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ABSTRACT

Predicting and reasoning about the future lie at the heart of many time-series ques-
tions. For example, goal-conditioned reinforcement learning can be viewed as
learning representations to predict which states are likely to be visited in the fu-
ture. While prior methods have used contrastive predictive coding to model time
series data, learning representations that encode long-term dependencies usually
requires large amounts of data. In this paper, we introduce a temporal difference
version of contrastive predictive coding that stitches together pieces of different
time series data to decrease the amount of data required to learn predictions of fu-
ture events. We apply this representation learning method to derive an off-policy
algorithm for goal-conditioned RL. Experiments demonstrate that, compared with
prior RL methods, ours achieves 2× median improvement in success rates and
can better cope with stochastic environments. In tabular settings, we show that
our method is about 20× more sample efficient than the successor representation
and 1500× more sample efficient than the standard (Monte Carlo) version of con-
trastive predictive coding.
Code: https://github.com/chongyi-zheng/td_infonce
Website: https://chongyi-zheng.github.io/td_infonce

1 INTRODUCTION
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Figure 1: TD InfoNCE is a nonparametric version of
the successor representation. (Top) The distances be-
tween learned representations indicate the probability
of transitioning to the next state and a set of randomly-
sampled states. (Bottom) We update these representa-
tions so they assign high likelihood to (a) the next state
and (b) states likely to be visited after the next state. See
Sec. 3 for details.

Learning representations is important for mod-
eling high-dimensional time series data. Many
applications of time-series modeling require
representations that not only contain informa-
tion about the contents of a particular observa-
tion, but also about how one observation relates
to others that co-occur in time. Acquiring rep-
resentations that encode temporal information
is challenging, especially when attempting to
capture long-term temporal dynamics: the fre-
quency of long-term events may decrease with
the time scale, meaning that learning longer-
horizon dependencies requires larger quantities
of data.

In this paper, we study contrastive represen-
tation learning on time series data – positive
examples co-occur nearby in time, so the dis-
tances between learned representations should
encode the likelihood of transiting from one
representation to another. Building on prior
work that uses the InfoNCE (Sohn, 2016; Oord et al., 2018) loss to learn representations of time-
series data effectively, we will aim to build a temporal difference version of this loss. Doing so
allows us to optimize this objective with fewer samples, enables us to stitch together pieces of dif-
ferent time series data, and enables us to perform counterfactual reasoning – we should be able to
estimate which representations we would have learned, if we had collected data in a different way.
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After a careful derivation, our resulting method can be interpreted as a non-parametric form of the
successor representation (Dayan, 1993), as shown in Fig. 1.

The main contribution of this paper is a temporal difference estimator for InfoNCE. We then apply
this estimator to develop a new algorithm for goal-conditioned RL. Experiments on both state-based
and image-based benchmarks show that our algorithm outperforms prior methods, especially on the
most challenging tasks. Additional experiments demonstrate that our method can handle stochastic-
ity in the environment more effectively than prior methods. We also demonstrate that our algorithm
can be effectively applied in the offline setting. Additional tabular experiments demonstrate that TD
InfoNCE is up to 1500× more sample efficient than the standard Monte Carlo version of the loss
and that it can effectively stitch together pieces of data.

2 RELATED WORK

This paper will study the problem of self-supervised RL, building upon prior methods on goal-
condition RL, contrastive representation learning, and methods for predicting future state visitations.
Our analysis will draw a connection between these prior methods, a connection which will ultimately
result in a new algorithm for goal-conditioned RL. We discuss connections with unsupervised skill
learning and mutual information in Appendix B.

Goal-conditioned reinforcement learning. Prior work has proposed many frameworks for learn-
ing goal-conditioned policies, including conditional supervised learning (Ding et al., 2019; Ghosh
et al., 2020; Gupta et al., 2020; Emmons et al., 2021; Lynch et al., 2020; Oh et al., 2018; Sun et al.,
2019), actor-critic methods Andrychowicz et al. (2017); Nachum et al. (2018); Chane-Sane et al.
(2021), semi-parametric planning (Pertsch et al., 2020; Fang et al., 2022; 2023; Eysenbach et al.,
2019; Nair & Finn, 2019; Gupta et al., 2020), and distance metric learning (Wang et al., 2023; Tian
et al., 2020a; Nair et al., 2020b; Durugkar et al., 2021). These methods have demonstrated impres-
sive results on a range of tasks, including real-world robotic tasks (Ma et al., 2022; Shah et al., 2022;
Zheng et al., 2023). While some methods require manually-specified reward functions or distance
functions, our work builds upon a self-supervised interpretation of goal-conditioned RL that casts
this problem as predicting which states are likely to be visited in the future (Eysenbach et al., 2020;
2022; Blier et al., 2021).

Contrastive representation learning. Contrastive learning methods have become a key tool for
learning representations in computer vision and NLP (Chopra et al., 2005; Schroff et al., 2015;
Sohn, 2016; Oh Song et al., 2016; Wang & Isola, 2020; Oord et al., 2018; Tschannen et al., 2019;
Weinberger & Saul, 2009; He et al., 2022; Radford et al., 2021; Chen et al., 2020; Tian et al.,
2020b; Gao et al., 2021). These methods assign similar representations to positive examples and
dissimilar representations to negative examples or outdated embeddings (Grill et al., 2020). The two
main contrastive losses are based on binary classification (“NCE”) ranking loss (“InfoNCE”) (Ma &
Collins, 2018). Modern contrastive learning methods typically employ the ranking-based objective
to learn representations of images (Chen et al., 2020; Tian et al., 2020b; Henaff, 2020; Wu et al.,
2018), text (Logeswaran & Lee, 2018; Jia et al., 2021; Radford et al., 2021) and sequential data (Nair
et al., 2022; Sermanet et al., 2018). Prior works have also provided theoretical analysis for these
methods from the perspective of mutual information maximization (Linsker, 1988; Poole et al.,
2019), noise contrastive estimation (Gutmann & Hyvärinen, 2010; Ma & Collins, 2018; Tsai et al.,
2020; Arora et al., 2019), and the geometry of the learned representations (Wang & Isola, 2020).
In the realm of RL, prior works have demonstrated that contrastive methods can provide effective
reward functions and auxiliary learning objectives (Laskin et al., 2020a;b; Hansen-Estruch et al.,
2022; Choi et al., 2021; Nair et al., 2020a; 2018), and can also be used to formulate the goal-reaching
problem in an entirely self-supervised manner (Ma et al., 2022; Durugkar et al., 2021; Eysenbach
et al., 2020; 2022). Our method will extend these results by building a temporal difference version of
the “ranking”-based contrastive loss; this loss will enable us to use data from one policy to estimate
which states a different policy will visit.

Temporal difference learning and successor representation. Another line of work studies us-
ing temporal difference learning to predict states visited in the future, building upon successor rep-
resentations and successor features (Dayan, 1993; Barreto et al., 2017; 2019; Blier et al., 2021).
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While learning successor representation using temporal difference bears a similarity to the typical
Q-Learning algorithm (Watkins & Dayan, 1992; Fu et al., 2019; Mnih et al., 2015) in the tabular
setting, directly estimating this quantity is difficult with continuous states and actions (Janner et al.,
2020; Barreto et al., 2017; Touati & Ollivier, 2021; Blier et al., 2021). To lift this limitation, we will
follow prior work (Eysenbach et al., 2022; 2020; Touati & Ollivier, 2021) in predicting the successor
representation indirectly: rather than learning a representation whose coordinates correspond to vis-
itation probabilities, we will learn state representations such that their inner product corresponds to a
visitation probability. Unlike prior methods, we will show how the common InfoNCE objective can
be estimated in a temporal difference fashion, opening the door to off-policy reasoning and enabling
our method to reuse historical data to improve data efficiency.

3 METHOD

We start by introducing notation and prior approaches to the contrastive representation learning and
the goal-conditioned RL problems. We then propose a new self-supervised actor-critic algorithm
that we will use in our analysis.

3.1 PRELIMINARIES

We first review prior work in contrastive representation learning and goal-conditioned RL. Our
method will use ideas from both.

Contrastive representation via InfoNCE. Contrastive representation learning aims to learn a
representation space, pushing representations of positive examples together and pushing represen-
tations of negative examples away. InfoNCE (also known as contrastive predictive coding) (Sohn,
2016; Jozefowicz et al., 2016; Oord et al., 2018; Henaff, 2020) is a widely used contrastive loss,
which builds upon noise contrastive estimation (NCE) (Gutmann & Hyvärinen, 2010; Ma & Collins,
2018). Given the distribution of data pX (x), pY(y) over data x ∈ X , y ∈ Y and the conditional dis-
tribution of positive pairs pY|X (y|x) over X × Y , we sample x ∼ pX (x), y(1) ∼ pY|X (y | x), and
{y(2), · · · , y(N)} ∼ pY(y). The InfoNCE loss is defined as

LInfoNCE(f) ≜ Ex∼pX (x),y(1)∼pY|X (y|x)
y(2:N)∼pY(y)

[
log

ef(x,y
(1))∑N

i=1 e
f(x,y(i))

]
, (1)

where f : X ×Y 7→ R is a parametric function. Following prior work (Eysenbach et al., 2022; Wang
& Isola, 2020; Touati & Ollivier, 2021), we choose to parameterize f(·, ·) via the inner product
of representations of data f(x, y) = ϕ(x)⊤ψ(y), where ϕ(·) and ψ(·) map data to ℓ2 normalized
vectors of dimension d. We will call f the critic function and ϕ andψ the contrastive representations.
The Bayes-optimal critic for the InfoNCE loss satisfies (Poole et al., 2019; Ma & Collins, 2018; Oord
et al., 2018)

exp (f⋆(x, y)) =
p(y | x)
p(y)c(x)

,

where c(·) is an arbitrary function. We can estimate this arbitrary function using the optimal critic
f⋆ by sampling multiple negative pairs from the data distribution:

Ep(y) [exp (f⋆(x, y))] =
∫

���p(y)
p(y | x)
���p(y)c(x)

dy =
1

c(x)

∫
p(y | x)dy︸ ︷︷ ︸

=1

=
1

c(x)
. (2)

Reinforcement learning and goal-conditioned RL. We will consider a Markov decision process
defined by states s ∈ S, actions a ∈ A, rewards r : S × A × S 7→ R. Using ∆(·) denotes
the probability simplex, we define an initial state distribution p0 : S 7→ ∆(S), discount factor
γ ∈ (0, 1], and dynamics p : S × A 7→ ∆(S). Given a policy π : S 7→ ∆(A), we will use
pπt (st+ | s, a) to denote the probability density of reaching state st+ after exactly t steps, starting at
state s and action a and then following the policy π(a | s). We can then define the discounted state
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occupancy measure (Ho & Ermon, 2016; Zhang et al., 2020; Eysenbach et al., 2020; 2022; Zheng
et al., 2023) starting from state s and action a as

pπ(st+ | s, a) ≜ (1− γ)
∞∑
t=1

γt−1pπt (st+ | s, a). (3)

Prior work (Dayan, 1993) have shown that this discounted state occupancy measure follows a recur-
sive relationship between the density at the current time step and the future time steps:

pπ(st+ | s, a) = (1− γ)p(s′ = st+ | s, a) + γEs′∼p(s′|s,a)
a′∼π(a′|s′)

[pπ(st+ | s′, a′)] . (4)

For goal-conditioned RL, we define goals g ∈ S in the same space as states and consider a goal-
conditioned policy π(a | s, g) and the corresponding goal-conditioned discounted state occupancy
measure pπ(st+ | s, a, g). For evaluation, we will sample goals from a distribution pg : S 7→ ∆(S).
Following prior work (Eysenbach et al., 2020; Rudner et al., 2021), we define the objective of the
goal-reaching policy as maximizing the probability of reaching desired goals under its discounted
state occupancy measure while commanding the same goals:

max
π(·|·,·)

Epg(g),p0(s),π(a|s,g) [p
π(st+ = g | s, a, g)] . (5)

In tabular settings, this objective is the same as maximizing expected returns using a sparse reward
function r(s, a, s′, g) = (1 − γ)δ(s′ = g) (Eysenbach et al., 2022). Below, we review two strate-
gies for estimating the discounted state occupancy measure. Our proposed method (Sec. 3.2) will
combine the strengths of these methods while lifting their respective limitations.

Contrastive RL and C-Learning. Our focus will be on using contrastive representation learning
to build a new goal-conditioned RL algorithm, following a template set in prior work (Eysenbach
et al., 2022; 2020). These contrastive RL methods are closely related to the successor representa-
tion (Dayan, 1993): they aim to learn representations whose inner products correspond to the like-
lihoods of reaching future states. Like the successor representation, representations from these con-
trastive RL methods can then be used to represent the Q function for any reward function (Mazoure
et al., 2022). Prior work (Eysenbach et al., 2022) has shown how both NCE and the InfoNCE losses
can be used to derive Monte Carlo algorithms for estimating the discounted state occupancy mea-
sure. We review the Monte Carlo InfoNCE loss below. Given a policy π(a | s), consider learning
contrastive representations for a state and action pair x = (s, a) and a potential future state y = st+.
We define the data distribution to be the joint distribution of state-action pairs pX (x) = p(s, a) and
the marginal distribution of future states pY(y) = p(st+), representing either the distribution of a re-
play buffer (online) or the distribution of a dataset (offline). The conditional distribution of positive
pairs is set to the discounted state occupancy measure for policy π, pY|X (y | x) = pπ(st+ | s, a),
resulting in a Monte Carlo (MC) estimator

LMC InfoNCE(f) = E
(s,a)∼p(s,a),s(1)t+∼pπ(st+|s,a)

s
(2:N)
t+ ∼p(st+)

[
log

ef(s,a,s
(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

]
(6)

and an optimal critic function satisfying

exp(f⋆(s, a, st+)) =
pπ(st+ | s, a)
p(st+)c(s, a)

. (7)

This loss estimates the discounted state occupancy measure in a Monte Carlo manner. Computing
this estimator usually requires sampling future states from the discounted state occupancy measure
of the policy π, i.e., on-policy data. While, in theory, Monte Carlo estimator can be used in an
off-policy manner by applying importance weights to correct actions, this estimator usually suffers
from high variance and is potentially sample inefficient than temporal difference methods (Precup
et al., 2000; 2001).

In the same way that temporal difference (TD) algorithms tend to be more sample efficient than
Monte Carlo algorithms for reward maximization (Sutton & Barto, 2018), we expect that TD con-
trastive methods are more sample efficient at estimating probability ratios than their Monte Carlo
counterparts. Given that the InfoNCE tends to outperform the NCE objective in other machine
learning disciplines, we conjecture that our TD InfoNCE objective will outperform the TD NCE
objective (Eysenbach et al., 2020) (see experiments in Appendix. E.3).
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3.2 TEMPORAL DIFFERENCE INFONCE

In this section, we derive a new loss for estimating the discounted state occupancy measure for
a fixed policy. This loss will be a temporal difference variant of the InfoNCE loss. We will use
temporal difference InfoNCE (TD InfoNCE) to refer to our loss function.

In the off-policy setting, we aim to estimate the discounted state occupancy measure of the policy π
given a dataset of transitions D = {(s, a, s′)i}Di=1 collected by another behavioral policy β(a | s).
This setting is challenging because we do not obtain samples from the discounted state occupancy
measure of the target policy π. Addressing this challenge involves two steps: (i) expanding the MC
estimator (Eq. 6) via the recursive relationship of the discounted state occupancy measure (Eq. 4),
and (ii) estimating the expectation over the discounted state occupancy measure via importance
sampling. We first use the identity from Eq. 4 to express the MC InfoNCE loss as the sum of a
next-state term and a future-state term:

E (s,a)∼p(s,a)
s
(2:N)
t+ ∼p(st+)

[
(1− γ)E

s
(1)
t+∼p(s′|s,a)

[
log

ef(s,a,s
(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

]
︸ ︷︷ ︸

L1(f)

+ γ Es′∼p(s′|s,a),a′∼π(a′|s′)
s
(1)
t+∼pπ(st+|s′,a′)

[
log

ef(s,a,s
(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

]
︸ ︷︷ ︸

L2(f)

]
.

While this estimate is similar to a TD target for Q-Learning (Watkins & Dayan, 1992; Fu et al.,
2019), the second term requires sampling from the discounted state occupancy measure of policy
π. To avoid this sampling, we next replace the expectation over pπ(st+ | s′, a′) in L2(f) by an
importance weight,

L2(f) = Es′∼p(s′|s,a),a′∼π(a′|s′)
s
(1)
t+∼p(st+)

[
pπ(s

(1)
t+ | s′, a′)
p(s

(1)
t+ )

log
ef(s,a,s

(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

]
.

If we could estimate the importance weight, then we could easily estimate this term by sampling
from p(st+). We will estimate this importance weight by rearranging the expression for the optimal
critic (Eq. 7) and substituting our estimate for the normalizing constant c(s, a) (Eq. 2):

pπ(s
(1)
t+ | s, a)
p(s

(1)
t+ )

= c(s, a) · exp
(
f⋆(s, a, s

(1)
t+ )

)
=

ef
⋆(s,a,s

(1)
t+ )

Ep(st+)

[
ef⋆(s,a,st+)

] . (8)

We will use w(s, a, s(1:N)
t+ ) to denote our estimate of this, using f in place of f⋆ and using a finite-

sample estimate of the expectation in the denominator:

w(s, a, s
(1:N)
t+ ) ≜

ef(s,a,s
(1)
t+ )

1
N

∑N
i=1 e

f(s,a,s
(i)
t+)

(9)

This weight accounts for the effect of the discounted state occupancy measure of the target policy.
Additionally, it corresponds to the categorical classifier that InfoNCE produces (without constant
N ). Taken together, we can now substitute the importance weight in L2(f) with our estimate in
Eq. 9, yielding a temporal difference (TD) InfoNCE estimator

LTD InfoNCE(f) ≜ E (s,a)∼p(s,a)
s
(2:N)
t+ ∼p(st+)

[
(1− γ)E

s
(1)
t+∼p(s′|s,a)

[
log

ef(s,a,s
(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

]

+γEs′∼p(s′|s,a)
a′∼π(a′|s′)
s
(1)
t+∼p(st+)

[
⌊w(s′, a′, s(1:N)

t+ )⌋sg log
ef(s,a,s

(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

] , (10)
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Algorithm 1 Temporal Difference InfoNCE. We use CE to denote the cross entropy loss, taken
across the rows of a matrix of logits and labels. We use F as a matrix of logits, where F [i, j] =
ϕ(s

(i)
t , a

(i)
t , g(i))⊤ψ(s

(j)
t+ ). See Appendix D.1 for details.

1: Input contrastive representations ϕθ and ψθ, target representations ϕθ̄ and ψθ̄, and goal-
conditioned policy πω .

2: for each iteration do
3: Sample {(s(i)t , a

(i)
t , s

(i)
t+1, g

(i), s
(i)
t+)}Ni=1 ∼ replay buffer / dataset, a(i) ∼ π(a | s(i)t , g(i)).

4: Compute Fnext, Ffuture, Fgoal using ϕθ and ψθ.
5: Compute F̄w using ϕθ̄ and ψθ̄.
6: W ← N · stop grad

(
SOFTMAX(F̄w)

)
7: L(θ)← (1− γ)CE(logits = Fnext, labels = IN ) + γCE(logits = Ffuture, labels =W )
8: L(ω)← CE(logits = Fgoal, labels = IN )
9: Update θ, ω by taking gradients of L(θ),L(ω).

10: Update θ̄ using an exponential moving average.
11: Return ϕθ, ψθ, and πω .

where ⌊·⌋sg indicates the gradient of the importance weight should not affect the gradient of the
entire objective. As shown in Fig. 1, we can interpret the first term as pulling together the repre-
sentations of the current state-action pair ϕ(s, a) and the next state ψ(s′); the second term pulls the
representations at the current step ϕ(s, a) similar to the (weighted) predictions from the future state
ψ(st+). Importantly, the TD InfoNCE estimator is equivalent to the MC InfoNCE estimator for the
optimal critic function: LTD InfoNCE(f

⋆) = LMC InfoNCE(f
⋆).

Convergence and connections. In Appendix A, we prove that optimizing a variant of the TD In-
foNCE objective is equivalent to perform one step policy evaluation with a new Bellman operator;
thus, repeatedly optimizing this objective yields the correct discounted state occupancy measure.
This analysis considers the tabular setting and assumes that the denominators of the softmax func-
tions and w in Eq. 10 are computed using an exact expectation. We discuss the differences between
TD InfoNCE and C-learning (Eysenbach et al., 2020) (a temporal difference estimator of the NCE
objective) in Appendix E.3. Appendix C discusses how TD InfoNCE corresponds to a nonparamet-
ric variant of the successor representation.

3.3 GOAL-CONDITIONED POLICY LEARNING

The TD InfoNCE method provides a way for estimating the discounted state occupancy measure.
This section shows how this estimator can be used to derive a new algorithm for goal-conditioned
RL. This algorithm will alternate between (1) estimating the occupancy measure using the TD In-
foNCE objective and (2) optimizing the policy to maximize the likelihood of the desired goal under
the estimated occupancy measure. Pseudo-code is shown in Algorithm 1, and additional details are
in Appendix D.1, and code is available online.1

While our TD InfoNCE loss in Sec. 3.2 estimates the discounted state occupancy measure for policy
π(a | s), we can extend it to the goal-conditioned setting by replacing π(a | s) with π(a | s, g)
and f(s, a, st+) with f(s, a, g, st+), resulting in a goal-conditioned TD InfoNCE estimator. This
goal-conditioned TD InfoNCE objective estimates the discounted state occupancy measure of any
future state for a goal-conditioned policy commanding any goal. Recalling that the discounted state
occupancy measure corresponds to the Q function (Eysenbach et al., 2022), the policy objective is
to select actions that maximize the likelihood of the commanded goal:

Epg(g),p0(s)
π(a0|s,g)

[log pπ(st+ = g | s, a, g)] = E g∼pg(g),s∼p0(s)
a0∼π(a|s,g),s(1:N)

t+ ∼p(st+)

[
log

ef
⋆(s,a,g,st+=g)∑N

i=1 e
f⋆(s,a,g,s

(i)
t+)

]
.

(11)

In practice, we optimize both the critic function and the policy for one gradient step iteratively, using
our estimated f in place of f⋆.

1https://github.com/chongyi-zheng/td_infonce
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(a) Fetch robotics benchmark from (Plappert et al., 2018)
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Figure 2: Evaluation on online GCRL benchmarks. (Left) TD InfoNCE performs similarly to or outper-
forms all baselines on both state-based and image-based tasks. (Right) On stochastic versions of the state-based
tasks, TD InfoNCE outperforms the strongest baseline (QRL). Appendix Fig. 6 shows the learning curves.

4 EXPERIMENTS

Our experiments start with comparing goal-conditioned TD InfoNCE to prior goal-conditioned RL
approaches on both online and offline goal-conditioned RL (GCRL) benchmarks. We then analyze
the properties of the critic function and the policy learned by this method. Visualizing the represen-
tations learned by TD InfoNCE reveals that linear interpolation corresponds to a form of planning.
Appendix E.3 ablates the difference between TD InfoNCE and a prior temporal difference method
based on NCE. All experiments show means and standard deviations over five random seeds.

4.1 COMPARING TO PRIOR GOAL-CONDITIONED RL METHODS

We compare TD InfoNCE to four baselines on an online GCRL benchmark (Plappert et al., 2018)
containing four manipulation tasks for the Fetch robot. The observations and goals of those tasks
can be either a state of the robot and objects or a 64 × 64 RGB image. We will evaluate using
both versions. The first baseline, Quasimetric Reinforcement Learning (QRL) (Wang et al., 2023),
is a state-of-the-art approach that uses quasimetric models to learn the optimal goal-conditioned
value functions and the corresponding policies. The second baseline is contrastive RL (Eysenbach
et al., 2022), which estimates the discounted state occupancy measure using LMC InfoNCE (Eq. 6).
Our third baseline is a variant of contrastive RL (Eysenbach et al., 2022) using binary NCE loss.
We call this method contrastive RL (NCE). The fourth baseline is the goal-conditioned behavioral
cloning (GCBC) (Ding et al., 2019; Emmons et al., 2021; Ghosh et al., 2020; Lynch et al., 2020;
Sun et al., 2019; Srivastava et al., 2019). We also include a comparison with an off-the-shelf actor-
critic algorithm augmented with hindsight relabeling (Andrychowicz et al., 2017; Levy et al., 2018;
Riedmiller et al., 2018; Schaul et al., 2015) to learn a goal-conditioned policy (DDPG + HER).

We report results in Fig. 2a, and defer the full learning curves to Appendix Fig. 6. These results
show that TD InfoNCE matches or outperforms other baselines on all tasks, both for state and
image observations. On those more challenging tasks (pick & place (state / image)
and slide (state / image)), TD InfoNCE achieves a 2× median improvement relative to
the strongest baseline (Appendix Fig. 6). On the most challenging tasks, image-based pick &
place and slide, TD InfoNCE is the only method achieving non-negligible success rates. For
those tasks where the success rate fails to separate different methods significantly (e.g., slide
(state) and push (image)), we include comparisons using minimum distances of the gripper
or the object to the goal over an episode in Appendix Fig. 7. We speculate this observation is because
TD InfoNCE estimates the discounted state occupancy measure more accurately, a hypothesis we
will investigate in Sec. 4.3.

Among those baselines, QRL is the strongest one. Unlike TD InfoNCE, the derivation of QRL
assumes the dynamics are deterministic. This difference motivates us to study whether TD InfoNCE
continues achieving high success rates in environments with stochastic noise. To study this, we
compare TD InfoNCE to QRL on a variant of the Fetch benchmark where observations are corrupted
with probability 0.1. As shown in Fig. 2b, TD InfoNCE maintains high success rates while the
performance of QRL decreases significantly, suggesting that TD InfoNCE can better cope with
stochasticity in the environment.
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Table 1: Evaluation on offline D4RL AntMaze benchmarks.

TD InfoNCE QRL Contrastive RL GCBC DT IQL TD3 + BC

umaze-v2 84.9 ± 1.2 76.8± 2.3 79.8± 1.6 65.4 65.6 87.5 78.6
umaze-diverse-v2 91.7 ± 1.3 80.1± 1.3 77.6± 2.8 60.9 51.2 62.2 71.4
medium-play-v2 86.8 ± 1.7 76.5± 2.1 72.6± 2.9 58.1 1.0 71.2 10.6

medium-diverse-v2 82.0 ± 3.4 73.4± 1.9 71.5± 1.3 67.3 0.6 70.0 3.0
large-play-v2 47.0± 2.5 52.9 ± 2.8 48.6± 4.4 32.4 0.0 39.6 0.2

large-diverse-v2 55.6 ± 3.6 51.5± 3.8 54.1 ± 5.5 36.9 0.2 47.5 0.0

0 1 2 3 4 5
gradient steps 1e4

10 3

10 2

av
er

ag
e 

ab
so

lu
te

 e
rro

r

TD InfoNCE Successor Representation C-Learning Contrastive RL

Monte Carlo method

temporal difference methods

103 104 105 106 107

dataset size

10 3

10 2

Figure 3: Estimating the discounted state occupancy measure in a tabular setting. (Left) Temporal
difference methods have lower errors than the Monte Carlo method. Also note that our TD InfoNCE converges
as fast as the best baseline (successor representation). (Right) TD InfoNCE is more data efficient than other
methods. Using a dataset of size 10M, TD InfoNCE achieves an error rate 25% lower than the best baseline;
TD InfoNCE also matches the performance of C-learning with 130× less data.

4.2 EVALUATION ON OFFLINE GOAL REACHING

We next study whether the good performance of TD InfoNCE transfers to the setting without any
interaction with the environment (i.e., offline RL). We evaluate on AntMaze tasks from the D4RL
benchmark (Fu et al., 2020). The results in Table 1 show that TD InfoNCE outperforms most
baselines on most tasks. See Appendix D.3 for details.

4.3 ACCURACY OF THE ESTIMATED DISCOUNTED STATE OCCUPANCY MEASURE

This section tests the hypothesis that our TD InfoNCE loss will be more accurate and sample ef-
ficient than alternative Monte Carlo methods (namely, contrastive RL (Eysenbach et al., 2022)) in
predicting the discounted state occupancy measure. We will use the tabular setting so that we can
get a ground truth estimate. We compare TD InfoNCE to three baselines. Successor representa-
tions (Dayan, 1993) can also be learned in a TD manner, though can be challenging to apply beyond
tabular settings. C-learning is similar to TD InfoNCE in that it uses a temporal difference method to
optimize a contrastive loss, but differs in using a binary cross entropy loss instead of a softmax cross
entropy loss. Contrastive RL is the MC counterpart of TD InfoNCE. We design a 5 × 5 gridworld
with 125 states and 5 actions (up, down, left, right, and no-op) and collect 100K transitions using a
uniform random policy, µ(a | s) = UNIF(A). We evaluate each method by measuring the absolute
error between the predicted probability p̂ and the ground truth probability pµ, averaging over all
pairs of (s, a, st+):

1

|S||A||S|
∑

s,a,st+

|p̂(st+ | s, a)− pµ(st+ | s, a)|.

For the three TD methods, we compute the TD target in a SARSA manner (Sutton & Barto, 2018).
For those methods estimating a probability ratio, we convert the prediction to a probability by multi-
plying by the empirical state marginal. Results in Fig. 3 show that TD methods achieve lower errors
than the Monte Carlo method, while TD InfoNCE converges faster than C-Learning. Appendix E.2
discusses why all methods plateau above zero.
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Dataset TD InfoNCE Contrastive RL

Figure 4: Stitching trajectories in a dataset. The
behavioral policy collects “Z” style trajectories. Un-
like the Monte Carlo method (contrastive RL) , our
TD InfoNCE successfully “stitches” these trajecto-
ries together, navigating between pairs of (start ✖,
goal ★) states unseen in the training trajectories. Ap-
pendix Fig. 8 shows additional examples.

Dataset TD InfoNCE Contrastive RL

Figure 5: Searching for shortcuts in skewed
datasets. (Left) Conditioned on different initial states
✖ and goals ★, we collect datasets with 95% long
paths (dark) and 5% short paths (light). (Center) TD
InfoNCE infers the shortest path, (Right) while con-
trastive RL fails to find this path. Appendix Fig. 9
shows additional examples.

Our next experiments studies sample efficiency. We hypothesize that the softmax in the TD InfoNCE
loss may provide more learning signal than alternative methods, allowing it to achieve lower error
on a fixed budget of data. To test this hypothesis, we run experiments with dataset sizes from 1K to
10M on the same gridworld, comparing TD InfoNCE to the same set of baselines. We report results
in Fig. 3 with errors showing one standard deviation after training for 50K gradient steps for each
approach. These results suggest that methods based on temporal difference learning predict more
accurately than Monte Carlo method when provided with the same amount of data. Compared with
its Monte Carlo counterpart, TD InfoNCE is 1500× more sample efficient (6.5× 103 vs 107 transi-
tions). Compared with the only other TD method applicable in continuous settings (C-learning), TD
InfoNCE can achieve a comparable loss with 130× less data (7.7 × 104 vs 107 transitions). Even
compared with the strongest baseline (successor representations), which makes assumptions (tabular
MDPs) that our method avoids, TD InfoNCE can achieve a comparable error rate with almost 20×
fewer samples (5.2× 105 vs 107 transitions).

4.4 DOES TD INFONCE ENABLE OFF-POLICY REASONING?

The explicit temporal difference update (Eq. 10) in TD InfoNCE is similar to the standard Bellman
backup, motivating us to study whether the resulting goal-conditioned policy is capable of perform-
ing dynamic programming with offline data. To answer these questions, we conduct two experiments
on the same gridworld environment as in Sec. 4.3, comparing TD InfoNCE to contrastive RL (i.e.,
Monte Carlo InfoNCE). Fig. 4 shows that TD InfoNCE successfully stitches together pieces of dif-
ferent trajectories to find a route between unseen (state, goal) pairs. Fig. 5 shows that TD InfoNCE
can perform off-policy reasoning, finding a path that is shorter than the average path demonstrated
in the dataset. See Appendix D.4 for details.

5 CONCLUSION

This paper introduced a temporal difference estimator for the InfoNCE loss. Our goal-conditioned
RL algorithm based on this estimator outperforms prior methods in both online and offline settings,
and is capable of handling stochasticity in the environment dynamics. While we focused on a spe-
cific type of RL problem (goal-conditioned RL), in principle the TD InfoNCE estimator can be used
to drive policy evaluation for arbitrary reward functions. One area for future work is to determine
how it compares to prior off-policy evaluation techniques.

While we focused on evaluating the TD InfoNCE estimator on control tasks, it is worth noting that
the MC InfoNCE objective has been previously applied to NLP, audio, video settings; one intriguing
and important question is whether the benefits of TD learning seen on these control tasks translate
into better representations in these other domains.

Limitations. One limitation of TD InfoNCE is complexity: compared with its Monte Carlo coun-
terpart, ours is more complex and requires more hyperparameters. It is worth noting that even TD
InfoNCE struggles to solve the most challenging control tasks with image observations. On the the-
oretical front, our convergence proof uses a slightly modified version of our loss (replacing a sum
with an expectation), which would be good to resolve in future work.

9



Published as a conference paper at ICLR 2024

Acknowledgements We thank Ravi Tej and Wenzhe Li for discussions about this work, and
anonymous reviewers for providing feedback on early versions of this work. We thank Tongzhou
Wang for providing performance of baselines in online GCRL experiments and thank Raj Ghugare
for sharing code of environment implementation. We thank Vivek Myers for finding issues in the
code. BE is supported by the Fannie and John Hertz Foundation.

REFERENCES

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saunshi.
A theoretical analysis of contrastive unsupervised representation learning. In 36th International
Conference on Machine Learning, ICML 2019, pp. 9904–9923. International Machine Learning
Society (IMLS), 2019.
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A THEORETICAL ANALYSIS

Our convergence proof will focus on the tabular setting with known p(s′ | s, a) and p(st+), and
follows the fitted Q-iteration strategy (Fu et al., 2019; Ernst et al., 2005; Bertsekas & Tsitsiklis,
1995): at each iteration, an optimization problem will be solved exactly to yield the next estimate
of the discounted state occupancy measure. One key step in the proof is to employ a preserved
invariant; we will define the classifier derived from the TD InfoNCE objective (Eq. 10) and show
that this classifier always represents a valid probability distribution (over future states). We then
construct a variant of the TD InfoNCE objective using this classifier and prove that optimizing this
objective is exactly equivalent to perform policy evaluation, resulting in the convergence to the
discounted state occupancy measure.

Definition of the classifier. We start by defining the classifier derived from the TD InfoNCE as

C(s, a, st+) ≜
p(st+)e

f(s,a,st+)

Ep(s′t+)

[
ef(s,a,s

′
t+)

] =
p(st+)e

f(s,a,st+)∑
s′t+∈S p(st+)e

f(s,a,s′t+)
, (12)

suggesting that C(s, a, ·) is a valid distribution over future states: C(s, a, ·) ∈ ∆(S).

A variant of TD InfoNCE. Our definition of the classifier (Eq. 12) allows us to rewrite the impor-
tance weight w(s, a, st+) and softmax functions in LTD InfoNCE (Eq. 10) as Monte Carlo estimates of
the classifier using samples of s(1:N)

t+ ,

w(s, a, s
(1:N)
t+ ) =

ef(s,a,s
(1)
t+ )

1
N

∑N
i=1 e

f(s,a,s
(i)
t+)
≈ C(s, a, st+)

p(st+)
.

Thus, we construct a variant of the TD InfoNCE objective using C:

L̄TD InfoNCE(C) ≜ Ep(s,a)
[
(1− γ)Ep(s′=st+|s,a) [logC(s, a, st+)]

+γEp(s′|s,a),π(a′|s′)
p(st+)

[
⌊C(s′, a′, st+)⌋sg

p(st+)
logC(s, a, st+)

]]
.

This objective is similar to LTD InfoNCE, but differs in that (a) softmax functions are replaced by
C(s, a, st+) up to constant 1

N ·p(st+) and (b) w(s′, a′, s(1:N)
t+ ) is replaced by C(s′,a′,st+)

p(st+) . Formally,
LTD InfoNCE(C) is a nested Monte Carlo estimator of L̄TD InfoNCE (Rainforth et al., 2018; Giles, 2015)
and we leave the analysis of the gap between them as future works. We now find the solution
of L̄TD InfoNCE(C) analytically by rewriting it using the cross entropy and ignore the stop gradient
operator to reduce clutter: L̄TD InfoNCE(C) =

Ep(s,a)

[
(1− γ)Ep(s′=st+|s,a) [logC(s, a, st+)] + γEp(s′|s,a),π(a′|s′,g)

C(s′,a′,st+)

[logC(s, a, st+)]

]
= −Ep(s,a) [(1− γ)CE (p(s′ = · | s, a), C(s, a, ·))

+γCE
(
Ep(s′|s,a),π(a′|s′) [C(s′, a′, ·)] , C(s, a, ·)

)]
= −Ep(s,a)

[
CE

(
(1− γ)p(s′ = · | s, a) + γEp(s′|s,a),π(a′|s′) [C(s′, a′, ·)] , C(s, a, ·)

)]
, (13)

where the cross entropy for p, q ∈ ∆(X ) is defined as

CE(p(·), q(·)) = −Ep(x)[log q(x)] = −
∑
x∈X

p(x) log q(x),

with the minimizer q⋆ = argminq∈∆(X ) CE(p(·), q(·)) = p. Note that p(s′ = · | s, a) ∈ ∆(S)
and Ep(s′|s,a)π(a′|s′)[C(s′, a′, ·)] ∈ ∆(S) in Eq. 13 indicate that their convex combination is also a
distribution in ∆(S). This objective suggests a update for the classifier given any (s, a, st+):

C(s, a, st+)← (1− γ)p(s′ = st+ | s, a) + γEp(s′|s,a)π(a′|s′)[C(s′, a′, st+)], (14)

which bears a resemblance to the standard Bellman equation.
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InfoNCE Bellman operator. We define the InfoNCE Bellman operator for any function
Q(s, a, st+) : S ×A× S 7→ R with policy π(a | s) as

TInfoNCEQ(s, a, st+) ≜ (1− γ)p(s′ = st+ | s, a) + γEp(s′|s,a)π(a′|s′)[Q(s′, a′, st+)], (15)

and write the update of the classifier as C(s, a, st+) ← TInfoNCEC(s, a, st+). Like the standard
Bellman operator, this InfoNCE Bellman operator is a γ-contraction. Unlike the standard Bellman
operator, TInfoNCE replaces the reward function with the discounted probability of the future state
being the next state (1− γ)p(s′ = st+ | s, a) and applies to a function depending on a state-action
pair and a future state (s, a, st+).

Proof of convergence. Using the same proof of convergence for policy evaluation with the stan-
dard Bellman equation (Sutton & Barto, 2018; Agarwal et al., 2019), we conclude that repeatedly
applying TInfoNCE to C results in convergence to a unique C⋆ regardless of initialization,

C⋆(s, a, st+) = (1− γ)p(s′ = st+ | s, a) + γEp(s′|s,a)π(a′|s′)[C⋆(s′, a′, st+)].

Since C⋆(s, a, st+) and pπ(st+ | s, a) satisfy the same identity (Eq. 4), we have C⋆(s, a, st+) =
pπ(st+ | s, a), i.e., the classifier of the TD InfoNCE estimator converges to the discounted state
occupancy measure. To recover f⋆ from C⋆, we note that f⋆ satisfies

f⋆(s, a, st+) = logC⋆(s, a, st+)− log p(st+) + logEp(s′t+)[exp(f
⋆(s, a, s′t+))]

= log pπ(st+ | s, a)− log p(st+) + logEp(s′t+)[exp(f
⋆(s, a, s′t+))]

by definition. Since the (expected) softmax function is invariant to translation, we can write
f⋆(s, a, st+) = log pπ(st+ | s, a) − log p(st+) − log c(s, a), where c(s, a) is an arbitrary func-
tion that does not depend on st+ 2. Thus, we conclude that TD InfoNCE objective converges to the
same solution as that of MC InfoNCE (Eq. 7), i.e. L̄TD InfoNCE(f

⋆) = LMC InfoNCE(f
⋆).

It is worth noting that the same proof applies to the goal-conditioned TD InfoNCE objective. After
finding an exact estimate of the discounted state occupancy measure of a goal-conditioned policy
π(a | s, g), maximizing the policy objective (Eq. 11) is equivalent to doing policy improvement. We
can apply the same proof as in the Lemma 5 of (Eysenbach et al., 2020) to conclude that π(a | s, g)
converges to the optimal goal-conditioned policy π⋆(a | s, g).

B CONNECTION WITH MUTUAL INFORMATION AND SKILL LEARNING.

The theoretical analysis in Appendix A has shown that the TD InfoNCE estimator has the same effect
as the MC InfoNCE estimator. As the (MC) InfoNCE objective corresponds to a lower bound on
mutual information (Poole et al., 2019), we can interpret our goal-conditioned RL method as having
both the actor and the critic jointly optimize a lower bound on mutual information. This perspective
highlights the close connection between unsupervised skill learning algorithms (Eysenbach et al.,
2018; Campos et al., 2020; Warde-Farley et al., 2018; Gregor et al., 2016), and goal-conditioned
RL, a connection previously noted in Choi et al. (2021). Seen as an unsupervised skill learning
algorithm, goal-conditioned RL lifts one of the primary limitations of prior methods: it can be
unclear which skill will produce which behavior. In contrast, goal-conditioned RL methods learn
skills that are defined as optimizing the likelihood of reaching particular goal states.

C CONNECTION WITH SUCCESSOR REPRESENTATIONS

In settings with tabular states, the successor representation (Dayan, 1993) is a canonical method
for estimating the discounted state occupancy measure (Eq. 3). The successor representation has
strong ties to cognitive science (Gershman, 2018) and has been used to accelerate modern RL meth-
ods (Barreto et al., 2017; Touati & Ollivier, 2021).

2Technically, f⋆ should be a set of functions satisfying

f : e
f(s,a,st+)

Ep(s′
t+

)

[
e
f(s,a,s′

t+
)
] =

C⋆(s,a,st+)

p(st+)

 .
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Successor representation Mπ : S × A 7→ ∆(S) is a long-horizon, policy dependent model that
estimates the discounted state occupancy measure for every s ∈ S via the recursive relationship
(Eq. 4). Given a policy π(a | s), the successor representation satisfies

Mπ(s, a)← (1− γ)ONEHOT|S|(s
′) + γMπ(s′, a′), (16)

where s′ ∼ p(s′ | s, a) and a′ ∼ π(a′ | s′). Comparing this update to the TD InfoNCE update
shown in Fig. 1 and Eq. 14, we see that this successor representation update is a special case of
TD InfoNCE where (a) every state is used instead of randomly-sampling the states, and (b) the
probabilities are encoded directed in a matrix M , rather than encoding the probabilities as the inner
product between two learned vectors.

This connection is useful because it highlights how and why the learned representations can be used
to solve fully-general reinforcement learning tasks. In the same way that the successor representation
can be used to express the value function of a reward (Mπ(s, a)⊤r(·)), the representations learned
by TD InfoNCE can be used to recover value functions:

Q̂π(s, a) = r(s, a) +
γ

1− γ
E
s
(1:N)
t+ ∼p(st+),at+∼π(a|s(1)t+ )

[
ef(s,a,s

(1)
t+ )

1
N

∑N
i=1 e

f(s,a,s
(i)
t+)

r(s
(1)
t+ , at+)

]
See Mazoure et al. (2022) for details on this construction.

D EXPERIMENTAL DETAILS

D.1 THE COMPLETE ALGORITHM FOR GOAL-CONDITIONED RL

The complete algorithm of TD InfoNCE alters between estimating the discounted state occupancy
measure of the current goal-conditioned policy via contrastive learning (Eq. 10) and updating the
policy using the actor loss (Eq. 11), while collecting more data. Given a batch of N transitions of
{(s(i)t , a

(i)
t , s

(i)
t+1, g

(i), s
(i)
t+)}Ni=1 sampled from p(st, at, g), p(st+1 | st, at), and p(st+), we can first

compute the critic function for different combinations of goal-conditioned state-action pairs and
future states by computing their contrastive representations ϕ(st, at, g), ψ(st+), and ψ(st+), and
then construct two critic matrices Fnext, Ffuture ∈ RN×N using those representations:

Fnext[i, j] = ϕ(s
(i)
t , a

(i)
t , g(i))⊤ψ(s

(j)
t+1), Ffuture[i, j] = ϕ(s

(i)
t , a

(i)
t , g(i))⊤ψ(s

(j)
t+ )

Note that the inner product parameterization of the critic function f(st, at, g, st+) =
ϕ(st, at, g)

⊤ψ(st+) helps compute these matrices efficiently. Using these critic matrices, we rewrite
the TD InfoNCE estimate as a sum of two cross entropy losses. The first cross entropy loss involves
predicting which of the N next states s(1:N)

t+1 is the correct next state for the corresponding goal-
conditioned state and action pair:

(1− γ)CE(logits = Fnext, labels = IN ),

where CE(logits = Fnext, labels = IN ) = −
∑N
i=1

∑N
j=1 IN [i, j] · log SOFTMAX(Fnext)[i, j],

SOFTMAX(·) denotes row-wise softmax normalization, and IN is a N dimensional identity ma-
trix. For the second cross entropy term, we first sample a batch of N actions from the target policy
at the next time step, a(1:N)

t+1 ∼ π(at+1 | st+1, g), and then estimate the importance weight matrix
W ∈ RN×N that serves as labels as

Fw[i, j] = ϕ(s
(i)
t+1, a

(i)
t+1, g

(i))⊤ψ(s
(j)
t+ ),W = N · SOFTMAX(Fw).

Thus, the second cross entropy loss takes as inputs the critic Ffuture and the importance weight W :

γCE(logits = Ffuture, labels =W ). (17)

Regarding the policy objective (Eq. 11), it can also be rewritten as the cross entropy between a critic
matrix Fgoal with Fgoal[i, j] = ϕ(s

(i)
t , a(i), g(i))⊤ψ(g(j)), where a(i) ∼ π(a | s(i)t , g(i)), and the

identity matrix IN :

CE(logits = Fgoal, labels = IN )

In practice, we use neural networks with parameters θ = {θϕ, θψ} to parameterize (normalized)
contrastive representations ϕ and ψ and use a neural network with parameters ω to parameterize the
goal-conditioned policy π and optimize them using gradient descent.
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(a) State-based tasks
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(b) Image-based tasks

Figure 6: Evaluation on online GCRL benchmarks. TD InfoNCE matches or outperforms all
baselines on both state-based and image-based tasks.
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Figure 7: We also compare different methods using the minimum distance of the gripper or the object
to the goal over an episode. Note that a lower minimum distance indicates a better performance. TD
InfoNCE achieves competitive minimum distances on online GCRL benchmarks.

D.2 ONLINE GOAL-CONDITIONED RL EXPERIMENTS

We report complete success rates for online GCRL experiments in Fig. 6, showing the mean success
rate and standard deviation (shaded regions) across five random seeds. TD InfoNCE outperforms
or achieves similar performance on all tasks, compared with other baselines. For those tasks where
the success rate fails to separate different methods significantly (e.g., slide (state) and push
(image)), we include comparisons using minimum distances of the gripper or the object to the
goal over an episode in Fig. 7, selecting the strongest baselines QRL and contrastive RL. Note that
a lower minimum distance indicates a better performance. These results suggest that TD InfoNCE
is able to emerge a goal-conditioned policy by estimating the discounted state occupancy measure,
serving as a competitive goal-conditioned RL algorithm.
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Dataset

TD InfoNCE

Contrastive RL

Figure 8: Stitching trajectories in a dataset. We show additional (start, goal) pairs for the experi-
ment in Fig. 4.

D.3 OFFLINE GOAL-CONDITIONED RL EXPERIMENTS

Similar to prior works (Eysenbach et al., 2022; Wang et al., 2023), we adopt an additional
goal-conditioned behavioral cloning regularization to prevent the policy from sampling out-of-
distribution actions (Fujimoto & Gu, 2021; Kumar et al., 2020; 2019) during policy optimization
(Eq.5):

argmax
π(·|·,·)

E (s,aorig,g)∼p(s,aorig,g)

a∼π(a|s,g),s(1:N)
t+ ∼p(st+)

[
(1− λ) · log ef(s,a,g,st+=g)∑N

i=1 e
f(s,a,g,s

(i)
t+)

+ λ · ∥a− aorig∥22

]
,

where λ is the coefficient for regularization. Note that we use a supervised loss based on the mean
squared error instead of the maximum likelihood estimate of aorig under policy π used in prior
works. We compare TD InfoNCE to the state-of-the-art QRL (Wang et al., 2023) and its Monte
Carlo counterpart (contrastive RL (Eysenbach et al., 2022)). We also compare to the pure goal-
conditioned behavioral cloning implemented in (Emmons et al., 2021) as well as a recent baseline
that predicts optimal actions via sequence modeling using a transformer (DT (Chen et al., 2021)).
Our last two baselines are offline actor-critic methods trained via TD learning: TD3 + BC (Fujimoto
& Gu, 2021) and IQL (Kostrikov et al., 2021), not involving goal-conditioned relabeling. We use
the result for baselines except QRL from (Eysenbach et al., 2022).

As shown in Table 1, TD InfoNCE matches or outperforms all baselines on 5 / 6 tasks. On tasks
(medium-play-v2 and medium-diverse-v2), TD InfoNCE achieves a +13% improvement
over contrastive RL, showing the advantage of temporal difference learning over the Monte Carlo
approach with a fixed dataset. We conjecture that this benefit comes from the dynamic programming
property of the TD method and will investigate this property further in later experiments (Sec. 4.4).
Additionally, TD InfoNCE performs 1.4× better than GCBC and retains a 3.8× higher scores than
DT on average, where these baselines use (autoregressive) supervised losses instead of TD learning.
These results suggest that TD InfoNCE is also a competitive goal-conditioned RL algorithm in the
offline setting.

D.4 OFF-POLICY REASONING EXPERIMENTS

Stitching trajectories. The first set of experiments investigate whether TD InfoNCE successfully
stitches pieces of trajectories in a dataset to find complete paths between (start, goal) pairs unseen
together in the dataset. We collect a dataset with size 20K consisting of ”Z” style trajectories moving
in diagonal and off-diagonal directions (Fig. 8), while evaluating the learned policy on reaching goals
on the same edge as starting states after training both methods for 50K gradient steps. Figure 8
shows that TD InfoNCE succeeds in stitching parts of trajectory in the dataset, moving along ”C”
style paths towards goals, while contrastive RL fails to do so. These results justify our hypothesis
that TD InfoNCE performs dynamic programming and contrastive RL instead naively follows the
behavior defined by the data.
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Figure 9: Searching for shortcuts in skewed datasets. We show additional (start, goal) pairs for
the experiment in Fig. 5.
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Table 2: Hyperparameters for TD InfoNCE.

Hyperparameters Values

actor learning rate 5× 10−5

critic learning rate 3× 10−4

using ℓ2 normalized representations yes

hidden layers sizes (for both actor and representations) (512, 512, 512, 512)

contrastive representation dimensions 16

Table 3: Changes to hyperparameters for offline RL experiments. (Table 1)

Hyperparameters Values

batch size (on large- tasks) 256→ 1024

hidden layers sizes (for both actor and rep-
resentations on large- tasks)

(512, 512, 512, 512)→ (1024, 1024, 1024, 1024)

behavioral cloning regularizer coefficient λ 0.1

goals for actor loss random states→ future states

Searching for shortcuts. Our second set of experiments aim to compare the performance of TD
InfoNCE against contrastive RL on searching shortcuts in skewed datasets. To study this, we col-
lect different datasets of size 20K with trajectories conditioned on the same pair of initial state and
goal, with 95% of the time along a long path and 5% of the time along a short path. Using these
skewed datasets, we again train both methods for 50K gradient steps and then evaluate the policy
performance on reaching the same goal starting from the same state. We show the goal-conditioned
policies learned by the two approaches in Fig. 9. The observation that TD InfoNCE learns to take
shortcuts even though those data are rarely seen, while contrastive RL follows the long paths domi-
nating the entire dataset, demonstrates the advantage of temporal difference learning over its Monte
Carlo counterpart in improving data efficiency.

D.5 IMPLEMENTATIONS AND HYPERPARAMETERS

We implement TD InfoNCE, contrastive RL, and C-Learning using JAX (Bradbury et al., 2018)
building upon the official codebase of contrastive RL3. For baselines QRL, GCBC, and DDPG +
HER, we use implementation provided by the author of QRL4. We summarize hyperparameters for
TD InfoNCE in Table 2. Whenever possible, we used the same hyperparameters as contrastive
RL (Eysenbach et al., 2022). Since TD InfoNCE computes the loss with N2 negative examples, we
increase the capacity of the goal-conditioned state-action encoder and the future state encoder to 4
layers MLP with 512 units in each layer applying ReLU activations. For fair comparisons, we also
increased the neural network capacity in baselines to the same number and used a fixed batch size
256 for all methods. Appendix E.1 includes ablations studying the effect of differet hyperparamters
in Table 2. For offline RL experiments, we make some changes to hyperparameters (Table 3).

E ADDITIONAL EXPERIMENTS

E.1 HYPERPARAMETER ABLATIONS

We conduct ablation experiments to study the effect of different hyperparameters in Table 2, aiming
to find the best hyperparameters for TD InfoNCE. For each hyperparameter, we selected a set of

3https://github.com/google-research/google-research/tree/master/contrastive rl
4https://github.com/quasimetric-learning/quasimetric-rl
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(f) Discount factor γ

Figure 10: Hyperparameter ablation. We conduct ablations to study the effect of different hyper-
paramters listed in Table 2 and the discout factor γ on state-based push and slide.

different values and conducted experiments on push (state) and slide (state), one easy
task and one challenging task, for five random seeds. We report mean and standard deviation of
success rates in Fig. 10. These results suggest that while some values of the hyperparameter have
similar effects, e.g. actor learning rate = 5×10−5 vs 1×10−4, our choice of combination is optimal
for TD InfoNCE.

E.2 PREDICTING THE DISCOUNTED STATE OCCUPANCY MEASURE

Our experiments estimating the discounted state occupancy measure in the tabular setting (Sec. 4.3)
observed a small “irreducible” error. To test the correctness of our implementation, we applied the
successor representation with a known model (Fig. 11), finding that its error does go to zero. This
gives us confidence that our implementation of the successor representation baseline is correct, and
suggests that the error observed in Fig. 3 arises from sampling the transitions (rather than having a
known model).

E.3 UNDERSTANDING THE DIFFERENCES BETWEEN TD INFONCE AND C-LEARNING

While conceptually similar, our method is a temporal difference estimator building upon InfoNCE
whereas C-learning instead bases on the NCE objective (Gutmann & Hyvärinen, 2010). There are

5We use x× y to denote a y layers MLP with x units in each layer.
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Figure 11: Errors of discounted state occupancy
measure estimation in a tabular setting.
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Figure 12: Differences between TD InfoNCE
and C-Learning.
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Figure 13: Visualizing representation interpolation. Using spherical interpolation of representa-
tions (Left) or linear interpolation of softmax features (Right), TD InfoNCE learns representations
that capture not only the content of states, but also the causal relationships.

mainly three distinctions between TD InfoNCE and C-Learning: (a) C-Learning uses a binary cross
entropy loss, while TD InfoNCE uses a categorical cross entropy loss. (b) C-Learning uses impor-
tance weights of the form exp(f(s, a, g)); if these weights are self-normalized (Dubi & Horowitz,
1979; Hammersley, 1956), they corresponds to the softmax importance weights in our objectives
(Eq. 9). (c) For the same batch of N transitions, TD InfoNCE updates representations of N2 neg-
ative examples (Eq. 17), while C-Learning only involves N negative examples. We ablate these
decisions in Fig. 12, finding that differences (b) and (c) have little effect. Thus, we attribute the
better performance of TD InfoNCE to its use of the categorical cross entropy loss.

E.4 REPRESENTATION INTERPOLATION

Prior works have shown that representations learned by self-supervised learning incorporate struc-
ture of the data (Wang & Isola, 2020; Arora et al., 2019), motivating us to study whether the repre-
sentations acquired by TD InfoNCE contain task-specific information. To answer this question, we
visualize representations learned by TD InfoNCE via interpolating in the latent space following prior
work (Zheng et al., 2023). We choose to interpolate representations learned on the offline AntMaze
medium-play-v2 task and compare a parametric interpolation method against a non-parametric
variant. Importantly, the states and goals of this task are 29 dimensions and we visualize them in 2D
from a top-down view.
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Parametric interpolation. Given a pair of start state and goal (s0, g), we compute the normalized
representations ϕ(s0, ano-op, g) and ϕ(g, ano-op, g), where ano-op is an action taking no operation.
Applying spherical linear interpolation to both of them results in blended representations,

sin(1− α)η
sin η

ϕ(s0, ano-op, g) +
sinαη

sin η
ϕ(g, ano-op, a),

where α ∈ [0, 1] is the interpolation coefficient and η is the angle subtended by the arc between
ϕ(s0, ano-op, g) and ϕ(g, ano-op, g). These interpolated representations can be used to find the spher-
ical nearest neighbors in a set of representations of validation states {ϕ(sval, ano-op, g)} and we call
this method parametric interpolation.

Non-parametric interpolation. We can also sample another set of random states and using
their representations {ϕ(s(i)rand, ano-op, g)}Si=1 as anchors to construct a softmax feature for a state
s, feat(s; g, {srand}):

SOFTMAX
([
ϕ(s, ano-op, g)

⊤ϕ(s
(1)
rand, ano-op, g), · · · , ϕ(s, ano-op, g)

⊤ϕ(s
(S)
rand, ano-op, g)

])
.

We compute the softmax features for representations of start and goal states and then construct the
linear interpolated features,

αfeat(s0; g, {srand}) + (1− α)feat(g; g, {srand}).

Those softmax features of interpolated representations are used to find the ℓ2 nearest neighbors in a
softmax feature validation set. We call this method non-parametric interpolation.

Results in Fig. 13 suggest that when interpolating the representations using both methods, the in-
termediate representations correspond to sequences of states that the optimal policy should visit
when reaching desired goals. Therefore, we conjecture that TD InfoNCE encodes causality in its
representations while the policy learns to arrange them in a temporally correct order.
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