
Agentic Property-Based Testing:
Finding Bugs Across the Python Ecosystem

Muhammad Maaz
MATS, Anthropic

Liam DeVoe
Northeastern University

Zac Hatfield-Dodds
Anthropic

Nicholas Carlini
Anthropic

Abstract

Property-based testing (PBT) is a lightweight formal method, typically imple-
mented as a randomized testing framework. Users specify the input domain for
their test using combinators supplied by the PBT framework, and the expected
properties or invariants as a unit-test function. The framework then searches for
a counterexample, e.g. by generating inputs and calling the test function. In this
work, we demonstrate an LLM-based agent which analyzes Python modules, in-
fers function-specific and cross-function properties from code and documentation,
synthesizes and executes PBTs, reflects on outputs of these tests to confirm true
bugs, and finally outputs actionable bug reports for the developer. We perform
an extensive evaluation of our agent across 100 popular Python packages. Of the
bug reports generated by the agent, we found after manual review that 56% were
valid bugs and 32% were valid bugs that we would report to maintainers. We
then developed a ranking rubric to surface high-priority valid bugs to developers,
and found that of the 21 top-scoring bugs, 86% were valid and 81% we would
report. The bugs span diverse failure modes from serialization failures to numerical
precision errors to flawed cache implementations. We reported 5 bugs, 4 with
patches, including to NumPy and cloud computing SDKs, with 3 patches merged
successfully. Our results suggest that LLMs with PBT provides a rigorous and
scalable method for autonomously testing software. Our code and artifacts are
available at: https://github.com/mmaaz-git/agentic-pbt.

1 Introduction

Property-based testing (PBT) is a software testing paradigm that aims to verify whether a general
property holds over a predefined input domain. In contrast to traditional example-based testing, it
does not require specific examples of expected outputs. Instead, PBT allows the developer to define
invariants that should hold for all inputs, which are then checked on a diverse set of automatically-
generated inputs. A property might require that the output of a function is always non-negative, that
some f and g commute for all x (f(g(x)) = g(f(x))), or that an interpreted program has equivalent
semantics to its compiled form. Popularized by QuickCheck in Haskell (Claessen and Hughes, 2000),
there now exist PBT libraries for many of the common programming languages, including Python’s
Hypothesis (MacIver et al., 2019), the focus in this work. PBT can be more robust than example-based
testing which inherently relies on the developer to anticipate edge cases (MacIver, 2019).

Despite its theoretical appeal, property-based testing is less popular than example-based testing due
to the challenge of identifying meaningful properties to test (Goldstein et al., 2024). Specifying
meaningful properties, especially as codebases get more complex, often requires significant domain
expertise and time investment. Recent advances in large language models (LLMs) have demonstrated
remarkable code understanding, which makes it possible to automatically mine for properties.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The 4th Deep Learning
for Code Workshop.

https://github.com/mmaaz-git/agentic-pbt

However, existing work on using LLMs for PBTs focuses on a single function at a time, and has only
a single generation step.

In our work, we introduce agentic property-based testing, an approach leveraging the multi-step rea-
soning capabilities of coding agents and the rigor of PBT. We develop an agent that can autonomously
crawl through and understand entire codebases, look for high-value properties (including across
functions and classes), write PBTs and run them, and then analyze failing tests for validity. After the
agent runs for several rounds, it either surfaces a bug, or states it is unable to identify one.

We demonstrate the effectiveness of agentic PBT through a large-scale evaluation across the Python
ecosystem, testing 100 popular Python packages with billions of downloads. Manual evaluation
of the bug reports generated by our agent showed that it successfully identified genuine bugs in
several widely-used libraries: for example, our agent autonomously finds a bug in NumPy, the
pre-eminent numerical library in Python with more than 500 million monthly downloads, which was
acknowledged by the maintainers, showing the real-world applicability of our approach. This work
represents the largest systematic evaluation of AI-driven property-based testing to date, establishing a
new paradigm for scalable software auditing.

2 Agent

Our agent is built on top of Anthropic’s Claude Code, a terminal-based coding agent (Anthropic,
2025b), that allows Claude to execute bash commands and read/write files. Our agent is implemented
as a natural language prompt, stored in a Markdown file, that is passed to Claude Code. As it
is a prompt, our agent is easily portable to other agent implementations, like OpenAI’s Codex
OpenAI (2025), or general frameworks like ReAct (Yao et al., 2022). Our main contribution is our
comprehensive evaluation which demonstrates that LLM-based PBT works at scale, finding diverse
bugs with few false alarms.

Our agent is built to work with Python codebases, and generates Hypothesis PBTs to test that
code. It takes a single argument, which points the agent towards a particular target, either a sin-
gle Python file (e.g., normalizers.py), module (e.g., numpy, scipy.signal), or function (e.g.,
requests.get(), json.loads()).

We developed the prompt by using industry best-practices (Anthropic, 2025a), collating high-value
information from the Hypothesis documentation (Hypothesis Contributors, 2025), and iterative
refinement from manual inspection of agent runs. The full prompt is in Appendix A.

Prompt Overview The agent is given the following six instructions, paraphrased below:

1. Analyze the target: Figure out if the target is a module, function, or a file.
2. Understand the target: Find and read documentation, function signatures, source code, etc.
3. Propose properties: Look for properties grounded in the information from the past step.

Some examples of high-value properties, e.g., invariants, round-trip, metamorphic, are given.
Thoroughly understand the input domain, e.g., by looking at functions that call the function
under test.

4. Write tests: Translate these properties into Hypothesis property-based tests.
5. Execute and triage tests: Run tests with pytest. For failing tests, reflect using a rubric. If

the failing test is a false alarm, go to Step 4 and refine the testing strategy. For passing tests,
verify that the test is meaningful.

6. Report bugs: If convinced a bug is genuine, create a bug report in a Markdown file, following
a standard format including a summary of the bug, the PBT that exposed the bug, a short
reproducing script, why it is a bug, and possibly a proposed patch.

Finally, we provide the agent with a short reference to Hypothesis, which shows essential patterns,
some key testing principles, and links to online documentation which can be fetched if needed.

Key Design Choices Our agent maintains a to-do list to track its progress through the 6-step cycle,
as well as to keep track of, e.g., which properties it would like to test. We attempt to reduce false
alarms throughout by emphasizing that proposed properties should be strongly supported by evidence,
asking the agent to reflect on failing tests carefully, and to focus on a few high-value properties.
Lastly, we let the agent have broad autonomy: it decides which functions to target, and decides when
a failing property is truly a bug (with some direction from a rubric).

2

3 Experiment

We evaluate our agents ability to find bugs by curating a diverse corpus of 100 Python packages. We
combine three complementary sampling approaches to ensure comprehensive coverage:

• Hand-selected from the standard library (n = 15): json, pathlib, collections,
itertools, functools, datetime, re, os, urllib, statistics, decimal, base64,
uuid, html, csv.

• Hand-selected from third-party PyPI packages (n = 15): numpy, pandas, requests,
flask, sqlalchemy, matplotlib, scipy, beautifulsoup4, pydantic, fastapi,
django, tornado, keras, httpie, black.

• Random sample from the top 5,000 PyPI packages, by downloads (n = 70): Variety of
domains including data, cloud computing, and machine learning. The full list is provided
with our code.

For each package, we test the agent on the main module (e.g., for beautifulsoup4, the main module
is bs4), and all submodules one level deep (e.g., numpy.linalg). In total, we ran on 933 modules.

We used Claude Opus 4.1 Anthropic (2025c) as the LLM for all agent runs. Each agent was run in
an isolated virtual environment containing the package under test and its dependencies, along with
Hypothesis. Agents were run in parallel, with up to N = 20 concurrently. Agents had read/write
permission within their working directory, could execute python and pytest bash commands, had
read access to the virtual environment for source code, and internet access. The experiment was run
on a RunPod Ubuntu 20.04 container with 8 vCPUs, 16 GB RAM, and 50 GB disk.

Evaluation Definitive validation of reported bugs across such diverse libraries is difficult as it
requires domain expertise in each specific codebase. First, we developed an initial scoring rubric with
the goal of eliminating clear false alarms and got Claude Opus 4.1 to grade all reports. We randomly
sampled n = 50 bug reports from the top 80% by score. Two of the authors independently scored
each bug report, using two criteria: “Is this a valid bug? If yes, would we reasonably report this
to the maintainers?". Disagreements were discussed to arrive at a final consensus. Using insights
from the initial rubric, we developed a final rubric (see our code) which scores bug reports out of
15, got Claude Opus 4.1 to grade all reports, and manually reviewed all reports with a 15/15 score.
To validate our agents with maintainers with actual domain expertise, we (manually) reported some
particularly interesting bugs to their respective repositories.

4 Results

Summary statistics We evaluated our agent across 100 Python packages covering 933 modules.
The agent generated 984 bug reports, discovering issues in 786 modules (84.2%) and averaging just
over one bug per module. Total agent runtime was 136.6 hours (82 min/package, 8.8 min/module)
and total API cost was $5,474.20 ($54.74/package, $5.87/module, $5.56/bug report). Individual
module costs ranged from $0.65 to $15.42, with a median of $5.81. Each agent run involved roughly
110 turns. In aggregate, the agents used 2.21 billion (input & output) tokens (2.37 million/module).

Manual review Inter-rater agreement on the initial review was κ = 0.31. After reaching consensus,
56.0% (95% CI: 42.2%, 69.8%) of reports were determined to be valid bugs, and 32.0% (95% CI:
19.1%, 44.9%) were valid and worth reporting. With the final rubric, 18 of the 21 top-scoring reports
were valid, and 17 of those were both valid and worth reporting.

Reported bugs While examining reports, we selected the following particularly interesting bugs
to report to the original developer. The corresponding bug reports generated by the agent are in
Appendix B. They demonstrate the range of issues discoverable through our approach:

[numpy] (numpy.random)
Property: Wald distribution should only return non-negative samples.
Bug: Negative samples sometimes returned due to catastrophic cancellation.
Status: Bug acknowledged. Patch merged. [PR #29609]

[aws-lambda-powertools] (aws_lambda_powertools.shared.functions)
Property: slice_dictionary() splits a dictionary into chunks which should be able to
be recombined into the original dictionary.

3

https://github.com/numpy/numpy/pull/29609

Bug: It returns the same (first) chunk repeatedly, due to not incrementing the iterator.
Status: Bug acknowledged. Patch merged. [PR #7246]

[cloudformation-cli-java-plugin] (rpdk.core.jsonutils.utils)
Property: item_hash() function should produce different outputs for different inputs.
Bug: All list inputs hash to hash(None), due to use of the in-place .sort() method, which
returns None.
Status: Patch submitted. [PR #1106]

[tokenizers] (tokenizers.tools)
Property: EncodingVisualizer.calculate_label_colors() should return a valid
HSL color format.
Bug: The returned string is missing a closing parenthesis.
Status: Bug acknowledged. Patch merged. [PR #1853]

[python-dateutil] (dateutil)
Property: easter() should be on a Sunday.
Bug: Returns a non-Sunday date for the Julian calendar in various years.
Status: Issue reported. Maintainers identified the behavior as intended due to differing
calendar systems, and acknowledged the semantics as confusing. [Issue #1437]

5 Discussion and Conclusion

Our evaluation demonstrates that LLM-guided property-based testing can systematically uncover
bugs missed by traditional testing. With a cost of $5.56/bug report, and extrapolating from our manual
grading that 56% of these are valid bugs, our agent can find bugs for $9.93/valid bug. This is an upper
bound on the real-world cost, where developers with domain expertise can be more judicious with
where to target the agent. The diversity of issues, spanning numerical issues to business logic issues,
show the power of PBT, and the ability of agents to autonomously mine for such properties.

Limitations The primary limitation is that we did not manually review all 984 bug reports. However,
our review of a subset of reports shows that the false discovery rate has a 95% CI of [30.2%, 57.8%].
The secondary limitation is intent ambiguity: the agent cannot distinguish intentional design violations
from bugs. An example of this is a bug report about LookupDict from the requests library: based
on its name and the fact it subclasses from the built-in dict, our agent tested whether it exhibits
dict-like behavior, which it in fact does not. The same issue was raised on GitHub in 20221, but
the maintainer replied that it was not meant to work like dict. In practice, both limitations can be
mitigated by developers’ domain expertise rather than blind exhaustive testing as we did.

Comparison to Related Work Vikram et al. (2023) study converting library documentation into
Hypothesis PBTs for 40 functions across 10 popular Python libraries (e.g., numpy). With their best
model and prompting strategy, only 41% of generated PBTs ran without error and passed on the
implemented code, and at most 21% of documented properties were captured. In contrast, we do
better by using an agentic approach, which is better able to capture more complex properties due
to multiple steps. More recent work He et al. (2025) propose a different take on this problem: a
“generator" LLM produces candidate code while a “tester" LLM synthesizes PBTs from the problem
description. PBT failures are fed back to guide code refinement, yielding improvements over example-
based test-driven development. There is also extensive work on LLMs for software testing in general:
see Wang et al. (2024) for a review.

Conclusion We presented an automated approach for bug discovery using LLM-guided property-
based testing, which discovered real bugs across several popular Python libraries. The properties
and failing test cases discovered show the utility of combining LLMs with PBT. While such a tool
is useful for developers, a possible malicious use is autonomous discovery of vulnerabilities. As
LLMs improve and get cheaper, agentic PBT could become an increasingly valuable complement to
traditional testing, helping developers systematically explore code behavior and find bugs.

1https://github.com/psf/requests/issues/6238

4

https://github.com/aws-powertools/powertools-lambda-python/pull/7246
https://github.com/aws-cloudformation/cloudformation-cli/pull/1106
https://github.com/huggingface/tokenizers/pull/1853
https://github.com/dateutil/dateutil/issues/1437
https://github.com/psf/requests/issues/6238

References

Anthropic. Claude Code: Best practices for agentic coding. https://www.anthropic.com/
engineering/claude-code-best-practices, Apr. 2025a. Accessed: 2025-08-20.

Anthropic. Claude Code. https://www.anthropic.com/claude-code, 2025b. Accessed: 2025-
08-20.

Anthropic. System Card Addendum: Claude Opus 4.1. Technical report, Anthropic,
Aug 2025c. URL https://assets.anthropic.com/m/4c024b86c698d3d4/original/
Claude-4-1-System-Card.pdf.

K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of haskell programs.
In Proceedings of the fifth ACM SIGPLAN international conference on Functional programming,
pages 268–279, 2000.

H. Goldstein, J. W. Cutler, D. Dickstein, B. C. Pierce, and A. Head. Property-based testing in practice.
In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, pages
1–13, 2024.

L. He, Z. Chen, Z. Zhang, J. Shao, X. Gao, and L. Sheng. Use property-based testing to bridge llm
code generation and validation. arXiv preprint arXiv:2506.18315, 2025.

Hypothesis Contributors. Hypothesis documentation. https://hypothesis.readthedocs.io/
en/latest/, 2025. Accessed: 2025-08-20.

D. MacIver. In praise of property-based testing. URL: https://increment. com/testing/in-praise-of-
property-based-testing, 2019.

D. R. MacIver, Z. Hatfield-Dodds, et al. Hypothesis: A new approach to property-based testing.
Journal of Open Source Software, 4(43):1891, 2019.

OpenAI. OpenAI Codex. https://openai.com/codex/, 2025. Accessed: 2025-08-20.

V. Vikram, C. Lemieux, J. Sunshine, and R. Padhye. Can large language models write good property-
based tests? arXiv preprint arXiv:2307.04346, 2023.

J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang. Software testing with large language
models: Survey, landscape, and vision. IEEE Transactions on Software Engineering, 50(4):
911–936, 2024.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. ReAct: Synergizing
reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022. URL https:
//arxiv.org/abs/2210.03629. Accessed: 2025-08-20.

5

https://www.anthropic.com/engineering/claude-code-best-practices
https://www.anthropic.com/engineering/claude-code-best-practices
https://www.anthropic.com/claude-code
https://assets.anthropic.com/m/4c024b86c698d3d4/original/Claude-4-1-System-Card.pdf
https://assets.anthropic.com/m/4c024b86c698d3d4/original/Claude-4-1-System-Card.pdf
https://hypothesis.readthedocs.io/en/latest/
https://hypothesis.readthedocs.io/en/latest/
https://openai.com/codex/
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

A Agent prompt

Note: some characters may not render properly in the PDF; we provide the full prompt file in our
code release.

1 ---
2 description: Property-based testing agent
3 ---
4
5 # Property-Based Testing Bug Hunter
6
7 You are a **bug-hunting agent** focused on finding genuine bugs through property-based testing with Hypothesis. Your mission:

discover real bugs by testing fundamental properties that should always hold.
8
9 ## Your Todo List

10
11 Create and follow this todo list for every target you analyze:
12
13 1. [] **Analyze target**: Understand what you’re testing (module, file, or function)
14 2. [] **Understand the target**: Use introspection and file reading to understand implementation
15 3. [] **Propose properties**: Find evidence-based properties the code claims to have
16 4. [] **Write tests**: Create focused Hypothesis tests for the most promising properties
17 5. [] **Test execution and bug triage**: Run tests with ‘pytest‘ and apply bug triage rubric to any failures
18 6. [] **Report or conclude**: Either create a bug report or report successful testing
19
20 Mark each item complete as you finish it. This ensures you don’t skip critical steps.
21 You can use the ‘Todo‘ tool to create and manage your todo list.
22 Use the ‘Todo‘ tool to keep track of properties you propose as you test them.
23
24 ## Core Process
25
26 Follow this systematic approach:
27
28 ### 1. Analyze target
29 - Determine what you’re analyzing from ‘$ARGUMENTS‘:
30 - Empty → Explore entire codebase
31 - ‘.py‘ files → Analyze those specific files
32 - Module names (e.g. ‘numpy‘ or ‘requests‘) → Import and explore those modules
33 - Function names (e.g. ‘numpy.linalg.solve‘) → Focus on those functions
34 ‘‘‘bash
35 python -c "import numpy; print(’success - treating as module’)"
36 python -c "from numpy import abs; print(type(numpy.abs))"
37 ‘‘‘
38
39 ### 2. Understand the target
40
41 Use Python introspection to understand the module or function you are testing.
42
43 To find the file of a module, use ‘target_module.__file__‘.
44
45 To get all public functions/classes in the module, use ‘inspect.getmembers(target_module)‘.
46
47 To get the source code of a function, signature, and docstring, of a function ‘func‘ use:
48 - ‘inspect.signature(func)‘ to get the signature
49 - ‘func.__doc__‘ to get the docstring
50 - ‘inspect.getsource(func)‘ to get the source code
51
52 To get the file of a function, use ‘inspect.getfile(target_module.target_function)‘.
53
54 You can then use the Read tool to read full files.
55
56 If explicitly told to test a file, you **must use** the Read tool to read the full file.
57
58 Once you have the file location, you can explore the surrounding directory structure with ‘os.path.dirname(target_module.

__file__)‘ to understand the module better.
59 You can use the List tool to list files, and Read them if needed.
60
61 Sometimes, the high-level module just imports from a private implementation module.
62 Follow those import chains to find the real implementation, e.g., ‘numpy.linalg._linalg‘.
63
64 Together, these steps help you understand:
65 - The module’s structure and organization
66 - Function information, including signature and docstring
67 - Entire code files, so you can understand the target in context, and how it is called
68 - Related functionality you might need to test
69 - Import relationships between files
70
71 ### 3. Propose properties
72
73 Once you thoroughly understand the target, look for these high-value property patterns:
74
75 - **Invariants**: ‘len(filter(x)) <= len(x)‘, ‘set(sort(x)) == set(x)‘
76 - **Round-trip properties**: ‘decode(encode(x)) = x‘, ‘parse(format(x)) = x‘
77 - **Inverse operations**: ‘add/remove‘, ‘push/pop‘, ‘create/destroy‘
78 - **Multiple implementations**: fast vs reference, optimized vs simple
79 - **Mathematical properties**: idempotence ‘f(f(x)) = f(x)‘, commutativity ‘f(x,y) = f(y,x)‘
80 - **Confluence**: if the order of function application doesn’t matter (eg in compiler optimization passes)
81 - **Metamorphic properties**: some relationship between ‘f(x)‘ and ‘g(x)‘ holds, even without knowing the correct value for ‘

f(x)‘. For example, ‘sin(π - x) = sin(x)‘ for all x.

6

82 - **Single entry point**: for libraries with 1-2 entrypoints, test that calling it on valid inputs doesn’t crash (no
specific property!). Common in e.g. parsers.

83
84 If there are no candidate properties in $ARGUMENTS, do not search outside of the specified function, module, or file.

Instead, exit with "No testable properties found in $ARGUMENTS".
85
86 **Only test properties that the code is explicitly claiming to have.** either in the docstring, comments, or how other code

uses it. Do not make up properties that you merely think are true. Proposed properties should be **strongly supported
** by evidence.

87
88 **Function prioritization**: When analyzing a module/file with many functions, focus on:
89 - Public API functions (those without leading underscores) with substantive docstrings
90 - Multi-function properties, as those are often more powerful
91 - Single-function properties that are well-grounded
92 - Core functionality rather than internal helpers or utilities
93
94 **Investigate the input domain** by looking at the code the property is testing. For example, if testing a function or class,

check its callers. Track any implicit assumptions the codebase makes about code under test, especially if it is an
internal helper, where such assumptions are less likely to be documented. This investigation will help you understand
the correct strategy to write when testing. You can use any of the commands and tools from Step 2 to help you further
understand the codebase.

95
96 ### 4. Write tests
97
98 Write focused Hypothesis property-based tests to test the properties you proposed.
99

100 - Use smart Hypothesis strategies - constrain inputs to the domain intelligently
101 - Write strategies that are both:
102 - sound: tests only inputs expected by the code
103 - complete: tests all inputs expected by the code
104 If soundness and completeness are in conflict, prefer writing sound but incomplete properties. Do not chase completeness:

90% is good enough.
105 - Focus on a few high-impact properties, rather than comprehensive codebase coverage.
106
107 A basic Hypothesis test looks like this:
108
109 ‘‘‘python
110 @given(st.floats(allow_nan=False, min_value=0))
111 def test_sqrt_round_trip(x):
112 result = math.sqrt(x)
113 assert math.isclose(result * result, x)
114 ‘‘‘
115
116 A more complete reference is available in the *Hypothesis Quick Reference* section below.
117
118 ### 5. Test execution and bug triage
119
120 Run your tests with ‘pytest‘.
121
122 **For test failures**, apply this bug triage rubric:
123
124 **Step 1: Reproducibility check**
125 - Can you create a minimal standalone reproduction script?
126 - Does the failure happen consistently with the same input?
127
128 **Step 2: Legitimacy check**
129 - Does the failing input represent realistic usage?
130 - ✓ Standard user inputs that should work
131 - ✗ Extreme edge cases that violate implicit preconditions
132 - Do callers of this code make assumptions that prevent this input?
133 - Example: If all callers validate input first, testing unvalidated input is a false alarm
134 - Is the property you’re testing actually claimed by the code?
135 - ✓ Docstring says "returns sorted list" but result isn’t sorted
136 - ✗ Mathematical property you assumed but code never claimed
137
138 **Step 3: Impact assessment**
139 - Would this affect real users of the library?
140 - Does it violate documented behavior or reasonable expectations?
141
142 **If false alarm detected**: Return to Step 4 and refine your test strategy using ‘st.integers(min_value=...)‘, ‘strategy.

filter(...)‘, or ‘hypothesis.assume(...)‘. If unclear, return to Step 2 for more investigation.
143
144 **If legitimate bug found**: Proceed to bug reporting.
145
146 **For test passes**, verify the test is meaningful:
147 - Does the test actually exercise the claimed property?
148 - ✓ Test calls the function with diverse inputs and checks the property holds
149 - ✗ Test only uses trivial inputs or doesn’t actually verify the property
150 - Are you testing the right thing?
151 - ✓ Testing the actual implementation that users call
152 - ✗ Testing a wrapper or trivial function that doesn’t contain the real logic
153
154 ### 6. Bug Reporting
155
156 Only report **genuine, reproducible bugs**:
157 - ✓ "Found bug: ‘json.loads(json.dumps({"??": None}))‘ fails with KeyError"
158 - ✓ "Invariant violated: ‘len(merge(a,b)) != len(a) + len(b)‘ for overlapping inputs"
159 - ✗ "This function looks suspicious" (too vague)
160 - ✗ False positives from flawed test logic
161
162 **If genuine bug found**, categorize it as one of the following:
163 - **Logic**: Incorrect results, violated mathematical properties, silent failures

7

164 - **Crash**: Valid inputs cause unhandled exceptions
165 - **Contract**: API differs from its documentation, type hints, etc
166
167 And categorize the severity of the bug as one of the following:
168 - **High**: Incorrect core logic, security issues, silent data corruption
169 - **Medium**: Obvious crashes, uncommon logic bugs, substantial API contract violations
170 - **Low**: Documentation, UX, or display issues, incorrect exception type, rare edge cases
171
172 Then create a standardized bug report using this format:
173
174 ‘‘‘‘markdown
175 # Bug Report: [Target Name] [Brief Description]
176
177 **Target**: ‘target module or function‘
178 **Severity**: [High, Medium, Low]
179 **Bug Type**: [Logic, Crash, Contract]
180 **Date**: YYYY-MM-DD
181
182 ## Summary
183
184 [1-2 sentence description of the bug]
185
186 ## Property-Based Test
187
188 ‘‘‘python
189 [The exact property-based test that failed and led you to discover this bug]
190 ‘‘‘
191
192 **Failing input**: ‘[the minimal failing input that Hypothesis reported]‘
193
194 ## Reproducing the Bug
195
196 [Drop-in script that a developer can run to reproduce the issue. Include minimal and concise code that reproduces the issue,

without extraneous details. If possible, reuse the mininal failing input reported by Hypothesis. **Do not include
comments or print statements unless they are critical to understanding**.]

197
198 ‘‘‘python
199 [Standalone reproduction script]
200 ‘‘‘
201
202 ## Why This Is A Bug
203
204 [Brief explanation of why this violates expected behavior]
205
206 ## Fix
207
208 [If the bug is easy to fix, provide a patch in the style of ‘git diff‘ which fixes the bug, without commentary. If it is not,

give a high-level overview of how the bug could be fixed instead.]
209
210 ‘‘‘diff
211 [patch]
212 ‘‘‘
213
214 ‘‘‘‘
215
216 **File naming**: Save as ‘bug_report_[sanitized_target_name]_[timestamp]_[hash].md‘ where:
217 - Target name has dots/slashes replaced with underscores
218 - Timestamp format: ‘YYYY-MM-DD_HH-MM‘ using ‘datetime.now().strftime("%Y-%m-%d_%H-%M")‘
219 - Hash: 4-character random string using ‘’’.join(random.choices(string.ascii_lowercase + string.digits, k=4))‘
220 - Example: ‘bug_report_numpy_abs_2025-01-02_14-30_a7f2.md‘
221
222 ### 7. **Outcome Decision**
223 - **Bug(s) found**: Create bug report file(s) as specified above - you may discover multiple bugs!
224 - **No bugs found**: Simply report "Tested X properties on [target] - all passed ✓" (no file created)
225 - **Inconclusive**: Rare - report what was tested and why inconclusive
226
227 ## Hypothesis Quick Reference
228
229 ### Essential Patterns
230 ‘‘‘python
231 import math
232
233 from hypothesis import assume, given, strategies as st
234
235
236 # Basic test structure
237 @given(st.integers())
238 def test_property(x):
239 assert isinstance(x, int)
240
241
242 # Safe numeric strategies (avoid NaN/inf issues)
243 st.floats(allow_nan=False, allow_infinity=False, min_value=-1e10, max_value=1e10)
244 st.floats(min_value=1e-10, max_value=1e6) # positive floats
245
246 # Collection strategies
247 st.lists(st.integers())
248 st.text()
249
250
251 # Filtering inputs
252 @given(st.integers(), st.integers())

8

253 def test_division(a, b):
254 assume(b != 0) # Skip when b is zero
255 assert abs(a % b) < abs(b)
256 ‘‘‘
257
258 ### Key Testing Principles
259 - Use ‘math.isclose()‘ or ‘pytest.approx()‘ for float comparisons
260 - Focus on properties that reveal genuine bugs when violated
261 - Use ‘@settings(max_examples=1000)‘ to increase testing power
262 - Constrain inputs intelligently rather than defensive programming
263 - Do not constrain strategies unnecessarily. Prefer e.g. ‘st.lists(st.integers())‘ to ‘st.lists(st.integers(), max_size=100)

‘, unless the code itself requires ‘len(lst) <= 100‘.
264
265 ### Documentation Resources
266
267 For a comprehensive reference:
268
269 - **Basic tutorial**: https://hypothesis.readthedocs.io/en/latest/quickstart.html
270 - **Strategies reference**: https://hypothesis.readthedocs.io/en/latest/reference/strategies.html
271 - **NumPy strategies**: https://hypothesis.readthedocs.io/en/latest/reference/strategies.html#numpy
272 - **Pandas strategies**: https://hypothesis.readthedocs.io/en/latest/reference/strategies.html#pandas
273
274 ### Rare but useful strategies
275
276 These strategies are uncommon, but highly useful where relevant.
277
278 - ‘st.from_regex‘
279 - ‘st.from_lark‘ - for context-free grammars
280 - ‘st.functions‘ - generates arbitrary callable functions
281
282 Use the WebFetch tool to pull specific documentation when needed.
283
284 ---
285
286 If you generate files in the course of testing, leave them instead of deleting them afterwards. They will be automatically

cleaned up after you.
287
288 **Remember**: Your goal is finding genuine bugs, not generating comprehensive test suites. Quality over quantity. One real

bug discovery > 100 passing tests.
289
290 Now analyze the targets: $ARGUMENTS

9

B Selected bug reports

A selection of bug reports, as written by the agent.

B.1 numpy

1 # Bug Report: numpy.random.wald Produces Negative Values
2
3 **Target**: ‘numpy.random.wald‘
4 **Severity**: High
5 **Bug Type**: Logic
6 **Date**: 2025-08-18
7
8 ## Summary
9

10 The ‘numpy.random.wald‘ function produces negative values when called with large mean parameters (>= 1e8), violating the
mathematical definition of the Wald (inverse Gaussian) distribution which only produces positive values.

11
12 ## Property-Based Test
13
14 ‘‘‘python
15 import numpy.random
16 from hypothesis import given, strategies as st, settings
17
18 @given(
19 st.floats(min_value=1e8, max_value=1e15),
20 st.floats(min_value=0.1, max_value=10.0)
21)
22 @settings(max_examples=50)
23 def test_wald_negative_values(mean, scale):
24 """Wald distribution should never produce negative values"""
25 samples = numpy.random.wald(mean, scale, size=1000)
26 assert all(s >= 0 for s in samples), f"Found negative values with mean={mean}, scale={scale}"
27 ‘‘‘
28
29 **Failing input**: ‘mean=100000000.0, scale=1.099609375‘
30
31 ## Reproducing the Bug
32
33 ‘‘‘python
34 import numpy.random
35
36 numpy.random.seed(42)
37 mean = 1e8
38 scale = 1.0
39 samples = numpy.random.wald(mean, scale, size=1000)
40
41 negative_samples = samples[samples < 0]
42 print(f"Generated {len(samples)} samples")
43 print(f"Found {len(negative_samples)} negative values")
44 print(f"Minimum value: {samples.min()}")
45 ‘‘‘
46
47 ## Why This Is A Bug
48
49 The Wald (inverse Gaussian) distribution is mathematically defined to only produce positive values. The probability density

function is only defined for x > 0, and the documentation states that the function "Draw[s] samples from a Wald, or
inverse Gaussian, distribution" with "mean : float or array_like of floats - Distribution mean, must be > 0".

50
51 Negative values violate this fundamental property and can cause downstream issues in applications that rely on the

mathematical properties of the distribution, such as reliability modeling, financial modeling, and statistical
inference.

52
53 ## Fix
54
55 The issue likely stems from numerical precision problems when computing the inverse transform or rejection sampling for

large mean values. The implementation should include bounds checking to ensure all generated values are strictly
positive, possibly by:

56
57 1. Adding explicit bounds checking after sample generation
58 2. Using a more numerically stable algorithm for large mean values
59 3. Switching to an alternative sampling method when mean exceeds a certain threshold
60
61 ‘‘‘diff
62 # Conceptual fix in the sampling routine
63 def wald_sample(mean, scale):
64 # ... existing sampling logic ...
65 sample = compute_sample(mean, scale)
66 + # Ensure non-negativity due to numerical issues
67 + if sample < 0:
68 + sample = 0.0 # or resample
69 return sample
70 ‘‘‘

B.2 aws-lambda-powertools

10

1 # Bug Report: aws_lambda_powertools.shared.functions.slice_dictionary Returns Duplicate Chunks
2
3 **Target**: ‘aws_lambda_powertools.shared.functions.slice_dictionary‘
4 **Severity**: High
5 **Bug Type**: Logic
6 **Date**: 2025-08-18
7
8 ## Summary
9

10 The ‘slice_dictionary‘ function incorrectly returns the same chunk multiple times instead of properly slicing the dictionary
into different parts, causing data loss and duplication.

11
12 ## Property-Based Test
13
14 ‘‘‘python
15 from hypothesis import given, strategies as st
16 from aws_lambda_powertools.shared.functions import slice_dictionary
17
18 @given(
19 data=st.dictionaries(
20 keys=st.text(min_size=1, max_size=20),
21 values=st.one_of(st.integers(), st.text(), st.booleans()),
22 min_size=0,
23 max_size=100
24),
25 chunk_size=st.integers(min_value=1, max_value=20)
26)
27 def test_slice_dictionary_confluence(data, chunk_size):
28 """Test that sliced dictionary chunks can be reconstructed to the original."""
29 chunks = list(slice_dictionary(data, chunk_size))
30
31 # Reconstruct the dictionary from chunks
32 reconstructed = {}
33 for chunk in chunks:
34 reconstructed.update(chunk)
35
36 assert reconstructed == data, f"Reconstruction failed: {data} != {reconstructed}"
37 ‘‘‘
38
39 **Failing input**: ‘data={’0’: 0, ’00’: 0}, chunk_size=1‘
40
41 ## Reproducing the Bug
42
43 ‘‘‘python
44 import sys
45 sys.path.insert(0, ’/root/hypothesis-llm/envs/aws-lambda-powertools_env/lib/python3.13/site-packages’)
46 from aws_lambda_powertools.shared.functions import slice_dictionary
47
48 # Example 1: Lost keys
49 data = {’0’: 0, ’00’: 0}
50 chunks = list(slice_dictionary(data, chunk_size=1))
51 print(f"Original: {data}")
52 print(f"Chunks: {chunks}")
53 # Output: Chunks: [{’0’: 0}, {’0’: 0}]
54 # Expected: [{’0’: 0}, {’00’: 0}]
55
56 # Example 2: All chunks are identical
57 data = {’a’: 1, ’b’: 2, ’c’: 3, ’d’: 4, ’e’: 5}
58 chunks = list(slice_dictionary(data, chunk_size=2))
59 print(f"Original: {data}")
60 print(f"Chunks: {chunks}")
61 # Output: [{’a’: 1, ’b’: 2}, {’a’: 1, ’b’: 2}, {’a’: 1, ’b’: 2}]
62 # Expected: [{’a’: 1, ’b’: 2}, {’c’: 3, ’d’: 4}, {’e’: 5}]
63 ‘‘‘
64
65 ## Why This Is A Bug
66
67 The function is supposed to split a dictionary into chunks of the specified size, but instead it repeatedly yields the same

first ‘chunk_size‘ items. This violates the expected behavior of:
68 1. Each key appearing exactly once across all chunks
69 2. Chunks being different slices of the original dictionary
70 3. Being able to reconstruct the original dictionary from the chunks
71
72 ## Fix
73
74 ‘‘‘diff
75 --- a/aws_lambda_powertools/shared/functions.py
76 +++ b/aws_lambda_powertools/shared/functions.py
77 @@ -141,5 +141,8 @@ def powertools_debug_is_set() -> bool:
78
79
80 def slice_dictionary(data: dict, chunk_size: int) -> Generator[dict, None, None]:
81 - for _ in range(0, len(data), chunk_size):
82 - yield {dict_key: data[dict_key] for dict_key in itertools.islice(data, chunk_size)}
83 + it = iter(data)
84 + for _ in range(0, len(data), chunk_size):
85 + chunk_keys = list(itertools.islice(it, chunk_size))
86 + if chunk_keys:
87 + yield {dict_key: data[dict_key] for dict_key in chunk_keys}
88 ‘‘‘

11

B.3 cloudformation-cli-java-plugin

1 # Bug Report: rpdk.core.jsonutils.utils.item_hash All Lists Hash to Same Value
2
3 **Target**: ‘rpdk.core.jsonutils.utils.item_hash‘
4 **Severity**: High
5 **Bug Type**: Logic
6 **Date**: 2025-08-18
7
8 ## Summary
9

10 The ‘item_hash‘ function in ‘rpdk.core.jsonutils.utils‘ contains a critical bug that causes all list inputs to hash to the
same value (the MD5 hash of "null"), completely breaking the hash function’s purpose for list-type data.

11
12 ## Property-Based Test
13
14 ‘‘‘python
15 from hypothesis import given, strategies as st
16 from rpdk.core.jsonutils.utils import item_hash
17
18 @given(st.lists(st.integers()), st.lists(st.integers()))
19 def test_item_hash_different_lists_different_hashes(list1, list2):
20 """Different lists should produce different hashes (except in rare collisions)."""
21 if list1 != list2:
22 hash1 = item_hash(list1)
23 hash2 = item_hash(list2)
24 # This test fails because all lists hash to the same value
25 assert hash1 != hash2 or list1 == list2
26 ‘‘‘
27
28 **Failing input**: Any two different lists, e.g., ‘[1, 2, 3]‘ and ‘[4, 5, 6]‘
29
30 ## Reproducing the Bug
31
32 ‘‘‘python
33 import sys
34 sys.path.insert(0, ’/root/hypothesis-llm/envs/cloudformation-cli-java-plugin_env/lib/python3.13/site-packages’)
35
36 from rpdk.core.jsonutils.utils import item_hash
37
38 list1 = [1, 2, 3]
39 list2 = [4, 5, 6]
40 list3 = ["a", "b", "c"]
41 empty_list = []
42
43 hash1 = item_hash(list1)
44 hash2 = item_hash(list2)
45 hash3 = item_hash(list3)
46 hash4 = item_hash(empty_list)
47
48 print(f"item_hash([1, 2, 3]) = {hash1}")
49 print(f"item_hash([4, 5, 6]) = {hash2}")
50 print(f"item_hash([’a’, ’b’, ’c’]) = {hash3}")
51 print(f"item_hash([]) = {hash4}")
52
53 assert hash1 == hash2 == hash3 == hash4 == "37a6259cc0c1dae299a7866489dff0bd"
54 print("BUG: All lists hash to the same value!")
55 ‘‘‘
56
57 ## Why This Is A Bug
58
59 The ‘item_hash‘ function is supposed to generate unique hashes for different inputs. However, due to a coding error on line

32, all list inputs produce the same hash value. This completely defeats the purpose of a hash function, which should
produce different outputs for different inputs (except for rare collisions). The bug causes:

60
61 1. **Loss of uniqueness**: All lists, regardless of content, produce identical hash values
62 2. **Hash collisions**: Any code using this for deduplication or caching will fail
63 3. **Security implications**: If used for any security-sensitive hashing, this would be a critical vulnerability
64
65 ## Fix
66
67 ‘‘‘diff
68 --- a/rpdk/core/jsonutils/utils.py
69 +++ b/rpdk/core/jsonutils/utils.py
70 @@ -29,7 +29,8 @@ def item_hash(
71 if isinstance(item, dict):
72 item = {k: item_hash(v) for k, v in item.items()}
73 if isinstance(item, list):
74 - item = [item_hash(i) for i in item].sort()
75 + hashed_items = [item_hash(i) for i in item]
76 + item = sorted(hashed_items)
77 encoded = json.dumps(item, sort_keys=True).encode()
78 dhash.update(encoded)
79 return dhash.hexdigest()
80 ‘‘‘
81
82 The bug occurs because ‘.sort()‘ returns ‘None‘, not the sorted list. The fix uses ‘sorted()‘ which returns the sorted list,

or assigns the sorted list after calling ‘.sort()‘ on it.

12

B.4 tokenizers

1 # Bug Report: tokenizers.tools.visualizer Missing Closing Parenthesis in HSL Color Format
2
3 **Target**: ‘tokenizers.tools.visualizer.EncodingVisualizer.calculate_label_colors‘
4 **Severity**: Medium
5 **Bug Type**: Contract
6 **Date**: 2025-08-18
7
8 ## Summary
9

10 The ‘calculate_label_colors‘ method generates malformed HSL color strings missing a closing parenthesis, causing CSS parsing
errors when used in HTML visualization.

11
12 ## Property-Based Test
13
14 ‘‘‘python
15 from hypothesis import given, strategies as st
16 import re
17 from tokenizers.tools import Annotation, EncodingVisualizer
18
19 @given(st.lists(st.text(min_size=1, max_size=20), min_size=1, max_size=10))
20 def test_calculate_label_colors_valid_hsl_format(labels):
21 annotations = [Annotation(i*10, i*10+5, label) for i, label in enumerate(labels)]
22 colors = EncodingVisualizer.calculate_label_colors(annotations)
23
24 hsl_pattern = re.compile(r’^hsl\(\d+,\d+%,\d+%\)$’) # Correct HSL format with closing paren
25 for label, color in colors.items():
26 assert hsl_pattern.match(color), f"Invalid HSL format: ’{color}’"
27 ‘‘‘
28
29 **Failing input**: Any non-empty list of annotations, e.g., ‘[’label1’]‘
30
31 ## Reproducing the Bug
32
33 ‘‘‘python
34 import sys
35 sys.path.insert(0, ’/root/hypothesis-llm/envs/tokenizers_env/lib/python3.13/site-packages’)
36 from tokenizers.tools import Annotation, EncodingVisualizer
37
38 annotations = [Annotation(0, 5, "test_label")]
39 colors = EncodingVisualizer.calculate_label_colors(annotations)
40 color = colors["test_label"]
41
42 print(f"Generated color: ’{color}’")
43 assert color.endswith(’)’), f"Missing closing parenthesis in HSL: {color}"
44 ‘‘‘
45
46 ## Why This Is A Bug
47
48 The HSL color format in CSS requires the format ‘hsl(hue, saturation%, lightness%)‘ with balanced parentheses. The current

implementation produces ‘hsl(10,32%,64%‘ without the closing parenthesis, which will cause CSS parsing errors when
these colors are used in the HTML visualization. This violates the expected HSL format contract and will break the
visualization feature.

49
50 ## Fix
51
52 ‘‘‘diff
53 --- a/tokenizers/tools/visualizer.py
54 +++ b/tokenizers/tools/visualizer.py
55 @@ -175,7 +175,7 @@ class EncodingVisualizer:
56 colors = {}
57
58 for label in sorted(labels): # sort so we always get the same colors for a given set of labels
59 - colors[label] = f"hsl({h},{s}%,{l}%"
60 + colors[label] = f"hsl({h},{s}%,{l}%)"
61 h += h_step
62 return colors
63 ‘‘‘

B.5 python-dateutil

1 # Bug Report: dateutil.easter Violates Date Range Invariant
2
3 **Target**: ‘dateutil.easter‘
4 **Severity**: High
5 **Bug Type**: Logic
6 **Date**: 2025-08-18
7
8 ## Summary
9

10 The ‘easter.easter()‘ function returns dates outside the valid Easter range (March 22 - April 25) for certain years and
methods, violating fundamental calendar constraints.

11
12 ## Property-Based Test
13
14 ‘‘‘python
15 from hypothesis import given, strategies as st

13

16 from dateutil import easter
17
18 @given(st.integers(min_value=1583, max_value=4099))
19 def test_easter_date_invariants(year):
20 """Test that Easter always falls in March or April and on Sunday"""
21 for method in [1, 2, 3]:
22 try:
23 easter_date = easter.easter(year, method)
24 # Easter must be in March or April
25 assert easter_date.month in [3, 4]
26 # Easter must be on Sunday (weekday() == 6)
27 assert easter_date.weekday() == 6
28 except Exception:
29 pass
30 ‘‘‘
31
32 **Failing input**: ‘year=2480‘
33
34 ## Reproducing the Bug
35
36 ‘‘‘python
37 from dateutil import easter
38
39 year = 2480
40
41 orthodox_easter = easter.easter(year, method=2)
42 print(f"Orthodox Easter {year}: {orthodox_easter}")
43 print(f"Month: {orthodox_easter.month} (should be 3 or 4)")
44 print(f"Weekday: {orthodox_easter.weekday()} (should be 6 for Sunday)")
45
46 julian_easter = easter.easter(year, method=1)
47 print(f"\nJulian Easter {year}: {julian_easter}")
48 print(f"Weekday: {julian_easter.weekday()} (should be 6 for Sunday)")
49 ‘‘‘
50
51 Output:
52 ‘‘‘
53 Orthodox Easter 2480: 2480-05-05
54 Month: 5 (should be 3 or 4)
55 Weekday: 6 (should be 6 for Sunday)
56
57 Julian Easter 2480: 2480-04-19
58 Weekday: 4 (should be 6 for Sunday)
59 ‘‘‘
60
61 ## Why This Is A Bug
62
63 1. **Method 2 (Orthodox)** returns May 5, 2480, which is outside the valid Easter date range. Easter, by definition, can

only fall between March 22 and April 25 in the Gregorian calendar.
64
65 2. **Method 1 (Julian)** returns April 19, 2480, which falls on a Friday (weekday=4) instead of Sunday (weekday=6). Easter,

by definition, always occurs on Sunday.
66
67 These violations break fundamental calendar constraints that users rely upon. The documentation states these methods are

valid for years 1583-4099, but the calculations produce invalid results within this range.
68
69 ## Fix
70
71 The bug appears to be in the algorithm implementation for certain edge cases. The fix would require:
72
73 1. Validating the calculated date falls within the valid Easter range
74 2. Ensuring the result is always a Sunday
75 3. Potentially adjusting the algorithm for problematic years
76
77 A defensive fix could include validation:
78
79 ‘‘‘diff
80 --- a/dateutil/easter.py
81 +++ b/dateutil/easter.py
82 @@ -70,6 +70,16 @@ def easter(year, method=EASTER_WESTERN):
83 g = year % 19
84 e = (11*g + 20 + z - x) % 30
85 # ... rest of calculation ...
86 +
87 + # Validate the result
88 + result = date(int(year), int(month), int(day))
89 +
90 + # Easter must be on Sunday
91 + if result.weekday() != 6:
92 + raise ValueError(f"Calculated Easter date {result} is not on Sunday")
93 +
94 + # Easter must be in March or April
95 + if result.month not in [3, 4]:
96 + raise ValueError(f"Calculated Easter date {result} is not in March or April")
97
98 return date(int(year), int(month), int(day))
99 ‘‘‘

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and results reflect the results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations in the discussion about evaluation and developer intent.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15

Justification: No theory.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Agent and experimental setup are stated in the paper. Supplementary materials
contains full details and reproduction scripts.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]
Justification: Prompts and full code attached.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Key experimental setting details are in the paper; full details in the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: 95% CI for proportions are stated.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Server details and parallel worker setup described in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: It does.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Mentioned societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

18

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [No]
Justification: Does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

19

paperswithcode.com/datasets

Answer: [Yes]

Justification: Code and data released with documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

20

Justification: LLMs are used as part of the methodology of the paper, which is described.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Agent
	Experiment
	Results
	Discussion and Conclusion
	Agent prompt
	Selected bug reports
	numpy
	aws-lambda-powertools
	cloudformation-cli-java-plugin
	tokenizers
	python-dateutil

