 = 50

𝑡 = 80 Smooth factor 𝑆

2th Middle Resblock

𝑡 = 30 𝑡 = 70

𝑡 = 90 Smooth factor 𝑆

10th Input Resblock

Figure 4: Visualization of 𝑠𝑐𝑎𝑙𝑒𝑡 and smoothing factor 𝑆 in
heatmap representation. For ease of visualization, we select
only 12 values from the 512-dimensional data.

the discrepancies among the activation channels. However, 1+𝑠𝑐𝑎𝑙𝑒𝑡
is dynamic and fluctuates based on the time step 𝑡 . Consequently,
we examine the embedding across all 𝑡 scenarios to ascertain the
mean value of 1 + 𝑠𝑐𝑎𝑙𝑒𝑡 and employ it as a static factor 𝑆 :

𝑆 =
1
𝑇

𝑇∑︁
𝑡=1

| 1 + 𝑠𝑐𝑎𝑙𝑒𝑡 |,

𝑠𝑐𝑎𝑙𝑒𝑡 , 𝑠ℎ𝑖 𝑓 𝑡𝑡 = 𝑒𝑚𝑏𝑡 .𝑠𝑝𝑙𝑖𝑡 ().
(7)

As shown in Fig. 2(b), The static factor 𝑆 we obtained serves to
calibrate these unbalanced channels, harmonizing the distribution
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Figure 5: The pipeline of our proposed method. We initiate by saving the accurate embedding and deduce the smoothing factor
𝑆 in the calibration stage. During the inference stage, the pre-computed 𝑆 is applied to smooth the features ℎ𝑡 , thereby the intra
quantization noise is diminished. Besides, at periodic intervals, the inter quantization noise 𝑞𝜃 (𝑥𝑡 , 𝑡) is estimated through our
noise estimation module, which is filter out in output distribution.

across each one, rendering the eventual activations more conducive
to per-tensor quantization. Different 𝑠𝑐𝑎𝑙𝑒𝑡 and 𝑆 are highly similar,
with only minor amplitude differences present on some channels.

In addition, in LDM-type diffusion models, embedding is incor-
porated differently than in Eq. 5:

ℎ𝑡 =
(ℎ𝑡 + 𝑒𝑚𝑏𝑡 ) − 𝜇 (ℎ𝑡+𝑒𝑚𝑏𝑡 )

𝜎 (ℎ𝑡+𝑒𝑚𝑏𝑡 )
∗ 𝛼 + 𝛽, (8)

where 𝛼 and 𝛽 are pretrained affine transform parameters in the
Group-Norm operation. At this point, the distribution of the final
activation ℎ𝑡 is jointly determined by 𝑒𝑚𝑏𝑡 and the coefficients 𝛼 of
group norms. Thus, our smoothing factor 𝑆 is calculated as follows:

𝑆 =
1
𝑇

𝑇∑︁
𝑡=1

𝑒𝑚𝑏𝑡 − 𝜇𝑒𝑚𝑏𝑡

𝜎𝑒𝑚𝑏𝑡

∗ 𝛼. (9)

In Fig. 4, we present a visualization of 𝑠𝑐𝑎𝑙𝑒𝑡 within 𝑒𝑚𝑏𝑡 across
various modules, time steps, and categories. The key observation is
that the distribution of 𝑠𝑐𝑎𝑙𝑒𝑡 exhibits imbalance, unevenly scaling
the input activations by channel, which renders the activations less
suitable for quantization. Despite this, the aggregate distribution of
different 𝑠𝑐𝑎𝑙𝑒𝑡𝑡 remains relatively stable, with only minor ampli-
tude discrepancies across certain channels. Our smoothing factor
𝑆 is thus capable of effectively representing the 𝑠𝑐𝑎𝑙𝑒𝑡𝑡 encoun-
tered during the sampling phase. By filtering through 𝑆 , our QNCD
method mitigates the enhancing impact of 𝑠𝑎𝑙𝑒𝑡𝑡 on activation out-
liers, leading to a reduction in intra quantization noise. Crucially, 𝑆

is pre-computed prior to the formal inference stage, ensuring no
additional computational load during the actual inference.

3.4.2 Inter Quantization Noise Correction. Eq. 4 shows the process
of a single-step sampling in diffusion models, where UNet outputs
the filtered noise 𝜖𝜃 (𝑥𝑡 , 𝑡). It consists of two parts, the de-noising
noise 𝜖𝜃 (𝑥𝑡 , 𝑡), and inter quantization noise 𝑞𝜃 (𝑥𝑡 , 𝑡), which keeps
accumulating in 𝑥𝑡 . Ideally, we filter out 𝑞𝜃 (𝑥𝑡 , 𝑡), thus avoiding the
accumulation of quantization noise, but it is impractical to separate
𝑞𝜃 (𝑥𝑡 , 𝑡) from 𝜖𝜃 (𝑥𝑡 , 𝑡).

The training stage of the diffusion model gives us a possibility
to separate 𝑞𝜃 (𝑥𝑡 , 𝑡):

𝑥𝑡 =
√
𝛼𝑡𝑥𝑡−1 +

√
1 − 𝛼𝑡𝑧1 𝑧1 ∈ 𝑁 (0, 𝐼 ) . (10)

Eq. 10 does a single-step diffusion operation, where a Gaussian
noise 𝑧1 is added to 𝑥𝑡−1 to get 𝑥𝑡 .

𝐿
𝑠𝑖𝑚𝑝𝑙𝑒
𝑡 = 𝐸𝑡∼[1,𝑇 ],𝑥𝑡 ,𝜖𝜃 [| |𝑧1 − 𝜖𝜃 (𝑥𝑡 , 𝑡) | |] . (11)

The training process of the diffusion model (Eq. 11) drives the
denoising network 𝜖𝜃 to learn the distribution of Gaussian noise 𝑧1,
which means 𝜖𝜃 (𝑥𝑡 , 𝑡) ≈ 𝑧1 is satisfied in the pre-trained diffusion
model.

This property is still guaranteed in the quantized pre-trained
diffusion model:

𝑥𝑡 =
√
𝛼𝑡𝑥𝑡−1 +

√
1 − 𝛼𝑡𝑧1,

𝜖𝜃 (𝑥𝑡 , 𝑡) = 𝜖𝜃 (𝑥𝑡 , 𝑡) + 𝑞𝜃 (𝑥𝑡 , 𝑡) ≈ 𝑧1 + 𝑞𝜃 (𝑥𝑡 , 𝑡) .
(12)
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As shown in Fig. 5 and Eq. 12, we add the standard Gaussian
noise 𝑧1 to 𝑥𝑡−1 to get 𝑥𝑡 , and feed it into the quantized model 𝜖𝜃 .
The output of the quantized model contains both the Gaussian noise
𝑧1 to be filtered out and the newly introduced quantization noise
𝑞𝜃 (𝑥𝑡 , 𝑡). 𝑥𝑡 is obtained by a single-step denoising and diffusion
process on 𝑥𝑡 , thus their distributions remain highly similar as well
as the corresponding quantization noise:

𝑞𝜃 (𝑥𝑡 , 𝑡) ≈ 𝑞𝜃 (𝑥𝑡 , 𝑡) ≈ 𝜖𝜃 (𝑥𝑡 , 𝑡) − 𝑧1 . (13)

Finally, the quantization noise 𝑞𝜃 (𝑥𝑡 , 𝑡) can be determined, as the
Gaussian noise 𝑧1 is manually designed and 𝜖𝜃 (𝑥𝑡 , 𝑡) is the output
of the noise predicting network, both of which are ascertainable.

Based on the above analysis, we can estimate the quantization
noise by simulating the diffusion model training process. We first
add the deterministic noise 𝑧1 to 𝑥𝑡−1, which can be filtered out in
the diffusion sample process, and then the rest of the indeterministic
noise is the quantization noise 𝑞𝜃 (𝑥𝑡 , 𝑡). Besides, the quantization
noise is obtained through estimation and doesn’t align perfectly
with the actual noise in terms of pixel dimension, whereas it is
identical at the level of the overall distribution. Thus we get the
distribution of the quantization noise at stage 𝑡−1 and correct the
output sample in Eq. 4.

The above procedure is for single-step quantization noise esti-
mation. In the diffusion model, the distributions of samples from
neighboring steps are very similar, as well as the corresponding
quantization noise distribution (𝑞𝜃 (𝑥𝑡+1, 𝑡 + 1) ≈ 𝑞𝜃 (𝑥𝑡 , 𝑡)). There-
fore, in actual sampling process, we divide entire sampling steps
into multiple stages, estimating the distribution of quantization
noise one time per stage. For example our method run only 4 times
to estimate the quantization noise during a sampling process of 100
time steps, which brings a negligible increase in sampling duration.
As shown in Fig. 3, our QNCD periodically estimates the distribu-
tion of inter quantization noise and corrects distribution deviations
caused by this noise. This noise correction enables the distribution
of sample outputs to closely align with the full-precision models.

3.5 Summary of methods
As shown in Fig. 5, our method contains two major blocks: intra
quantization noise correction module and inter quantization noise
correction module. Firstly, we determine the smoothing factor 𝑆
on a channel-by-channel basis, consequently transitioning the dis-
tribution disparities induced by embedding over to the weights,
which makes the activation easier for quantization. Secondly, we
discern the distribution of quantization noise via our run-time noise
estimation module, enabling its exclusion in subsequent sampling
steps.

4 EXPERIMENTS
4.1 Implementation Details
Datasets and quantization settings: Consistent with the ex-
perimental details of PTQ4DM [24], Q-Diffusion [14], we con-
duct image synthesis experiments using pre-trained diffusion mod-
els (DDIM [26]) , latent diffusion models (LDM [20]) and Stable
Diffusion on four standard benchmarks: CIFAR(32×32) [13], Ima-
geNet (256×256) [4], LSUN-Bedrooms(256×256) [29], MS-COCO

(512×512) [16]. All experimental configurations, including the num-
ber of steps, variance, etc., follow the official implementation. To
facilitate quantification and comparison of the validity of the meth-
ods, we use the most naive PTQ method (mse-based range setting)
in the 8-bit case, which is simple and fast. For the case where the
weights are quantized to 4bit, we adopt BRECQ [15] as well as
Adaround [18] to ensure quantization model performance, in con-
sistency with Q-Diffusion. In addition, we sample uniformly from
all time steps to obtain the calibration dataset for PTQ with 5120
samples on all datasets.
Evaluation Details: Consistent with PTQ4DM and Q-Diffusion,
for each experiment we report the widely adopted Frechet Incep-
tion Distance (FID) [10] and sFID [22] to evaluate performance. For
ImageNet and CIFAR experiments, we additionally report Inception
Score (IS) [1] for reference to ensure consistency of reported results.
For MS-COCO, we introduce CLIP Score to ensure the correspon-
dence between the synthesized images and prompts.

In line with Q-Diffusion, we generated 50,000 samples for evalu-
ating our method. However, the sampling process for diffusion mod-
els is time-consuming, especially for high-resolution images such
as MS-COCO(512×512). Consequently, in the experiment where
Stable Diffusion is used for generating MS-COCO, we produce only
10,000 samples to speed up comparative process.

4.2 Unconditional Generation
Results on CIFAR: The results are displayed in Tab 1. Note that
W𝑛A𝑚means𝑛-bit quantization for weights and𝑚-bit quantization
for activations. It can be seen that at theW8A8 bitwidth, our method
achieves FIDs and sFIDs that are very close to the full-precision
model, with FID reductions of 0.57 (steps=100) and 0.38 (steps=250)
compared to Q-Diffusion. In addition, previous methods confronted
great difficulties in mitigating large amounts of quantization noise
due to low-bit quantization. For example, in the settings of W4A6
and 100 steps, Q-Diffuison obtains FIDs and sFIDs as high as 39.07
and 43.36, implying that the large amount of activation noise leads
to a performance breakdown.While our method conducts a detailed
analysis of quantization noise and effectively eliminates it, it still
achieves a lower FID value of 12.26, proving the effectiveness of
our method. Our method performs 6-bit quantization of activation
on diffusion models and ensures that the performance does not
collapse, whereas previous methods have been performed at 8-bit.
Results on LSUN-Bedrooms: At the W8A8 bitwidth, our method
reduces the FID by 0.21 compared to Q-Diffusion as shown in
Tab. 2, proving the effectiveness of our method on the task of high-
resolution image synthesis.

4.3 Class-conditional Generation
Results on ImageNet: we carry out complex experiments on the
generation of conditional ImageNet datasets to demonstrate the
effectiveness of our method. To facilitate the validation, we adopt
the LDM-4 model with 20 steps. As shown in the Tab. 2, our method
consistently narrows the performance gap between quantized and
full-precision diffusion models. Specifically, under the settings of
W8A8 and W4A8, our QNCD can approach lossless performance.
It is worth noting that at the W4A6 bidwidth setting, the IS of
Q-Diffusion drops to 89.82, which is 156.1 lower than that of the
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Table 1: Quantization results on CIFAR(32 × 32) with DDIM. (50,000 samples)

Method Bitwidth DDIM(Steps=100) DDIM(Steps=250)

(W/A) IS ↑ FID ↓ sFID ↓ IS ↑ FID ↓ sFID ↓
FP 32/32 9.04 4.19 4.41 9.06 4.00 4.35

TDQ 8/8 8.85 5.99 - - - -
Q-Diffusion 8/8 9.17 3.93 4.34 9.38 3.84 4.27

Ours 8/8 9.24 3.36 4.24 9.41 3.46 4.21

Q-Diffusion 4/8 9.41 4.92 5.13 9.64 4.37 4.59
Ours 4/8 9.53 4.85 5.06 9.78 4.43 4.51

Q-Diffusion 4/6 7.53 39.07 43.36 7.81 34.65 37.29
Ours 4/6 8.86 12.26 14.83 9.01 11.09 13.46

(a) Q-Diffusion (b) Ours (c) Full Precision

Figure 6: Stable Diffusion 512 × 512 text-guided image synthesis results using Q-Diffusion and our QNCD under W8A8 precision.
All text prompts are sourced exclusively from MS-COCO dataset.

Table 2: Comparisons with extra SOTA methods on Ima-
geNet (LDM-4,Steps=20) and LSUN-Bed (LDM-4,Steps=200).
"*"means results in the corresponding paper.(50,000 samples)

Method

ImageNet(FID ↓ / IS ↑) LSUN-Bed(FID ↓ / SFID ↓)
(FP:11.42/245.39) (FP:3.16/7.84)

W8A8 W4A8 W4A6 W8A8

𝑃𝑇𝑄𝐷∗ 11.94/153.92 10.40/214.73 - 3.75/9.89
𝑇𝐷𝑄∗ - - 41.23/- -

Q-Diffusion 10.92/229.31 9.56/219.64 41.25/89.82 4.03/10.15
QNCD 10.57/231.85 9.48/221.62 20.14/136.49 3.82/9.65

full-precision model (245.39). Our method well handles the low-bit
quantization of the activation. Compared to the FID of Q-Diffusion
which is as high as 41.25, the FID of our method is 20.14, indicating
the effectiveness of our method. The visualizations are available in
the Appendix.

4.4 Text-guided Image Generation
We assess the performance of QNCD through Stable Diffusion for
text-guided image generation, using text prompts derived from
the MS-COCO dataset. As demonstrated in Tab. 7, our method
surpasses Q-Diffusion in both FID metrics and CLIP Scores.

In addition, we visualize the final generated image in Fig. 6. For
all three methods (FP, Q-Diffusion, and ours), we have given the
same content conditions as input to facilitate comparison. It can
be noticed that the accumulated quantization noise changes the
content space of the image, causing the final synthesized image to
be shifted. As shown in the red box in Fig.6, the synthesized image
shows the importation of abnormal content , such as abnormal faces,
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Figure 7: Quantization results for Stable Diffusion(steps=50)
on MS-COCO (10,000 samples). The dashed lines represent
results of full-precision model.

incomplete bowls and floating cows. Compared with Q-Diffusion,
our method provides a higher quality image, which is closer to
the full-precision model synthesized image and has more realistic
details, colors, and richer semantic information. In conclusion, our
method effectively mitigates the quantization noise, and is closer to
the full-precision model not only in terms of statistical metrics,
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Table 3: The effect of different modules of QNCD with Stable
Diffusion on MS-COCO(512×512).

Method Bitwidth Stable Diffusion(Steps=50)

(W/A) FID ↓ CLIP Score ↑
FP 32/32 23.80 30.54

Q-Diffusion 8/8 27.84 30.23
Intra-QNCD 8/8 27.41 30.25
Inter-QNCD 8/8 27.60 30.29

QNCD 8/8 27.33 30.32
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Figure 8: Comparison of the signal-to-noise- ratio (SNR) and
cosine similarity in each step of DDIM(100) onCIFAR.(W8A8)

but also in terms of visualization. More visualization results are
shown in Appendix.

4.5 Ablation Study
4.5.1 Comparison of SNR andCosine Similarity. In Fig. 1, we present
a visualization of the LPIPS Distance between the quantized model
output and its floating-point counterpart for all 100 time steps,
demonstrating that our method consistently yields more accurate
results.

Given the output of the floating-point noise prediction network
and the corresponding quantization noise, we plot the change curve
of the signal-to-noise ratio (SNR) of the quantized diffusion model,
as shown in Fig. 8, as well as the cosine similarity between the cor-
responding output and the FP output. We can find that: 1, with the
increase of denoising steps, the cosine similarity between the quan-
tized model output and the FP output is continuously decreasing,
which also means that the overall quantization noise is continu-
ously accumulating, and the corresponding SNR is continuously
decreasing. 2, our method can estimate and filter out the quan-
tization noise on a global scale, resulting in a better SNR, and a
sampling process closer to that of the floating-point model.

4.5.2 Effects of each module. As shown in Tab. 3, we performe
ablation experiments on Stable Diffusion (step=50) of MS-COCO
512×512 dataset to demonstrate the effectiveness of our proposed
method. Our QNCD method consists of two parts, intra quantiza-
tion noise correction (Intra-QNCD) and inter quantization noise

Table 4: Inference performance and Image Quality Assess-
ment(IQA) for MS-COCO via Stable Diffusion (512∗512, 50
steps).

FP16 Original PTQ(W8A8) Q-Diffusion(W8A8) QNCD(W8A8)

Inference Time 959.5ms 601.8ms 628.3ms 631.2ms
IQA Score↑(0 ∼ 1) 0.847 0.728 0.775 0.793

correction (Inter-QNCD). By using Intra-QNCD, we achieve a reduc-
tion of 0.43 in FID compared to Q-Diffusion. And our Inter-QNCD is
able to reduce 0.24 in FID and improve 0.06 in CLIP Score. By intro-
ducing both blocks, our method QNCD achieves a reduction of 0.51
in FID, showing that these two blocks can collaborate to achieve
higher performance improvement. These results demonstrate the
effectiveness of our proposed techniques for noise correction in
post-training quantization of diffusion models.

4.5.3 Comparison of real inference efficiency. For fair comparison,
we provide end-to-end inference times in Tab. 4. Inference times are
based on the UNet of Stable Diffusion V1.4, which denote whole de-
noising process of diffusion models. The experimental background
is A100, TensorRT-8.6 and CUDA-11.7. Similarly to our QNCD, Q-
Diffusion introduces the Short-Cut split operation in pursuit of
better model performance, which also imposes an additional infer-
ence burden (26.5ms compared to original PTQ). Our method runs
at a similar speed to Q-Diffusion, but with higher image quality.

4.5.4 Comparison through Image Quality Assessment. As shown
in Tab. 2, the FID metrics of PTQD and Q-Diffusion on ImageNet
dataset are 11.94 and 10.92, superior to the FP’s score of 12.45
under the W8A8 setting. This same pattern extends to the LSUN-
Bedrooms and CIFAR datasets, which is unexpected and implies
that the FID metric may not be an optimal indicator of image qual-
ity. This is because FID focuses more on the overall distribution
similarity rather than the specific quality of each image. For a more
comprehensive comparison, we further refer to objective Image
Quality Assessment(IQA) metrics proposed in CLIP-IQA [28] to
evaluate 5000 synthesized images. Our method achieves an IQA
metric of 0.793, which is better than Q-Diffusion (0.775), but still
falls short compared to FP (0.847).

5 CONCLUSION
In this paper, we propose QNCD, a unified quantization noise cor-
rection scheme for diffusion models. To start with, we do a detailed
analysis of the sources and effects of quantization noise in terms of
visualization and actual metrics, and find that the periodic increase
in intra quantization noise comes from embedding’s alteration of
feature distributions. Thus, we calculate a smoothing factor for
features to reduce quantization noise. Besides, a run-time noise
estimation module is proposed to estimate the distribution of inter
quantization noise, which is further filtered out in the sampling pro-
cess of the diffusion model. Leveraging these techniques, our QNCD
surpasses existing state-of-the-art post-training quantized diffusion
models, especially at low-bit activation quantization (W4A6). Our
approach achieves the current SOTA on multiple diffusion model-
ing frameworks (DDIM , LDM and Stable Diffusion) and multiple
datasets, demonstrating the broad applicability of QNCD.
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